
Short Term Decumulation Strategies for Underspending Retirees

Peter A. Forsytha

August 30, 2021

Abstract1

There is growing empirical evidence that many retirees are decumulating their assets very2

slowly, if at all. This fact is in stark contrast to the usual lifecycle models of spending. It appears3

that these underspending retirees adjust their withdrawals to avoid reducing their assets. In4

order to appeal to this class of retirees, we use optimal stochastic control techniques which5

maximize a multi-objective risk-reward problem. The reward is the total of withdrawals (over6

a five year period), while risk is based on a left tail measure. Our controls for this problem7

are the withdrawal amount per quarter, and the stock-bond asset allocation. We allow flexible8

withdrawals (even zero). This added flexibility results in a high probability of (i) retaining 90%9

of real wealth at the end of five years, and (ii) significant total spending over the five years. We10

suggest that these types of strategies will be appealing this underspending group of retirees.11

Keywords: optimal control, expected shortfall, decumulation, short term12

JEL codes: G11, G2213

AMS codes: 91G, 65N06, 65N12, 35Q9314

1 Introduction15

Defined Benefit (DB) plans are being phased out in favour of Defined Contribution (DC) plans,16

due to the reluctance of governments and corporations to take on the funding risk. When the DC17

plan member retires, she is faced with the problem of devising an asset allocation strategy and18

withdrawal schedule which minimizes the probability of running out of cash. Perhaps one of the19

first studies that addressed this decumulation problem was Bengen (1994). This gave rise to the20

ubiquitous four per cent rule, i.e. a 65 year old retire should withdraw 4% (real) of her initial21

assets each year. If the retirement portfolio was invested 50% in stocks and 50% in bonds, then this22

decumulation strategy would have never run out of cash over any rolling 30 year historical period.23

Of course, since this 1994 paper, there have been numerous other studies and proposed decumu-24

lation policies. The current literature on decumulation strategies for DC plan holders is succinctly25

summarized in Bernhardt and Donnelly (2018).26

If should be noted that it is often suggested (at least in the academic literature) that DC plan27

participants should buy annuities in order to generate cash flows in retirement and hedge longevity28

risk, but they rarely do so in practice (Peijnenburg et al., 2016). MacDonald et al. (2013) put forth29

several arguments to explain why this behavior may be entirely rational.30

It is commonplace to assume that DC plan investors desire to withdraw assets during the their31

decumulation stage at a constant (real) rate in order to fund necessary expenses (Bengen, 1994).32

aDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
paforsyt@uwaterloo.ca, +1 519 888 4567 ext. 34415.
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Some flexibility can be added to improve cash withdrawal efficiency, but usually with a minimum33

amount of withdrawal to meet these expenses (Pfau, 2015). A typical flexible withdrawal scenario34

is modelled in Forsyth (2021a). It is assumed that a 65 year old retiree plans to decumulate his35

savings over a 30 year time horizon, with minimum required cash flows each year. The objective is36

to determine the cash withdrawal policy, and asset allocation strategy, which minimizes the left tail37

risk (as measured by expected shortfall), assuming a 30 year decumulation. Since living to age 95 is38

well beyond the median life expectancy of a 65 year old, this is regarded as a conservative strategy.39

However, recent work calls into question this basic model of DC plan decumulation.40

Browning et al. (2016) note that various studies (De Nardi et al., 2009; Smith et al., 2009;41

Love et al., 2009; Poterba et al., 2011; Browning et al., 2015) indicate that the value of many42

retirees’ financial assets actually remain constant or even increase over time. More recently, surveys43

conducted jointly by the Employee Benefit Research Institute1 and BlackRock (Ackerly et al., 2021)44

verify this unexpected result:45

“This was not what we expected to find: on average across all wealth levels, most cur-46

rent retirees still had 80% of their pre-retirement savings after almost two decades of47

retirement according to research conducted jointly with the Employee Benefit Research48

Institute... One-third even grew their assets over the course of retirement.”49

One possible explanation for this observation is that these surveys are focused on retirees who50

left the workforce 20 years ago. In this case, it is plausible to assume that many of these retirees used51

a combination of government benefits and Defined Benefit (DB) pensions (more commonplace two52

decades ago) to cover necessary expenses, regarding their financial assets as a source of discretionary53

spending. This is confirmed in Bannerje (2021), where surveys show that for most retirees, the ratio54

of non-discretionary income to guaranteed income drops sharply to one after retirement, and remains55

very close to unity after the age of 70. However, Bannerje (2021) notes that it appears that the56

retirees have adjusted their lifestyle (i.e. their fixed expenses) to match their guaranteed cash flows.57

In other words, it seems that retirees are more flexible about their spending then previously thought,58

and reduce it to avoid drawing down their assets.59

This is also consistent with the older study in the Canadian context (Hamilton, 2001), where60

retirees appear to be asset rich, income poor, and seem to lead comfortable lives with spending at61

a level of 50% of pre-retirement income.62

Browning et al. (2016) notes that the retirement consumption gap is particularly noticeable for63

those with financial assets at the median level and above. Browning et al. (2016) suggests that64

these assets are being held as a reserve against unexpected medical expenses, but notes that this65

forgone spending is much larger than average medical expenses actually observed for retirees. Of66

course, high expense, low probability medical expenses may require a large reserve, but, as pointed67

out in Browning et al. (2016), this would be more rationally hedged using some form of insurance68

product.69

Since Canada has a comprehensive public health care system, Canadian retirees are shielded70

from ruinous health expenses. Yet Hamilton (2001) finds that senior Canadian couples 85 and older71

either save or give away about 25% of their income.72

This lack of spending does not appear to be due to a desire to leave bequests. Taylor et al.73

(2018) cite surveys which show that 48% of retirees view maintaining a comfortable standard of74

living as their main financial goal, while only 3% view leaving an estate as their primary goal.75

Taylor et al. (2018) also posits behavioural biases as a possible explanation for the decumulation76

paradox (i.e. underspending). This is consistent with the behavioural lifecycle model (Shefrin and77

1https://www.ebri.org/
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Thaler, 1988; Thaler, 1990), whereby different asset classes are not fungible. A classic example is78

real estate. Even though retirees may own their own homes outright, which may have increased in79

value considerably, they are reluctant to regard this asset as a financial hedge, even if real estate80

can be monetized readily using a reverse mortgage.81

Another study (Ventura and Hoiroka, 2020), finds that more than 40% of elderly Italians are82

continuing to accumulate (real) wealth, and that more than 80% are generating positive amounts83

of saving. In contrast to the studies in the US, it appears that bequest and precautionary saving84

are the primary motivations to continue to accumulate wealth.85

To summarize, it appears that many current retirees underspend their retirement savings by a86

considerable margin, compared to what would usually be expected based on the standard lifecycle87

model. Basically, this appears to be due to the fact that retirees seem reluctant to spend down88

their financial assets, even though they may be increasing in (real) value. These retirees are not89

well served by the usual lifecycle spending rules advocated in the literature.90

The objective of this article is to suggest a decumulation strategy which may be more appealing91

to these underspending retirees. As an example, we consider a retiree with a stream of government92

benefits, DB plan payments, and other annuity-like cash flows which pay for the minimum basic93

expenses. The retiree also owns real estate, which is regarded as a hedge against medical expenses94

(i.e. long term care). In the event that this medical expense does not materialize, then the real95

estate is used as a bequest, or as a hedge against extreme left tail investment risk. In an act ofmental96

accounting, the retiree regards their other financial assets as a source of discretionary spending. We97

recognize that these retirees are in a somewhat fortunate position. However, based on the surveys98

quoted above, it would appear that this situation (at least for current retirees) is not that unusual.99

It has been argued previously (Forsyth, 2021b) that using a multi-stage approach to devising100

decumulation strategies may be more appealing to retirees. In Forsyth (2021b) it is suggested that101

applying an optimal strategy for the first 15 years of retirement (i.e. to the age of 80), allows retirees102

the re-evaluate their financial position after 15 years. If investment returns are good, then the now103

80 year-old can continue to manage his investments. If returns are not so good, annuities become104

more attractive for 80-year old retirees, due to the mortality credits earned, and hence purchase of105

an annuity at this point may be a viable strategy to hedge longevity risk.106

Continuing with this idea, in this paper, we consider even shorter time horizons, to make our de-107

cumulation strategy more attractive to reluctant spenders. We consider relatively short investment108

horizons, in this case five years. At the end of five years, the retiree can reevaluate her priorities, and109

start the decumulation strategy over again. This is clearly a sub-optimal strategy for long periods,110

but may be more acceptable for our target underspenders. Indeed, a major advantage of this short111

time horizon is that retirees can target higher spending during the early years of retirement, while112

being confident that their financial assets are little diminished in real terms.113

Withdrawals from the retirement portfolio are assumed to occur quarterly. We place maximum114

and minimum bounds on each withdrawal. We consider a measure of reward to be the total with-115

drawals over the five year time horizon. Note that all quantities are real, and we do not discount116

the total withdrawals, since real interest rates at present are approximately zero. We set the mini-117

mum withdrawal bound to be zero, which then allows spending to be delayed during poor market118

conditions. This ameliorates sequence of return risk. Our thinking here is that this retiree group119

has guaranteed cash flows from other sources (government benefits, DB plans) which covers the120

required minimum cash flows. This financial bucket is used for discretionary spending, and these121

retirees are flexible in the timing of withdrawals, during the five year time horizon.122

It is interesting to observe that a flexible spending strategy in retirement has been advocated123

previously,124

3



“If we have a good year, we take a trip to China,...if we have a bad year, we stay home125

and play canasta.” Retired Mathematics professor Peter Ponzo, discussing his DC plan126

investment and withdrawal strategy. 2
127

As we shall see, these canasta-type strategies are in fact optimal.128

As a measure of risk we consider two possibilities. The first choice is Expected Shortfall (ES),129

which is simply the mean of the worst five per cent of the terminal wealth values, measured at130

five years. It could be argued that ES is unduly pessimistic, hence we also investigate an alternate131

choice of risk, Linear Shortfall (LS) with respect to a fixed target terminal wealth. LS is perhaps132

a bit more intuitive than ES, and a bit more aggressive in terms of the median terminal wealth.133

These measures of left tail risk should be appealing to those retirees who are focused on wealth134

preservation.135

We consider this decumulation problem to be a problem in optimal stochastic control. We model136

the investment portfolio in terms of a stock index and a constant maturity bond index. It is assumed137

that the real (i.e. inflation adjusted) stock and bond indexes follow a jump diffusion process. The138

parameters for the jump processes are determined by fitting to 95 years of market data. We term139

the market where prices are determined by the parametric jump diffusion processes as the synthetic140

market. The controls for this problem are the withdrawal amount each quarter, and the allocation141

to the stock and bond indexes. We formulate this multi-objective optimization problem in terms142

of the risk and reward measures discussed above. We use a scalarization technique, coupled with a143

numerical dynamic programming approach, to determine optimal withdrawal (each quarter) as well144

as the (dynamic) asset allocation strategy.145

We compute and store the optimal controls in the synthetic market. We then test these controls146

by using stationary block bootstrap resampling (Politis and Romano, 1994; Dichtl et al., 2016;147

Forsyth and Vetzal, 2019) of the actual historical data. We term the market which is driven by148

bootstrap resampled data to be the historical market. The efficient frontiers for the Expected149

Withdrawals (EW), linear shortfall (LS) are robust, in the sense that the efficient EW-LS frontiers150

in the synthetic and historical market are very similar. In the Expected Withdrawal, Expected151

Shortfall (ES) case, the EW-ES frontiers are slightly worse in the historical market compared to the152

synthetic market.153

We believe that these strategies will be appealing to our underspending retiree. The risk of154

ending up (after five years) with a significantly smaller investment portfolio (in real terms) is very155

small. Yet the probability of a significant amount of total withdrawals over the five years is large.156

2 Formulation157

We assume that the investor has access to two funds: a broad market stock index fund and a158

constant maturity bond index fund.159

The investment horizon is T . Let St and Bt respectively denote the real (inflation adjusted)160

amounts invested in the stock index and the bond index respectively. In general, these amounts161

will depend on the investor’s strategy over time, as well as changes in the real unit prices of the162

assets. In the absence of an investor determined control (i.e. cash withdrawals or rebalancing), all163

changes in St and Bt result from changes in asset prices. We model the stock index as following a164

jump diffusion.165

2 https://www.theglobeandmail.com/report-on-business/math-prof-tests-investing-formulas-strategies/
article22397218/ Ponzo took half his DC plan assets and purchased an annuity, and put the other half into a
discretionary spending DC account. However, Ponzo retired in 1993, when annuity rates were much higher than
now. Perhaps the equivalent strategy today would utilize a tontine account to harvest mortality credits.
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In addition, we follow the usual practitioner approach and directly model the returns of the166

constant maturity bond index as a stochastic process, see for example Lin et al. (2015); MacMinn167

et al. (2014). As in MacMinn et al. (2014), we assume that the constant maturity bond index follows168

a jump diffusion process as well.169

Let St− = S(t − ε), ε → 0+, i.e. t− is the instant of time before t, and let ξs be a random170

number representing a jump multiplier. When a jump occurs, St = ξsSt− . Allowing for jumps171

permits modelling of non-normal asset returns. We assume that log(ξs) follows a double exponential172

distribution (Kou, 2002; Kou and Wang, 2004). If a jump occurs, us is the probability of an upward173

jump, while 1− us is the chance of a downward jump. The density function for y = log(ξs) is174

fs(y) = usηs1e
−ηs1y1y≥0 + (1− us)ηs2eη

s
2y1y<0 . (2.1)175

We also define176

γsξ = E[ξs − 1] =
usηs1
ηs1 − 1

+
(1− us)ηs2
ηs2 + 1

− 1 . (2.2)177

In the absence of control, St evolves according to178

dSt
St−

=
(
µs − λsξγsξ

)
dt+ σs dZs + d

 πst∑
i=1

(ξsi − 1)

 , (2.3)

where µs is the (uncompensated) drift rate, σs is the volatility, dZs is the increment of a Wiener179

process, πst is a Poisson process with positive intensity parameter λsξ, and ξsi are i.i.d. positive180

random variables having distribution (2.1). Moreover, ξsi , π
s
t , and Zs are assumed to all be mutually181

independent.182

Similarly, let the amount in the bond index be Bt− = B(t−ε), ε→ 0+. In the absence of control,183

Bt evolves as184

dBt
Bt−

=
(
µb − λbξγbξ + µbc1{Bt−<0}

)
dt+ σb dZb + d

 πbt∑
i=1

(ξbi − 1)

 , (2.4)

where the terms in equation (2.4) are defined analogously to equation (2.3). In particular, πbt is a185

Poisson process with positive intensity parameter λbξ, and ξ
b
i has distribution186

f b(y = log ξb) = ubηb1e
−ηb1y1y≥0 + (1− ub)ηb2eη

b
2y1y<0 , (2.5)187

and γbξ = E[ξb−1]. ξbi , π
b
t , and Zb are assumed to all be mutually independent. The term µbc1{Bt−<0}188

in equation (2.4) represents the extra cost of borrowing (the spread).189

The diffusion processes are correlated, i.e. dZs ·dZb = ρsbdt. The stock and bond jump processes190

are assumed mutually independent. See Forsyth (2020b) for justification of the assumption of stock-191

bond jump independence.192

We define the investor’s total wealth at time t as193

Total wealth ≡Wt = St +Bt. (2.6)

We impose the constraints that (assuming solvency) shorting stock and using leverage (i.e. borrow-194

ing) are not permitted. In the event of insolvency (due to withdrawals), the portfolio is liquidated,195

trading ceases and debt accumulates at the borrowing rate. Due to the short time horizon and196

maximum withdrawal constraint, insolvency is improbable.197
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3 Notational conventions198

Consider a set of discrete withdrawal/rebalancing times T199

T = {t0 = 0 < t1 < t2 < . . . < tM = T} (3.1)

where we assume that ti − ti−1 = ∆t = T/M is constant for simplicity. To avoid subscript clutter,200

in the following, we will occasionally use the notation St ≡ S(t), Bt ≡ B(t) and Wt ≡ W (t). Let201

the inception time of the investment be t0 = 0. We let T be the set of withdrawal/rebalancing202

times, as defined in equation (3.1). At each rebalancing time ti, i = 0, 1, . . . ,M − 1, the investor203

(i) withdraws an amount of cash qi from the portfolio, and then (ii) rebalances the portfolio. At204

tM = T , the portfolio is liquidated. In the following, given a time dependent function f(t), then we205

will use the shorthand notation206

f(t+i ) ≡ lim
ε→0+

f(ti + ε) ; f(t−i ) ≡ lim
ε→0+

f(ti − ε) . (3.2)

We assume that there are no taxes or other transaction costs, so that the condition207

W (t+i ) = W (t−i )− qi ; ti ∈ T (3.3)

holds. Typically, DC plan savings are held in a tax advantaged account, with no taxes triggered208

by rebalancing. With infrequent (e.g. yearly) rebalancing, we also expect transaction costs to be209

small, and hence can be ignored. It is possible to include transaction costs, but at the expense of210

increased computational cost (van Staden et al., 2018).211

We denote by X (t) = (S (t) , B (t)), t ∈ [0,T ], the multi-dimensional controlled underlying212

process, and by x = (s, b) the realized state of the system. Let the rebalancing control pi(·) be the213

fraction invested in the stock index at the rebalancing date ti, i.e.214

pi
(
X(t−i )

)
= p

(
X(t−i ), ti

)
=

S(t+i )

S(t+i ) +B(t+i )
. (3.4)

Let the withdrawal control qi(·) be the amount withdrawn at time ti, i.e. qi
(
X(t−i )

)
=215

q
(
X(t−i ), ti

)
. Formally, the controls depend on the state of the investment portfolio, before the216

rebalancing occurs, i.e. pi(·) = p
(
X(t−i ), ti)

)
= p

(
X−i , ti

)
, and qi(·) = q

(
X(t−i ), ti)

)
= q

(
X−i , ti

)
,217

ti ∈ T , where T is the set of rebalancing times.218

However, it will be convenient to note that in our case, we find the optimal control pi(·) amongst219

all strategies with constant wealth (after withdrawal of cash). Hence, with some abuse of notation,220

we will now consider pi(·) to be function of wealth after withdrawal of cash221

pi(·) = p(W (t+i ), ti)222

W (t+i ) = S(t−i ) +B(t−i )− qi(·)223

S(t+i ) = S+
i = pi(W

+
i ) W+

i224

B(t+i ) = B+
i = (1− pi(W+

i )) W+
i . (3.5)225

226

Remark 3.1 (Control depends on wealth only). Note that the control for pi(·) depends only W+
i .227

Since pi(·) = pi(W
−
i − qi), then it follows that228

qi(·) = qi(W
−
i ) (3.6)

which is proven in Forsyth (2021a).229
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A control at time ti, is then given by the pair (qi(·), pi(·)) where the notation (·) denotes that230

the control is a function of the state.231

Let Z represent the set of admissible values of the controls (qi(·), pi(·)). We impose no-shorting,232

no-leverage constraints (assuming solvency). We also impose maximum and minimum values for233

the withdrawals. We apply the constraint that in the event of insolvency due to withdrawals234

(W (t+i ) < 0), trading ceases and debt (negative wealth) accumulates at the appropriate bond rate235

of return (including a spread). We also specify that the stock assets are liquidated at t = tM .236

More precisely, let W+
i be the wealth after withdrawal of cash, then define237

Zq =

{
[qmin, qmax] t ∈ T ; t 6= tM

{0} t = tM
, (3.7)

Zp(W+
i ,ti) =


[0,1] W+

i > 0 ; ti ∈ T ; ti 6= tM

{0} W+
i ≤ 0 ; ti ∈ T ; ti 6= tM

{0} ti = tM

. (3.8)

(3.9)

The set of admissible values for (qi,pi), ti ∈ T , can then be written a238

(qi,pi) ∈ Z(W+
i ,ti) = Zq ×Zp(W+

i ,ti) . (3.10)

For implementation purposes, we have written equation (3.10) in terms of the wealth after with-239

drawal of cash. However, we remind the reader that since W+
i = W−i − q, the controls are formally240

a function of the state X(t−i ) before the control is applied.241

The admissible control set A can then be written as242

A =

{
(qi, pi)0≤i≤M : (pi, qi) ∈ Z(W+

i ,ti)

}
(3.11)

An admissible control P ∈ A, where A is the admissible control set, can be written as,243

P = {(qi(·), pi(·)) : i = 0, . . . ,M} . (3.12)

We also define Pn ≡ Ptn ⊂ P as the tail of the set of controls in [tn, tn+1, . . . , tM ], i.e.244

Pn = {(qn(·), pn(·)) . . . , (pM (·), qM (·))} . (3.13)

For notational completeness, we also define the tail of the admissible control set An as245

An =

{
(qi, pi)n≤i≤M : (qi, pi) ∈ Z(W+

i ,ti)

}
(3.14)

so that Pn ∈ An.246

4 Risk and reward247

4.1 Risk: definition of expected shortfall (ES)248

Let g(WT ) be the probability density function of wealth WT at t = T . Suppose249 ∫ W ∗
α

−∞
g(WT ) dWT = α, (4.1)250
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i.e. Pr [WT > W ∗α] = 1 − α. We can interpret W ∗α as the Value at Risk (VAR) at level α3. The251

Expected Shortfall (ES) at level α is then252

ESα =

∫W ∗
α

−∞WT g(WT ) dWT

α
, (4.2)253

which is the mean of the worst α fraction of outcomes. Typically α ∈ {.01, .05}. The definition of ES254

in equation (4.2) uses the probability density of the final wealth distribution, not the density of loss.255

Hence, in our case, a larger value of ES (i.e. a larger value of average worst case terminal wealth) is256

desired. The negative of ES is commonly referred to as Conditional Value at Risk (CVAR).257

Define X+
0 = X(t+0 ), X−0 = X(t−0 ). Given an expectation under control P, EP [·], as noted by258

Rockafellar and Uryasev (2000), ESα can be alternatively written as259

ESα(X−0 , t
−
0 ) = sup

W ∗
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

α
min(WT −W ∗, 0)

]
. (4.3)

The admissible set for W ∗ in equation (4.3) is over the set of possible values for WT .260

The notation ESα(X−0 , t
−
0 ) emphasizes that ESα is as seen at (X−0 , t

−
0 ). In other words, this is261

the pre-commitment ESα. A strategy based purely on optimizing the pre-commitment value of ESα262

at time zero is time-inconsistent, hence has been termed by many as non-implementable, since the263

investor has an incentive to deviate from the time zero pre-commitment strategy at t > 0. However,264

in the following, we will consider the pre-commitment strategy merely as a device to determine an265

appropriate level of W ∗ in equation (4.3). If we fix W ∗ ∀t > 0, then this strategy is the induced266

time consistent strategy (Strub et al., 2019), hence is implementable. We delay further discussion267

of this subtle point to later sections.268

4.2 Risk: Linear Shortfall (LS)269

Another possibility for a measure of risk is linear shortfall (LS) with shortfall target W ∗,270

LSW ∗ = E[min(WT −W ∗,0)] . (4.4)

Note that, if271

E[1WT<W ∗ ] = α , (4.5)

then272

ESα = W ∗ +
LS∗W
α

. (4.6)

4.3 A measure of reward: expected total withdrawals (EW)273

We will use expected total withdrawals as a measure of reward in the following. More precisely, we274

define EW (expected withdrawals) as275

EW(X−0 , t
−
0 ) = E

X+
0 ,t

+
0

P0

[ M∑
i=0

qi

]
. (4.7)

Note that there is no discounting term in equation (4.7), since all quantities are real, and the current276

real short term rate is approximately zero (or even negative).277

3In practice, the negative of W ∗
α is often the reported VAR.
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5 Problem EW-ES278

Since expected withdrawals (EW) and expected shortfall (ES) are conflicting measures, we use279

a scalarization technique to find the Pareto points for this multi-objective optimization problem.280

Informally, for a given scalarization parameter κ > 0, we seek to find the control P0 that maximizes281

EW(X−0 , t
−
0 ) + κ ESα(X−0 , t

−
0 ) . (5.1)

More precisely, we define the pre-commitment EW-ES problem (PCESt0(κ)) problem in terms of282

the value function J(s,b,t−0 )283

(PCESt0 (κ)) : J
(
s,b, t−0

)
= sup

P0∈A
sup
W ∗

{
E
X+

0 ,t
+
0

P0

[
M∑
i=0

qi + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

)
∣∣∣∣X(t−0 ) = (s,b)

]}
(5.2)

subject to



(St, Bt) follow processes (2.3) and (2.4); t /∈ T
W+
` = S−` +B−` − q` ; X+

` = (S+
` , B

+
` )

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`

(q`(·), p`(·)) ∈ Z(W+
` ,t`)

` = 0, . . . ,M ; t` ∈ T

. (5.3)

Interchange the sup sup(·) in equation (5.2), so that value function J
(
s,b, t−0

)
can be written as284

J
(
s,b, t−0

)
= sup

W ∗
sup
P0∈A

{
E
X+

0 ,t
+
0

P0

[
M∑
i=0

qi + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

)∣∣∣∣X(t−0 ) = (s,b)

]}
.

(5.4)

Noting that the inner supremum in equation (5.4) is a continuous function of W ∗, and noting that285

the optimal value of W ∗ in equation (5.4) is bounded4, then define286

W∗(s,b) = arg max
W ∗

{
sup
P0∈A

{
E
X+

0 ,t
+
0

P0

[
M∑
i=0

qi + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

)∣∣∣∣X(t−0 ) = (s,b)

]}
.

(5.5)

We refer the reader to Forsyth (2020a) for an extensive discussion concerning pre-commitment and287

time consistent ES strategies. We summarize the relevant results from that research here. Denote288

the investor’s initial wealth at t0 by W−0 . Then we have the following result.289

Proposition 5.1 (Pre-commitment strategy equivalence to a time consistent policy for an alterna-290

tive objective function). The pre-commitment EW-ES strategy P∗ determined by solving J(0,W0, t
−
0 )291

(with W∗(0,W−0 ) from equation (5.5)) is the time consistent strategy for the equivalent problem292

4This is the same as noting that a finite value at risk exists. This easily shown, assuming 0 < α < 1, since our
investment strategy uses no leverage and no-shorting.
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TCEQ (with fixed W∗(0,W−0 )), with value function J̃(s,b,t) defined by293

(TCEQtn (κ/α)) : J̃
(
s,b, t−n

)
= sup

Pn∈A

{
EX

+
n ,t

+
n

Pn

[
M∑
i=n

qi +
κ

α
min(WT −W∗(0,W−0 ),0)

∣∣∣∣X(t−n ) = (s,b)

]}
. (5.6)

Proof. This follows similar steps as in Forsyth (2020a), proof of Proposition 6.2, with the exception294

that the reward in Forsyth (2020a) is expected terminal wealth, while here the reward is total295

withdrawals.296

Remark 5.1 (An Implementable Strategy). Given an initial level of wealth W−0 at t0, then the297

optimal control5 for the pre-commitment problem (5.2) is the same optimal control for the time298

consistent problem6 (TCEQtn (κ/α)) (5.6), ∀t > 0. Hence we can regard problem (TCEQtn (κ/α))299

as the EW-ES induced time consistent strategy. Thus, the induced strategy is implementable, in the300

sense that the investor has no incentive to deviate from the strategy computed at time zero, at later301

times (Forsyth, 2020a).302

Remark 5.2 (EW-ES Induced Time Consistent Strategy). In the following, we will consider the303

actual strategy followed by the investor for any t > 0 as given by the induced time consistent strategy304

(TCEQtn (κ/α)) in equation (5.6), with a fixed value ofW∗(0,W−0 ), which is identical to the EW-ES305

strategy at time zero. Hence, we will refer to this strategy in the following as the EW-ES strategy,306

with the understanding that this refers to strategy (TCEQtn (κ/α)) for any t > 0.307

6 Problem EW-LS308

Now, using LS as the risk measure, we use a scalarization parameter κ̂ > 0 to determine the Pareto309

optimal points for the problem with objective function310

EW(X−0 , t
−
0 ) + κ̂ LSW ∗(X−0 , t

−
0 ) . (6.1)

We define the time-consistent EW-LS problem ( EWLS (κ̂) ) in terms of the value function Ĵ(s,b,t−0 )311

(EWLSt0 (κ̂)) : J
(
s,b, t−0

)
= sup

P0∈A

{
E
X+

0 ,t
+
0

P0

[
M∑
i=0

qi + κ̂ min(WT −W ∗, 0)

∣∣∣∣X(t−0 ) = (s,b)

]}
, (6.2)

with the same constraints as in equation (5.3).312

5To be perfectly precise here, in the event that the control is non-unique, we impose a tie-breaking strategy to
generate a unique control.

6Assuming that the same tie breaking strategy is used as for the pre-commitment problem.
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7 Formulation as a Dynamic Program313

7.1 Formulation for optimal expected-withdrawals expected-shortfall (EW-ES)314

strategy315

We use the method in Forsyth (2020a) to solve problem (5.4). We write equation (5.4) as316

J(s,b,t−0 ) = sup
W ∗

V (s,b,0−) , (7.1)

where the auxiliary function V (s, b,W ∗, t) is defined as317

V (s, b,W ∗, t−n ) = sup
Pn∈An

{
EX̂

+
n ,t

+
n

Pn

[
M∑
i=n

qi + κ

(
W ∗ +

1

α
min((WT −W ∗),0)

)∣∣∣∣X̂(t−n ) = (s,b,W ∗)

]}
.

(7.2)

subject to



(St, Bt) follow processes (2.3) and (2.4); t /∈ T
W+
` = S−` +B−` − q` ; X+

` = (S+
` , B

+
` )

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`

(q`(·), p`(·)) ∈ Z(W+
` ,t`)

` = n, . . . ,M ; t` ∈ T

. (7.3)

We have now decomposed the original problem (5.4) into two steps318

• For given initial cash W0, and a fixed value of W ∗, solve problem (7.2) using dynamic pro-319

gramming (see Appendix A and Forsyth (2021a) for details) to determine V (0,W0,W
∗, 0−).320

• Solve problem (5.4) by maximizing over W ∗321

J(0,W0, 0
−) = sup

W ∗
V (0,W0,W

∗, 0−) . (7.4)

7.2 Formulation for optimal expected-withdrawals linear-shortfall (EW-LS) strat-322

egy323

Problem (EWLSt0 (κ̂)) is essentially a special case of Problem (PCESt0(κ)), with W ∗ fixed. Define324

V̂ (s, b, t−n ) = sup
Pn∈An

{
EX̂

+
n ,t

+
n

Pn

[
M∑
i=n

qi + κ̂

(
min((WT −W ∗),0)

)∣∣∣∣X̂(t−n ) = (s,b,W ∗)

]}
, (7.5)

with constraints (7.3). We solve for V̂ (s, b, t) using dynamic programming, as in Section 7.1, noting325

the trivial identity326

Ĵ(0,W0,0
−) = V̂ (0,W0,0

−) . (7.6)

7.3 Controls for EW-ES and EW-LS327

From the definitions (5.2) and (6.2) and Proposition 5.1 we have the following result328
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Proposition 7.1 (Condition for identical controls). Suppose we solve problem (5.2) with given329

values of (κ, α), and we solve problem (6.2) with given values of (κ̂,W ∗). If the solution to problem330

(6.2) is such that331

E[1WT<W ∗ ] = α ; κ̂ =
κ

α
, (7.7)

and the controls for problem (5.2) are unique, then the controls for problems (5.2) and (6.2) are332

identical.7333

8 Continuous withdrawal/rebalancing limit334

In order to develop some intuition about the nature of the optimal controls, we will examine the335

limit as the rebalancing interval becomes vanishingly small.336

Proposition 8.1 (Bang-bang withdrawal control in the continuous withdrawal limit). Assume that337

• the stock and bond processes follow (2.3) and (2.4),338

• the portfolio is continuously rebalanced, and withdrawals occur at a continuous (finite) rate339

q̂ ∈ [q̂min, q̂max],340

• the HJB equation for the EW-ES and the EW-LS problem in the continuous rebalancing limit341

has bounded derivatives w.r.t. total wealth,342

• in the event of ties for the control q̂, the smallest withdrawal is selected,343

then the optimal withdrawal control q̂∗(·) for the EW-ES problem (PCESt0(κ)) and for the EW-LS344

problem (EWLSt0 (κ̂)) is bang-bang, q̂∗ ∈ {q̂min, q̂max}.345

Proof. This follows the same steps as in Forsyth (2021a).346

Remark 8.1 (Bang-bang control for discrete rebalancing/withdrawals). Proposition 8.1 suggests347

that, for sufficiently small rebalancing intervals, we can expect the optimal q control (finite withdrawal348

amount) to be bang-bang, i.e. it is only optimal to withdraw either the maximum amount qmax or349

the minimum amount qmin. However, it is not clear that this will continue to be true for the case of350

quarterly rebalancing (which we specify in our numerical examples), and finite amount controls q.351

In fact, we do observe that the finite amount control q is very close to bang-bang in our numerical352

experiments, even for quarterly rebalancing. We term this control to be quasi-bang-bang.353

9 Numerical algorithms and stabilization354

A brief overview of the numerical algorithms is described in Appendix A, along with a numerical355

convergence verification.356

7A unique control can always be defined by specifying a tie-breaking strategy.
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9.1 Stabilization357

IfWt �W ∗, and t→ T , then Pr[WT < W ∗] ' 0 (recall thatW ∗ is fixed for problem (TCEQtn (κ/α))358

(5.6) . In addition, for large values of Wt, the withdrawal will be capped at qmax. In this case, the359

control only weakly effects the objective function. To avoid this ill-posedness for the controls, we360

changed the objective function (5.2) to361

J
(
s,b, t−0

)
= sup

P0∈A
sup
W ∗

{
E
X+

0 ,t
+
0

P0

[
M∑
i=0

qi + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

) stabilization︷ ︸︸ ︷
+εWT∣∣∣∣X(t−0 ) = (s,b)

]}
. (9.1)

We used the value ε = +10−6 in the following test cases. Using a positive value for ε has the effect362

of forcing the strategy to invest in stocks when Wt is very large, and t → T , when the control363

problem is ill-posed. In other words, when the probability that WT is less than W ∗ is very small,364

then the ES risk is practically zero, hence the investor might as well invest in risky assets. There is365

little to lose, and much to gain. Using this small value of ε = 10−6 gave the same results as ε = 0366

for the summary statistics, to four digits. This is simply because the states with very large wealth367

have low probability. However, this stabilization procedure produced smoother heat maps for large368

wealth values, without altering the summary statistics appreciably.369

Similarly, we changed the objective function for Problem EW-LS problem ( EWLS (κ̂)) to370

J
(
s,b, t−0

)
= sup

P0∈A

{
E
X+

0 ,t
+
0

P0

[
M∑
i=0

qi + κ̂ min(WT −W ∗, 0)

stabilization︷ ︸︸ ︷
+εWT∣∣∣∣X(t−0 ) = (s,b)

]}
, (9.2)

10 Data371

We use data from the Center for Research in Security Prices (CRSP) on a monthly basis over the372

1926:1-2020:12 period.8 Our base case tests use the CRSP US 30 day T-bill for the bond asset373

and the CRSP value-weighted total return index for the stock asset. This latter index includes all374

distributions for all domestic stocks trading on major U.S. exchanges. All of these various indexes375

are in nominal terms, so we adjust them for inflation by using the U.S. CPI index, also supplied by376

CRSP. We use real indexes since investors funding retirement spending should be focused on real377

(not nominal) wealth goals.378

We use the threshold technique (Mancini, 2009; Cont and Mancini, 2011; Dang and Forsyth,379

2016) to estimate the parameters for the parametric stochastic process models. The data is inflation380

adjusted, so that all parameters reflect real returns. Table 10.1 shows the results of calibrating the381

models to the historical data. The correlation ρsb is computed by removing any returns which occur382

at times corresponding to jumps in either series, and then using the sample covariance. Further383

discussion of the validity of assuming that the stock and bond jumps are independent is given in384

Forsyth (2020b).385

8More specifically, results presented here were calculated based on data from Historical Indexes, ©2020 Center for
Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data
Services (WRDS) was used in preparing this article. This service and the data available thereon constitute valuable
intellectual property and trade secrets of WRDS and/or its third-party suppliers.
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CRSP µs σs λs us ηs1 ηs2 ρsb

0.089124 0.14685 0.3263157 0.22580 4.36258 5.5335 0.08420

30-day T-bill µb σb λb ub ηb1 ηb2 ρsb

0.0046 0.0130 0.5053 0.3958 65.8012 57.7929 0.08420

Table 10.1: Estimated annualized parameters for double exponential jump diffusion model. Value-
weighted CRSP index, 30-day T-bill index deflated by the CPI. Sample period 1926:1 to 2020:12.

11 Investment scenario386

Table 11.1 shows our base case investment scenario. We will use thousands as our units of wealth in387

the following. For example, a withdrawal of 40 per year corresponds to $40,000 per year (all values388

are real, i.e. inflation adjusted), with an initial wealth of 1000 ($1,000,000). Thus, a withdrawal of389

40 per year would correspond to the use of the four per cent rule (Bengen, 1994).390

We assume that the retiree has other benefits (or other DC plans) which are enough to provide391

for basic living expenses. We also assume that the retiree has discretionary DC plan holdings at392

retirement of $1,000,000.393

For the EW-LS case, we use the fixed value of W ∗ = 900. In other words, we are targeting a394

real total wealth decumulation rate (over the five year horizon) of about 2% per year.395

Investment horizon T (years) 5.0
Equity market index CRSP Cap-weighted index (real)
Bond index 30-day T-bill (US) (real)
Initial portfolio value W0 1000
Cash withdrawal/rebalancing times t = 0,0.25, 0.50, . . . , 4.75
Maximum withdrawal (per quarter) qmax = 25
Minimum withdrawal (per quarter) qmin = 0.0
Equity fraction range [0,1]
Borrowing spread µbc 0.02
Rebalancing interval (years) 0.25
Fixed W ∗ (EW-LS) 900
α (EW-ES) .05
Market parameters See Table 10.1

Table 11.1: Input data for examples. Monetary units: thousands of dollars.

11.1 Synthetic market396

We fit the parameters for the parametric stock and bond processes (2.3 - 2.4) as described in Section397

10. We then compute and store the optimal controls based on the parametric market model. Finally,398

we compute various statistical quantities by using the stored control, and then carrying out Monte399

Carlo simulations, based on processes (2.3 - 2.4).400
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Data series Optimal expected
block size b̂ (months)

Real 10-year Treasury index 50.6
Real CRSP value-weighted index 3.42

Table 11.2: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric distribution
Pr(b = k) = (1 − v)k−1v. The algorithm in Patton et al. (2009) is used to determine b̂. Historical
data range 1926:1-2020:12.

11.2 Historical market401

We compute and store the optimal controls based on the parametric model (2.3-2.4) as for the402

synthetic market case. However, we compute statistical quantities using the stored controls, but403

using bootstrapped historical return data directly. We remind the reader that all returns are inflation404

adjusted. We use the stationary block bootstrap method (Politis and Romano, 1994; Politis and405

White, 2004; Patton et al., 2009; Dichtl et al., 2016). A crucial parameter is the expected blocksize.406

Sampling the data in blocks accounts for serial correlation in the data series. We use the algorithm407

in Patton et al. (2009) to determine the optimal blocksize for the bond and stock returns separately,408

see Table 11.2. We use a paired sampling approach to simultaneously draw returns from both time409

series. In this case, a reasonable estimate for the blocksize for the paired resampling algorithm410

would be about 2.0 years. We will give results for a range of blocksizes as a check on the robustness411

of the bootstrap results. Detailed pseudo-code for block bootstrap resampling is given in Forsyth412

and Vetzal (2019).413

12 Constant weight, constant withdrawals414

As a preliminary example, we consider a strategy whereby, each quarter, the investor (i) withdraws415

at a constant annual rate (fixed amount per quarter) and (ii) rebalances the portfolio to a constant416

equity weight. Table 12.1 shows the results for constant weight, constant withdrawal case, in the417

synthetic market. The constant withdrawal rate is 10 per quarter, which is annualized as 40 per418

year (consistent with the advice in Bengen (1994)). The largest value of ES (least risky) is for419

p = 0.10. This value of ES = 737, which is not particularly good, given that the initial investment420

is 1000.421

Table 12.2 gives similar results for constant weight, constant withdrawals scenarios, based on the422

historical bootstrapped market. The historical results give the best value of ES = 651 for p = 0.20,423

which is significantly worse than the best result for the synthetic market ES.424
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Equity fraction p E[
∑

i qi]/T ES (5%) Median[WT ]
0.0 40 726.50 821.45
.10 40 736.90 857.95
.20 40 706.76 894.31
.30 40 664.76 930.87
.40 40 619.43 967.15
.50 40 572.98 1003.00
.60 40 526.17 1038.18
.70 40 479.29 1072.44
.80 40 432.84 1105.93
.90 40 385.62 1138.22
1.0 40 338.70 1169.38

Table 12.1: Constant weight, constant withdrawals, synthetic market results. Constant withdrawals
are 10 per quarter (40 per year). Stock index: real capitalization weighted CRSP stocks; bond index:
30-day T-bills. Parameters from Table 10.1. Scenario in Table 11.1. Units: thousands of dollars.
Statistics based on 2.56× 106 Monte Carlo simulation runs. T = 5 years

Equity fraction p E[
∑

i qi]/T ES (5%) Median[WT ]
0.0 40 608.37 819.64
0.1 40 636.25 856.93
0.2 40 651.38 896.60
0.3 40 647.72 935.27
0.4 40 625.88 974.05
0.5 40 592.80 1012.60
0.6 40 553.51 1051.13
0.7 40 511.02 1089.76
0.8 40 466.69 1127.30
0.9 40 421.40 1165.00
1.0 40 375.64 1201.42

Table 12.2: Constant weight, constant withdrawals, historical market. Historical data range 1926:1-
2020:12. Constant withdrawals are 10 per quarter. Stock index: real capitalization weighted CRSP
stocks; bond index: 30-day T-bills. Scenario in Table 11.1. Units: thousands of dollars. Statistics
based on 106 bootstrap simulation runs. Blocksize = 2 years. T = 5 years
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13 Efficient frontiers: synthetic market425

Figure 13.1 shows the efficient frontiers, in the synthetic market, for both the EW-ES objective426

function and the EW-LS objective function. The frontiers are generated by varying κ for Problems427

5.2 and κ̂ for Problem 6.2. For ease of comparison, we show the expected withdrawals (EW) as428

average annualized withdrawals. For example, an average withdrawal of 10 per quarter (over the429

entire five year period) would be 40 per year (annualized). The detailed efficient frontier results430

are given in Appendix B. The red dot in Figure 13.1(a) shows the best result (in terms of EW-ES431

efficiency) for the constant weight, constant withdrawal case from Table 12.1.432
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Figure 13.1: Comparison of synthetic frontiers, and frontier generated from the synthetic market.
Parameters based on real CRSP index, real 30-day T-bills (see Table 10.1). The Const q, Const p
case has q = 40, p = 0.10, which is the best result from Table 12.1. Units: thousands of dollars.

Recall from Proposition 7.1 that if there is a point on the EW-LS frontier (i.e. a value of κ̂)433

such that434

E[1WT<W ∗ ] = α (13.1)

then this point corresponds to a point on the EW-ES frontier (with κ = κ̂α), and that both these435

points have the same optimal controls. This can be seen clearly from Figure 13.2, where we plot436

the frontiers obtained from the EW-ES problem, and the EW-LS problem, but in terms of the ES437

risk measure. This is obviously an unfair comparison, since the EW-LS controls are not designed to438

be optimal in the EW-ES sense. In particular, the EW-LS controls use a fixed value of W ∗ = 900439

(see equation (6.2) ). However, we can see that both frontiers overlap near ES= 880. In this case,440

from Proposition 7.1, we can deduce that W ∗ = 900 corresponds to a VAR of 900.441

14 Historical market frontiers442

In this section, we examine the efficient frontiers by first computing and storing the optimal controls443

in the synthetic market. Then, these controls are tested using block bootstrap resampling of the444

historical data (see Section 11.2).445

14.1 EW-LS Bootstrap Frontiers446

Figure 14.1(a) shows the efficient frontier, for the EW-LS controls, tested in the historical market.447

Recall from Section 11.2, that the block bootstrap resampling method requires us to specify an448
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Figure 13.2: Comparison of synthetic frontiers, and frontier generated from the synthetic market.
Parameters based on real CRSP index, real 30-day T-bills (see Table 10.1). Units: thousands of
dollars. Note that this is an unfair comparison: the EW-LS frontier is not designed to be EW-ES
optimal.

expected blocksize. The estimated blocksizes from Table 11.2 are quite different for the bond and449

stock time series. In Figure 14.1(a), we can see that the efficient frontiers are insensitive to the450

choice of expected blocksize, for blocksizes ranging from 0.5− 5.0 years.451

In Figure 14.1(b) we show452

• The efficient EW-LS frontier, controls computed in the synthetic market, and tested in the453

synthetic market.454

• The efficient EW-LS frontier, controls computed in the synthetic market, and tested in the455

historical market (expected blocksize 2.0 years).456

These two curves essentially overlap, except near the LS = 0.0 boundary. This suggests that the457

EW-LS controls are very robust in terms of parametric model misspecification.458
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Figure 14.1: EW-LS frontiers, historical market. Bootstrap simulations, 106 samples. Optimal
control generated in the synthetic market. Parameters based on real CRSP index, real 30-day T-bills
(see Table 10.1). Historical data in range 1926:1-2020:12. Units: thousands of dollars.
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14.2 EW-ES Bootstrap Frontiers459

Figure 14.2 shows the efficient frontier, for the EW-ES controls, tested in the historical market. In460

Figure 14.1(a), we can see that the efficient frontiers are slightly more sensitive to the choice of461

expected blocksize, compared to the EW-LS case.462

In Figure 14.2(b) we show463

• The efficient EW-ES frontier, controls computed in the synthetic market, and tested in the464

synthetic market.465

• The efficient EW-ES frontier, controls computed in the synthetic market, and tested in the466

historical market (expected blocksize 2.0 years).467

• The best result for the constant withdrawal (q = 40 per year) and constant weight (p = 0.2)468

computed in the historical market.469

In this case, the synthetic market frontier is a bit above the historical market frontier, indicating470

that the ES risk measure is a slightly more sensitive to the market model, compared to the LS471

risk measure. However, note that the frontier tested in the historical market plots well above the472

constant weight, constant withdrawal point (tested in the historical market).473
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Figure 14.2: EW-ES frontiers, historical market. Bootstrap simulations, 106 samples. Optimal
control generated in the synthetic market. Parameters based on real CRSP index, real 30-day T-bills
(see Table 10.1). Historical data in range 1926:1-2020:12. Units: thousands of dollars.
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Figure 15.1: Scenario in Table 11.1. Mean-LS control. Optimal control computed from problem
EW-LS Problem (6.2). Parameters based on the real CRSP index, and real 30-day T-bills (see Table
10.1). Control computed and stored from the Problem (6.2) in the synthetic market. Control used in
the historical market, 106 bootstrap samples. qmin = 0, qmax = 25 (per quarter), κ̂ = 6.25. W ∗ = 900.
Units: thousands of dollars.

15 Detailed Historical market results: EW-LS controls474

We now present some representative results from testing the optimal EW-LS controls in the historical475

(bootstrapped) market. The summary statistics for various values of κ̂ are given in Appendix C.476

15.1 EW-LS κ̂ = 6.25477

For the case of κ̂ = 6.25 (Problem 6.2) the average annualized withdrawal is EW= 50.10, with478

an ES= 766.72 and Median[WT ] = 911.65. Although this strategy is optimal in terms of the479

LS risk measure, it outperforms the constant weight, constant withdrawal strategy (using ES as480

a risk measure, in the historical market), where the best result is (EW,ES) = (40, 651) with481

Median[WT ] = 897. However, unlike the constant withdrawal case, there is some probability of482

withdrawing less (on average) than 40 per year.483

Figure 15.1 shows the percentiles of fraction in stocks, wealth, and withdrawals versus time.484

Figure 15.1(a) indicates that the initial fraction in stocks is about 0.7. The median value of stocks485

drops steadily over time, reaching zero at 4.75 years. Figure 15.1(b) shows that the total wealth in486

the portfolio is tightly constrained about the median value, which is a desirable feature. However,487

this comes at a cost of variable withdrawals, as seen in Figure 15.1(c). This figure shows the488

percentiles of the quarterly withdrawals, with (qmin, qmax) = (0.0, 25). The median withdrawal is489

zero until the end of year one. The median withdrawal then increases rapidly reaching the maximum490

value at the end of year two, and dropping somewhat near five years.491

Figure 15.2 shows the heat maps of the optimal fraction in stocks and the optimal withdrawals.492

The optimal fraction in stocks starts out around 0.7, and then adjusts to the observed performance493

of the portfolio. Initially, if the returns are good, then the fraction in stocks is decreased. Conversely,494

if returns are poor, then the fraction in stocks is again initially decreased (to reduce downside risk).495

However, if very poor returns are observed, then the fraction in stocks is increased, in order to496

attempt to increase the probability of gains in future periods. At t→ T , and if the wealth is above497

the target value 900, then the portfolio is de-risked completely. If wealth is significantly below 900,498

then the portfolio is switched to 100% stocks, in an attempt to recover. However, this is a fairly499

low probability event, since the bond floor (the blue region) is an attractor, i.e. once we are in the500
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high fraction of bonds region, there is very little probability of leaving this region.501

Figure 15.2(b) indicates that the optimal withdrawal controls are essentially bang-bang, i.e.502

withdraw at either the maximum or minimum withdrawal amounts. Note that we did not assume503

this to be true in our numerical algorithm. However, from Proposition 8.1, we learn that in the504

continuous rebalancing, continuous withdrawal limit, the withdrawal control is bang-bang. It is505

interesting to see that this result appears to hold (with a very small transition zone) in the case of506

discrete rebalancing and withdrawals.507

(a) Fraction in stocks (b) Withdrawals

Figure 15.2: Optimal EW-LS. Heat map of controls: fraction in stocks and withdrawals, computed
from Problem EW-LS (6.2). cap-weighted real CRSP, real 30-day T-bills. Scenario given in Ta-
ble 11.1. Control computed and stored from the Problem 6.2 in the synthetic market. qmin = 0, qmax =
25 (quarterly). κ̂ = 6.25. W ∗ = 900. ε = 10−6. Normalized withdrawal (q − qmin)/(qmax − qmin).
Units: thousands of dollars.

Figure 15.3 shows the CDFs of the terminal wealth and annualized withdrawals. The final wealth508

CDF in Figure 15.3(a) is tightly clustered around W = 900, which is consistent with the objective509

function (6.2), where risk is measured in terms of the shortfall relative to W = 900. There is, of510

course, no free lunch here, as we can see in the CDF of the annualized withdrawals in Figure 15.3(b).511

There is about a 5% chance that the total withdrawals over the five year period will be zero (in512

order to preserve final wealth). On the other hand, the median annualized withdrawal is about 55513

per year, which is quite impressive.514
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Figure 15.3: Scenario in Table 11.1. CDFs of terminal wealth and total withdrawals (annualized).
EW-LS control. Optimal control computed from problem Problem 6.2. Parameters based on the real
CRSP index, and real 30-day T-bills (see Table 10.1). Control computed and stored from the EW-LS
Problem (6.2) in the synthetic market. Control used in the historical market, 106 bootstrap samples.
qmin = 0, qmax = 25 (per quarter), κ̂ = 6.25. W ∗ = 900. Units: thousands of dollars.
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Figure 15.4: Scenario in Table 11.1. EW-LS control. Optimal control computed from problem
Problem (6.2). Parameters based on the real CRSP index, and real 30-day T-bills (see Table 10.1).
Control computed and stored from the Problem (6.2) in the synthetic market. Control used in the
historical market, 106 bootstrap samples. qmin = 0, qmax = 25 (per quarter), κ̂ = 17.0. W ∗ = 900.
ES = 821. Units: thousands of dollars.

15.2 EW-LS κ = 17.0515

For this case, we solve Problem 6.2, with κ̂ = 17, putting increased emphasis on LS risk term, which516

gives an average annualized withdrawal of EW= 40.06, LS = −4.32, ES = 824 and Median[WT ] =517

916.518

Figure 15.4 shows the percentiles of fraction in stocks, wealth, and withdrawals. Note that in519

this case, the initial fraction in stocks is about 0.4, indicating a preference for less risk. Figure520

15.4(b) shows an even tighter distribution of wealth about the median, compared to Figure 15.1(b).521

However, the price to be paid for this tighter wealth distribution is evident from Figure 15.4(c),522

where the median withdrawals are zero until the end of year two, in contrast to Figure 15.1(c).523

Figure 15.5(a) illustrates the heat map of the equity allocation controls. Note that in this case, if524

the total wealth decreases initially, then the optimal strategy is go heavily into bonds. This protects525

the downside risk. Similarly, if wealth increases, the investor also de-risks. The effect of this is to526

cause the tight distribution about the median. Figure 15.5(b) shows the optimal withdrawal controls527

are, for all practical purposes, bang-bang.528

The CDFs of the terminal wealth distributions and annualized withdrawals are given in Figure529

15.6. These plots are qualitatively similar to Figure 15.3.530
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(a) Fraction in stocks (b) Withdrawals

Figure 15.5: Optimal EW-LS. Heat map of controls: fraction in stocks and withdrawals, computed
from Problem 6.2, cap-weighted real CRSP, real 30-day T-bills. Scenario given in Table 11.1. Control
computed and stored from the Problem 6.2 in the synthetic market. qmin = 0, qmax = 25 (quarterly).
κ̂ = 17.0. W ∗ = 900. ε = 10−6. Normalized withdrawal (q − qmin)/(qmax − qmin). Units: thousands
of dollars.
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Figure 15.6: Scenario in Table 11.1. CDFs of terminal wealth and total withdrawals (annualized).
Mean-LS control. Optimal control computed from problem Problem 6.2. Parameters based on the
real CRSP index, and real 30-day T-bills (see Table 10.1). Control computed and stored from the
Problem 6.2 in the synthetic market. Control used in the historical market, 106 bootstrap samples.
qmin = 0, qmax = 25 (per quarter), κ = 17.0. W ∗ = 900. Units: thousands of dollars.
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Figure 16.1: Scenario in Table 11.1. EW-ES control. Optimal control computed from problem
Problem 5.2. Parameters based on the real CRSP index, and real 30-day T-bills (see Table 10.1).
Control computed and stored from the Problem 5.2 in the synthetic market. Control used in the
historical market, 106 bootstrap samples. qmin = 0, qmax = 25 (per quarter), κ = 1.17. W ∗ = 840.
Units: thousands of dollars. ES = 787.

16 Detailed historical market results: EW-ES controls531

In this section, we present some detailed results for the EW-ES controls (Problem 5.2), computed532

in the synthetic market, and tested in the historical market. The summary statistics for various533

values of κ are given in Appendix C.534

16.1 Bootstrap EW-ES κ = 1.17535

For κ = 1.17 in Problem 5.2, the expected annualized withdrawals are EW=50.5, with ES=788 and536

Median[WT ] = 859.33. This can be compared with the κ̂ = 6.25 for the EW-LS controls. In this537

case, the EW values for both strategies are similar, the ES for the EW-LS control is a bit worse,538

while the Median[WT ] = 912 for the EW-LS control is better. Hence there is a tradeoff here for539

these two strategies, which depends on the investor’s preferences (larger ES or largerMedian[WT ]).540

Figure 16.1 shows the percentiles of fraction in stocks, wealth, and withdrawals versus time.541

From Figure 16.1(a), we can see that in this case, the median fraction in stocks starts out at a542

conservative allocation of 45% and drops to zero over time. There is very little spread between the543

median and the 95th percentile. The 5th percentile shows a very rapid de-risking. Figure 16.1(b)544

shows a very tight range for the total wealth over the entire investment horizon. The cost for this545

very predictable wealth can be seen in Figure 16.1(c), where the median withdrawal is zero until546

well into the second year.547

The heat maps of the optimal equity fraction and the optimal withdrawals are given in Figure548

16.2. Figure 16.2(a) should be compared to Figure 15.2(a) (EW-LS control, approximately the549

same EW). The EW-ES control is more cautious, with a large bond fraction extending to the550

t = 0 boundary, below the initial wealth. The optimal withdrawals continue to be approximately551

bang-bang.552

The CDFs of the terminal wealth and the total withdrawals are given in Figure 16.3. The553

probability of zero total withdrawals is considerably smaller than the EW-LS control (with similar554

total expected withdrawals, see Figure 16.6(b)).555

25



(a) Fraction in stocks (b) Withdrawals

Figure 16.2: Optimal EW-ES heat map of controls: fraction in stocks and withdrawals, computed
from Problem 5.2 cap-weighted real CRSP, real 30-day T-bills. Scenario given in Table 11.1. Control
computed and stored from the Problem 6.2 in the synthetic market. qmin = 0, qmax = 25 (quarterly).
κ = 1.17. W ∗ = 840. ε = 10−6. Normalized withdrawal (q − qmin)/(qmax − qmin). Units: thousands
of dollars.
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Figure 16.3: Scenario in Table 11.1. CDFs of terminal wealth and total withdrawals (annualized).
EW-ES control. Optimal control computed from problem Problem 5.2. Parameters based on the
real CRSP index, and real 30-day T-bills (see Table 10.1). Control computed and stored from the
Problem 5.2 in the synthetic market. Control used in the historical market, 106 bootstrap samples.
qmin = 0, qmax = 25 (per quarter), κ = 1.17. W ∗ = 840. Units: thousands of dollars. ES = 787.
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Figure 16.4: Scenario in Table 11.1. EW-ES control. Optimal control computed from problem
Problem 5.2. Parameters based on the real CRSP index, and real 30-day T-bills (see Table 10.1).
Control computed and stored from the Problem 5.2 in the synthetic market. Control used in the
historical market, 106 bootstrap samples. qmin = 0, qmax = 25 (per quarter), κ = 1.37. W ∗ = 884.
Units: thousands of dollars.

16.2 Bootstrap EW-ES κ = 1.37556

In this section, we give the detailed results for κ = 1.37 in Problem 5.2. This value of κ generates557

an annualized value of EW=40.26, and ES=821 and Median[WT ] = 905.25. This should compared558

with the EW-LS case with κ̂ = 17, since both strategies have approximately the same EW . Note559

that W ∗ = 884 for Problem 5.2, compared to W ∗ = 900 for Problem 6.2.560

From Figure 16.4(a), we can see that the fraction in stocks begins at a very conservative level561

of 35%, and drops rapidly over time. The EW-ES strategy continues to have a very narrow spread562

(5th to 95th percentile) of the total wealth (see Figure 16.4(b)). However, Figure 16.4(c) shows that563

the median withdrawal remains at zero until well into the third year.564

The heat maps of the controls for κ = 1.37 are given in Figure 16.5, and should be compared565

with Figure 15.5(a) (EW-LS control with approximately the same EW). The cumulative distribution566

functions for the terminal wealth and the total withdrawals are given in Figure 16.6(b).567
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(a) Fraction in stocks (b) Withdrawals

Figure 16.5: Optimal EW-ES control hear maps: fraction in stocks and withdrawals, computed
from Problem 5.2 cap-weighted real CRSP, real 30-day T-bills. Scenario given in Table 11.1. Control
computed and stored from the Problem 6.2 in the synthetic market. qmin = 0, qmax = 25 (quarterly).
κ = 1.37. W ∗ = 884. ε = 10−6. Normalized withdrawal (q − qmin)/(qmax − qmin). Units: thousands
of dollars.
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Figure 16.6: Scenario in Table 11.1. CDFs of terminal wealth and total withdrawals (annualized).
EW-ES control. Optimal control computed from problem Problem 5.2. Parameters based on the
real CRSP index, and real 30-day T-bills (see Table 10.1). Control computed and stored from the
Problem 5.2 in the synthetic market. Control used in the historical market, 106 bootstrap samples.
qmin = 0, qmax = 25 (per quarter), κ = 1.37. W ∗ = 884. Units: thousands of dollars.
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17 Discussion568

We remind the reader that the EW-ES problem (6.2) is formally of the pre-commitment type, and569

hence is time inconsistent. However, we follow the usual practice, and consider the policy followed570

for t > 0 to be the induced time consistent policy (Strub et al., 2019; Forsyth, 2020a). From571

Proposition 5.1, we learn that for any given point on the EW-ES frontier, there is a pair (κ̂,W ∗)572

for the EW-LS problem (6.2) which has identical controls. This is illustrated in Figure 13.2, where573

we fix the value of W ∗ for the EW-LS problem.574

Hence, in some sense, the difference between an EW-LS policy and an EW-ES policy might575

be deemed to be just a matter of interpretation. However, the target shortfall W ∗ in the EW-LS576

objective function is easily interpreted as a desired lower bound for the terminal wealth. In the577

EW-ES case, the effective target W ∗ is specified in terms of the mean of the worst α fraction of578

results, which is a bit more obscure.579

Generally speaking, the EW-LS controls show a fairly tight distribution around the specified580

value of the target (which in our examples is 900, compared to the initial wealth of 1000), as can581

be seen from the cumulative distribution functions (Figures 15.3(a) and 15.6(a)).582

The EW-ES wealth CDFs (Figures 16.3(a) and 16.6(a) are either comparable with the EW-LS583

CDFs (from Proposition 5.1) or have a lower median value of the terminal wealth, but with less tail584

risk.585

It could be argued that the EW-ES control is too focused on extreme outcomes. On the other586

hand, the EW-LS control has an intuitive parameter W ∗, which represents the desired lower bound587

on terminal wealth. The EW-LS efficient frontier is also very robust to parametric model mis-588

specification; the EW-LS efficient frontiers in both the synthetic and historical market virtually589

coincide.590

Both strategies protect the desired wealth target by delaying withdrawals for 1 − 2 years, and591

increasing the withdrawals thereafter if stocks do well. For larger values of expected total with-592

drawals (ES), the EW-LS strategy begins with a larger value in stocks than the EW-ES control.593

Both strategies rapidly de-risk into bonds as t→ T .594

Consider the heat maps for the equity fraction controls for the EW-ES control, Figure 16.2(a)595

and for the EW-LS control, Figure 15.2(a). These controls have roughly the same EW, but different596

values of W ∗, indicating that the strategies are different. Both strategies de-risk if the portfolio597

does well. The EW-ES control also moves rapidly into bonds if the portfolio does poorly (to protect598

the downside). The EW-LS control does this only for larger times, and tends to take on more risk599

early on.600

The EW-ES control (where it is different from the EW-LS control) then has a larger probability601

of cashing out early on in the investment process. Once the investor has moved into a portfolio602

largely dominated by bonds, there is little chance of escaping from this basin of attraction. This603

may be an undesirable characteristic of this strategy.604

As a final point of comparison, note that the best result for the constant weight, constant605

withdrawal policy in the historical market was (EW,ES) = (40,651). The comparable EW-LS606

policy had (40,864). Of course, this greatly reduced tail risk came at the expense of only an607

expected annualized withdrawal EW = 40 for the EW-LS policy, compared with the guaranteed608

yearly withdrawal of 40 in Table 12.2. On the other hand, there is about a 55% probability that609

the average annualized withdrawals will be larger than 40 for the EW-LS strategy.610

In summary, it would seem that the EW-LS strategy is to be preferred, since the parameter611

W ∗ has an easy intuitive interpretation as a minimum final wealth target, while at the same time612

producing impressive expected total withdrawals (EW). The EW-LS strategy is also formally time613

consistent, without having to consider an induced time consistent strategy (as required for the614
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EW-ES strategy).615

18 Conclusion616

In view of the empirical fact that many retirees are decumulating their total wealth very slowly, or617

even accumulating, we propose a strategy to make it more palatable for these retirees to withdraw618

significant sums during early years of retirement.619

We consider two closely related strategies in this paper: expected withdrawal-expected short-620

fall (EW-ES) and expected withdrawal-linear shortfall (EW-LS). The controls are the withdrawal621

amount per quarter, and the allocation to stocks and bonds. The optimal controls are determined622

using dynamic programming, based on a parametric stochastic model of historical stock and bond623

returns. These strategies are tested on bootstrapped resampled historical data.624

We use a short time horizon (five years) to facilitate withdrawals during the early years of retire-625

ment. The optimal strategies for both EW-ES and EW-LS objective functions have the following626

characteristics627

• The median optimal withdrawal policy is to withdraw zero amounts for first 1-2 years, and628

then to increase withdrawals rapidly.629

• The optimal allocation to stocks is high at the start, then declines rapidly, in order to protect630

total portfolio wealth.631

• With a suitable choice of parameters, there is a high probability of preserving at least 90% of632

the initial wealth in real terms (after five years).633

• There is a high probability that the annualized average withdrawals will exceed 4% real of the634

initial wealth.635

Note that the excellent wealth preservation aspect of this strategy is due to both the allocation636

strategy, and the ability to delay spending for the first few years of the five year cycle, if necessary.637

Hence, since it appears that the reluctant spenders desire to preserve wealth, and are flexible in638

their spending needs, these types of strategies should be appealing to this class of retirees.639
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Appendix643

A Numerical techniques644

We solve problems (5.2) and (6.2) using the techniques described in detail in Forsyth and Labahn645

(2019); Forsyth (2020a; 2021a). We give only a brief overview here.646

We localize the infinite domain to (s,b) ∈ [smin, smax] × [bmin, bmax], and discretize [bmin,bmax]647

using an equally spaced log b grid, with nb nodes. Similarly, we discretize [smin, smax] on an equally648

spaced log s grid, with ns nodes. Localization errors are minimized using the domain extension649

method in (Forsyth and Labahn, 2019).650
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At rebalancing dates, we solve the local optimization problem by discretizing (q(·), p(·)) and651

using exhaustive search. Between rebalancing dates, we solve a two dimensional partial integro-652

differential equation (PIDE) using Fourier methods (Forsyth and Labahn, 2019; Forsyth, 2021a).653

Finally, the optimization problem (7.4) is solved using a one-dimensional optimization technique654

(this final step is only required for the EW-ES case).655

We compute and store the optimal controls from solving Problem 5.2 or Problem (6.2) using the656

parametric model of the stock and bond processes. We then use the stored controls in Monte Carlo657

simulations to generate statistical results. As a robustness check, we also use the stored controls658

and simulate results using bootstrap resampling of historical data.659

A.1 Convergence Test660

Table A.1 shows a detailed convergence test for the base case problem given in Table 11.1, for the661

EW-LS problem. The results are given for a sequence of grid size, for the dynamic programming662

algorithm (7.1). The dynamic programming algorithm appears to converge at roughly a second663

order rate. The optimal control computed using dynamic programming is stored, and then used in664

Monte Carlo computations. The MC results are in good agreement with the dynamic programming665

solution.666

For all the numerical examples, we will use the 2048×2048 grid, since this seems to be accurate667

enough for our purposes.668

Algorithm in Section 7.1 Monte Carlo
Grid E[(WT −W ∗)] E[

∑
i qi]/T Value E[(WT −W ∗)] E[

∑
i qi]/T

Function
512× 512 -5.3355 42.382 158.55 -3.3374 42.71 (.16)
1024× 1024 -3.9939 43.301 176.56 -3.3373 43.48 (.18)
2048× 2048 -3.6996 44.154 183.77 -3.5384 44.20 (.16)
4096× 4096 -3.6442 44.368 185.39 -3.5982 44.38 (.19)

Table A.1: Convergence test, optimal EW-LS strategy, real stock index: deflated real capitalization
weighted CRSP, real bond index: deflated 30-day T-bills. Scenario in Table 11.1. Parameters in Table
10.1. The Monte Carlo method used 2.56 × 106 simulations. κ = 10, W ∗ = 900. Grid refers to the
grid used in the Algorithm in Section 7.1: nx × nb, where nx is the number of nodes in the log s
direction, and nb is the number of nodes in the log b direction. Units: thousands of dollars (real).
T = 5 years. qmin = 0.0. qmax = 100 (quarterly). Algorithm in Section 7.1. The numbers in brackets
are the standard errors at the 99% confidence level.

B Detailed efficient frontiers: synthetic market669
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κ̂ E[min(W −W ∗,0)] E[
∑

i qi]/T ES (5%) Median[WT ]
1.0 -95.35 85.46 404.38 885.79
2.5 -30.23 66.70 511.22 904.93
3.75 -15.35 57.56 643.97 907.91
5.0 -9.85 52.82 726.77 910.05
6.25 -6.91 49.44 773.95 912.42
7.5 -5.29 47.24 802.57 912.66
10.0 -3.54 44.20 833.64 913.67
12.5 -2.63 42.17 849.68 914.88
17.0 -1.83 39.78 864.33 916.41
20.0 -1.52 38.60 869.95 917.89
50 -0.57 32.65 890.32 929.37
500 -0.12 20.60 918.33 964.61

Table B.1: EW-LS synthetic market results for optimal strategies, assuming the scenario given
in Table 11.1. Stock index: real capitalization weighted CRSP stocks; bond index: 30-day T-bills.
Parameters from Table 10.1. Units: thousands of dollars. Statistics based on 2.56× 106 Monte Carlo
simulation runs. Control is computed using the Algorithm in Section 7.1, stored, and then used in the
Monte Carlo simulations. qmin = 0.0, qmax = 100 (quarterly). T = 5 years W ∗ = 900. ε = 10−6.

κ ES (5%) E[
∑

i qi]/T W ∗ Median[WT ]
0.5 574.19 94.03 582.28 601.11
1.0 745.03 67.23 762.63 779.26
1.1 796.52 56.50 814.50 833.79
1.13 813.50 52.71 832.81 851.68
1.17 821.70 50.83 840.80 860.24
1.20 831.63 48.50 850.57 870.67
1.25 846.18 44.97 865.59 886.36
1.37 864.87 40.19 884.00 905.94
1.5 886.48 34.18 906.07 929.31
1.75 908.19 27.23 929.98 953.36
2.0 917.04 24.05 938.04 963.92
5.0 937.61 13.29 960.33 999.09
10.0 940.64 9.77 964.67 1013.23

Table B.2: EW-ES synthetic market results for optimal strategies, assuming the scenario given
in Table 11.1. Stock index: real capitalization weighted CRSP stocks; bond index: 30-day T-bills.
Parameters from Table 10.1. Units: thousands of dollars. Statistics based on 2.56× 106 Monte Carlo
simulation runs. Control is computed using the Algorithm in Section 7.1, stored, and then used in the
Monte Carlo simulations. qmin = 0.0, qmax = 100 (quarterly). T = 5 years ε = 10−6.
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C Detailed efficient frontiers: historical market670

κ̂ E[min(W −W ∗,0)] E[
∑

i qi]/T ES (5%) Median[WT ]
1.0 -95.96 86.00 430.03 874.91
2.5 -32.40 66.98 528.98 902.76
3.75 -10.93 53.47 724.50 909.05
6.25 -7.96 50.10 766.72 911.65
7.5 -6.55 47.92 789.93 911.96
10.0 -5.31 44.80 810.14 912.90
12.5 -4.77 42.61 817.97 914.09
17.0 -4.32 40.06 824.06 915.77
20.0 -4.13 38.86 827.31 917.22
50.0 -3.32 32.81 839.73 928.60
500.0 -3.06 21.69 843.44 963.24

Table C.1: EW-LS historical market results for optimal strategies, assuming the scenario given
in Table 11.1. Stock index: real capitalization weighted CRSP stocks; bond index: 30-day T-bills.
Parameters from Table 10.1. Units: thousands of dollars. Statistics based on 106 bootstrap simulation
runs. Blocksize = 2 years. Control is computed using the Algorithm in Section 7.1, stored, and then
used in the bootstrap simulations. qmin = 0.0, qmax = 100 (quarterly). T = 5 years W ∗ = 900.
ε = 10−6.

κ ES (5%) E[
∑

i qi]/T Median[WT ]
0.5 562.69 91.91 778.30
1.0 721.28 66.45 778.30
1.1 766.30 55.96 832.96
1.13 781.17 52.31 850.77
1.17 787.87 50.51 859.33
1.20 794.53 48.63 868.15
1.25 807.53 44.97 885.57
1.37 821.34 40.26 905.25
1.50 836.30 34.47 928.79
1.75 848.77 27.89 953.13
2.0 852.15 24.84 963.31
5.0 849.19 15.40 997.96
10.0 846.81 12.48 1011.58

Table C.2: EW-ES historical market results for optimal strategies, assuming the scenario given
in Table 11.1. Stock index: real capitalization weighted CRSP stocks; bond index: 30-day T-bills.
Parameters from Table 10.1. Units: thousands of dollars. Statistics based on 106 bootstrap simulation
runs. Blocksize = 2 years. Control is computed using the Algorithm in Section 7.1, stored, and then
used in the bootstrap simulations. qmin = 0.0, qmax = 100 (quarterly). T = 5 years ε = 10−6.
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