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Abstract

Under the assumption that two financial assets evolve by correlated finite activity jumps superimposed on
correlated Brownian motion, the value of a contingent claim written on these two assets is given by a two
dimensional parabolic partial integro-differential equation (PIDE). An implicit, finite difference method
is derived in this paper. This approach avoids a dense linear system solution by combining a fixed point
iteration scheme with an FFT. The method prices both American and European style contracts indepen-
dent (under some simple restrictions) of the option payoff and distribution of jumps. Convergence under
the localization from the infinite to a finite domain is investigated, as are the theoretical conditions for
the stability of the discrete approximation under maximum and von Neumann analysis. The analysis
shows that the fixed point iteration is rapidly convergent under typical market parameters. The rapid
convergence of the fixed point iteration is verified in some numerical tests. These tests also indicate that
the method used to localize the PIDE is inexpensive and easily implemented.
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1 Introduction

To price financial option contracts under actual market conditions, models for the evolution of the underlying
asset prices are required which are more complex than a simple Black-Scholes diffusion process. This paper
presents a finite difference pricing method for options on two assets where the asset prices evolve by jumps
superimposed on Brownian motion. In this case, the pricing equation is a two dimensional, parabolic, partial
integro-differential equation (PIDE). The method derived here can price both European options and those
having an American early exercise feature. In the American case, no assumptions are made concerning the
location of the exercise boundary.

The jumps in the logarithm of the prices may be distributed by any finite activity process; we demon-
strate two-dimensional correlated Normal [39] and exponential [33, 27] distributions. The technique can be
implemented as a direct extension to existing two-asset finite difference codes for American options. An
implicit time stepping technique is used, which eliminates time step restrictions due to stability consider-
ations. A fixed point iteration is used to avoid a dense linear system solution that would otherwise arise
from the integral term. The average additional work for computing jump diffusion prices, compared to plain
Brownian motion, consists of two to four FFT operations per time step.

Intuitively, the jump diffusion model is attractive because it adds the idea of asset price jumps induced
by discrete economic events (for example, earnings surprises) to the idea of an otherwise efficient market



moving by Brownian motion. It is well known that implied volatilities, computed from market prices for
options, vary over different strikes and maturities. This results in effects such as a volatility smile or skew
which, in many cases, jump diffusions can explain. For an overview of the evidence that suggests that jump
processes are an important factor in observed market prices, we refer the reader to [11].

Option pricing with these market models in the one-asset case has been explored for both European
and American options by several researchers. Andersen and Andreasen [4] developed an operator splitting
approach for European options which was unconditionally stable and second order in time. A general semi-
analytic solution was described by Lewis [31, 32] for European options on one asset and by Fonseca et. al.
for multiple assets [18].

Pham [42] discussed theoretical properties of the solutions to American options under jump diffusion
processes. An approximation method is discussed by Mulinacci [40]. Binomial lattice methods are the
equivalent of explicit finite difference methods [55], and an approach to the one-dimensional problem using
this technique is discussed by Amin [3]. Zhang [52] developed a semi-implicit approach for American options
using a traditional linear complementarity solver for jump diffusion processes with Normally distributed
jumps. Wavelet methods for implicit solution of single factor infinite activity jump diffusion problems were
developed in [37, 35, 36].

Recent work in finite difference approaches by Briani et. al. [9, 8] and Cont et. al. [12] use explicit time
stepping for the integral operator introduced by the jump process. An implicit, finite difference approach for
single asset American and European options was explored by d’Halluin, Forsyth, et. al. [15, 14]. This method
employed a penalty method and was demonstrated to be quadratically convergent versus grid spacing and
time step size for both American and European options. A similar approach, which uses an iterative method
to solve the implicit discretized PIDE and which also uses an FFT to carry out the dense matrix-vector
multiply, was developed by Almendral and Oosterlee [2].

Two asset American claims under jump diffusion were priced using a Markov chain approach in [34]. A
Markov chain can be viewed as essentially an explicit finite difference method. The jump terms were handled
using an extension of the method in [3].

The two-asset, correlated Brownian motion model [49] is a simple extension of the one-asset Black-Scholes
model [6, 38]. The work in this paper adapts the finite difference jump diffusion work of [15, 14] to the work on
two-factor option pricing of Zvan, Forsyth et. al. [53, 54, 19] to produce a similarly quadratically convergent
method. This new two-asset technique retains the advantages of being able to price options with general
types of payoffs and barriers for American as well as European options.

The following are the main results of this paper.

e A fixed point iteration method is developed which allows implicit time stepping for the PIDE. It avoids
a dense matrix multiply by utilizing an FFT. A convergence analysis shows that we can expect this
iteration to converge rapidly for normal market parameters i.e. a reduction of the I, or l; norm by
1076 in 2 — 3 iterations. This is verified in some numerical experiments. A major advantage of this
approach is that it is straightforward to add a jump model to existing software which prices two asset
claims under Brownian motion. The fixed point iteration effectively decouples the jump process terms
from the Brownian motion terms.

e The fixed point iteration can be easily extended to handle American options (as in [14]) using a penalty
method.

e In the case of constant coefficients, we can rotate the grid so that the fully implicit discretization is
monotone. Consistency, monotonicity and stability imply convergence to the viscosity solution for
American options with non-smooth payoffs [8, 12]. However, numerical experiments reveal that the
error for a given mesh size on the rotated grid is in fact larger compared to the error on a conventional
grid. This suggests that attempting to force a monotone discretization scheme may not be necessary
in practice.



1.1 Overview

Section 2 of this work reviews the equations governing option valuation over two assets with jump diffusion.
The localization of the equations from an infinite to a finite domain, and the control of the resulting error,
is discussed in Section 3. The discretization method discussed in Section 4 is studied to determine the
theoretical conditions for stability in Section 5. In Section 6, the fixed point iteration used to advance the
solution by one time step is demonstrated to be rapidly convergent under normal parameter ranges. The
application of the fixed point iteration to American option pricing is also discussed in Section 6. Section 7
gives a number of numerical examples to demonstrate the techniques presented in the paper. Experimentally,
we see that this method is quadratically convergent. Certain details of the problem specification and the
longer proofs are in the appendices.

2 Governing Equations

Our approach to valuing option contracts uses a time to expiry and the prices of the underlying assets as
independent variables. The value of the option will be determined after applying a logarithmic transform to
the two asset prices. This “log-price scaling” is convenient for analysis, although numerically our approach
works equally well in the original price scaling.

2.1 The Finite Activity Jump Diffusion Model

To compute the value of an option we use, as independent variables, the time to expiry 7 =T — ¢ and two
asset prices S; and Sy where

te [t(),tg + T]

7€ [0,T]

S =(51,52) € Qx
Qs = [0, 00] x [0, 0]

(2.1)

In Appendix A, we describe the risk neutral price processes assumed for (S7,S3). We apply a logarithmic
transform to the asset prices

y = (y1,92) = (log(S51),1og(S2)) € Qo

Qoo = [—00, 00] X [—00, ] (22)

and wish to determine the value of a European option U(y, 7). By taking expectations under the risk neutral
price process described in Appendix A [8, 11], we obtain the following parabolic partial integro-differential
equation (PIDE) for the value U(y, 7)

U, =LU+ \XHU

(2.3)
Ul(y,0) = Z(y)
which is defined over Q. x [0,T]. The linear differential operator £ is defined as
LU = (DV)-VU+V.VU-rU (2.4)
2 R2 : o 9\
D € R*xR*; VeR*; V=|—, —
Oy1~ Oya
2
_ r—o01°/2
v o (rmo) .
1 012 Pv0102
D = - . 2.
2 < Pv0102 022 (2:6)



The coefficients o1 > 0, 02 > 0 and —1 < p, < 1 are the volatility magnitudes and correlation, respectively,
of the Brownian motion processes on the two assets, and r > 0 represents a risk-free rate of return. For
simplicity, we do not include dividends in Equation 2.4. The operator AH represents the effects of finite
activity asset price jumps generated by a Poisson process with mean arrival rate A > 0. For brevity, we write
J = (J1,J2)
y+J =+ 1,92 + J2) (2.7)
T
(e —1) = (et = 1,72 —1)

and then we can write the integral term as

o
AHU = A/ g [Uy+J,7)=Uly,7)— (e/ =1) - VU(y,7)] dJ (2.8)
where jump magnitudes J are distributed according to a probability density function ¢g(J). In this study we
make the standard assumption that g(J) is independent of y, and assume that g(J) satisfies the technical
conditions of [23] §II.1.2 Definition 1.6 (see also [11] Proposition 3.18) in particular, that we may write
separate integrals for the second term of HU

/ o(N)U(y,7) dJ = Uy, )
and the third term

/OO g(J)[(e! = 1) - VU(y,7)] dJ = [/

— 00 —00

oo

o) (¢! 1) a1 -V0r) = (5 ) VU)

The values k1, ko < oo correct for the mean drift due to the first term of operator HU. This first term is
written separately as

JU = /_Oo g(NU (y+ J,7) dJ = /_oo 9(J =y)U(J,7) dJ (2.9)

which are equivalent forms of a correlation product. Specific formulations of g(J) with Normal and expo-
nentially distributed jumps, which are analogous to the one-dimensional jump models of Merton [39] and
Kou [27] respectively, are given in Appendix B.
An American option may be exercised for its terminal payoff at any time. We may write the American
option price as the solution to a linear complementarity problem [42, 52]
U, > LU+NHU (2.10)
U > Iy (2.11)

U(y,0) = Z(y)

where at least one of Equations 2.10 or 2.11 must hold with equality.

2.2 Price Scaling Notes

In “price scaling”, the value of the option U (S,t) in time t and two space dimensions S € Qx is determined
by solving a PIDE analogous to Equation 2.3. It is defined on Qg x [0,7]. Of particular note are the
analogues of the advection tensor V and diffusion tensor D of Equations 2.5 and 2.6. In price scaling they

become
T ’I“Sl
V_ < T‘SQ )
D 1 01281%  pp010251 52
Pp01025152 092557

(2.12)
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which we observe have zeros at the natural lower boundary of the problem at S; = 0 and Sy = 0. These lines
correspond to y; = —oo and ys = —oo in log-price scaling, and we shall exploit this feature of the problem
when we localize it to a finite domain.

2.3 Contract Types and Initial Conditions

The examples in this paper value four types of option contracts which differ in their payoffs. These are
specified in price scaling. Initial conditions 7 (S) are defined by function ﬁ(S ) and an option exercise price
K to define
_ max (75(5) _K, 0) call, and
7(8) = (2.13)
max (K — 75(5),0) put

options where the underlying is either

P(S) =

. {max (S1,52) the maximum, or (2.14)

min (S1,S2)  the minimum

of the two underlying assets. If we refer to the payoff in log-price scaling we write P(y), which is used to
form our initial condition Z(y). These four examples are not specific to our numerical solution technique,
which can be used for any payoff that can be bounded linearly (see Assumption 3.1 below).

3 Localization

Our solution technique requires truncating the infinite domains Q55 and )., at finite boundaries. In this
section we discuss this localization and the associated convergence issues in log-price scaling. We shall discuss
these issues in the context of pricing European options (Equation 2.3). We will use the same approach for
localizing American options, which can justified in this case by numerical experiment.

The localization method which follows is easy to visualize and implement. Essentially, we divide the
computational domain into an inner or core region, and an outer region. In the inner region, the full PIDE is
solved. In the outer region, under log-price scaling, we set all terms involving the integral term to zero and
simply solve a parabolic PDE. This can be justified on the basis of the properties of the Green’s function
of the PIDE [23]. As well, the integral term H is asymptotically zero in regions where the solution is
asymptotically linear; linearity is a common assumption for far-field boundary conditions in finance [51].
The outer region then acts as a buffer zone, so that the integral terms in the inner region have enough
information for a sufficiently accurate evaluation.

3.1 Localization in Log-Price Scaling

In log-price scaling (Equation 2.2) we define an interior domain nested in a finite domain Q¢ C Qp C Qs
(see Figure 1) and apply the bounds 0 < Yo < Yp to the upper and lower limits

Qc = [-Yo,Yo] x [-Ye, Yo

QD = [7YD,YD] X [7YD,YD] (31)

Np ={y1 = [-YD,Ypl,y2 = {-YDp,Yp}} U{y2 = [-YD,Yp|,y1 = {-YD,Yp}}
In general, the upper and lower limits need not be equal nor the domains square. We determine the
approximate option value V(y,7), y € Qp with boundary conditions B(y,7) by solving
Ve, =LV + A\cHpV

V(y,0) =Z(y) (3.2)
V(y,7)=B(y,7); y€ip
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FIGURE 1: Domains Q2c C Qp in log-price FIGURE 2: Domains Q25 C Qp in price scal-
scaling truncate the infinite domain Qoo. In ing truncate the infinite domain Qs. In Qg
Qc we apply Ac > 0 so that the PIDE 3.2 we apply Ac > 0 so that the PIDE is com-
is computed with the jump component in Q¢ puted with the jump component in that do-
only. Qp has a lower bound at a finite point main. Outside of Q5 we have only diffusion.

hence, in price scaling, above the zero axis
of the asset price.

which is defined over Qp x [0, T], where the integral operator is altered from Equation 2.8 to become

A yEQC
Ao =
0 yEQD\QC

oo

HpV = gV (y+ J,7) dJ—/ g(J)) [V(y,7) + (e) = 1) - VV(y,7)] dJ (3.3)
(y+J)EQD —00

— UJEQD g(J =)V (J,7) dJ] —V(y,7)— ( :; ) -VV(y,7)

We have written the first term of Hp in two ways, corresponding to the two forms of 7 in Equation 2.9. In
the first form, the integration for a point y € ¢ must be performed over (y + J) € Qp; the value of V' is
not defined outside of 2p so the integration limit for J depends on y. The second form of Hp is equivalent,
but since g(J — y) is defined over (J — y) € R?, the integration limit is simpler and independent of y. The
second form also illustrates one reason why A¢ is set so that AcHpV(y) =0V y ¢ Q¢. For y € Q¢ the
range of evaluation of g(J — y),J € Qp is not severely truncated in any given direction compared to the
infinite integral J € 4, used for the second and third terms. We shall set the size of Q¢ and Qp so that this
truncation occurs when g(J — y) is small, so that the finite evaluation range has a small, controlled impact
on the solution over Q¢.

For this study we consider, as payoffs, the put on the minimum of two assets and the call on the maximum
(Equation 2.13). Thus the upper boundary may be approximated by a constant value

B(y,7) =Z(y), y€p, yp=Ypory=Yp (3.4)

and enforced using a Dirichlet boundary condition. For a complete review of the possible boundary condition
assumptions and their implications see [51]. Along the lower boundary we set B by approximating V and



D by

r—o2/2
< 01/ > y € p, y1 € (=YD, YD), y2=-Yp
V= (3.5)
0
( r 0_2/2 ) RS aQDv Y1 = _YD7 Y2 € (_YDvyD)
— 03
1 0'12 0
3 0 0 y€9dp, y1 € (=YD, YD), y2=—Yp
D, = (3.6)
(o o
2 g o2 y€0p, y1 = —Yp, y2 € (—Yp, YD) .

At the corner point B(y = (—=Yp,—Yp),7) we set the boundary condition to be V, = —rV which is the
solution to the governing PDE as y;,y2 — —oo. The modified differential terms at the lower boundaries
also match those on the lower boundaries S; = 0 or S; = 0 in price-scaling (Equation 2.12). In log-price
scaling, the lower boundary is in extended domain p thus Ac = 0, which eliminates the integral terms. In
the typical case 0€2p is spaced sufficiently far from Q¢ that the error from boundary approximations are
well controlled (see Sections 6.4 and 7.2).

3.2 Localization in Price Scaling

Our initial condition Z (S) is defined in price scaling, hence we also note the localization for price scaling.
We use a finite domain Q5 C Q5 with an interior domain Q5 C Q5 as shown in Figure 2. In general, again,
the domains need not be square, but for ease of exposition we define the finite domains to be square with
upper bounds 0 < S¢ < Sp where S¢ = exp(Y¢) and Sp = exp(Yp)

Qp = [0,5p] x [0, 5p]
Qg =10,5¢] x [0, S¢] (3.7)
895 = {Sl = [O,SDLSQ = SD} U {52 = [07SD]7 S1 = SD}
In price scaling the lower boundary is a 1D PIDE, where the jumps have the marginal distributions of g(J)
along 57 and S3. The numerical solution approach in this scaling would require the addition of a 1D solution

along this boundary, a minor extension of the approach which is not required when working in log-price
scaling.

3.3 Localization Convergence Estimates for European Options

This choice of localization to these finite domains and their accompanying approximations is convenient
for two reasons. First, if Yp > Yo (Sp > S¢) are sufficiently large then we expect that the error due to
approximating H by Hp and A by Ac will be negligible in Q¢, particularly near the strike. Secondly, we
shall see that this localization allows us to apply an efficient, FFT-based computation for the integral term
HpV. We make the following assumptions.

Assumption 3.1 The initial condition (the option payoff) Z(y) can be bounded by
Z(y) < cp+co (¥ +e¥?)
for some constants ¢; and co and the jump distribution must be such that |HZ| < oo for |y| < oc.

A payoff which is linearly valued in price scaling, such as those listed in Section 2.3, satisfies Assumption 3.1
for the Normal and exponentially distributed jumps which we use in our numerical examples.



Assumption 3.2 The solution U(y,T) to FEquation 2.3 satisfies the condition
[HU| < c3+cq (¥ +e¥2)  for y€ Qs \ Qe (3.8)
for constants c3 and cy.

We rely on the assumption that, besides being finite, the action of the jump operator can be bounded by a
plane in price scaling. Again, this will be satisfied by our examples, where the jump density functions are
independent of y. This limitation could apply, for example, to jump density functions which increase jump
magnitude with log-price.

Assumption 3.3 The artificial boundary condition B(y,T) of Equation 3.2 is bounded by the growth in the
exact solution U € Q, i.e.
|B(y7 T) - U(y7 T)‘ <5+ U(y7 T) (39)

for some constants c5 and cg.

Note that Equation 3.9 is satisfied if B(S,7) = 0.

Assumption 3.4 The PIDE’s 2.3 and 8.2 must satisfy the conditions in Garroni and Menaldi [23] §1, I1.
In particular, the diffusion coefficients must be bounded on Qs and the operator L must be uniformly elliptic,
so that a smooth, classical, bounded solution exists. With these conditions, the solution can be represented
by convolutions of Green’s functions and Poisson functions, as in [23] §1V.

Note that the option pricing PIDE formulated in price scaling over 25 does not satisfy Assumption 3.4:
the differential operator does not have bounded coefficients on 5 and is not uniformly elliptic [23] because
of the zero diffusion tensor coefficients on S; = 0 and S = 0. Hence we proceed in log-price scaling: the
domain is bounded away from the S7; = 0 and So = 0 axes and the diffusion tensor coefficients are constant.

Assumption 3.5 The initial and boundary conditions are smooth and have finite first and second derivatives
with respect to y1 and yo (see [23] §11.1.1).

The initial conditions in Equation 2.13 do not meet Assumption 3.5, however, we may make an arbitrarily
close, but smooth approximation to Z(y) to satisfy the theory (independent of the numerical solution ap-
proach). Typically, this regularization is done using a mollification of the initial condition, with which the
resulting error in the final solution may also be bounded to an arbitrarily small value. See [21, 20] for the
classical mollification method for PDE’s, and a survey by Lamm [29] for its application to integral equations.
Recently this approach has been applied in practice to financial problems by Friz and Gatheral [22] and in
theory by Jakobsen et. al. [24] (particularly Lemma 3.1).

Remark 3.1 Assumptions 3.1 to 3.5 are taken as fulfilled for the following theorems and the remaining
discussion of the localization of the continuous operators.

We must now show that the error due to the solution V' of Equation 3.2 over y € Qp satisfies |V (y,7) —
U(y,7)| — 0 as Qp, Q¢ — Qo where U is the solution to Equation 2.3 over 2,,. We do this in two parts.

Theorem 3.1 Let U be the solution to Equation 2.3. Let V be the solution to the localized PIDE 3.2
embedded in Qs to form the initial value problem

Vi =LV +AcHDV , V(y,0)=Z(y), y€ Nu . (3.10)

Define the cutoff error E. =U — V. The value of E.(y,T) over y € Qo due to the approzimation of A by
Ac and H by Hp obeys

o dm BT =0 (3.11)



Proof. See Appendix C.1. O

Theorem 3.2 Let Y be the solution to Equation 3.2 with the approzimate boundary condition Y (y,7) =
B(y,7),y € 0Qp. Let W be the solution to Equation 3.2 when we set the boundary W(y,7) = V(y,7),y €
0N p, where V is the exact value from the solution of Equation 3.10. Define the error due to approzimating the
exact boundary condition V (y, ) with the approzimate boundary condition B(y,7) on 0Qp as E, =W =Y.

The error Ey(y, ) is bounded as
lim |Ey(y,7)|=0 . (3.12)

D3t

Proof. See Appendix C.2. ]

Approximating Equation 2.3 by Equation 3.2 causes an error which tends to zero as Q¢,Q2p — Q.
These bounds appear at first to be disappointingly weak, however, more precise bounds would depend on
the exact form of the jump size distribution g(J). Using a different localization technique, the bounds for
this error in one dimension were estimated in [12] using a probabilistic approach. Defining the computational
domain in price scaling by [0, S*], the localization error was estimated to be [12]

1
LocalizationError < ) a>0 (3.13)

which is a similar bound as in Equations 3.11 and 3.12.

The above estimates of the localization error are overly pessimistic. To see this, we note that in many
cases large regions of the payoff are asymptotically linear in price scaling as S1, Sy — oco. We also expect
this to hold for the solution. Consider such a region Qp C 2p where, in log-price scaling,

Vy+q,7)=V(y,7)+(Ce¥) - (e?=1) Yy, (y+q) €Qp

C,qgeR? with C= <21> constant,
2

cleyl
Ce¥ = <62€y2> , and

e —1

(e7—1) = (e‘” B 1)
. Cleyl
VV|y - (C2€y2>

Examine the integral term HV of Equation 2.8, defining (e’ — 1) as in Equation 2.7. If we limit the integral
so that it is taken only over y, (y + J) € Qp then

Note that for y € Qp, we have

HV(y7 T) ~ HPV(y7 T)

= / g() [V(y+ J,7) = V(y,7) = (¢/ = 1) - VV] dJ
yy+JEQp

= / g(J) [V(y,7) + (Ce) - (e‘] —1) = V(y,7) — (Ce) - (e - 1)] dJ=0.
y,y+JEQp

In such regions we expect that the error due to dropping the integral term by setting Ac = 0, or due to
limiting the region of integration of Hp, will be small.



4 Discretization

Recall from Equation 3.2 that our localized problem is posed on the finite domain y € Qp. To simplify
the discretization we write a linear differential operator G which contains only partial differential terms.
Separating out the three terms of H, we rewrite Equation 3.2 over Qp x [0,T] as

Ve =GV — (r+ X))V + AcIpV
V(y,0) =Z(y)
V(y,T) = B(va) 5 Yy S aQD

r—o012/2 — ¢ K1 )-VV (4.1)

QV:(DV)~VV+< e A

TpV = / (] —y)V(J7)dJ
JeQp

where D is as in Equation 2.6, and boundary conditions B(y, 7) are unchanged. Note that we have chosen
Jp to match the second form of Hp in Equation 3.3.

We semi-discretize Equation 4.1 in time by the Crank-Nicolson method with constant time step weight
0<0<1

WnJrl _ Wn

A =(1=0)[G— (r+Xc)+AcTp| Wt
-

+0[g— (7‘—|—/\0) +/\ch] wm

(4.2)

where W™ = W (y, ™) is the solution to the semi-discretized problem. We define this form for use later in
Section 6.1. We shall only consider the cases § = 1/2 and 6 = 0, which are the second order Crank-Nicolson
time step and the first order fully implicit time step respectively.

4.1 General Discrete Form

The discrete equations are first written in a general form using matrices and vectors. This abstraction guides
our final, specific form and permits the application of some useful general stability results.
We discretize Equation 4.2 over a grid of points

p €R? . p,eQp\OQp, i=1...P
so that we can form a vector of solution values at these points
weRP | with elements w; =~ W (p;)
We also require a boundary condition enforcement vector
beRP | with elements b; ~ b(p;)

Vector b can be seen as encoding the boundary condition nodes on 0€2p, where the option value is known
at time steps n and n + 1, after these nodes are eliminated from the solution vector (see Appendix E) and
hence from the discrete equations. We note that vector b is not a representation of the values of B(y, 7).
The linear differential operator is discretized to form a matrix G such that

GW =~ Gw; GecRF xR, (4.3)
and the integral operator discretized to form a matrix J such that
AeTIpW = Mdw ;1) e RP x RP

1. = 1 ifi=jandp; € Qo (4.4)
“U )0 otherwise.
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Using Al to replace A¢, the discrete form of the operator terms of Equation 4.2 can be written using a
matrix

M=—[G+M(J—1)—rl . (4.5)

We now write the discrete version of the time step Equation 4.2 so that it matches the formulation of
[28, 30, 48]. The Crank-Nicolson time discretization is written using a rational polynomial ¢(A7 M) defined
similarly to [28]' with ¢(z) = [1 4 (1 —0)z]~" [1 — 02]. The full, general, discrete system is thus

[+ (1—-0)Ar M]w"™ = [l — AT M]w" + b (4.6)

which is the form we require to apply some of the stability analyses of [28, 30] in Section 5 below.
In Section 5 we shall also see that we require two further conditions,

Ji>0, and Y J<1 (4.7)
J

to ensure that M represents a stable discretization. Since the entries of J are defined by the values of the
PDF g, we shall see that these are reasonable restrictions.

4.2 Finite Difference Form of G

The FD grid is a rectangular, finite difference grid defined on the finite domain {25 in price scaling. At
grid points near the location (S; = K,S2 = K), the grid is fine and has a constant spacing between nodes
of (h1, he) in the (S, 53) directions. To save computational effort, we increase grid spacing in regions away
from the strike where the high resolution is not required. Previous work [54] has shown that the original
grid should be specified in price scaling in order to accurately capture the details of the option contract,
in particular, the payoff and barriers need to be accurately represented. For the actual computation we
transform this grid into log-price co-ordinates and, where it is required, replace the lines S; = 0 and Sy =0
with lines at y; = —Yp and y» = —Yp respectively. The grid line intersections define our P solution points
pi € Qp \ 0Qp in log-price scaling.

After the FD grid is transformed to log-price co-ordinates (rendering it a grid with non-constant spacing
everywhere) we use it to create the sparse matrix G. In Appendix E, we give the details of the discretization
assuming constant grid spacing. In the interests of brevity, we omit the details for non-constant spacing,
since this is completely standard. The cross-partial derivatives are discretized with a seven-point formula,
using the non-constant spacing versions of Equation E.5 or E.6 when the diffusion correlation p, > 0 or
pv < 0 respectively. Under some conditions (see Remark 5.3 below) we use the first-order approximation to
the first partial derivatives. Again, we omit the details here, since this is completely analogous to the one
dimensional case, described in [15].

The order of both approaches is O(h?) for constant grid spacing h (assuming central differencing for the
first order terms) to match the O((A7)?) obtained when 6 = 1/2 in Equation 4.6.

4.3 Discrete Integral Operator J

In our context, it is not necessary to achieve a high accuracy evaluation of the jump integral term; second
order accuracy at each time step is good enough. This is in contrast to the application in [10]. We shall first
motivate our method for the evaluation of the jump integral term.

Consider a simple form of J created when a second order, trapezoidal rule is used for the approximation
in Equation 4.4 of Jp. We may write it in the following form over the FD grid

e Jwi], = [Jw], = Zle vij 9(pj —pi)w; for p; € Q¢ and (4.8)
R 0 forp; & Q¢ '

Mn [28] the values of § and (1 — 6) are reversed to the sense in which we use them here.
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Matrix v € RP x RP are weights set so that the result is second order accurate over the grid of P points and
so that J satisfies Equation 4.7. Note that option value W is only used at points wj, located at nodes p; on
the grid, and in general the evaluations of g(p; — p;) are not on grid nodes. This results in a dense matrix J.

Using Equation 4.8 would mean that Equation 4.6, although useful for theoretical analysis, could not be
used for a practical algorithm. Matrix J, and hence M, is dense. Solving Equation 4.6 would require the
solution to a dense linear system and a dense matrix multiply at each time step. We can avoid the dense
linear system solution by using the iterative method described in Section 6, however, this still leaves us with
a dense matrix-vector multiply.

There are fast methods which, under certain conditions, can be used to carry out Equation 4.8 (see [15]).
If the sum is performed over a rectangular grid with constant spacing, then Equation 4.8 can be performed
by exploiting the algebraic identity which uses the discrete Fourier transform (DFT), and in turn, the fast
Fourier transform (FFT) ([7] §13). To exploit this approach, we create a two dimensional version of the
method used in [15]. This method requires an interpolation of the original FD grid of values onto a DFT
grid, a summation corresponding to Equation 4.8 by FFT, then an interpolation of the result back to the
FD grid. Since all stages are second order accurate the approach satisfies our accuracy requirement.

There are several algorithms which can be used to determine the FFT of input data on unequally spaced
grids [50, 17, 45]. These eliminate the need for interpolation between grids. However, some previous tests
[13] indicate that these approaches were no more efficient than the simple interpolation strategy used here.
We have previously experimented with a Fast Gauss Transforms [10] for ¢ distributed as Normal, which
also does not require a regular grid. However, this method did not appear to be any more efficient than
FFT-based methods, at least for the order of accuracy required here.

4.3.1 DFT Domain and Grid

To apply the discrete Fourier transform to Equation 4.8, and hence allow the use of an FFT, we must compute
the sum over a rectangular grid with constant grid line spacing. A rectangular domain 27, is defined with
dimensions such that ¢, Q0p C Q7,. The DFT grid over 7, is defined with Q = @, x @, nodes at the grid
line intersections, and it tiles QF, with identically sized cells centered on those nodes. Nodes are denoted

weR?, k=1...Q, q<cQ) . (4.9)

The integers @, and (), are chosen so that the FF'T grid spacing hi, ho is at least as fine as the log-transformed
finite difference grid at the option strike node. In general Q. # @, and hy # ho.
We define a vector of solution values

x € R? | with elements x, ~ W(qz) , g €Qp Vk=1...Q
at nodes of the DFT grid. The matrix form of the integral operator of Equation 4.4 over the DFT grid is
IpW ~Jx; J €eRIxRY . (4.10)

As in Equation 4.8, the correlation is integrated over the DFT grid with a cell-centered trapezoidal rule. If
we set 7;; = 1 then for point g € {2c on the DFT grid

Q
[Jexy = Z folar — an)x« (4.11)
1=1
where f; is given by
+h1/2 p+ha/2
fla—a)= [ [ g () o e (4.12)
—h1/2 —h2/2
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This ensures that the conditions given in Equation 4.7 are satisfied?. We note that the coefficients given by
fq(@1 — qi) are also on a regular grid and are identical surrounding each node g on the DFT grid.

4.3.2 Interpolating the FD and DFT Grids

A mapping is formed between a price vector w € R” over the nodes of the FD grid in log-price scaling
and the price vector x € R? on the nodes of the DFT grid, also in log-price scaling. The mapping can be
written as a Q x P sparse matrix L so that x = Lw. The entries of L interpolate using a local, bi-linear
Lagrange interpolation over the FD grid. We choose the interpolation stencil at each node so that 0 < Lj; <1
and Zj Lij < 1. Where DFT grid point ¢; € Qf, but ¢; ¢ Qp then Lj = 0 Vj to set x; = 0 (rather than
extrapolate). We apply a bi-linear interpolation in the other direction using P x @ matrix K so that we can
compute w = Kx.
To apply the discrete integral term over the FD grid, we approximate Equation 4.8 by

ledw ~ I [K-J, - L] w (4.13)

where J, of Equation 4.10 computes over the DFT grid. If h is the grid spacing on the DFT grid, then
Equation 4.13 is an O(h?) approximation to Equation 4.8, which is the same order of error as the finite
difference operators. Note that if J, satisfies the conditions of Equation 4.7, then the construction of L and
K preserves this result for K- J, - L.

4.3.3 Fast Fourier Computation of the Integral Term

The details of the reduction of Equation 4.11 to an operation involving the DFT is described in detail in
standard texts (e.g. [7] §13). However, to exploit this method we require a new approximation J¢ which is a
Toeplitz matrix. J¢ # J; because, in effect, we must replace f;(gx) in Equation 4.11 with a periodic function

Iyla) = Tolar) ¥ ax € (Q;hl,%y@) . <Qy2 L, 9= 1h2)
f;(‘]k) = f;(Qk + (e Qzh1,bQyh2)), V a,b integers.

We write the DFT as D and its inverse D~! (see Appendix F). For grid points qx, k = 1...Q the Fourier
transform form of Equation 4.11 is given by the identity

e ], = %D‘l [XE} (qr) (4.14)

where X = D(X), f; =D Iy ) are multiplied at each node on the Fourier-space grid and ng" is the complex

conjugate of f; By using an FFT to compute the DFT on the @ nodes, an O(Q?) dense matrix multiplication
is reduced to an O(Q log(Q)) operation. The scaling factor 1/Q is a side effect of the form of our DFT
(Equation F.2).

Any solution using J¢ will (typically near 0€2},) have been contaminated by values where f7(qr — qi) #
fo(ar — qi) because of the periodicity. Fortunately, our grid nesting strategy already dictates that we retain
the more accurate values in the core domain Q¢ C €07, and discard the rest of the computation. The final
form of our approximation to Equation 4.8 is given by

ldw ~ I (K- Jg - L) w (4.15)

where Jf is computed by applying Equation 4.14.

We shall use the approximation in Equation 4.15 in the iterative method described in Section 6.1 to solve
time step Equation 4.6. We further control the wrap-around error by domain sizing methods discussed in
Section 6.4 below.

2Where no CDF is available and the PDF g is sufficiently smooth, Equation 4.12 can be computed using a standard, high-
accuracy numerical technique. We need evaluate fg(gx) only once during the option pricing process for each grid node, so this

does not incur an undue computational cost. Where the PDF is non-smooth, as with the Marshall-Olkin Bi-variate Exponential
Distribution (see Section B.2) the integral must be done directly by evaluating the cumulative distribution.
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4.3.4 Grid Alignment of the PDF

We note that
/U(y+J)g(szo) dJ = /U(y+zo+J)g(J) dJ

where zg € R? is an arbitrary shift of the jump PDF function g. This may be used to align discontinuities in
a jump PDF to fall exactly between DFT grid nodes. A translation of the PDF can be corrected when the
result for point y is interpolated back from the correlation by simply interpolating at y + 2. Our DFT-based
procedure is equivalent to the cell-centered integration rule. If PDF discontinuities can be aligned to fall
on cell edges then the integration captures the discontinuity location exactly and the quadratic convergence
of the integral can be preserved. This is particularly convenient for jumps of exponential types, where
the continuous marginal probability distribution is defined with a peak point, and the two-dimensional
probability distribution is the linear combination of a PDF in each of the four quadrants around the peak.

5 Stability

Definition 1 Modern stability analysis (for example [28, 30, 48]) defines general categories of stability
under an arbitrary norm || - || using a rational polynomial ¢(z) (e.g. as in Equation 4.6). Nomenclature
varies, so we settle on the following names for three cases of interest. We have algebraic stability if
le(ATT)™|| < Cp*nP where the linear system has order p > 1, for time step n > 1, with C,a,3 > 0
independent of n and p. We have strong stability if ||o(ATT)"|| < C for C > 0, and we have strict
stability if 0 < C' < 1.

Definition 2 If a matriz A has elements a;; > 0 and a;; < 0 for i # j and every row sum is non-negative
with at least one row sum positive in each connected part of A, then A is an M-matrix (see [43, 47]).

Remark 5.1 If matriz A is an M-matriz then A~' exists and A=Y >0 [43, 47].

Definition 3 If a matriz A has elements a;; > 0 and a;; < 0 for i # j and each row sum is non-negative
then we say that A is M-compatible.

Thus the sum of an M-compatible matrix and an M-matrix is an M-matrix. In Section 4.3.3 we saw that
discrete integral operator matrix J > 0 has maximum row sum (max; ) ; Jj) < 1 and thus [|Jx|, < [Ix]|.,
11|, <1 and —(J —1) is M-compatible.

Remark 5.2 Let the conditions

o >0,

o (—G) is M-compatible,

e J>0 and

(maxi Zj Jij) S 1 hold.
Then, from Definition 2, M of Equation 4.5 is an M-matriz.

We shall show that if M is an M-matrix, then Crank-Nicolson time stepping is unconditionally alge-
braically stable in the /., norm and, under a time step restriction, strictly stable. In this approach stability
implies that at time step n the error E, = W, — W,, due to a perturbed solution W,, can be bounded
in terms of the initial error Ey = Wy — W, where Wy is a perturbed initial solution. We then show that
Crank-Nicolson time stepping is unconditionally stable in the Is norm in the sense of von Neumann analysis.
Under von Neumann analysis we determine the conditions under which the finite difference and integral
operator reduce, rather than amplify, the lo norm of a perturbation error E, = W,, — W,, as it propagates
to time step n + 1.
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5.1 Stability in the [, Norm, European Options

Theorem 5.1 If M is an M-matriz then the time step method of Equation 4.6 is unconditionally alge-
braically stable in the lo, norm for 8 = 1/2 and unconditionally strictly stable in the lo norm for 6 = 0.

Equation 4.6 is strictly stable in the lo, norm for = 1/2 if the time step is bounded using the mazimum
diagonal of M such that [(AT)/2] max;(M;) < 1.

Proof. For algebraic stability see Kraaijevanger et. al. [28], and for strict stability this result is proved by
simple maximum analysis (e.g. as an extension of the result of [14]). a

Thus we can expect the finest grid spacing in the problem to determine the maximum Crank-Nicolson time
step for which the solution is strictly stable in the ., norm.

5.2 Stability in the [, Norm, American Options

The above analysis refers only to European options. For American options, if M in equation (4.5) is an
M-matrix, then it is straightforward to extend the analysis in [14] to show that fully implicit time stepping
coupled with a penalty method [19] is unconditionally stable and monotone.

5.3 M-Compatibility of Finite Differences

Remark 5.3 Negative coefficients arising from the use of a central difference scheme (e.g. Equation E.1)
for the drift operator V' can be made positive by replacing central differencing with either forward (Equation
E.2) or backward (Equation E.3) differencing, as appropriate. Further details can be found in [55]. We take
it as given, in the development that follows, that this change to the discrete drift term has been applied for
proofs which require (—G) to be M-compatible.

For theoretical purposes, we assume in the following that the discretization is performed on a rectangular
grid with constant grid line spacing. We denote the elements of the diffusion tensor D of Equation 2.6 as
d;j for i,j =1...2. We denote the grid spacing as (h1, he) in the (y1,y2) direction.

Theorem 5.2 Consider the seven-point finite difference approrimation Gs to G. The discretization is M-
compatible if the following constraints hold.

1. We must select Equation E.5 if p, > 0, and Equation E.6 if p, <0, for cross-partial derivatives.

2. For each point on the grid

it (5.1)

With these conditions and where Remark 5.3 holds, —G = —G; is M-compatible and satisfies Remark 5.2 so
that the stability statements of Theorem 5.1 hold for r > 0.

Proof. See [5] and [41] §9.4. O

Remark 5.4 Consider the finite difference approzimation G,, to G on a nine-point stencil with the four-point
second order cross-partial derivative given by Equation E.7. This formulation results in negative off-diagonal
coefficients in G, for p, # 0. Thus this discretization does not result in (—G) M-compatible for correlation
po # 0 and Theorem 5.1 cannot be shown to hold by the M-matriz approach.
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5.4 Von Neumann Stability Analysis for European Options

The von Neumann stability analysis examines a problem over a periodic domain to determine conditions for
the stability of its discrete operators under the I norm ([16] §8.3 and [46] §6.8).

Theorem 5.3 Consider a periodic formulation of Equation 3.2, discretized with a finite difference approxi-
mation on a grid with constant spacing. The problem is formed with constant coefficients D and V (Equations
2.6 and 2.5), =1 < p, <1 and A\¢ = A > 0 constant. We may use the cross-partial finite difference of Equa-
tions E.5 or E.6 to form the approximation Gg to G on a seven-point stencil, or use Equation E.7 to form
G,, over a nine-point stencil.

The time step Equation 4.6 is unconditionally von Neumann stable in the ly norm for § = 0 and for
0=1/2.

Proof. See Appendix F, in particular Appendix F.4 Remark F.1. O

5.5 Stability Summary

Our numerical approach can deviate from the theoretical conditions for stability. The FD method we employ
for grids with non-constant spacing has the same conditions for M-compatibility as Theorem 5.2. However,
the structure of a computationally efficient FD grid is not always such that these grid spacing conditions are
met. Thus we may not be able to guarantee the conditions for M-compatibility at every point in the solution
domain, although the conditions will often be met locally in the region of interest near the strike price of the
option. In turn, this has implications for both European and American options: we cannot globally guarantee
the conditions for I, norm stability. This issue was studied in [55] for the pure diffusion case, where it was
shown that if the option value is Lipschitz continuous then coefficients in the discretization which are not
M-compatible cause at worst an O(h) error. The convergence of the method was demonstrated numerically.
We note, also, that the contribution to the linear system from the integral term works in favour of stability:
it tends to correct, rather than worsen, the problem of the differential term not being M-compatible.

The von Neumann stability analysis fails to apply to our method for European options where the grid
spacing is not constant in each direction. We also use a non-constant ¢, although we note that the analysis
demonstrates stability where either A = 0 or A > 0 over the entire domain. In the region of interest for the
problem, the grid spacing we use for numerical demonstrations will be constant only in price scaling, and
not over the entire problem domain or in log-price scaling. Nonetheless, the von Neumann analysis provides
an even less restrictive result than the [, norm analysis, indicating strict lo norm stability regardless of the
ratio of grid spacing between the axes, the time step and the choice of discretization for the cross-partial
derivatives.

The numerical demonstrations in Section 7 show our method is quadratically convergent for European and
American options despite the violations of the theoretical stability conditions that we identify. Stability can
be guaranteed by employing a rotated co-ordinate system which eliminates the correlation in the Brownian
motion. However, we shall see in Section 7.4 that this approach results in higher errors in the solution.

6 Solution of the Discrete Equations

The previous sections show how PIDE 2.3 has been localized to Equation 3.2 and discretized. In this section
we focus on how the time step Equation 4.6 is solved using a fixed point iteration, and how American option
values are computed using a penalty method.

6.1 Fixed Point Iterative Solution for One Time Step

As a motivation for our fixed point iteration scheme we consider the semi-discretized Equation 4.2. We
analyze a fixed point iteration scheme whereby the integral terms are handled in an iterative manner which
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avoids having to use the Green’s and Poisson functions of the PIDE. Rather, only the Green’s and Poisson
functions of the differential terms are required.

6.1.1 The Semi-discretized Equations
Let Z* be the k-th iterate towards a solution W™*! of Equation 4.2. One step of the iteration we shall use

is given by
1—(1—=0)AT(G—r—Ao)] 2" = (1 - 0)AT A\ TpZF

(6.1)
+ [1+9A7‘(g+>\ch 77”7)\0)]Wn

which is repeated until convergence.

Theorem 6.1 Let E¥ = Wt — Z* be the error in the solution to the semi-discretized Equation 4.2 at
iteration k of the functional iteration given in Equation 6.1. The iteration is convergent to zero as
(1-6)AT X

(1 -0)AT (r+ )

Proof. See Appendix D.1. O

1E* |

Ek+1oo<
14 o < o

6.1.2 The Fully Discrete Equations

We now consider the solution of the fully discrete problem in Equation 4.5. We wish to avoid having to
invert any matrix such as M of Equation 4.5 formed by a sum containing the dense matrix J. To do so we
use the discrete version of the iteration of Equation 6.1.

Let z¥ be the k-th iterate towards a solution w”*! of Equation 4.6. We specify the fixed point iteration

=1 =0AT[G—7r1—=AJ 2" = (1 - 0)AT A JZ¥

+{I+0AT[G+ A (J—=1)=rIl]}w™ +b (6.2)

We compute |.Jz* using the method described in Equation 4.15.

Theorem 6.2 Let e = w1 —2F be the error in the solution to Equation 4.6 at iteration k of the fized-point
iteration given in Equation 6.2. If J > 0 has mazimum row sum (max; Zj Jij) <1 and (—G) is M-compatible

k+1

with |G- 1|| ., = 0, then the error in the iterative solution 2" in Equation 6.2 is convergent to zero as

(I1-60)AT A
1—0)AT(r+ )

k+1 k
e < e
€ o0 < 1 ¥ loc

Proof. |G- 1| = 0 should hold for any consistent finite difference approximation. See Appendix D.2. [

Theorem 6.3 Consider a periodic formulation of Equation 3.2, discretized with a finite difference approzi-
mation. Let (—G) be formed either by the 7-point or 9-point finite difference stencil on a grid with constant
spacing, as in Theorem 5.3.

Then in the sense of von Neumann analysis the iterative solution to Equation 4.6 by Equation 6.2 is
unconditionally convergent in the lo norm (i.e. regardless of whether (—G) is M-compatible) at a rate which
is rapid if \AT < 1.

Proof. See Appendix F, in particular Appendix F.4 Remark F.2. |

For most practical situations we have AAT < 1 and we can expect rapid convergence. To summarize, we
have the following results.
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e The functional fixed-point iteration Equation 6.1 for the semi-discrete Equation 4.2 is convergent in the
lo norm. This suggests that, for a sufficiently fine grid, the discrete iteration should also be convergent.

e If (—G) is M-compatible then by maximum analysis the discrete fixed point iteration is convergent in
the [, norm.

e By von Neumann analysis, the iteration is convergent in the I, norm for a periodic problem with
constant grid spacing, with no restrictions on grid spacing ratio or time step, using any standard
second-order finite difference approximation of the differential operators.

6.2 American Options by Penalty Iteration

To solve the discrete, localized version of the linear complementarity problem of Equations 2.10 and 2.11
we use the penalty iteration of [53, 19]. In [14] this method was shown to be I, stable for jump diffusion
processes provided that the discrete diffusion portion of the process was M-compatible, and that iterations of
the form of Equation 6.2 should be rapidly convergent. If the discretized diffusion operator is an M-matrix
then, by maximum analysis, for fully implicit time stepping the method is I, stable and monotone. Since a
consistent scheme is used for the differential and integral terms, we can expect convergence to the viscosity
solution of the localized problem [42, 8, 9, 14]. We note that the concept of a viscosity solution permits
non-smooth solutions.
We define a penalty vector c, with elements
Large if wi" > w;
(cp)i = {0 it w < w, (6.3)

where w}* = Z(p;) is the vector of option payoff values, the minimum value of an American option at any time.
The value Large is chosen sufficiently large to impose the condition without causing numerical inaccuracy;
a value of Large ~ 10° is usually appropriate.

To impose the American constraint, we solve a modified version of Equation 4.6 by iterating from z
for solutions z**! for k = 0 to convergence. The penalty iteration is incorporated into our fixed point iteration
Equation 6.2 without adding another level of iteration. The resulting non-linear system solution approach
is given in Algorithm 6.1 at Steps 3 through 5.

Intuitively, we may think of the penalty iteration as the adaptive imposition of a Dirichlet free boundary
condition. The same approach can be used to impose a maximum value on an option.

OZWn

6.3 Linear System Solution

Each iteration towards the solution of a time step requires solving the linear system given in Equation
6.2. In the case of American options, the linear system also contains a penalty constraint as in Step 5 of
Algorithm 6.1. For one-factor options, a direct solution method based on Gaussian elimination is suitable.
For two-factor options a direct method would be unacceptably expensive, thus we use a preconditioned,
Krylov-subspace, iterative method. Bi-CGStab was selected combined with an ILU(1) preconditioner and
RCM re-ordering [14, 47]. We consider a linear system solution to be converged when the Bi-CGStab update
to the solution value is, pointwise, less in magnitude than the relative tolerance ¢;.

The entire non-linear system is solved to an update tolerance of €,, as given in Step 6 of Algorithm
6.1. The constant one in the denominator of the convergence test is set assuming that options are priced in
dollars. This ensures that the convergence requirement does not become extreme for grid points with small
option values. Section 7.5 discusses the actual amount of computation required for each time step.

6.4 Sizing )p and ()¢ for Error Control

The error generated when Equation 2.3 is truncated on Qp to Equation 3.2 is difficult to characterize
in general. It depends on the jump distribution g and the option payoff. We can, however, estimate the
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Algorithm 6.1 Solve one time step using a simultaneous fixed point, penalty iteration.

FixedPointlteration( w™, w*, 8, Ar, M, G, J, Al., b, €, )

where
w the price at time step n
w* the minimum option value (usually the payoff)
0 time step weight
AT time step size
M, G, J, Al the discrete PIDE to be solved, Equation 4.5
b boundary condition imposition vector
€y required solution update tolerance

1. Set zF=0 = wn.

2. For k=0,1,2,3,... until convergence (tested in Step 6)

3. For American options: set cpk using Equation 6.3 where w = z*.

For European options: set c,,’€ =0.

4. Set =[—(1—60)A7 (G—7rl =]+ (c")l
'f =1 fe)m/u J] 25+ [l = OAT M]wW” 4 b + (c,*) T w*
where J Fale (K- Jg-L) 2R (see Equation 4.15)
5. Solve Nk zE+1 = y*  using ILU(1) preconditioned, Bi-CGStab. (see Section 6.3)
6. If max; % < €, then the iteration is finished.
End For

Return the solution vector w1t = zZk+1,

maximum error incurred for a single computation of the integral term JpV of Equation 4.1. We keep in mind
that our computation of the integral by the DFT approximation of Equation 4.14 causes a “wrap-around”
that may cause the maximum of the option value V' to factor into the error. We formulate the following rule
of thumb by which we check that the distance between 0Q0¢ and 0Q2p is wide enough to control this error.
We use the initial value Z(y), y € Q as an approximation of V' when we estimate a maximum option value.

Let u be the distance from 9Q¢ to 0Qp along axis y;, « = 1,2 at point y € IQ¢c with outward facing
unit vector e;. We choose that distance u based on the marginal jump distribution g; in the e; direction and
the initial value Z such that a selected integral evaluation error tolerance ¢; satisfies

o0 o0
ernaaS%(c {/u gi(ve) I(y+ve;) dv} < yre%a}sz [Z(y)] /0 gi((u+v)e;) e dv < yre%ég(D Z(y)] e (6.4)
where o = 0 in the case of puts or the lower boundary of a call, and a = 1 for the upper boundary of a call.

Using the marginal jump distribution and the diffusion parameters, a European solution in 1D can be
computed [31] as well as a cumulative distribution function for the price process at the expiry time. As a
rule of thumb to ensure that Q¢ is adequately large, we ensure that Q¢ extends by widths w; and ws in the
y1 and yo directions around the option strike K so that (log(K),log(K)) + (w1, ws) € Q¢. Widths wy and
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Jump Distribution
Diffusion Parameter | Normal MOBED
o1 0.12 0.12
o2 0.15 0.15
p 0.30 0.30
Jump Parameter
A 0.60 0.50
11 -0.10 0.00
2 0.10 0.00
p -0.20
01 0.17
G2 0.13
P1 0.40
D2 0.60
Mp,1 1/0.20
Tp,2 1/0.18
TMg,1 1/0.15
Nq,2 1/0.14
Tpp 1/0.15
Tqq 1/0.16
Tpq 1/0.12
Tgp 1/0.15

TABLE 1: The two price processes used for the numerical examples in this paper. These are not taken from
actual market values, but represent parameter values in a plausible range for a market process. See Section
B for the definitions of the model coefficients. Solutions were computed with r = 0.05, strike K = 100 and
expiry T' = 1.0.

wy must be large enough that

w1 w2
fi(vi;T) dvr > (1 —€y) and fo(v2; T) dva > (1 — €y)

—w1 — w2

where f; and fo are the marginal distributions of the entire jump diffusion process at T and ¢, is a bound
on the cumulative distribution. These distributions can be computed numerically where the characteristic
function of the jump PDF is available, or simply estimated using a Normal distribution of the same variance
as the total asset price process. The reasoning behind this rule is to set Q¢ sufficiently large that the
influence of solution details outside {2 have approximately €, proportional influence at the strike, at expiry
time.

The FD grid defines the upper bound of 25 and hence of {2p. Given this, a choice for the upper boundary
of Q¢ may be selected by these rules of thumb, and given a choice for the lower boundary of {25 the lower
boundary of {2p may be set similarly. A good automatic choice of the lower bound of €27 is the grid line
closest to, but greater than, either of the zero axes in price scaling. For our demonstrations we require more
control, so we shall specify the bounds of Q¢ and lower bound of Qp without using these grid lines or the
rules of thumb.

7 Numerical Demonstrations
For our numerical demonstrations we use three option contracts with two different types of jump diffusion.

We test the convergence as ¢, dp — +oo and demonstrate the quadratic convergence of both European
and American options as the number of discrete solution nodes is increased in time and log-price scaling.
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FIGURE 3: This coarse grid in price scaling FIGURE 4: This coarse grid in log-price scal-
over Q5 shows grid line concentration in the ing over Qdp, with node concentration in the
Qg region around the strike of 100.0. The Qc region around the strike of 100.0, is ro-
actual grids were extended very coarsely to tated by —26.57 degrees around the strike
600.0 to capture enough of the solution to node. This ensures that the fully implicit fi-
control the error from the jump diffusion com- nite difference approximation to the problem
putation. specified in Table 1 is unconditionally stable.

7.1 Sample Problem

We choose two jump PDF functions: the bi-variate Normal and the Marshall-Olkin Bi-variate Exponential
Distribution (MOBED). Both are described in Appendix B. As noted in the introduction, these correspond in
form to the well-known, one-asset models of Merton and of Kou [39, 27]. Table 1 lists our model coefficients,
which are of a magnitude that would be plausible in a real market.

As a demonstration we solve for a European call on the maximum of two assets, and a European and
American put on the minimum of two assets. We select a strike K = 100, expiry of T'= 1.0 and a risk free
rate 7 = 0.05. For the numerical solution of the European options we compare the fully numerical solution
to a high-accuracy, semi-analytic solution computed using the method described in [18].

The region near (K, K) was discretized with a constant grid spacing in price scaling. Crank-Nicolson
time stepping was used with a constant time step A7, so that convergence could be demonstrated with
respect to a controlled amount of computational effort. Variable grid spacing [44] or time stepping [54]
can provide computational savings, but this study does not investigate these issues. Figure 3 shows the
coarsest grid used for the demonstrations of Section 7.3 below. Over Q5 \ €25 the solution is expected to be
mostly piecewise linear, hence it remains only coarsely resolved. Although regions of the problem generated
discrete equations which did not result in an M-matrix, the overall problem solution proceeded with no actual
numerical instability detected in the region of interest around the strike. This is consistent with previous
efforts [55] for pure diffusion models.

The constant grid spacing (AS7, AS3) near the strike node at (K, K) is used to define our FFT grid. We
select the smallest integers @), and @, = 2¢ 3v5¢7% a,b,c,d € Z where a > 1, b,c,d > 0 (as dictated by
our choice of FFT solution package®) such that the DFT grid of @ = Q, x Q, nodes matches the log-scaled
FD grid spacing near the strike. Recall that @, # @, in general, although in the following experiments the
two values will be equal.

3The FFTW library, available at http://fftw.org, implements an efficient Winograd transform algorithm.
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Grid Range Normal Difference vs. Largest p
(Price Scale) Sy | S1=90 100 110 90 100 110
Q¢ 20 — 160 90 | 15.6811 13.3970 12.1132 | -0.0031 -0.0064 -0.0154
Qp:4—300 | 100 | 12.1763 9.1178 .4938 | -0.0084 -0.0132 -0.0214
DFT 384 x 384 | 110 | 10.3573 6.6910 4.7925 | -0.0218 -0.0301 -0.0379

~

Qe 10 — 220 90 | 15.6841 13.4032 12.1279 | -0.0001 -0.0002 -0.0006
Qp:2—400 | 100 | 12.1846 9.1308 7.5145 | -0.0000 -0.0001 -0.0006
DFT 480 x 480 | 110 | 10.3793 6.7215 4.8302 0.0003 0.0003 -0.0001

Q¢ 5 — 300 90 | 156.6842 13.4034 12.1282 0.0000 -0.0000 -0.0004
Qp:1—600 | 100 | 12.1849 9.1312 .5150 0.0002 0.0002 -0.0002
DFT 576 x 576 | 110 | 10.3800 6.7224 4.8314 0.0009 0.0013 0.0010

~

Qe 2.5 — 400 90 | 15.6842 13.4034 12.1286
Qp:0.5—900 | 100 | 12.1847 9.1309 7.5152
DFT 672 x 672 | 110 | 10.3791 6.7211 4.8303

TABLE 2: To show the effects of extending the domain, we use the FEuropean put on the minimum of two
assets using the Normal jumps model. The Q¢ and Qp ranges are given in the left column in price scaling,
along with the DFT grid size which most closely matched the AS1 = ASe = 1.25 at the strike. The time
step was fized at AT = 0.02. Crank-Nicolson time stepping was used. Points at S1,S2 = {90, 100,110} are
given for each grid. The three larger grids were formed by extending the next smallest grid with additional
lines. The error is measured against the solution over the largest domain Qp : 0.5 — 900. As the upper
and lower limits of Q¢ and Qp are extended, the difference tends to diminish, most noticeably between the
first two tests.

The iteration of Algorithm 6.1 was solved until the maximum relative update to any solution node in Q¢
was €, = 1075, The convergence tolerance for the linear system solution was ¢, = 1078 (Section 6.3). For
the grid refinement tests below, the “rule of thumb” tolerances (Section 6.4) were employed to check that
the size of the grid and domains gave a Qp sizing tolerance of at least ¢; = 1072 and the Q¢ sizing tolerance
was at least €, = 1072

7.2 Convergence with Q¢, Qp — Q.

As a partial demonstration of Theorem 3.1, we computed four solutions to the European put on the minimum
of two assets using grids of increasing size and Normally distributed jumps. The four ranges for Q¢ and Qp
are given in price scaling in the left column of Table 2.

In order to focus on the effect of the localization error, all grids had a spacing at the strike of AS; =
AS; = 1.25, and each larger grid was formed as a simple extension of the previous one. In other words,
we are not attempting to converge to the exact solution, but we are examining the effect of the localization
error for a fixed grid spacing. The time step was A7 = 0.02. The DFT grids were set to match the FD grid
spacing near the strike.

The option values given in Table 2 also show the difference measured against the solution on the largest
domain. We note that the first two grids are, using the ¢; specified in our rule of thumb above, somewhat too
small. Since our convergence theorem does not address specific cases we can only note that the error tends
to diminish as the domains are extended. Very little difference is to be noted between the computations over
the three largest domains. Note that since we are keeping the grid size constant near the strike, there will
be some error introduced due to interpolation on different sized DFT grids.

Theorem 3.2 notes that, as the domain size increases, a perturbed boundary condition should generate
a smaller error in the solution. The computations of Table 2 were repeated with a +50% lower Dirichlet
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boundary condition error. No significant difference to the values reported in Table 2 was noted. Recall that
in the Qp \ Q¢ region only the diffusion equation is solved. The rapid decay of error from the boundary
condition is consistent with the results of [25, 54]. From these results we conclude that the propagation of
that error into the interior domain by the jump process is too small to note.

7.3 Quadratic Convergence with Grid Refinement

We examined convergence with respect to grid and time step refinement using Qp = (1,1) x (600, 600),
Q¢ = (5,5) x (300, 300) (in price scaling). We started with a coarse grid with a spacing of AS; = AS; = 2.5
in a region around the strike as shown in Figure 3. For each of the next two grids we refined the grid spacing
by two, doubling the number of finite difference grid lines in each direction. At each grid refinement, we also
halved the time step from the coarse grid value of A7 = 0.04. Again, the DFT grid refinement was set so
that at the strike the two grids had, as near as possible, the same spacing in each direction.

The grid sizes and the computed results for the European call on the maximum are given in Table 3. We
report the results for the MOBED jumps model. In this case, we can obtain a semi-analytic solution using
Fourier methods [18], which allows us to determine the error in our numerical scheme. If € is the error in
the numerical solution, we assume that € = ch® where h is the grid spacing with A7 = O(h), and report the
convergence exponent «. The asymptotic convergence of the price is roughly quadratic, which we compute
from the error values €5 and €3 on the two finest grids. The result from the coarse grid solution at the strike
was unusually accurate, which we do not expect to be typical of our approach.

In this experiment, and those that follow, the integral and differential computations are converging on
different scales. We refine the differential computation in price-scaling on the FD grid, and match the DFT
grid spacing to it at the strike. However, the DFT grid has constant spacing in log-price scaling and has
restrictions on the number of nodes we can use along each axis. We may therefore expect that the order
of the convergence, which we calculate with respect to the price-scale refinement of the grid spacing, may
fluctuate around the ideal of quadratic. When we compute a problem without jumps we obtain a convergence
exponent 1.97 < « < 2.05. This indicates that much of the deviation from quadratic convergence is due to
the jump calculation.

7.4 Convergence with Rotated Coordinates

As noted in [55], rotation of the coordinate system and finite difference grid in log-price scaling by

1 _ 20,010
9T=2tan1<f;11122)

017 — 02

will result in a correlation p,, = 0 in the diffusion tensor of the rotated system. The cross-partial derivative
is thus eliminated and the FD approximation is then M-compatible. Note that in this case, fully implicit time
stepping results in a monotone, consistent and stable method. Consequently, convergence to the viscosity
solution is guaranteed [8]. As well, both the fixed point and penalty iteration are also guaranteed to be
globally convergent. From a theoretical point of view, this is highly beneficial.

We performed a set of computations with a rotated grid, shown in Figure 4. The lower boundary condition
specified in Equation 3.6 was not applied on the rotated grid since this would have brought back potential
violations of the theoretical stability conditions. Instead, a Dirichlet boundary condition was imposed on all
of 0Qp using the initial conditions. To estimate the effect this had on the solution, the unrotated grid tests
were repeated with this new lower boundary condition. The absolute difference in the solution at the strike
was less than 107%. Thus we concluded that, for this problem, this boundary condition approximation is
acceptable for the rotated grid case.

Previous research [55] has shown that, for the pure diffusion case, rotating the co-ordinate systems and
grids produces a solution which is less accurate than the unrotated computation for the same grid spacing.
In the rotated co-ordinates, initial conditions and barriers cannot be represented exactly and points at asset
values of interest usually require interpolation. The grid rotation ensured that there was a node at the

23



Grid MOBED Absolute Error
So | S1=90 100 110 90 100 110
AS; =ASy; =25 90 5.9683 10.1902 17.1677 | -1.23e-3 -4.82e-3 .36e-3
4356 Nodes, A7 =0.04 | 100 | 10.5155 13.6119 19.3080 4.24e-3 2.52e-4 .98e-3
DFT 288 x 288 | 110 | 17.4414 19.3702 23.4029 1.29e-2 1.02e-2 1.30e-2

o

AS; = AS; =1.25 90 5.9693 10.1943 17.1650 | -2.59e-4 -7.53e-4 1.73e-3
17161 Nodes, AT =0.02 | 100 | 10.5126 13.6124 19.3038 1.32e-3 8.28e-4 2.82e-3
DFT 576 x 576 | 110 | 17.4321 19.3635 23.3945 3.66e-3 3.48e-3 4.64e-3

AS; = AS; =0.625 90 5.9695 10.1949 17.1638 | -4.60e-5 -1.66e-4 4.49e-4
68121 Nodes, A7 =0.01 | 100 | 10.5116 13.6118 19.3017 3.54e-4 2.37e-4 7.33e-4
DFT 1134 x 1134 | 110 | 17.4294 19.3609 23.3911 9.30e-4 8.95e-4 1.20e-3

Convergence | 90 2.49 2.18 1.94
Exponent o | 100 1.90 1.80 1.94
Grid 2 to 3 | 110 1.98 1.96 1.96

TABLE 3: Numerical solution of the European call on a mazimum of two assets with the parameters given
in Table 1. We report the MOBED model with its absolute error. Note that the asymptotic convergence,
reported here for the two finest grids, is approzimately the ideal quadratic O((AT)? + (AS)?) as the grid
and time step is refined. Crank-Nicolson time stepping was used. The error was computed by comparison
with the semi-analytic solution [18].

strike (S1,.52) = (100,100) in common with the original grid, but other nodes did not line up with points
of non-smoothness of the payoff. The consequences of this are clearly seen in Table 4. Note that the region
where the grid was most highly refined was slightly enlarged to ensure that the region around the strike
remained well resolved.

If we compare Table 4 with the results for the conventional grid given in Table 3, we can see that the
error is larger for the rotated grid at the same mesh size, significantly so for the coarse and medium grids.
The solutions generated by the conventional grids generated no actual instabilities. Using grid rotation to
to ensure that the discretization of the diffusion terms yields an M-matrix seems unjustified in a practical
setting. In any case, if the coefficients of the PIDE are not constant, grid rotation may not guarantee that
the discrete diffusion operator is M compatible.

7.5 Quadratic Convergence of American Options

We repeated our demonstrations with an American put on the minimum of two assets for both the Normal
and MOBED jump distributions. We used the same domain, spacing, set of grids and time steps as in Section
7.3. Crank-Nicolson time stepping was used. The results are given in Table 5 for nine points which are outside
the region where the American minimum value constraint is imposed. In this case the exact solution is not
available. Consequently, we assume that the error € = ch® with grid spacing h and At = O(h), and compute
the convergence exponent by examining the ratio of the difference in the computed option values for three
mesh sizes. The a exponent is reported at the same point on the three grids and is approximately 2 in all
cases.

Figure 5 shows the results over the core of {5 in price scaling for the option using MOBED jumps. The
two disconnected, dark regions on the surface represent areas where the penalty method has imposed the
American minimum constraint on the solution, usually called the “early exercise” region. In this region the
numerical error is controlled by Large of Equation 6.3 and is not significant at the grid nodes. The spatial
location of the free boundary between the constrained and unconstrained region is resolved to within the
grid spacing. Along the S; = 100 line the boundary of the American payoff is, for the MOBED problem, at
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Rotated MOBED Absolute
Grid (100, 100) Error

AS|1 =ASy; =25, A7 =0.04 13.6221 1.05e-2

6847 Nodes, DFT 336 x 336

AS; = AS; =1.25, AT =0.02 13.6142 2.64e-3
26891 Nodes, DFT 672 x 672

AS; = AS, =0.625, At =0.01 [ 13.6123  6.76e-4
106861 Nodes, DFT 1344 x 1344

Convergence Exponent «, Grid 2 to 3 ] 1.97

TABLE 4: Numeric solution to the European call on a mazimum of two assets with the parameters given
in Table 1. We report the MOBED model with its absolute error using a grid rotated —26.57 degrees to
guarantee that the finite difference approximation is M-compatible. Crank-Nicolson time stepping was used.
Convergence is asymptotically quadratic, but the absolute error indicates that the rotation of the grid incurs
an increase in absolute error, compared with Table 3.

So = 82.5 for all three grid resolutions. Along the S = 100 line, the boundary is at S; = 85 for the coarsest
grid (AS; = 2.5), then at 83.75 and 84.375 for the two finer grids. In both the Normal and MOBED test
cases, each refinement of the grid placed the boundary within (AS7, ASs) of its location on the coarser grids.

Table 6 shows the total number of fixed point and linear solver iterations required for the entire solution
of the put on the minimum of two assets in both the European and American cases. As predicted for the
European case in Section 6.1, the number of fixed-point iterations required to advance a single time step
diminishes with A7: an average of 3 iterations were required with A7 = 0.04 but only 2 when A7 = 0.01.
For an American option, on average, between 3.40 and 4.00 iterations of the fixed point algorithm were
required. The addition of the penalty method to the fixed point iteration caused the iterations required to
be roughly the same at each grid resolution. For both options, an average of between 2.24 and 4.00 linear
solver iterations were required to converge to the solution of the equation in Step 5 of Algorithm 6.1. Thus
we see that the rapid convergence indicated by our analyses in Section 6.1 is achieved in the actual tests,
that the penalty iteration incurs only modest additional work, and that each linear system is fairly easy to
solve.

8 Conclusions

We have developed an implicit method for computing the solution of the PIDE which gives the solution of
a two asset option pricing problem under jump diffusion. A naive implicit computation of the integral term
in the PIDE would involve the solution of a dense linear system. However, the use of a fixed point iteration
reduces this problem to carrying out a dense matrix-vector multiply. The integration has the form of a
discrete correlation, so by choosing a cell-centered discrete integration rule we can use an FFT to compute
the matrix multiply. Thus the method is straightforward to implement, and jump diffusions can be added
to an existing two asset Brownian motion pricing model at the expense of a few FFTs per time step.

The fixed point iteration is easily extended to handle American options through use of a penalty method.
As our numerical tests show, there is no difficulty applying this technique to cases where the early exercise
regions are multiply connected.

From a theoretical point of view, if the equation coefficients are constant (in log-price scaling), a grid
rotation can be carried out with the result that the discrete equations are monotone for fully implicit
time stepping. This property can be used to guarantee convergence of the fixed point iteration, as well as
convergence to the viscosity solution. However, our numerical tests indicate that the solutions on the rotated
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Grid

AST =AS; =25
4356 Nodes, AT = 0.04
DFT 288 x 288

AS; = AS; =1.25
17161 Nodes, AT = 0.02
DFT 576 x 576

AS; = AS, = 0.625
68121 Nodes, AT = 0.01
DFT 1134 x 1134

Convergence
Exponent «

Normal MOBED
So | S1 =90 100 110 90 100 110
90 | 16.3559 13.9815 12.7464 | 13.7592 11.3827 10.7360
100 | 12.9827 9.5970 7.8662 | 11.0477 6.8295 5.3499
110 | 11.4065 7.2016 5.1222 | 10.2586 4.8606 2.8249
90 | 16.3818 13.9944 12.7544 | 13.7866 11.4012 10.7475
100 | 13.0112 9.6138 7.8736 | 11.0676 6.8511 5.3655
110 | 11.4331 7.2200 5.1291 | 10.2718 4.8794 2.8377
90 | 16.3885 13.9978 12.7566 | 13.7936 11.4058 10.7508
100 | 13.0186 9.6183 7.8758 | 11.0727 6.8565 5.3693
110 | 11.4401 7.2251 5.1312 | 10.2756 4.8840 2.8406
90 1.93 1.90 1.89 1.98 1.99 1.82
100 1.93 1.88 1.75 1.97 2.01 2.05
110 1.93 1.87 1.68 1.78 2.06 2.11

TABLE 5: Numeric solution to the American put on a minimum of two assets with the parameters given in
Table 1. Crank-Nicolson time stepping was used. We report the Normal and MOBED jumps models. Note
that convergence is approximately quadratic as the grid and time step is refined.

European Normal MOBED
TS FP per Linear per FP per Linear per
AS A7  Count | Iters TS Iters FP | Iters TS ITters FP
2.500 0.04 25 75 3.00 175 2.33 75 3.00 175 2.33
1.250 0.02 50 106 2.12 263 2.48 112 2.24 275 2.46
0.625 0.01 100 200 2.00 800 4.00 200 2.00 800 4.00
American
2.500 0.04 25 100 4.00 224 2.24 98 3.92 221 2.26
1.250 0.02 50 170 3.40 462 2.71 177 3.54 479 2.71
0.625 0.01 100 397 3.97 1315 3.31 396 3.96 1312 3.31

TABLE 6: Shown are the total number of fized point (FP) and linear solver iterations required to complete
the solution of the European and American put options on the minimum of two assets. Crank-Nicolson time
stepping was used. Data is given for each of the two jump models and three grids of Tables 8 and 5. Also
shown are the average number of fized point iterations required to advance each time step and the average
number of linear solver iterations required to solve each fixed point iteration.
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FIGURE 5: The solution surface for the American put over the minimum of Assets 1 and 2 with MOBED
jumps and parameters from Table 1. The two, disconnected, darker regions denote areas where the American
minimum constraint is imposed.
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grid, for a given mesh size, have significantly more error than a comparable conventional grid. This result
is consistent with the observations in [55]. This increased error is likely due to the poor resolution of the
payoff on a rotated grid.

In the case where the discrete equations are non-monotone, a von Neumann analysis indicates that the
fixed point iteration is still globally convergent. The analysis indicates that for typical market parameters,
the fixed point iteration will reduce the initial residual by six orders of magnitude in 2 — 3 iterations for
European options. Numerical experiments confirm this. In the case of American options, the number of
iterations required to solve the penalized equations (including the lagged integral terms) is about 3 — 4 per
time step. Numerical experiments also show quadratic convergence as the grid and time step are refined.

This technique can be adapted to other two-factor problems, such as option valuation under stochastic
volatility with jumps, which will be the subject of a subsequent report. Clearly, the M-matrix condition for
stability and convergence under the [, norm is a very desirable property, although the traditional approach of
grid rotation has been shown to degrade the accuracy of the solution, with no practical, evident improvement
in solution quality. Future work will investigate other methods for obtaining an M-matrix representation of
the discrete diffusion operator.

A Pricing PIDE

We assume that the underlying assets follow the risk neutral processes
dSy = (r — Mk1)Sy dt + 0181 dZy + (e”* —1)S; dq ,
dSy = (r — Akg) Sy dt + 02y dZy + (72 —1)S, dg ,

01,09 = asset volatilities,
r = risk free rate,
dZy,dZy = increments of Wiener processes,
dZy dZy = py, dt
dg— {0 with probability 1 — \dt
1 with probability Adt,
A = mean arrival rate of Poisson jumps (J1, J2) ,
(S1,S2) — (e7151,e728,) ,
k1 = Ele’* —1]; k9 = E[e”? — 1]

E[f(J1,J2)] = /jo /jo f(J1, J2)g(Jr, J2) dJy dJs

g(J1,J2) = density function of the jump magnitudes in log-price scaling.

Then, using Ito’s formula for finite activity jump processes, we can easily derive the pricing PIDE 2.3, by
taking expectations under the risk neutral process ([11], [23] §1.4.5). Note that we assume that there is a
single Poisson process which drives correlated jumps in both assets. This corresponds to a single market
shock process which affects both prices [11].

B Jump Formulations
The two jump distributions used for the numerical examples of this paper are described in this appendix.

B.1 Bi-Variate Normal in Log-Price

The bi-variate Normal distribution is a straightforward and well defined extension of the univariate case.
The probability density function for this distribution is, with parameters for the mean i1, fio, standard

28



deviations &1, g2 and correlation p:

z
gn (21,225 fl1, fl2,01,02,p) = ———————F——€XP — 5% B.1
( ) 2w51597/1 — p2 { 2(1—p2)} (B.1)

with

_ (901?/11>2_ 2p (w1 — fi1) (z2 — fi2) n (932—/12)2

01 0102

B.2 Marshall-Olkin Bi-Variate Exponential

The two-asset extension of the one-dimensional, double-sided, exponential distribution of Kou [27] is not as
straightforward as with the Normal case. Numerous bi-variate exponential distributions have been studied
(see [26], Chapter 47). Of these, the Marshall-Olkin bi-variate exponential distribution (MOBED) [33]
retains the lack-of-memory property of the one-dimensional distribution. The PDF of this distribution is
discontinuous

(M2 +72) 0<x1 <o
92 (w1, 223 11, 12, Tiz) = exp { =21 = o2 — Tho max(z1, 22)} X | iz 0<z=uz (B2
To(1 +712) 0 < a9 <1y

where 1/7);, i = 1,2 is the mean jump in direction of x; by itself, and 1/7j;2 is the mean jump of both assets
together. Although the PDF is discontinuous and the line z; = x5 has a two-dimensional Lebesgue measure
of zero, there is a positive probability associated with this line. For our computations (Section 4.3.1) we
must express the integrated probability in terms of the cumulative distribution function given in [33] §3.1.

To define the PDF in the entire real plane we write it in four quadrants and, following the approach of
[27], assign a probability to each quadrant. We take pq,ps € [0,1] as the probability of a positive jump in
x1 and o respectively with §3 = (1 — p1) and ¢o = (1 — pa) the probability of a negative jump. The PDF is
then

Im (21, 237p,157q,15 Mp,25 g2

ﬁppv f]qm ﬁpqv 'f]qqaﬁlaﬁQ) = ]31]52 . ga:(+3717 +$2; 77;0,17 ﬁp,?a ﬁpp) : 1m1,a:220 (B3)
+G1D2 - Gu (=21, 225 79,1, p,25 Tlgp) * Loy <0,22>0
+P1G2 - Gu (21, =223 7,1, 7q,25 TIpg) * 121 >0,22<0

+q142 - gm(—xl, —T2;7q,15q,25 ﬁqq) oy as<0
where the 7 parameters are defined for each of the four quadrants. To avoid further complication we have not

encoded the case where the peak of the distribution is offset by (f1, fi2). We note that to satisfy Assumptions
3.1 and 3.2 the positive jumps must have 77 > 1, as in [27].

C Localization Error Proofs

In Section 3.3 we leave the proofs of Theorems 3.1 and 3.2 to the following two sections.

C.1 Proof of Theorem 3.1 in Log-Price Scaling: Cutoff Error

In this section, we determine the effect of the approximations to the operators of Equation 2.3 in Equation
3.2. These approximations are

)\2/\0

C.1
HZHD ( )

We note that the difference between Hp in Equation 3.3 and H given in Equation 2.8 is in the range of the
correlation integral, which is performed over p instead of 2., respectively. In the following we treat the
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problem as embedded in the infinite domain €., and hence the solution is defined outside of 2p and we can
extend the domain of integration of the first term to (y + J) € Qs

First consider the solution of the following PIDE on Q.. Let U be the solution to Equation 2.3. Let V
be the solution to Equation 3.2 embedded in 2, to form the initial value problem

Ve =LV + AcHpV

(C.2)
V(y,0) =Z(y)
Define the cutoff error E = U — V. After manipulating Equations 2.3 and C.2 we have
E,=LE+MXcHpE+ (A= Xo)HU + A\(H —Hp)U (C.3)

E(y,0)=0

PIDE C.3 satisfies the conditions of Assumption 3.4 so that a classical solution can be expressed as a
convolution of a Green’s function and a source function. With the conditions thus satisfied, the solution to
E(y,7) can be written as [23]

/ / p 7 7O XU )+ A= HU 7 g ar
E(y,0)=0
where G(y,7,y’,7") > 0 is the Green’s function of Equation C.2, which is the formal solution to
G, =LG+ A XcHpG+dy—y,7—7) . (C.5)

We can rewrite Equation C.4 in two components: the first of which expresses error due to a finite Q¢ C Q4
and the second expresses error due to a finite 2p C Q. Thus we have two errors to bound separately

E(y7T) = El(y7T) + EQ(y’ T)

b= / / G(ya Ty y/a T/) [(/\ - )‘C)HU(y/7 T/)] dy/ dr’

o Jo (C.6)
By = / / Gl 7o/, 7') N~ Hp)U ()] dyf dr’

0 Qoo

First, we estimate E; as Q¢ — Q. We can bound the integral of the Green’s function by noting that
the solution to

W = LW + AcHpW

W(y.0) = I(y) (©.1)

on 2., can be written as

/ Gly. .y, OVI() dy . (C.8)

Assuming that a bounded solution (for fixed y) exists, then we must have

lim Gy, 7.y, 0)Z(y") dy’ =0 (C.9)
Qc—?QOC QOC\QC

and hence

lim // Gy, 7y, 7T ) dy dr’' =0 . (C.10)
20— Jo Ja.\ao

In particular, we take Assumption 3.1 to hold so that a solution to Equation C.7 exists for any

Z(y) <1+ co (¥ +e¥?) (C.11)
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so that using Equations C.10 and C.11 gives

lim / / Gy, 7y, 7) [cl +co (eyi + eyé)} dy dr’' =0 . (C.12)
Q=0 Jo Ja,\Qc
If Assumption 3.2 holds for the solution U to Equation 2.3 over Q \ Q¢

[HU (y, 7)| < 3+ c4 (e¥* +€¥2) (C.13)

then, because A — A¢c = 0 on ¢, we have that

o Jim |Ei| < lim / / Gy, 7.y, 7)) (A= Ac)HU(y', )| dy' d7’

C—7dleo Qe—0

Qc—Qc0

< lim / / Gy, 7,y ,7") {05 + cg (eyl + ey2>] dy' dr' =0
2= Jo Ja.\ao

which follows from Equation C.12.
Next, we bound F5 as 0p — . Note that from Equations 2.8 and 3.3

= lim / / Gly,r,y, ) INHU (Y, 7')| dy' dr’ (C.14)
oo\QC

(H—Hp)U(y,7) = g(NU(y+ J,7)dJ

/(y+J)€Qoo\QD

The preconditions for the existence of

/OO G(NU(y+ J,7) dJ

imply that
lim g(HUy+J,7)dJ =0
00— J (y+7)€00\ 0D
hence

lim FE,= hm )\// Gy, 7.y, 7" )(H —Hp)U(y',7") dy’ dr’

Qp—Q Qp—Qso

(C.15)
=_lim /\/ / G(y,T,y’,T’)/ g(NUW + J,7') dJ dy' dr' =0
Qp—Q<  Jo Jao (' +J)EQ0e\QD

and thus
Q élm Q |E(y77—)| S |E1(y77—)| + |E2(y77—)| =0
c,2p— Qs

C.2 Proof of Theorem 3.2 in Log-Price Scaling: Error Due to Artificial Dirichlet
Condition

In this section, we determine the error due to approximating the exact boundary condition for Equation 3.2.
Note that in the previous section we have shown that Equation C.2 converges, in theory, to the solution of
Equation 2.3 as Q¢, 2p — Qs

Now suppose we solve for W on the finite domain Qp

W, =LW +A\cHpW
W(y,0) =Z(y) (C.16)
W(y,7)=V(y,7) ; ye€dp
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where V (y, 7) is the exact Dirichlet boundary condition, given from the solution to Equation C.2 embedded
in Q. Therefore, noting that the correlation integral of (y + J) € Hp of Equation C.16 is truncated to
operate on 2p only, W =V on Qp. The solution to Equation C.16 is [23] §IV

Wiy, 1) = SGwmﬂdﬂﬂWﬁW+/)LzPwﬁw%ﬂwyﬁﬂwﬂf (C.17)
2D 0 Qp

where the Green’s function GY (y, 7,9',7') > 0 is the formal solution to

GYW = LGY + A\cHPGY +6(y— o/, 7 —7')
G (y,my, 7)) =0; yedp

and P(y,7,y’,7') > 0 is the Poisson function ([23] §IV*) of Equation C.16. The solution for V' depends only
on initial conditions hence can be written

V@mwié Gly. 7y O)I() dy’ (C.18)

where the Green’s function G is the solution to Equation C.5. Since V = W on Qp, and as Qp — Q,
G — G, then, for any fixed point (y,7),

lim / / Py, 7,y , 7V, 7)) dy dr' =0 (C.19)
Q=0 Jo Joap

In particular, this holds for a value V constant in y. If Z(y) = ¢y > 0, then V' = cge™"", and then
c1 = coe” " < cpe (for 7 < T) and

.
lim / / Py, 7,y ,7') c1 dy’ dr’
2p—9= Jo Joap

.
< lim / Py, 7,y ,7)coe™"" dy' dr' =0
Q=0 Jo Joap

(C.20)

Now, suppose we approximate W on p by Y where

Y(y,0) =Z(y)
Y(va) = B(ya T) 5 Yy S 6QD
so that the error £ = W — Y satisfies
ET =LFE + )\CHDE
E(y,0)=0 (C.21)
E(yaT) = V(y7 T) - B(yaT) 5 ) S aQD

with solution [23]
m%ﬂ=/°/ Ply.r o/, 7) V(') — Bl )] dy dr' . (C.22)
0 oQp

Without loss of generality, we can assume that Z(y) > 0, so that V(y,7) > 0. Suppose that, by Assumption
3.3
|V(y7 T) - B(ya T)| <a+ CQV(y7 T)

4Intuitively, the Poisson function serves to encode the boundary conditions of the problem and Green’s functions solve for
the interior when the boundary condition is zero.
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(which is trivially satisfied if B(y,7) = 0), then Equation C.22 becomes

By, )] < / Ply,my ™) e + 2V 7)) dyf dr’ (C.23)
0 o0Qp

From Equations C.19 and C.20 we then have

lim |E(y,7)] =0

Qp—Qso

D Convergence of the Fixed Point Iteration

In this appendix we demonstrate the convergence rate for the fixed point iteration of Section 6.1 both as
a functional iteration using the continuous operators and as an iteration using the general discrete linear
system operators as outlined in Section 4.1.

D.1 Proof of Theorem 6.1: Convergence of the Functional Fixed Point Iteration

Starting from the iteration defined in Equation 6.1 we demonstrate the convergence rate noted by Theorem
6.1. Note that G contains only differential terms so if ¢ is a constant then Ge = 0. We impose a Dirichlet
boundary condition over all of 0€2p.

Let E¥ = Wn+l — ZF to obtain the error propagation equation

1+ (1 =0)AT(r+ X —G)| EF = (1 - 0)Ar \e TpE”
EMy,7)=0; yedp
with solution [23] §IV

EY) = [ Gl (L= 0)AT AoToEM ') dy (1)
Qp
where G(y,y’) > 0 is the formal solution of
M+1-0)AT(r+Xc—9)G=06y—1v)
G(y,y)=0; yeQp

Note that E° = W1 — W™ is the difference between two smooth functions, hence is also smooth, and that
G is a uniformly elliptic operator with bounded coefficients on Qp (see [23] §IV.2).
Now, consider the equation

1+(A-0AT(r+Ac-G)|A=f(y); y€p
Aly)=B(y); ye€dp

which has the formal solution

Aly) = | G,y () dy' + P(y,y')B(y') dy' (D.3)
Qp 101975)

where P(y,y’) > 0 is a Poisson function induced by the non-zero boundary conditions ([23] §IV.3). Let
A(y) = 1. We can then compute the RHS of Equation D.2 directly

M4+ (1-0)AT(r+Xe—G)A=[14+1-0)AT(r+ Ac)]
so that, if
fly) =14+ 1 -0OAT(r+ o)
1; Aly) =1
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then combining equations (D.3) and (D.4) and noting that P(y,y’) >0

Gly ) [1+ (1= O)AT (r + Ao)] dy + / Ply.y) dyf =1

QD aQD

14+ (1—=0)AT(r+ )] Gy, y')dy <1

Qc
or )
Gy, ') dy’ < ) D.5
/QC WY)W < T T oA (D-5)
Noting that
IllE*|lse < 1 E¥||
and G(y,y’) > 0 then Equation D.1 gives
P < (1= 0Ar Ao [ Glony) d (D.6)
C
which becomes, by Equation D.5,
1—-0)AT A
EkJrl o < ( Elk: o
I I _1+(1—9>AT(7‘+)\)” |

Hence the functional iteration (6.1) is unconditionally convergent, with rapid convergence in the usual case
where AAT < 1.

D.2 Proof of Theorem 6.2: Convergence of the Discrete Fixed Point Iteration
For the following we denote as 1 the vector 1, = 1 Vi, and we must have three conditions:

1. |G- 1], =0, i.e. the differential approximation is exact for a constant vector,

2. J > 0 and max; Zj Jij < 1 thus [l -1]|, <1, and

3. (—G) is M-compatible so that N™! > 0 exists ([43] Theorem F15) where N = {l — (1 — 0)A7[G — r | — Al ]}
is the matrix of the LHS of the iteration.

Let ¥ = w™*! — zF. Thus the error in the solution iteration Equation 6.2 propagates as
et =[(1-0)ATA] [NT'IJ] € . (D.7)
Taking the norm of Equation D.7
" = [@ = 0)ATA] [NTHJ] || L < (1= )AT AT INT ]| (D]l [1€¥ oo (D.8)

by the compatibility of the || - ||« norm and triangle inequality. Condition 1 holds, therefore

1
1> — “Hel<
N-12[1+(1=0A7(r+ Nkl and N7Mel< gl

and because Condition 3 holds N~! > 0 exists and we may write
INTH2f =[N,

by the definition of the row maximum norm of a matrix. This leads in turn to [|l.J||., < 1 by Condition 2,
and we may write Equation D.8 as

(1—-0)AT X
1—0)AT(r+ A

L)< Flo . D.9
[[e*] S T3 )Ilell (D.9)

We conclude that the fixed point iteration Equation 6.2 is convergent with the rate stated in Theorem 6.2.

34



E Finite Difference Stencils

For reference, we note the following finite difference stencils over a function U(y). For further information
the reader may wish to consult [1] §25.3, [41] §9.4, or [16] §8. For each finite difference we write a compact
linear operator form, for example 8? The extension of these operators to a non-constant grid spacing is
omitted for brevity, but is straightforward.

The grid, on which this set of finite difference stencils is defined, has constant spacing h; and ho in y;
and yo with hy # hs in general. We use e; and ey to denote unit vectors in the co-ordinate directions of y;
and yo respectively. We use the notation y;, e; and h; where i = 1,2 where an equation applies identically
in each direction.

When Dirichlet boundary conditions are applied we do not include the boundary nodes in the solution
vector. Where entries in a finite difference stencil centered on an interior node refer to adjacent boundary
nodes, they do not appear in the matrix G of the discrete differential operator and hence are, in effect, zero.
The off-diagonal entries which cannot be represented in G are multiplied by the known boundary condition
values then summed into the boundary enforcement vector b of Equation 4.6. Other methods of imposing
Dirichlet boundary conditions are equally effective; this approach permits the ready application of the I,
norm stability analyses. We note that this approach does not change the M-compatibility of G.

We approximate first derivatives with a second order central difference

a(y) 1
dyi 2k
Where the second order approximation results in negative values for the off-diagonal coefficients of matrix
G of Equation 4.5 we may resort to a first order approximation. Either the forward

aU(y) 1

Uy +eihi) = Uly — e ha)] = 91U (y) . (E.1)

gy = U +eh) U] =017U() (B.2)
or backward ou .
8;?) ~ [Uly) = Uly — e; hy)] = 81" U(y) (E.3)

difference may be applied, depending on the leading coeflicients. The second order partial difference is taken
with the second order equation ([1] §25.3.23)
9?U(y) 1
oy I3
We may take a cross-partial derivative on a seven-point stencil by using ([1] §25.3.27) and one of two
complementary choices. The first is preferred for our problem where p, > 0
02U (y) 1
Oy10y2  2hyhy

Uy +eihi) +Uly —eihi) —2U(y)] = 0 U(y) . (E4)

[U(y+€1h1+62h2)+U(y—61h1—e2h2)+2U(y)

(E.5)
—U(y+erh1) —U(y—erh1) =U(y+ezha) —U(y — ez h2)} = 5’?,12h2+U(y)
and the second is appropriate for p, < 0
0*Ul(y) -1
R U(y—ei hi +exhe)+U(y+ehy —exhs)+2U
B1 Oyo 2y o [ (y 111 2 h2) (y 111 2 h2) (v) (E.6)
Uy +erh) = Uy —erhy) — Uy +eshs) — Uly — es hg)] — MU (y)
We may also use a nine-point stencil to obtain a four point cross-partial difference ([1] §25.3.26)
PUly) 1 [U(y+€1h1 +e2h) —U(y —e1hy + ez ha)
8y1 8y2 2 h2 2 hl (E 7)
Uly+erht —eshy) —U(y—erhy —exha)| ghiheogs
- 2hy =012 (y)

35



F  Proof of Theorems 5.3 and 6.3: Stability and Convergence by
von Neumann Analysis

The von Neumann analysis in this appendix applies to a periodic, initial value problem with the same
operators as the PIDE 2.3. The following sections employ a number of elements in common, hence we
proceed with both the time step and fixed point iteration analysis only after some preliminary discussions.
Sections F.1 and F.2 describe some basic mathematics we shall use for the analysis. In Section F.3 we state
the problem and error propagation equations to be analyzed, then in Section F.4 discuss the approach to
the final analysis and the relations that must hold to prove Theorems 5.3 and 6.3. In Sections F.5 and F.6
we demonstrate those relations.

We write the periodic, discrete form of the PIDE 2.3 localized over a periodic domain §27,. The problem
is phrased as a pure initial value problem with nodes of 9{1p included in Q. We use a regular rectangular
grid of @ = @, x Q4 equally spaced nodes where, without loss of generality, we take (), Qy to be powers of
2. The finite difference discretization on this grid is defined in Section E above using node spacing (hq, ha).
As in Section 4.3.1 we define the location of the points on the grid as

GER?, i=1...Q, ¢<Q% . (F.1)

The DFT operation makes it convenient to introduce the double-subscript notation Ug; = U(g;) to denote a
point on the grid where (k,) are the grid line coordinates. We relate the grid point ¢;, at position i in the
solution vector, to grid line coordinates (k,!) by a mapping such as

Where a vector u of a value over the grid is required, we denote its components u; = Uy = U(g;) and
assume this ordinate mapping holds (although we may use different letters in the subscripts). The same
double-subscript notation is used to locate points on the grid in the Fourier-transformed space.

The DFT D(U) over periodic domain Q% results in a @, x @, grid of coefficients denoted as Umn where
we use the following, compact notation

Qw_l Q?/fl
Unn= > Y Uj&(—=im—jn)= Y Uy &(—im— jn)
=0 7=0 7 F.9
| e Q2 . ) (F.2)
Ui = g > > Unn &(im + jn) = g > Unn £(im + jn)
m=—Qu/2+1 n=—Q,/2+1 mn
where 5
iy
&(k) = exp{\/—l Ck} ,and (= 5

Note that the correction for the grid node count is done during the inverse transform. We shall usually drop
the ranges on the summations as we have in Equation F.2, assuming that the log-price space indices (i, 7)
and the Fourier-space indices (m,n) refer to their periodic image (“wrap around”) under an addition which
crosses the grid boundary. We have the useful identities

E(m+1)

€(tm) + €(-m) = 2cos(m) - E(+m) —&(=m) = 20/ Tsin(Cm) , and =

= £(3) (F.3)
and note that, for example,

Uis1,j41 = Uic1j-1 = Z[ mn §((i+ D)m A+ (j + 1)n) = Unp £((0 = Dm + (j = 1)n)
= Z[§(+m+n) —&(—m —n) Upin E(m+n)

which will be used to reduce finite difference expressions.
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F.1 Discrete Fourier Transform of Finite Difference Stencils

The coefficients of V and D are constant in our initial value problem. This means we may apply the DFT
to each of the finite difference stencils in Section E ([7] §13). For clarity, we write the value for a single
coefficient Uy,,, of the Fourier transform 8 of difference operator d at a single node Uij, leaving off the leading
sums and coefficients. Our objective is to write the difference equations in terms of trigonometric functions,
thus we apply the identities of Equations F.3 through F.4. For brevity we write £, = {(¢m + jn) in the final
form, and omit discretizations that require only a change of axes.

(h1) O Umn| = {E((E+m +jn) = £((i = Dm+ )} U

= 2/ =1sin(Cm) & U (F.5)
(1®) O30n| - = {&(+ m + jn) = 26(m + jn) + (= Vm + jn) } U
= 2{cos(¢m) -1} ¢, Unn (F.6)

The following two cross-partial derivatives complete the seven point discretization:

(2h1hs) YY" V| = {&((i+ m+ (j+ 1)n) + (i — Dym + (j — L)n) + 26(im + jn)

—&((+)m +jn) = £((i = 1)m + jn)
= &(im + (j + 1n) = §(im + (G = 1))} Umn
= 2{1+ cos(¢m + ¢n) — cos(¢(m) — cos(¢n) }fp mn (F.7)

(2h1ha) OV Upn| = —{&((i+ )m+ (j — D)n) + £((i — Dym + (j + 1)n) + 26(im + jn)

—&((E+)m +jn) = £((i = 1)m + jn)
= &(im + (j + 1n) = §(im + (7 = 1))} Unn
= —2{1+ cos(¢m — {n) — cos(¢m) — cos((n)} &pUmn - (F.8)

The following cross-partial derivative is used in the nine-point discretization:

(411 ha) 0" Upay,

= {&(i+m+ (G +n) =& — m+ (j - 1)n)

—&((i = Dm+ (G + n) + (i + Dm+ (G = 1)n) } Unn
{—4sin(¢m)sin(¢n)} &, Upn - (F.9)

ij

F.2 Discrete Fourier Transform of the Correlation Term

We recall from Section 4.3.3 that we may write the discrete version of the integral correlation term between
values U and g as a dense matrix-vector product Ju. In Equation 4.14 we write this product as an operation
on the DFT of the jump distribution and the option value vector on the periodic grid.

We recall that ¢g(y) is a PDF, and that the the points on the grid defined by Equation 4.12 for the
correlation Equation 4.14 are defined by integrating g(y) over the DFT cell. Let

+h1/2  p+ha/2
f(ar) / / 9(qr + (21, 22)) dzy dzy
h1/2 h2/2

and note that that
fii €R, fi; >0 and > fij=1

j
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Thus, taking the Fourier transform

fmn = Z fij &(—=im — jn) implies that ‘JEO,O‘ <1 and ‘fmn <1

ij

We shall require the magnitude of the DFT of the jump distribution and its real and imaginary components
(frn) = fom,—n = (fi*m,_n + f V-1 ) (F.10)
in the final proof. Using this notation we note that

0< (1 - fﬁn) <2 . (F.11)

F.3 Discrete Option Value and Error Propagation PIDE

In this section it is useful to relate this analysis to the original form of the problem by using a matrix, vector
notation similar to that of Section 4.1. We write the approximation to PIDE 2.3 as a periodic initial value
problem on a grid with discrete solution points written in a vector u. It is discretized using a Crank-Nicolson
method from step ¢ to t+ 1 with time step weight 6 as in Equation 4.6 and a finite difference method selected
from Section E. The time step is taken by solving an equation in the form of Equation 4.6

[+ (1—0)Ar MJu*tt = [l — AT M] (F.12)

where
M=—[G+AXUJ =D —7rl]==G=AJ+Al+rl . (F.13)

Matrix G is defined by coefficients D and V (Equations 2.6 and 2.5) and difference Equations E.1 and E.4
with either Equation E.5, E.6 or E.7 for the cross-partial derivative. J is as defined in Equation 4.14. Note
that we have not written A\¢ or I. since, for this analysis, the matrix coefficients must be the same for each
point in the system.

Let e! be an arbitrary perturbation error to the solution u. The error propagates by

[+ (1—0)Ar MJe'tt =[I — AT M] e’ . (F.14)

The fixed point iteration method solves Equation F.12 with approximate solution z* at the k-th fixed
point iteration solving from time step ¢ to ¢t + 1

{4+ 1 =0OAT[-G+ AN+ 7} 2" = (1 —0O)ATNZ" + {1 = AT [-G = M+ Al +r1]}ut . (F.15)

k

For the fixed point iteration we write the solution error e = uft!? — z*. The error e of the intermediate

solution vector zF propagates by

{4+ 1=0)AT[-G+rlI+ N} = (1 -0)Arale” . (F.16)

F.4 General Approach to the Proof

We shall arrange the Fourier transform of the time step Equation F.14 into a complex valued form for a
single coefficient F,,, of the transform. This must not increase during the time step. The ratio of this
coeflicient between time step ¢ and ¢ 4+ 1 is given by

Ettl 1—0AT (—a—by=T+7+\) + 0ATAf (.17
B, 14(1-0)Ar(—a—b/—T+7+A) — (1—0)ATAf '
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where a and b represent the real and imaginary contributions of the Fourier transform of the finite difference
approximation G. We take the magnitude which must satisfy

2

A 2 rot+1
B[t |E
A~ = 2
Et it
mn Emn

{1 — 0AT [7(1 A (1 7 A§m7—n):| }2 N {GAT (b N )\fimv_n) }2 (F.18)

= <1

{1+a-0ar[-a+r+a(1-72, )] }2 +{a-oar (b+Af£m,,n)}2 -

with -, n = (%, + f1,~uV/=1) as in Equation F.10 and by Equation F.11 the term A (1 f%,, _ ) >
0 when A >0

Remark F.1 The term (—a+r) has a different sign in the numerator and denominator of Equation F.18.
We have r, A > 0. If a < 0 then Equation F.18 is satisfied for € = 0 and 6 = 1/2 and Theorem 5.3 is proved:
the time step is unconditionally strictly stable in the lo norm by von Neumann analysis.

We shall arrange the Fourier transform of fixed point iteration Equation F.16 into a complex valued form
for a single coefficient E* . This coefficient must decrease in the iteration. Thus we have the condition

mn*

2

‘Em _ (1—0)ATAf 2
|55 2 T T+ (1—0)Ar(—a+7r+N) — (1—0) Arby/—1T
< [(1-0)AT (F.19)
T4 (1-0)AT(—a+r+ NP+ [V=T1(1-0)b)”
[(1—6)AT N

<
T+ -0AT(—a+r+ N

Note that we have used Equation F.11 again, and that the a of Equation F.19 is identical to that of Equation
F.18.

Remark F.2 For 0 =0 and 0 = 1/2 it is sufficient, using Equation F.19, to demonstrate that a < 0 for the
error magnitude to be reduced at each iteration. Thus if a < 0 then Theorem 6.3 is proved: the fized point
iteration is unconditionally convergent in the lo norm by von Neumann analysis.

In both Remark F.1 and F.2, the stability or, respectively, convergence, is dependent only on the real
component of the Fourier transform of the finite difference approximation used to generate G. We shall see
that this depends, in turn, only on the discrete form of the diffusion term.

F.5 Analysis of the 7-pt Stencil

To prove the seven-point stencil variant of Remarks F.1 and F.2 we expand the partial derivative term of
Equation F.12 in finite differences in Fourier space. We use the cross-partial derivative Equation E.5, which
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normally would apply for 0 < p, <1,
U1 é{bl + vg é;bz + d11 6?112 + d22 33222 + 2d12 3{121h2+} Umn

=2 { [“1 sin(¢m) + > sin(@n)} V-1

hl h2
+ I cos(em) — 1] + P22 [eos(¢n) — 1) (F.20)
hl h2
+hd1; [1 4 cos(¢m + ¢n) — cos({m) — cos(gn)]} &p Unmn
1ha

=2{a+bV=1}& Unn
where v1, vy are the elements of vector V and dq1, dq2, doo are the elements of tensor D. From this expression

o1\’ o2\’
= (hi> [cos(¢m) — 1] + (hj) [cos(¢n) — 1] + h—lh— [1 + cos(¢m + ¢n) — cos(¢m) — cos(¢n)]

(F.21)
We differentiate a to find its extrema by solving for the simultaneous zeros of

2
62;) o (Z) Sin(Cm) + pug 3 (sin(¢m) = sin(¢m -+ Cn)) =0
a?cio o (ZZ) sin(Cn) + pug 3 (sin(Cn) = sin(¢m + (n)) = 0

We have four solutions at (¢m,(n) = ({0,7},{0,7}). Of these, the maximum is a = 0 at (0,0) where all
cos(-) terms of a equal 1. Thus ¢ < 0 and Remarks F.1 and F.2 hold.

The case using the finite difference 8h1h2 for the cross-partial term (Equation E.6) differs only in the
leading sign of the djo term and the sign of ¢n in the first cosine term. The final result is the same: a <0
unconditionally. In neither case is there a time step or correlation sign restriction for strict stability, and the
coefficients of the advection term do not appear in the final condition.

F.6 Analysis of the 9-pt Stencil

To prove the nine-point stencil variant of Remarks F.1 and F.2 we expand the partial derivative term of
Equation F.12 in finite differences in Fourier space. We use the cross-partial derivative Equation E.7:

|:111 éill + Vo égz +di éﬁlQ + doo 821222 +2dio é{ghzo] ﬁmn

—2{ [t sin(gm) + 12 sin(en)| V=T

5 foos(Cm) 1]+ 2% foos(Cn) 1] = 12 sin(G) sin(n) |,
=2{a+bvV=1} & Unn
(F.22)

where vy, v are the elements of vector V and di1, d12, doo are the elements of tensor D. From this expression
we require

a= (Zi) [cos(¢m) — 1] + (Zi) [cos(¢n) — 1] + pvh h 2 [sin(¢Cm)sin(¢n)] <0 . (F.23)
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Again, we proceed as in the previous section, differentiating a and finding the zeros which solve

da o\’ . 010 . _
3 = <h1) sin(¢m) + h—h— (cos(¢m)sin(¢n)) =0

8(1 09 2
m == (hg) sin(¢n) + thfhf (sin(¢m) cos(¢n)) =0

We have four solutions at ((m,(n) = ({0,7},{0,7}). Of these, (0,0) is the maximum with @« = 0. Thus
a < 0 and Remarks F.1 and F.2 hold.
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