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Abstract

In this paper we investigate the behaviour and hedging of discretely observed volatil-
ity derivatives. We begin by comparing the effects of variations in the contract design,
such as the differences between specifying log returns or actual returns, taking into con-
sideration the impact of possible jumps in the underlying asset. We then focus on the
difficulties associated with hedging these products. Naive delta-hedging strategies are
ineffective for hedging volatility derivatives since they require very frequent rebalancing
and have limited ability to protect the writer against possible jumps in the underlying
asset. We investigate the performance of a hedging strategy for volatility swaps that
establishes small, fixed positions in straddles and out-of-the-money strangles at each
volatility observation.

1 Introduction

Recently there has been some interest in developing derivative products where the
underlying variable is the realized volatility or variance of a traded financial asset
over the life of the contract. The motivation behind introducing volatility derivative
products is that they could be used to hedge vega exposure or to hedge against implicit
exposure to volatility, such as expenses due to more frequent trades and larger spreads
in a volatile market. In addition, these products could be used to speculate on future
volatility levels or to trade the spread between the realized and implied volatility levels.

The simplest such contracts are volatility and variance swaps. For example, the
payoff of a volatility swap is given by:

volatility swap payoff = (o0 — Kyo1) X B, (1)

*School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3Gl1,
hawindcliff@elora.math.uwaterloo.ca

fSchool of Computer Science, University of Waterloo,Waterloo ON, Canada N2L 3Gl,
paforsyt@elora.math.uwaterloo.ca

iCentre for Advanced Studies in Finance, University of Waterloo, Waterloo ON, Canada N2L 3G1,
kvetzal@watarts.uwaterloo.ca



where og is the realized annualized volatility of the underlying asset, K, is the an-
nualized volatility delivery price and B is the notional amount of the swap in dollars
per annualized volatility point. More complex derivative contracts are also possible,
such as volatility options and products which cap the sizes of the discretely sampled
returns.

The analysis of variance is inherently easier than the analysis of volatility and
consequently a lot of work in this area [4, 7, 5, 11] has focused on variance products.
There are two commonly proposed hedging models for variance. The first involves
hedging with a log contract [17], which can be approximated by trading in a large
number of vanilla instruments [4, 8]. A second hedging approach involves direct delta-
hedging of the variance product [11]. Interestingly, the proponents of each method
indicate that the other method is likely to fail in the presence of transaction costs, a
point we will investigate in this paper. Further, most analytic work [4, 8, 12] specifies
continuously realized variance, whereas in practice the variance is discretely monitored.

Another collection of papers has focused on volatility derivative products, consider-
ing them to be a square root derivative of variance as discussed in [8]. In [2] the authors
provide a volatility convexity correction relating variance and volatility products. One
problem with hedging volatility products is that they require a dynamic position in
the log contract, which will result in a large amount of trading in far out-of-the-money
vanilla instruments. Due to the difficulties with hedging these products, some authors
have even suggested pricing these products via expectation in the real physical measure
[13].

In this paper we develop pricing and hedging methods for discretely sampled volatil-
ity derivatives. We focus on the structure that is imposed by the design of the contract
rather than on a specific model for the stochastic process followed by the underlying
asset. We will find that the contract structure will affect the feasibility of various
hedging methods when applied to these products. Even in a constant volatility Black-
Scholes setting, delta hedging strategies must be rebalanced so frequently that they are
not a practical method for hedging discretely observed volatility. Further, if there are
possible jumps in the underlying asset price then even if the delta hedge is rebalanced
very frequently it does not effectively manage downside tail events. As an alternative,
we will investigate the performance of a delta-gamma hedging strategy with an ap-
propriate selection of vanilla hedging instruments. This strategy can be viewed as an
approximation of the log contract hedge, while avoiding rebalancing a large number
of positions in far out-of-the-money vanilla instruments. Simulation experiments pro-
vided in this paper demonstrate that this technique can provide very effective downside
risk management. We will conclude by investigating the impact of transaction costs
on the various proposed hedging strategies.

2 Volatility Derivative Products

In the introduction, we discussed a very simple volatility derivative product, the volatil-
ity swap. Even restricting ourselves to volatility swaps, there are many possible con-
tract variations. For example, there are many possible ways that the volatility deriva-
tive contract may define the realized volatility and many ways that the discretely
sampled returns can be calculated. In this section we discuss some common volatility



and variance derivative contracts.

2.1 Calculation of Returns

If we sample the underlying asset price at the times:

{tobs,i|i:05"'7N}7 (2)

then there are two common contractual definitions of the return during the interval
[tobs,i—1: tobs,i)- 1f we define Atops i = tobs i — tobs,i—1 then the actual return is defined to

be: S(tobs.i) — S(t )
. obs,i) — obs,i—1
Ractual,l - S(tobs,i—l) ' (3)

We define the log return to be:

(4)

S to S,
Riogs = log <M) '

S(tobs7i—1)
Both of these definitions of the return involve dividing by the previous asset level and

the contract would need to define how the payoff is calculated in the event that the
asset price becomes zero.

2.2 Calculation of Volatility

In addition to specifying how the discretely sampled returns are measured, the contract
must also specify how the volatility or variance is calculated. From a discrete sample
of N returns, the annualized realized volatility, og stqat, can be measured by:

AN |1 (& P&\
_ E 2 E .
UR,stat = —N ) N ( Rz> — <N — Rl> . (5)

i=1

The annualization factor, A, converts this expression to an annualized volatility and
for equally spaced discrete observations is given by A = 1/At,s. In order to convert
units of volatility into volatility points we would multiply by 100.

Although this is how one would statistically define an estimate for the standard
deviation of returns from a sample, volatility derivatives often define a simpler approx-
imation for the volatility. Since many volatility derivative products are sampled at
market closing each day and the mean daily returns are typically quite small, often the
contract defines the realized volatility, o g4, to be:

the average of the squared returns. Notice that the factor N/(N —1) has been removed
from the definition of og sq since it was used to account for the fact that there is a
loss of one degree of freedom used to determine the mean return in (5). In this paper
we will refer to (5) as the statistical realized volatility, whereas we will say that (6) is
the standard realized volatility.



2.3 Contractual Payoffs

Once the contract has defined how the volatility is to be calculated, the derivative
payoff can be specified. As mentioned above, the payoff of a volatility swap is given
by:

volatility swap payoff = (cr — K1) X B . (7)

There are two objectives that are of interest when pricing volatility swaps. Since there
is no cost to enter into a swap, one objective is to determine the fair delivery price
Ko, which makes the no-arbitrage value of the swap initially zero. The volatility
delivery price can be found by computing the value of a swap with zero delivery price
and multiplying by e, where r is the risk-free rate and 7' is the maturity date of the
contract.

A second objective is to determine the fair value of the volatility swap at some
time during the contract’s life given the initially specified delivery price. Because of
the simplicity of the payoff of the swap contract, it is sufficient to be able to find the
no-arbitrage value of a contract which pays o at maturity.

In some markets severe volatility spikes are occasionally observed. In order to
protect the short volatility position some contracts cap the maximum realized volatility.
For example, a capped volatility swap would have a payoff given by:

capped volatility swap payoff = (min(or, 0 maz) — Kvot) X B . (8)

In the variance swap market the maximum realized volatility is typically set to be 2.5
times the variance delivery price. The payoffs for variance based derivative products
can be obtained by substituting in 0% in place of o g in the above definitions. Although
we will not focus on more complex contract structures in this work, some institutions
do offer products such as corridor swaps [3].

3 A Computational Model for Pricing Volatility
Derivatives

In this section we describe two computational frameworks, one based on a numerical
PDE approach and the other based on Monte Carlo simulation methods, that can be
used to price volatility and variance based derivative products. In this paper we focus
on our ability to hedge a volatility derivative product with value V' = V(S,¢t; ...).
We utilize numerical PDE methods to obtain accurate delta, A = Vg, and gamma,
I' = Vgg, hedging parameters. We then simulate the performance of various hedging
strategies by simulating their performance under the real-world (physical) measure and
compare the resulting distributions of profits and losses.

The numerical experiments provided in this paper assume a jump-diffusion model.
The sizes of the jumps, J, are drawn from a lognormal distribution with:

log J ~ N(ps,77) - (9)
and the underlying asset price, .S, which follows the SDE:

dS = (1 — Am)S dt + (S, 4)S dW + (J — 1)S dq , (10)
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where m = E[J — 1] = exp(p; + 73) — 1 and E[ -] is the expectation operator. Also,
u is the drift rate of the underlying asset in the physical measure, o = o(S,t) is the
(state dependent) volatility function, and dW is an increment from a Wiener process.
Jumps in the underlying asset price are modelled by the last term with dg being a
Poisson process with arrival intensity A:

(11)

do — 1 with probability Adt
1= 0 with probability 1 — Adt .

The situation where the underlying asset price evolves continuously without jumps can
be modelled by setting the arrival intensity A = 0. For simplicity, we assume that no
dividends are paid by the underlying asset although it is straightforward to incorpo-
rate either a continuous dividend yield or discrete dollar dividends in our numerical
framework. We also point out that in our numerical approach it is possible to use any
jump size distribution in place of (9).

3.1 Risk-Neutral Valuation

Some of the numerical results provided in this paper were obtained using Monte Carlo
simulation. Further, we will use the risk-neutral valuation ideas presented here to
analyze the asymptotic behaviour of volatility derivative contracts.

Under the risk-neutral measure, ), the underlying asset follows the SDE:

dS = (r — Am)S dt + (S, £)S dW + (J —1)S dq . (12)

The local volatility surface, o(S,t), and the jump parameters A, pu; and -7, have
been selected so that the model correctly prices existing options in the market. The
no-arbitrage value is found by approximating the expectation:

V(S(0),0) = e "TER[V (S, T; o) , (13)

by averaging over many sample asset paths and computing the realized quantity og
along each of these paths. Although this technique is very straightforward to imple-
ment, it is difficult to obtain accurate estimates of the delta and gamma derivatives
throughout the life of the contract, which are necessary when we simulate the per-
formance of various hedging strategies. When a general volatility surface is used we
cannot integrate (12) analytically, although we can generate the risk-neutral random
walks numerically using, for example, an Euler timestepping method.

3.2 Numerical PDE Framework

Many of the results provided in this paper were obtained using a numerical partial
differential equation (PDE) framework. This allows us to efficiently compute the delta
and gamma derivatives used later in this paper to simulate the performance of various
hedging strategies for these contracts.

In [16] the authors provide an efficient computational model for pricing discretely
sampled variance swaps in a Black-Scholes setting. The efficiency of their method comes
from exploiting the linear structure of variance products and cannot be extended to
volatility derivative products, which have matters complicated by the coupling of the
realized returns through the square root function.



3.2.1 State Variables and Updating Rules

In order to price a general volatility derivative product we introduce two additional
state variables. Let P represent the stock price at the previous volatility observation
time and let Z be the average of the squared returns observed to date:

1~
Zi:EZle. (14)
p

In some situations it is possible to use a similarity reduction in the variable { = S/P.
However, for a general volatility function, o(S,t), this dimensionality reduction is not
possible.

Initially the state variables are set to:

These variables are changed only at the discrete volatility sampling times, tops;, © =
1,..., N according to the following jump conditions. If ¢ , . and t;rbsi represent the

instants immediately before and after the i observation date then:

P<t(—)’})s,i) = S(t;bs,i) ’ (17)
R2 - Z(t(:bs,i)

Z(th V=20t .)+ —

obs,i obs,i

18
: (15)
The return, R;, can be computed from the state variables contained in the computa-
tional model. For example, if the contract specifies that log returns are used then:

St .
R; =log <(Ob“)> . (19)

P(tobs,i)
The updating rules for the state variables are implicitly defined by the volatility
derivative contract and are independent of any assumptions regarding the behaviour

of the underlying asset. We will find that this structure has important ramifications
when we consider the hedging of these products.

3.2.2 Evolution Equations Between Volatility Observations

Between the discrete volatility sampling times the state variables do not change. Con-
sequently, between observations we can think of the value of the volatility derivative
product as being a function of the underlying asset price S and time ¢, parameterized
by the state variables:

V=V(St P Z). (20)

So far in this section our discussion has been independent of any assumptions regarding
the behaviour of the underlying asset. In order to model the behaviour of the contract
between volatility observations we need to make some assumptions. In this paper we
will work with a one factor model that utilizes a local volatility surface. In some
examples we allow the possibility of jumps in the underlying asset price. It could



be argued that it would also be useful to consider a stochastic volatility model as in
[12, 13, 11]. However, our focus in this paper is to investigate hedging results that
are independent of the assumptions about the evolution of the underlying asset. The
simple one factor, jump-diffusion model is sufficient to illustrate our point that delta
hedging strategies are ineffective for managing the risk associated with these products.

In the jump-diffusion model, the value of the volatility derivative satisfies the partial
integro-differential equation (PIDE):

%+%T_Amﬁng+%a%&ﬂS%@s—rv+AEmyl:O, (21)

where:
E[AV] = E[V(JS, )] — V(5,t) (22)
:/WﬂﬁMﬂW—V@w, (23)

and p( - ) is the probability density function for the jump size. This equation is solved
backwards from maturity, t = T, to the present time, ¢t = 0, to determine the current
fair value for the contract. For a description of the computational methods used to
solve this PIDE the reader is referred to [9].

3.2.3 Maturity Conditions

If the volatility is defined without the mean according to (6) then it is straightforward
to specify the value of the volatility derivative as a function of the state variables. For
example, from the contractual payoff we see that the appropriate terminal condition
for a volatility swap would be:

V(S, T; P, Z)Volatility swap — (100 VAZ — Kvol) x B 5 (24)

where K, is the volatility delivery price, A is the annualization factor and B is the
notional amount. The terminal condition for a variance swap would be:

V(S,T; P> Z)variance swap — (100AZ - Kvar) x B ; (25)

where K4, is the variance delivery price. More exotic volatility payoffs are also possible
in this framework. For example the terminal condition for a capped volatility swap
would be:

V(S) T; P7 Z)Capped volatility swap — (mln(loo \ AZa UR,maw) - Kv@l) x B . (26)

In summary, the value of the volatility derivative product is a time-dependent func-
tion of three space-like variables. After applying the terminal condition at maturity we
solve a collection of independent backward equations (21) between the discrete obser-
vation times. At the discrete volatility sampling times we apply the jump conditions
(17)-(18). When we reach the date of sale of the contract, the no-arbitrage value of
the volatility derivative is given by:

V(S =5(0),t=0; P=5(0),Z=0) . (27)

An example of this technique applied to a different type of path-dependent option is
given in [23].



3.2.4 Asymptotic Boundary Conditions

In order to complete the numerical problem, we determine appropriate conditions at
the boundary of the computational domain, S = Sy, and S = Sjez. Although it is
possible to reduce the boundary truncation error in the region of interest near S = 5(0),
t = 0, to an arbitrary tolerance by sufficiently extending the computational domain
[14], it is of practical interest to accurately specify the boundary behaviour in order to
reduce the number of nodes in the grid.

The payoff of a volatility option or swap (capped or otherwise) is linear in og.
Thus, it suffices to analyze the asymptotic behaviour of a contract that pays off the
realized volatility at maturity, V(S,T) = or. To determine appropriate boundary
conditions we look at the asymptotic form of the jump conditions. Notice that these
can be thought of as specifying initial data over a given volatility observation period.

We begin by analyzing the value of the volatility derivative at the instant imme-
diately preceding the j'* volatility observation, ¢, obs,j° If we let F(t) represent the
information available at time ¢ then, assuming that op is defined according to (6),
using risk-neutral valuation we find:

V(S,t

’ obsg) e (= tobSJ)EQ[O-R|f( obsg)] (28)

A
= (T—tops,;) , | Q 2 2 2
=e bsi)y | — F E R+R+ E R; Obsj . (29)

i=j+1

The first term in the square root is a constant, independent of S, as it represents the
past volatility observations. The second term, R?, represents the current volatility
observation. It depends on S in a the way specified by the contractual definition of the
observed returns. At time ¢, the last term is random, corresponding to the level of
future volatility samples. This decompos1t10n is illustrated in Figure 1.

Suppressing the explicit reference to the time, t_; 7 for S far away from the pre-
vious asset level P, if the volatility function is suitably well behaved, the current
volatility observation, Rjz, will dominate in (29). Thus the value is approximately a
linear function of the current return at the boundaries. For actual returns we have:

S—P dR; d’R;
P’ ds /P ds?

Rj = =0. (30)

This indicates that Vgg — 0 at both boundaries when actual returns are specified. For
log returns we have:

dR; d’R,;
ds =1/5 ds?

R; = log(S/P), =-1/5%, (31)
which indicates that Vgg — 0 as the asset level becomes large. In practice, the volatility
derivative contract would need to specify how future returns would be computed in the
event that the asset price became zero. However, the lower boundary is an outflow
boundary [22] and using the approximation Veg = 0 at S = S} will not affect the
solution near S = S(0), ¢t = 0, assuming that the computational domain is sufficiently
wide [14].
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FIGURE 1: Heuristic decomposition of the realized volatility in terms of the past, current
and future volatility samples, at a time immediately preceeding a volatility observation.

4 Pricing Volatility Exposure

Now that we have described numerical methods for pricing these contracts we can in-
vestigate the impact of various modelling assumptions and contractual designs on the
fair value of these products. Specifically, we would like to determine how robust the
pricing and hedging results are against changes in our assumptions regarding the mod-
elling of the underlying asset price movements. Also, we would like to understand the
effect that variations in the contract design will have on the pricing of these products.

4.1 Effect of the Underlying Asset Price Model

In this section we compare the value of the volatility swap assuming a jump-diffusion
model, a local volatility function model with no jumps, and a constant volatility model
with no jumps. We consider a market where the underlying asset price contains possible
jumps and that these jumps are priced into a market of available options. The options
market consists of European call and put options with strikes spaced by AK = $10 and
maturities spaced by AT = .1 year, or approximately one month. We assume that the
writers of options in this market use the risk-adjusted parameters A = .1, uy = —.9,
v7 = .45 and ¢ = .2 to price these instruments and charge the fair value.! This
defines a market consistent with the jump-diffusion model parameters given above. In
order to facilitate comparisons between the various models of the underlying asset,
we calibrated a local volatility function? as described in [6], and a constant implied

!These parameters are approximately the values reported in [1], which the authors found were implied in
a certain set of S&P options market prices.

2Source: the local volatility function was computed using the Calcvol volatility surface calibration pro-
gram developed at Cornell University.
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FIGURE 2: Local volatility function computed to match the prices of call and put options in
a synthetically generated market. The options were priced assuming r = .05, 0 = .2 with
Jgump parameters X = .1, uy = —.9 and v; = .45, S(0) = $100.

volatility to these market prices of vanilla options.

Although jump-diffusion models have recently been gaining popularity, solving the
PIDE (21) for exotic options requires advanced numerical software and is somewhat
more complex than the techniques required to value exotic options in the standard
Black-Scholes framework without jumps. As a result it is common to use local volatil-
ity surfaces in order to price exotics consistently with observed market prices. If we
calibrate a local volatility function consistent with the option prices observed in our
synthetic market, the resulting local volatility function is as shown in Figure 2. The
local volatility function exhibits the skewed smile that is often observed in options
markets, which flattens off for longer maturities.

Even simpler than using a local volatility function, we can consider matching a
single constant implied volatility, ojm,p, using an at-the-money option with the same
maturity as the volatility swap we are pricing. We find that an implied volatility of
oimp = 0.25046 matches the price of an at-the-money option in our synthetic market.

We now have three possible models for the underlying asset price that are all plausi-
ble given currently observed market prices. In practice, the person hedging the volatil-
ity derivative would not know which of these (or other) models truly generates the
underlying price process and would need to choose among them. Here we briefly dis-
cuss some of the similarities and differences that can occur in the valuation and hedging
of volatility products under these different models.

In Figure 3(a) we see that there are some qualitative properties that hold for all
of the models for the underlying asset process. All models have a minimum occurring
near the initial asset level (corresponding to the previous asset price during the first

10



100
100

Value

m
r F
F 90
90 F \
F 80 F
80 - r \
o 70 |
70 o
E 60 |
60 [] o
= S s F
50 | > r
g 40 F
40 F
S 30 F
30 F r
I 20 E — — — — Actual Returns
20 E F Log Returns
r Jump Diffusion F Capped Contract
10 E Constant Vol. 10 F
F — — — — Local Vol. Function o Bl b )
0 b 5'0 ! ! 1(')0 ! ! 1é0 ! ! 2(')0 40 60 80 100 120 140 160 180 200
Asset Price Asset Price
(a) The effect of assumptions regarding (b) The effect of the contractually defined
the underlying asset price process. The return on the fair value of a volatility swap
local volatility function and constant im- contract. The capped contract used log re-
plied volatilities were chosen to be consis- turns with a mazimum realized volatility of
tent with the pricing of vanilla call and put OR,maz = -50. The underlying asset price
options under the jump-diffusion process, followed geometric Brownian motion with
which utilized o0 = .20, py = —.9, v; = .45 o = .20, S(0) = $100, and no jumps.
and A = .1.

FIGURE 3: The volatility swap payoff was calculated using standard realized volatility,
T =.5 Kyqy =0 and B =1 with daily observations, Atys = .004. The initial asset price
was S(0) = $100 and the risk-free rate was r = .05.

volatility sample). As one moves away from the previous asset level, the value of the
volatility swap increases because more volatility will accrue during the current volatility
sample. Looking at the slope, which corresponds to the delta hedging parameter, we
see that a delta hedging strategy will hold a long position in the underlying asset if
S > P to protect against further increases in the asset price. Similarly, a delta hedging
strategy will hold a short position in the underlying asset if S < P to protect against
the volatility accrued if the asset value decreases further.

As we would expect, there are some quantitative differences between the valuations
obtained using the different models for the underlying asset. Although the constant
volatility model and the jump-diffusion model give very similar solutions, the local
volatility function model gives somewhat different results. This is because the local
volatility function behaves as if the volatility is state dependent, and from Figure 2 we
see that the local volatility function imposes a higher volatility when the asset price
is either well below or well above S(0) = $100. Although the valuations, and hence
the implied hedging positions, differ slightly for the various underlying asset models,
the qualitative properties, and the general hedging results given in Section 5 based on
these qualitative properties, continue hold for different models of the underlying asset.

4.2 The Influence of Product Design on Pricing

In this section, we investigate the impact of variation in the design of the contract on
the fair volatility delivery price. Specifically, we investigate the differences caused by
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Jumps Sampling frequency Return type Koo
(volatility points)

No Daily Log 19.961
Actual 19.961

Capped 19.961

No Weekly Log 19.806
Actual 19.835

Capped 19.806

Yes Daily Log 25.440
Actual 23.052

Capped 21.354

No Daily Log (0R stat) 19.961
Weekly Log (0R stat) 19.794

TABLE 1: The impact of variations in the contract definition on the fair forward delivery
price. The capped contracts specified a mazimum realized volatility of o g mae = .50 with
log returns. Unless mentioned otherwise, the volatility swap specified standard calculation
of realized volatility, T = .5, and B = 1. For daily observations At,,s = .004 while for
weekly observations Aty = .02. The risk-free rate is v = .05 and a constant volatility
of o = .20 was used. The experiments that included jumps in the underlying asset price
specified A = .1, uy = —.9 and v; = .45.

the definition of return, the frequency of observation and the impact of whether or not
the mean is included in the calculation of volatility. The numerical computations given
in this section were performed using a sufficiently fine discretization that the solutions
are accurate to within approximately 4.001.

In Table 1 we see that when the volatility is sampled very frequently (i.e. daily
or weekly) and the asset price evolves continuously, the definition of the return has
very little impact on the fair value of the contract. The capped contract used log
returns and the total realized volatility was limited to a maximum of og ez = .50.
In the simulations that were carried out, with daily and weekly sampling the cap was
sufficiently large that it never affected the payoff when there were no jumps in the
underlying asset price. Figure 3(b) illustrates the differences between the realized
volatility when the contract specifies log returns, actual returns and a cap on the fair
value of these contracts. The sampling frequency has a larger impact on the fair value
of these contracts, with differences between weekly and daily sampling occurring in the
third digit. As a result, hedging strategies based on a continuously observed volatility
may become less effective for longer sampling intervals.

If the underlying asset price jumps then the differences between log, actual and
capped returns become more noticeable. In Table 1 we see that the capped contract
is less affected when we introduce a jump component to our simulation model. In this
case we have introduced jumps according to a Poisson process with intensity, A = .1.
If a jump occurs, the size of the jump is drawn from a lognormal distribution with
mean, py = —.9, and standard deviation, v; = .45. Notice in Figure 3(b) that the
value of the contract using log returns increases more quickly than the value of the
contract using actual returns when S < P. Since on average the jumps are downward,

12



contracts defined using log returns are the most dramatically impacted by the jump
component.

At the bottom of Table 1 we investigate the impact of statistically defining the
realized volatility as in equation (5) compared with the more common standard defi-
nition of the realized volatility given by equation (6). We find that for daily sampling
the differences are minimal, affecting the fifth digit. As the sampling becomes less
frequent, there is more difference between the fair values of the contracts depending on
whether or not the mean is included in the calculation of the volatility. For example
with weekly sampling, the effects of whether or not the mean in included lie in the
fourth digit.

5 Hedging Volatility Exposure

We will see that hedging volatility swap contracts is more difficult than hedging simple
vanilla call and put options. There are two standard dynamic approaches that we
can use to hedge these contracts; delta hedging and delta-gamma hedging. In this
section we look at the relative merits of each of these approaches and investigate the
performance of these hedging methods considering the effects of transaction costs and
jumps in the underlying asset price.

In this paper we computed the delta and gamma hedging parameters using a suf-
ficiently fine mesh during the numerical PDE computations such that further refine-
ments did not appreciably affect the hedging results provided in this section. We then
performed simulations where the asset path evolved according to (10) using non-risk-
adjusted parameters (i.e. in the physical measure) in order to investigate the perfor-
mances of the various hedging strategies. The profit and loss (P&L) is the value of the
hedging portfolio less the value of the payout obligation for the short volatility swap
at the maturity of the contract. For each simulation study we provide the expected
profit (or loss if negative), the standard deviation of the P&L distribution and the 95%
conditional value at risk (CVaR) which is the average of the worst 5% of the outcomes
in the P&L distribution. The CVaR measure satisfies certain axiomatic properties
[18] that are consistent with the notion of risk. It has also been recognized as a more
robust measure downside risk than standard value at risk (VaR) when the profit and
loss distribution has fat tails [18].

5.1 Model-Independent Hedging Results

There are two main model-independent results that we focus on in this section. These
are imposed on us by the structure of the volatility contract and consequently hold for
general models of the price movements by the underlying asset. First, we demonstrate
that discretely observed volatility derivative products require very frequent rebalancing.
Second, we offer suggestions as to appropriate hedging instruments based on the profile
of the realized volatility during the current observation.

5.1.1 Frequency of Rebalancing

Consider the situation of the investor who is short the floating leg of the volatility swap.
In theory, one can delta hedge risk exposure to a short position in a derivative contract
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Profit and Loss Distribution

Hedge type Atpedqge Mean Std. dev. 95% CVaR
No hedge None -.005 1.27 -2.66
Delta hedge At ps -.002 1.26 -2.65
Atoyps/2  -.003 .89 -1.86
Atyys/4  -.002 63 -1.32
Delta-Gamma hedge Atops .004 .03 -.05

TABLE 2: Statistics of the profit and loss distribution of a discretely hedged, short volatility
swap position. The volatility swap specified log returns, no mean, T = .5, K, = 19.961,
Atops = .004, and B = 1. It was assumed that r = .05, p = .1 and o = .2. The numerical
computations were obtained from Monte Carlo experiments using 1,000,000 simulations.

with value V(S,t) by holding Vg(S,t) shares in the underlying asset at all times. This
strategy can be viewed as setting up a local tangent line approximation to the value
of the volatility swap. In practice, we define a regular hedging interval, Atjcqqe, and
adjust the hedging position at ¢, = hAtpedge, h =1,2,...,np, where nj, = |T/Atpedge |-
In order to delta hedge over the time interval [ty,, t541), the investor holds Vs(S(t), tr)
shares of the underlying asset. In order for the discrete delta hedging strategy to be
accurate we need to choose Atpeq4e sufficiently small so that:

Vs(S(tn),tn; P(tn), Z(tn)) = Vs(S(t),t; P(t), Z(t)) (32)

for all ¢ € [tp, thy1), where we have explicitly written the dependence of the underlying
asset price and state variables on time. Since the state variables change at the volatility
sampling times, we require that the delta hedging interval cannot be longer than the
volatility sampling period, Atpeqge < Atops.

To illustrate the fact that very frequent rebalancing is required for discretely ob-
served volatility derivative contracts, we consider a very simple Black-Scholes setting
with a constant volatility model. Focusing on the middle section of Table 2 we see that
the delta hedging strategy must be rebalanced four times per observation in order to
substantially reduce the risk when compared with the unhedged position. This exces-
sive rebalancing makes delta hedging appear to be inappropriate for these contracts.
In a more realistic non-constant volatility model we would need to delta hedge the
current volatility exposure as well as manage changes in the level of volatility, making
this hedging approach even less viable. In the next section we will consider a more
flexible delta-gamma hedging strategy. We will find that this hedging strategy can pro-
vide good performance even if we only rebalance our hedging positions at the volatility
observation times.

5.1.2 Appropriate Hedging Instruments

We have seen that delta hedging strategies must be rebalanced much more frequently
than the volatility sampling frequency. We now investigate the structure of the up-
dating rules for the state variables in order to gain insight as to why the underlying
asset is not an appropriate hedging instrument. One reason for this is illustrated in
Figure 4. In this figure we see that when S = P the tangent to the curve denoting the
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FIGURE 4: Demonstration of the ability of a delta-gamma hedging strategy to match the
value profile of a daily sampled volatility swap. The delta-gamma hedge was constructed us-
ing an at-the-money straddle position as the secondary hedging instrument. The delta hedge
takes no position in the underlying asset and is unable to hedge against price movements
in either direction.

value as a function of underlying asset price is horizontal. This indicates that Vg ~ 0
and that the delta hedge does not take a position in the underlying asset at this time.
Unfortunately, most of the time S =~ P since the previous asset level is set to the
current asset level at each volatility observation date. This is evident in Table 2 where
we see that delta hedging only at the volatility sampling times yields almost identical
results to the situation where the writer elects not to hedge the volatility product at all.
The underlying asset is not flexible enough to simultaneously hedge the volatility that
would be accrued if the asset price moved in either direction. As a result, in order to
delta hedge our volatility exposure we will need to adjust our hedging positions much
more frequently than the volatility sampling frequency.

Looking at Figure 4, we see that the value of the volatility swap attributed to
the current sample is quite similar to the payoff of a straddle position struck at the
previous asset level. If the underlying asset price moves away from the previous asset
level in either direction, then this sample will accrue a positive amount towards the
final realized volatility. As a result, we suggest constructing straddle or out-of-the-
money strangle positions at each volatility observation. Although this will still involve
rebalancing at each volatility observation, the positions taken will be quite small since
we are only hedging the volatility that accrues over the current volatility sampling
period.

In order to hedge a short position in the volatility derivative with price given by
V, a delta-gamma hedging strategy holds positions x; in the underlying asset and xo
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in appropriate short-term options according to:

x1 = Vg —x2lg (33)
Ve

To = ﬁ s (34)
Iss

where Ig, Igg are the delta and gamma respectively of the secondary instruments. We
will choose the secondary instruments so that Igg is large enough so that the position
in the secondary instruments given by (34) does not become too large. Although the
weights of the hedging instruments have been chosen to locally match the delta and
gamma of the product we are hedging, we have also chosen the secondary instruments
to be consistent with the far-field behaviour. As a result, if there are large asset price
swings, the proposed hedging strategy qualitatively matches the target profile. In
Section 5.4 we will see that this strategy is closely related to a hedging strategy for
variance swaps that utilizes a log contract.

We assume that the writers set up their hedging positions using short term, ex-
change traded options. Exchange traded options tend to have a fixed range of avail-
able strike prices. In our experiments, it was assumed that the strike prices of available
options used as secondary instruments were spaced by AK = $10 and the initial asset
price was S(0) = $100. The delta-gamma hedging strategy constructs either straddle
or out-of-the-money strangle positions at each volatility observation using the strike
prices nearest the current asset price while attempting to maintain a roughly symmet-
ric risk exposure to large price movements. Specifically, if K; < S < K;y1 at time
tobs,j, then we construct:

e A straddle position with strike K; if S — K; < .2AK.
e A straddle position with strike K, if K;31 — S < .2AK.

e An out-of-the-money strangle position using put options with strike K; and call
options with strike K; 1 otherwise.

In order to avoid excessive transaction costs, once we establish an out-of-the-money
strangle position, we will only change the secondary hedging instruments if the asset
level moves beyond the strike prices of either the call or put option.

In our experiments we assume that the options in the market mature at approx-
imately monthly intervals where AT = .1 year. In general we use the shortest term
options whose maturity date is later than the next volatility observation since short
term options have a higher ratio of gamma to value, which will be useful in reducing
transaction costs. However, as we near the maturity date of the secondary options
their gammas become too localized around the strike prices and we choose to restrict
ourselves to using options with a minimum remaining time to maturity of half of a
month, i.e. T'— ¢ > .05 years.

In Table 2 we see that the delta-gamma hedging strategy performs very well relative
to the delta hedging strategy. If we only adjust the delta-gamma hedge at the volatility
observations, the standard deviation of the profit and loss distribution is reduced by a
factor of over 20 when compared with a delta hedging strategy that is re-balanced four
times per volatility sampling period. We refer to this delta-gamma hedging strategy
as a semi-static hedge because it constructs small, fixed positions at each volatility
observation which are not adjusted until the next volatility sampling date.
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Profit and Loss Distribution

Hedge type Atpeqge Mean Std. dev. 95% CVaR
No hedge None 4.897 7.59 -8.33
Delta hedge Atoyps /4 4.896 7.52 -7.21
Delta-Gamma hedge Atops 2.364 4.82 -2.25
MVO hedge (underlying) Atogps /4 4.622 7.29 -8.70
MVO hedge (underlying,puts,calls) At s .548 3.31 -2.21

TABLE 3: Statistics of the profit and loss distribution of a discretely hedged, short volatility
swap position when there are jumps in the asset price. The volatility swap specified log
returns, no mean, T = .5, K,,q = 25.440, Aty = .004, and B = 1. In the hedging
stmulations it was assumed that the non-risk-adjusted parameters were r = .05, u = .1,
oc=.2,A=.02, uy=—.45 and vy = .45. The numerical computations were obtained from
Monte Carlo experiments using 100,000 simulations.

5.2 Hedging in a Jump-Diffusion Setting

We now imagine that the asset price occasionally jumps discontinuously and investigate
the impact of jumps on our ability to hedge these contracts. In [1] the authors found
that the risk-adjusted jump parameters, A" = .1, u'f* = —.9 and 7} = .45 were implied
in a particular set of S&P option prices. Valuing our volatility contract consistently
with these vanilla instruments gives a volatility delivery price of K, = 24.440. The
arrival intensity and typical jump sizes given by these implied parameters are much
larger than those given by historical time series data. In [1] the authors argue that
A= .02, ,uf’, = —.45, 79 = .45 are more appropriate estimates of the jump parameters
under the physical measure.

In Table 3 we compare the performances of various hedging strategies under the
physical measure. We see that the variability of the hedged position measured by the
standard deviation of the profit and loss distribution is much larger when there are
possible jumps in the underlying asset price. The fair volatility delivery price is such
that on average the profit and loss of an unhedged position in a risk-neutral setting has
mean zero. In the physical measure the expected P&L is positive because of the risk
aversion built into the implied jump parameters. However, the CVaR indicates that
occasionally the writer experiences a very large loss in the relatively rare event that a
jump occurs.

It is interesting to notice that delta hedging, even with very frequent rebalancing,
does very little to reduce the downside risk associated with hedging these contracts
when there are jumps. In fact, looking at the CVaR we see that the worst case outcomes
when delta hedging are only marginally better than the worst case outcomes when the
volatility swap is not hedged. To see why this is the case, consider the following
situation:

e Suppose the asset price at the previous volatility observation was $100.

e After the volatility observation, the asset price rises and the delta hedging strat-
egy takes on a positive position in the underlying asset to hedge against further
increases in the asset level before the next volatility observation.

e There is a large downward jump in the asset price.
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FIGURE 5: Illustration of the performance of a delta and a delta-gamma hedging strategy
when a jump occurs in the underlying asset price.

In this case, the writer will face a hit in the short realized volatility position due to
the large downward jump and, to make matters worse, the attempted hedging position
(consisting of a long position in the underlying asset) will have also decreased in value.
This situation is illustrated in Figure 5.

We contrast this situation with a delta-gamma hedging strategy which sets up
straddle/strangle positions at the beginning of the volatility observation as described
in the previous section. In Table 3, the delta-gamma hedged position still offers sig-
nificant risk reductions over not hedging these contracts at all. In Figure 5 we see
that the possible jumps in the underlying asset have much less negative impact when a
delta-gamma hedging strategy is implemented because the secondary instruments have
been chosen to qualitatively match the far-field behaviour of the volatility derivative
contract.

The delta and delta-gamma hedging strategies try to reduce risk by locally match-
ing the sensitivities of the hedging and target portfolio to changes in the underlying
asset price. In an attempt to improve the performance of the hedges we can choose our
positions in the hedging assets in order to minimize the variance of the partially hedged
position as described in [10, 20, 19]. Each time the hedge is rebalanced, we solve an op-
timization problem and select our hedging positions so that the variance of the hedged
position is minimized. In Table 3 we see that the minimum variance optimal (MVO)
hedge using only the underlying asset as a hedging instrument still offers very little
risk improvement over the unhedged position. This provides a further demonstration
that hedging using only the underlying asset is inappropriate for managing the risk
associated with writing volatility derivatives. The MVO hedge using the instruments
used in our delta-gamma hedge offers somewhat better risk reduction compared with
the local delta-gamma strategy. The MVO hedge can select the weightings in the puts
and calls that comprise the strangle position independently in order to better match
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the target profile of the contract that we are hedging.

5.3 Hedging with a Bid-Ask Spread

We now investigate the impact of transaction costs on the valuation and hedging of
these contracts. Specifically, we assume that the hedger incurs transaction costs due
to a bid-ask spread. We define the one-way transaction cost loss due to trading in the

underlying asset to be:
1\ Sask — Shid
K==z ———. 35
<2> Sask ( )

Typically, the bid-ask spread for liquidly traded assets is quite small and in our exper-
iments we use k = .001 or 10 basis points. On the other hand, the bid-ask spread for
exchange traded options can be quite large, and typical values for the transaction cost
parameter for the secondary instruments would be around kg7 = .05.3

When there are transaction costs [21] we replace (21) with:

1 2 Q2 2 2 _
Vi +1rSVs + 20 S“Vsg — koS (HTFAthedge) |[Vss| —rV =0. (36)

The new term containing |Vsg| estimates the expected costs of changing the delta
hedged position at the end of the hedging interval. In general this equation is non-
linear and must be solved numerically. However, when actual returns are specified the
gamma, Vgg, is always positive and we can simply use the Leland volatility correction

[15]:
5 1/2
K
= 1 _ — .
OLeland — O < + (“ WAthedge) 0_) (37)

Even when log returns were specified, the regions where the gamma changes sign are
so far away from the region of interest (see Figure 3(b)) that we could not notice
any differences between the solution computed using (36) compared with the solution
computed using (21) with (37).

Assuming that x = .001 and re-balancing the delta hedged position four times
per volatility observation, Atpcqge = .001, the cost of hedging the realized volatility
is $21.786 at time t = 0, giving a fair delivery price at maturity of K,, = 22.338.
Comparing with the fair delivery price without considering transaction costs given
in Table 1, we see that the expected transaction costs are $2.377. In other words,
approximately 10% of the value of the delivery price is lost through hedging transaction
costs. If we do choose not to hedge the product, then at maturity we expect to have
approximately $2.377 in profit, at the expense of the additional risk we take on by not
hedging. This is very close to the expected excess of the unhedged position in Table 4.

3An alternative to exogenously specifying the option bid-ask spread would be to determine the inferred
spread in terms of the bid-ask spread for the underlying asset using a transaction cost model. However,
the rebalancing interval used to hedge the vanilla instruments would probably be much longer than the
rebalancing interval used to hedge the volatility derivative contract, making the implied bid-ask spread
somewhat arbitrary. Instead, we choose kg; to be representative a typical options market.
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Profit and Loss Distribution

Hedge type AK kg; Mean Std. dev. 95% CVaR
No hedge N/A N/A 2375 1.26 -.27
Delta hedge N/A N/A -427 .68 -1.84
Delta-Gamma hedge $10 .05 -3.564 .85 -5.35
$10 .001  .843 15 .50
$20 .001  .991 23 .55

TABLE 4: Statistics of the profit and loss distribution of a discretely hedged, short volatility
swap position when there are transaction costs. The volatility swap specified log returns,
no mean, T = .5, K,, = 22.338, Atys = .004, and B = 1. It was assumed that r = .05,
w=.10=.2 k=.001 and S(0) = $100. The numerical computations were obtained
from Monte Carlo experiments using 1,000,000 simulations.

If we attempt to delta hedge the contract we find that the profit and loss distri-
bution has a negative mean value, indicating that equation (36) has underestimated
the expected transaction costs. To explain this, recall that the Leland transaction cost
model uses a gamma approximation in order to determine the expected change in the
position of the hedging asset. In Figure 4 we see that this second-order approximation
underestimates the curvature, and hence the expected transaction costs, for larger as-
set price movements. The risk associated with the delta hedged position is similar to
that found in Table 2 in the absence of a bid-ask spread.

To this point, the delta-gamma hedging strategy that involves setting up straddle-
strangle positions at each volatility observation has performed very well. However, the
bid-ask spread on exchange traded options is quite large and typical values might be
around kg7 = .05. We see in the bottom row of Table 4 that when faced with these
large transaction costs, the delta-gamma hedging strategy is no longer feasible.

On the other hand, it might be plausible to assume that the institution hedging
the volatility swap has clients who can act as natural counterparties to the positions
in these vanilla options. In this situation we assume a much smaller transaction cost
associated with trading in the secondary instruments, kg = .001. Now the delta-
gamma hedging strategy incurs fewer transaction costs and has less variability than
the delta hedged position with transaction costs. In fact, now approximately half of
the additional mark-up due to the transaction costs is now retained as profit and the
delta-gamma hedging is so effective that even the 95% CVaR is positive.

When there are transaction costs there are tradeoffs that must be considered in the
selection of the hedging instruments. At the bottom of Table 4 we compare the per-
formance of the delta-gamma hedging strategy when AK = $10 and when AK = $20.
We see that by choosing wider strangle positions we expect to incur less transaction
costs since we will change the structure of the positions less frequently. This is at the
expense of a moderate increase in variability because the wider strangle positions are
less precise.
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5.4 Hedging Using a Log Contract

Much of the existing work on volatility based derivatives [8, 16, 4] has focused on
variance swaps. We now summarize one of the important results given in [8], which
can be used to price and hedge variance swaps. Assuming that the underlying asset
evolves continuously according to:

dS = uSdt+o(S,t)S dW (38)

where p is the drift rate of the underlying asset in the physical measure, o(S,t) is the
volatility function and dW is an increment from a Wiener process. Using Ito’s lemma
we see that:

Integrating both sides with respect to time we find that:
S(T) Tas 1 (T,
1 —— ) = — == dt . 4
w(50)-/ 52/ 7 o

Rearranging we find that the continuously observed variance is given by:
1 (T
0-%% cts — _/ Uth (41)
s T 0

T
_2 [ s _ log <@>] . (42)
T |/ S S(0)
We refer to this hedging strategy as a semi-static hedge, since it consists of a static
short position in a log contract*, and a dynamic position in the underlying asset that
is always instantaneously long 1/S(t) units worth $1, with a scaling factor of 2/T.
In fact, we will see that this semi-static hedging strategy is very closely related to
the delta-gamma hedging strategy that we discussed earlier for volatility derivative
products using out-of-the-money strangle positions. It is interesting to note that the
pricing and hedging of a variance swap given by (42) is independent of the form of the
volatility function (S, t), in the sense that this has been appropriately priced into the
log contract.
There are several issues that one encounters when we consider hedging volatility
derivative products using this log contract formulation.

e This pricing and hedging strategy will only be accurate if a%’cts is a good estima-
tion of the discretely sampled variance defined in the contract. We would expect
this to be the case if Aty is sufficiently small, such as daily sampling, but it
may not hold for longer sampling intervals, such as weekly samples. We will look
at how the hedging strategy using the log contract should be extended to handle
discretely observed variance sampling.

e Log contracts are not traded and must be synthetically created. In [8] the authors
demonstrate how to approximate a log contract using a static hedge in traded op-
tions with a discrete set of available strikes. In order to hedge volatility derivative
products we need to hedge a square root derivative on the variance swaps, which

4A log contract [17] is simply a derivative product whose payoff at time T is given by log(S(T)/S(0)).
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will involve dynamic trading in these log contracts. Since synthetically replicating
the log contract requires trading in a large number of exchange traded options,
this may result in excessive transaction costs. We will find that the delta-gamma
hedging strategy discussed previously in this paper can be viewed as an approxi-
mation of the log contract hedging strategy that reduces the number of positions
taken in the exchange traded options.

e Finally, the derivation of this hedging strategy for variance swaps assumes that
there are no jumps and that the underlying asset price evolves in a continuous
manner. Consistent with ideas in [8], we expect that the log contract hedge will
offer reasonable performance even when there are possible jumps in the asset price
due to its connection with the delta-gamma hedging strategy.

We now investigate the connection between the hedging strategy for variance swaps
using a log contract with the delta-gamma hedging strategies discussed in Section 5.1.2.
We will then look at how we can efficiently modify these techniques to handle the direct
hedging of volatility derivative products.

5.4.1 Connection to the Delta-Gamma Hedging Strategy

In order to see the connection between the hedging strategy using the log contract
and the delta-gamma hedging strategy discussed earlier in this paper we can write a
discrete representation of (42) as:

2 Y [S(th) = S(th-1) S(tn)
ORicts ~ T ;; [ S(th-1) =~ log <S(th—1)>} )

where t;, = hAthedge, h = 1,2,...,ny, where n, = |T/Atpedge|. In the limit as
Athedge — 0 this becomes identical to (42) where we have conceptually expanded the
log contract into an equivalent sequence of log contract positions.

In order to replicate the accrued variance during the time interval [t,_1,tp), we
construct the portfolio, consisting of 2/(T'S(t,—1)) shares of the underlying asset and a
short position of 2/7 in a contract whose payoff at time ¢, is given by log[S(¢,)/S(th—1)].
If we let dIl;_; represent the value of the payoff received at time tj of this replicating
portfolio established at time t;,_1, then:

2 [S(t) = S(t1) S(ta)
dll,_1 = T hS(thfl)h v log <S(thh1)>} . (44)

We find [8] that the position in the underlying asset exactly neutralizes the delta of
the log position and that a second-order approximation gives:

2
g Athedge

E© [dITj,—1 | F(th-1)] = T

(45)
As Atpeqge — 0 this becomes the continuous variance over the sampling period [ty—1, t4).

We can think of the log contract hedge as being a delta-gamma hedge with a clever
choice of hedging instruments. Because the gamma of the log contract scales with
1/52, and because the payoff of the variance swap contract depends linearly on the
individual accrued variances, our position in the log contract does not need to change
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throughout the life of the contract. As the asset price process evolves, we simply need
to adjust our position in the underlying asset so that the hedging position is delta
neutral and so that the instantaneous variance is captured.

If the contract specifies a discretely observed variance, then as suggested in [8] we
can imagine using the same short position in the log contract to hedge our gamma
exposure, except that now we would only adjust our position in the underlying asset
to make our position delta neutral at the sampling times. In other words, we would
use the hedging strategy implied by (43) where we set Atpegge = Atops. Although
this hedging strategy is no longer exact, we saw in Table 2 that this second-order
approximation can provide very significant risk reductions if the sampling occurs quite
frequently.

5.4.2 Using Log Contracts to Hedge Volatility Derivative Products

So far, we have discussed ways to use log contracts to hedge variance exposure. When
hedging volatility exposure we need to hedge a square root contract on the underlying
variance. This will involve adjusting our positions in the log contract as the realized
variance to date fluctuates. In [8] the authors describe how to replicate a log contract
using out-of-the-money options and many of these contracts are far away from the
current asset level. Since our holdings in the log contract are uncertain, if there are
transaction costs it makes sense to avoid holding these far out-of-the-money options
until they actually have an impact on the performance of the hedging strategy. Of
course there will be some tradeoff between the possibility of facing transaction costs
to reacquire positions versus the transaction costs of acquiring positions that are never
utilized. The delta-gamma hedging strategies described in this paper using straddle
and out-of-the-money strangle positions can be thought of as constructing only the
portion of the log contract that is near the current asset price.

6 Conclusions

This paper has focused on several issues concerning the pricing and hedging of volatility
derivative products. First, we described a computational framework for pricing volatil-
ity products using numerical PDE methods that can be extended to handle a variety
of modelling assumptions including local volatility models, jump-diffusion models, and
transaction cost models. Using this framework we investigated the effects of assump-
tions regarding the underlying asset price movements and effects of the contractual
design on the pricing of volatility derivatives. We then studied our ability to hedge
these products using delta and delta-gamma hedging strategies in a variety of settings.

When we began investigating the hedging of these products, we found it convenient
to think of the volatility as decomposing into three parts: the past, current and future
realized volatility. We then focused on our ability to actively hedge the volatility that
will accrue over the current observation. Dynamic delta hedging is not effective for
hedging volatility exposure because it requires extremely frequent rebalancing. Also,
if there are jumps in the underlying asset price, then there are situations where delta
hedging can increase the risk of the net position. As a result we consider delta-gamma
hedging strategies that have been constructed using instruments that have similar
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profiles as the volatility product we are replicating; namely straddle and strangle posi-
tions using exchange traded options with discretely spaced strikes. These delta-gamma
hedging strategies provided excellent risk reduction and were still effective when the
underlying asset price contained jumps since the hedging instruments were chosen to
qualitatively match the far-field behaviour of the volatility product. We also discussed
the close connections between the proposed delta-gamma hedging strategies described
in this paper with the log contract hedging strategies for variance swaps.

If there is a large bid-ask spread in the market prices of the exchange traded options
then transaction costs may make the proposed delta-gamma hedging strategy infeasible.
However, if the institution writing the volatility swap has natural counterparties for
their positions in the vanilla options then the delta-gamma hedging strategies proposed
here using straddle/strangle positions can be very effective for managing downside risk.
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