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Abstract12

We propose a data-driven Neural Network (NN) optimization framework to determine the optimal13

multi-period dynamic asset allocation strategy for outperforming a general stochastic target. We formu-14

late the problem as an optimal stochastic control with an asymmetric, distribution shaping, objective15

function. The proposed framework is illustrated with the asset allocation problem in the accumulation16

phase of a defined contribution pension plan, with the goal of achieving a higher terminal wealth than a17

stochastic benchmark. We demonstrate that the data-driven approach is capable of learning an adaptive18

asset allocation strategy directly from historical market returns, without assuming any parametric model19

of the financial market dynamics. The optimal adaptive strategy outperforms the benchmark constant20

proportion strategy, achieving a higher terminal wealth with a 90% probability, a 46% higher median21

terminal wealth, and a significantly more right-skewed terminal wealth distribution.22

1 Introduction23

1.1 Literature Review and Overview24

The seminal work by Markowitz (1952) uses the mean-variance approach to study the asset allocation25

problem and establishes the foundation for modern portfolio theory. Following Markowitz’s pioneering26

work, Merton (1969) extends the problem to the multi-period continuous-time asset allocation setting, and27

uses stochastic control techniques to derive a closed-form optimal portfolio that maximizes a CRRA utility28

function of terminal wealth. Since then, the majority of research on multiperiod asset allocation has focused29

on maximizing a utility function of the terminal wealth or other absolute performance metrics (Merton, 1971;30

Browne, 1997; Blanchet-Scalliet et al., 2008; Ang et al., 2014).31

As the companion paper to Merton (1969), Samuelson (1975) studies the discrete-time multiperiod asset32

allocation problem, and uses stochastic control techniques to derive the closed-form solution of the optimal33

allocation under a utility function for more general probability distributions. However, when incorporating34

more realistic constraints such as transaction costs and leverage constraints, closed-form solutions often35

cannot be derived for discrete-time multiperiod problems.36

More recently, there has been some progress in using dynamic programming for the discrete-time mul-37

tiperiod problem. In the discrete rebalancing case, dynamic programming is used to find optimal portfolio38
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weights at each discrete time point. Usually the objective function is expressed as maximizing the expected39

utility function value (Mulvey and Vladimirou, 1989; Dantzig and Infanger, 1993; Cariño and Turner, 1998;40

Cheung and Yang, 2004). However, while dynamic programming provides flexibility from a modeling per-41

spective, the computational complexity increases exponentially with the number of state variables and is42

only tractable when the number of assets (stochastic factors) is relatively small.43

While most existing work on multiperiod asset allocations has focused on achieving optimal absolute44

performance, the allocation problem with the goal of achieving relative outperformance has significant prac-45

tical importance. This is because, in practice, the performance of a portfolio is often evaluated not only46

by its absolute performance, but also against other benchmark portfolios. Multi-period asset allocation47

with the goal of optimizing relative performance was first studied by Browne (1999, 2000), in which it is48

assumed that asset prices follows geometric Brownian motions. Under these assumptions, Browne (1999,49

2000) derives closed-form optimal portfolios so that the performance relative to a stochastic benchmark is50

maximized. The author also considers different investment objectives, such as minimizing the expected time51

to reach a performance goal, and maximizing the utility of relative wealth. Subsequently the benchmarked52

asset allocation problem has been further studied from various perspectives, see, e.g., (Tepla, 2001; Basak53

et al., 2006; Davis and Lleo, 2008; Lim and Wong, 2010; Bajeux-Besnainou et al., 2013). Tepla (2001) stud-54

ies the problem of an expected utility maximizing investor with the goal of performing at least as good as55

a stochastic benchmark. Basak et al. (2006) relaxes the minimum performance constraints used in Tepla56

(2001) and certain shortfall probability is allowed in return for some upside potential. Bajeux-Besnainou57

et al. (2013) introduces a downside hedging constraint and includes the benchmark in the objective function58

in a mean-variance framework, while avoiding unrestricted losses. Instead of the classical stochastic control59

approach, Davis and Lleo (2008) uses a risk-sensitive control approach to study the benchmarked asset al-60

location problem, in which the benchmark follows a variant of the Geometric Brownian Motion. Lim and61

Wong (2010) consider more generic price dynamics and general increasing concave objective functions.62

More recent studies include Oderda (2015), Al-Aradi and Jaimungal (2018) and Al-Aradi and Jaimungal63

(2021). In Oderda (2015), under the assumption that stocks follow a geometric Brownian motion and no64

investing constraints (i.e. infinite leverage, and shorting is allowed), the authors show that a portfolio which65

outperforms the benchmark market capitalization index (under certain criteria) can be constructed by a66

combination of (i) the benchmark portfolio and (ii) rule-based portfolios, e.g., equal weight and minimum67

variance portfolios. The determination of the optimal weights for these portfolios is independent of estimates68

of the expected returns of individual stocks. Hence this outperformance portfolio is robust to uncertainty in69

the expected return parameters. In Al-Aradi and Jaimungal (2018), optimal stochastic control techniques are70

also used in this context. Based on several assumptions on the asset return process, Al-Aradi and Jaimungal71

(2018) formulate the control problem as a Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation72

(PDE), and are able to obtain a closed-form solution. In Al-Aradi and Jaimungal (2021), the authors73

assumes that the growth rate is stochastic and driven by latent factors, which addresses the short-coming of74

assuming a deterministic market return in Al-Aradi and Jaimungal (2018). We remark that all these work75

is in a continuous-time setting with unconstrained controls. To the best of our knowledge, little work is76

done on discrete-time multiperiod asset allocation (with constraints) that focuses on relative performance77

compared to a benchmark.78

A common limitation of the previous work which focuses on outperforming a stochastic benchmark is79

the lack of consideration of realistic constraints such as no-leverage and no-shorting. Such constraints make80

finding closed-form solutions difficult, if not impossible. One possible solution is to numerically solve the81

problem by following the methodology proposed in Dang and Forsyth (2014), in which constraints such as no-82

shorting, no-leverage, and discrete rebalancing are considered. Dang and Forsyth (2014) propose a method83

that uses dynamic programming to establish an associated Hamilton-Jacobi-Bellman (HJB) equation which84

generates the optimal portfolio. However, a numerical HJB equation solution is only practical if there are a85

small (three or less) state variables (≤3). In Dang and Forsyth (2014), under discrete rebalancing with two86

assets and no benchmark strategy, the HJB equation is of dimension two. Note that if discrete rebalancing87

is assumed, it is not possible to reduce this to a one dimensional PDE. However, under discrete rebalancing88

with two assets and a two-asset benchmark strategy, the PDE problem has four dimensions, as four state89
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variables are needed to represent the amount in each asset for each strategy, between rebalancing times.90

Similarly, under discrete rebalancing with three assets and a three asset benchmark setting, the problem91

has six dimensions. Existing methods (Wang and Forsyth, 2010; Dang and Forsyth, 2014) that convert the92

problem into an HJB equation are not practical in these cases.93

Another common issue with existing approaches, is the assumption of parametric stochastic models for94

asset returns. This, of course, adds challenges, as the parameters can be difficult to estimate accurately95

(Black, 1993).96

1.2 Overview of the Data-driven Methodology97

To overcome the aforementioned challenges, in this work we propose a data-driven framework and use market98

asset return data directly to solve a scenario-based stochastic optimal control formulation, corresponding to99

the original stochastic control problem. With this approach, we skip the step of postulating a parametric100

stochastic model, and then calibrating this model to data. In addition, we solve the stochastic optimal101

control problem directly, without invoking dynamic programming to transform it into a PDE problem (thus102

avoiding the curse of dimensionality). The optimal control is represented as a neural network (NN) which is103

learned through training on bootstrap resampled historical data.104

The features for the NN can include any state variable that influences the optimal strategy, including105

the state variables associated with a stochastic target. We design a specific objective function to create a106

desirable terminal wealth distribution. This is done by measuring the relative performance of the strategy107

against an elevated final wealth of the stochastic target strategy to penalize extreme losses and limit unlikely108

extreme gains.109

We formulate a general optimal control problem for the multi-period asset allocation portfolio which110

outperforms a benchmark as an optimal stochastic control problem. We propose a benchmark target-based111

objective function which measures the difference between the terminal wealth of the adaptive strategy and112

a path-dependent elevated target (which is the terminal wealth of the benchmark strategy multiplied by a113

pre-defined growth factor). The objective function is designed as a double-sided penalty function to force114

the terminal wealth of the adaptive strategy to be close to the elevated target. The NN model takes three115

features as inputs: the current wealth of the adaptive portfolio, the current wealth of the constant proportion116

portfolio, and the time remaining. In the case that the underlying assets follow simple stochastic processes,117

it can be shown that the control is only a function of these variables.118

Instead of formulating the problem as an HJB equation derived from dynamic programming, we solve the119

single original optimal control problem directly as in Li and Forsyth (2019). We define an objective function120

in terms of the terminal wealth, and then solve for the control directly, using a data-driven approach. The121

proposed data-driven approach does not require an estimation of the parameters of an assumed parametric122

model for traded assets. We represent the control using a shallow neural network (NN). We remark that123

shallow learning is found to outperform deep learning for asset pricing in Gu et al. (2018). We also note that124

good results are obtained in Hejazi and Jackson (2016) with an NN containing only one hidden layer (shallow125

learning), in which the shallow neural network learns a good choice of distance function for efficiently and126

accurately interpolating the Greeks for the input portfolio of Variable Annuity contracts.127

It is common practice in the financial industry to train and test strategy performance by splitting the128

historical market data path into two segments - one for training and the other for testing1. We take a129

different approach. We aim to determine an investment strategy that would perform well statistically on a130

large set of data paths created through bootstrap resampling, rather than on a single historical data path.131

To achieve this, we generate additional data paths from the historical market data path by block bootstrap132

resampling of the historical data (see, e.g., Politis and Romano (1994); Politis and White (2004); Patton133

et al. (2009)). Once we have a large set of price paths from bootstrap resampling, we split them into the134

training data set and the testing data set.135

To demonstrate the robustness of our approach, we test the optimal adaptive strategy on market data136

with different distributions from the training data. We first test the optimal adaptive strategy, learned137

1This is often known as the process of backtesting.(Harvey and Liu, 2015)
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from bootstrap resampled data with a given expected blocksize, on bootstrap resampled data with different138

expected blocksizes (thus different distributions, as noted by Politis and Romano (1994)). We then test the139

adaptive strategy learned from synthetic data generated from a parametric jump-diffusion stochastic process140

(estimated from the same single historic path) on bootstrap resampled data. Finally, we test the strategy141

learned on bootstrap resampling data from a segment of the historical market data path on bootstrap142

resampling data generated from another non-overlapping segment of the historical data path.143

To the best of our knowledge, the closest work related to the research in this paper is Samo and Vervuurt144

(2016), in which the authors also use a data-driven machine learning approach for constructing a dynamic145

strategy which outperforms a benchmark. Samo and Vervuurt (2016) approximate the control by a Gaussian146

process and solve the optimal hyperparameters using Bayesian inference. However, they do not assess the147

distributional properties of the investment strategy, but rather evaluate the performance on a single historical148

path. In addition, they only validate the performance of the strategy for a relatively short period from 1992-149

2014. In contrast to our focus on the pension plan in this work, they consider the case of daily rebalancing150

with a large number of stocks which would not be typical of a defined contribution pension plan.151

Furthermore, our approach differs from (Samo and Vervuurt, 2016) in the learning methodology, both152

with respect to learning algorithms and data utilization. Our approach can be applied to a general multi-153

period asset allocation problem with few assumptions. In addition, it can readily be scaled up to high154

dimensional problems (i.e. more assets and features). A shallow network is sufficient here, leading to a155

relatively small number of parameters and computationally efficient training. In contrast to Samo and156

Vervuurt (2016), we use a small number of feature variables that only depend on the state of the adaptive157

portfolio and the benchmark portfolio, rather than market-related signals. As a result, the trading strategy158

is easy to interpret, practical to implement and the model is less prone to overfitting. Furthermore, our159

computational results demonstrate that the optimal adaptive strategy has a higher expected terminal wealth160

as well as a more favorable terminal wealth distribution than the benchmark strategy.161

1.3 Example: Defined Contribution (DC) Investment Plan162

To illustrate the proposed framework, we consider a practically relevant and important problem: optimal163

multi-period asset allocation during the accumulation phase of a DC pension plan. A defined contribution164

(DC) plan is a retirement plan in which the employer, employee, or both make contributions regularly with165

no guarantee on the accumulated amount in the plan at the retirement date. In contrast, another type of166

retirement plan is the defined benefit (DB) plan, which promises to pay a set income when the employee167

retires. There has been a paradigm shift from DB plans to DC plans in the United States, Canada, the168

United Kingdom, and Australia, as both the public and private sectors are no longer willing to take on the169

risks of DB plans.170

Here we use the example of the DC plan to illustrate how an employee can use our proposed framework171

to construct an asset allocation plan to beat a stochastic benchmark target. We note that the employee is172

the investor in the DC plan since he/she is exposed to the risks of the chosen investment portfolio. In a DC173

plan, the employee (investor) is often presented with a list of eligible stock and bond funds, and then needs174

to specify how the DC account is to be allocated to each fund. Typically the employee has the opportunity175

to make contributions to the DC plan (usually a certain percentage of the salary) and change the asset176

allocation at least yearly. Normally, the DC plan is tax-advantaged, so that there are no tax consequences177

triggered on rebalancing.178

In this work, we assume the investment horizon for the DC plan is 30 years. Studies have shown that179

income for a typical employee increases rapidly until the age of 35, then remains mostly unchanged (in180

real terms) until a few years before retirement, and then decreases due to fewer working hours during the181

transition to retirement (Cocco et al., 2005; Rupert and Zanella, 2015).182

Since total (employee-employer) DC plan contribution is often proportionally tied to overall income, we183

believe a 30-year investment horizon is reasonable and captures the most stable period in terms of income184

for a typical employee, during which he/she can save for retirement most consistently. We remark that the185

30-year time horizon is also commonly used in literature in the field of pension studies (O’Donoghue and186

Rabin, 1998; Booth, 2004; Malliaris and Malliaris, 2008; Looney and Hardin, 2009; Levy, 2016; Blanchett187
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et al., 2017; Basu and Wiafe, 2017; Brown et al., 2017; Blanchett et al., 2018; Estrada and Kritzman, 2019;188

Wiafe et al., 2020).189

Recently, a popular choice for DC pension investment has been target date funds, in which the investor190

sets a retirement date and the fund aims to meet certain financial return objectives at the given retirement191

date. Usually, target date funds take a glide path approach that glides down towards a more conservative192

combination of assets towards the target date (Balduzzi and Reuter, 2012). In a two-asset case of a stock193

index and a bond index, the glide path strategy often decreases the stock holding over time. Another popular194

asset allocation strategy for DC plans is the constant proportion strategy, in which the employee invests fixed195

proportions of the wealth into several assets. This idea can be traced back to Graham (2003). It is shown in196

(Graf, 2017; Forsyth and Vetzal, 2019) that the final wealth distributions of a constant weight allocation, and197

any glide path strategy having the same average allocation as the constant weight strategy, are essentially198

the same. Hence there is little to be gained by using a (deterministic) glide path compared to a constant199

weight strategy. This theoretical analysis is backed up by empirical studies (Basu et al., 2011; Arnott et al.,200

2013; Esch and Michaud, 2014). We also provide empirical evidence in Section 6 to support this argument.201

Therefore, in this article, we set the benchmark target to be the constant proportion strategy as it is easy to202

understand and implement. Nevertheless, for readers who are interested in results when target-date funds203

are chosen as a benchmark, we have included results in Section 6, in which we show that the our methodology204

learns an adaptive strategy that has a superior terminal wealth distribution compared to the benchmark205

target-date fund.206

Among the constant proportion strategies, a very popular one is the 50/50 strategy, in which 50% of the207

wealth is allocated to stocks and 50% of the wealth is allocated to bonds. It is conventional wisdom that a208

50/50 portfolio is an appropriate tradeoff between risk and reward for those saving for retirement. Although209

there has been a popular shift to a 60/40 portfolio (60% in stocks) in recent years, for illustration, we will210

focus on the 50/50 portfolio in this article. This would be a typical average allocation to equities over the211

full accumulation phase of a lifecycle fund.2212

We remark that the reason why we only consider two assets is two-fold. Firstly, in practice, retail investors213

are often choosing between a stock fund and a bond fund. Secondly, the popular constant proportion214

strategies often only involve two assets. However, we should clarify that the proposed framework is able to215

handle more assets. In fact, we have included an example with three assets in Appendix A.3.216

Using the proposed framework to determine the optimal multi-period dynamic asset allocation strategy217

for outperforming a stochastic target, we address a natural and interesting question of whether it is possible218

to develop a dynamic allocation strategy that outperforms the constant proportion strategy.219

Finally, we remark that the stylized DC plan accumulation problem in this article is a simplified version of220

the real-world investment scenario. When making an investment decision in practice, an individual investor221

will inevitably need to consider some important factors, e.g., medical expenditures, taxes, housing expenses222

and labor income, and other financial assets, see Duarte et al. (2021).223

Our contribution in this article is primarily methodological. We use an entirely data-driven approach224

(no parametric stochastic processes), and we approximate the optimal policy directly, without resorting to225

dynamic programming.226

Hence, the stylized DC plan investment example is used to demonstrate the potential benefit of the227

proposed data-driven framework, which is one of the main goals of this work. As noted above, DC plan228

investment strategies are just a part of a true financial plan, which would consider many other critical229

issues, e.g. retirement dates, post-retirement plans, and labour income stability. Applying machine learning230

techniques to the full financial planning process is an active area of research, but beyond the scope of this231

paper.232

1.4 Contributions233

In this research, we make the following contributions:234

2A lifecycle fund is based on the intuitive concept of allocating a high equity weight during the early employment years, and
then moving to bonds as retirement nears. However, as shown in Graf (2017), this strategy does not outperform a constant
weight strategy.
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• Different from the commonly used one-sided quadratic shortfall objective function, we propose a new235

asymmetric distribution shaping objective function for the optimal asset allocation problem that is more236

suitable for the task of outperforming a benchmark strategy. The proposed objective function produces237

an optimal dynamic and adaptive strategy which yields significantly higher median terminal wealth238

than the stochastic benchmark, with only a small probability (and magnitude) of underperformance.239

• We include a theoretical analysis to show that the probability of observing the same sequence of240

returns in training and testing data sets of bootstrap resampled data, with different blocksizes, is241

negligible for practical blocksizes. This suggests that training/testing data can be generated from a242

single historical path (if sufficiently long) merely by using different blocksizes and justifies the use of243

bootstrap resampling method.244

• We use a selection of different training/testing data to validate our results, including different blocksizes245

(as in (Li and Forsyth, 2019)) but we also use non-lapping data periods to illustrate the robustness of246

the proposed methodology.247

• Our work has significant empirical importance and implications. In particular, we have included con-248

stant weight strategies as well as industry standard glide path strategies as benchmarks in the numerical249

experiments. We show that for the example of a defined contribution pension plan, the adaptive strat-250

egy learned from the data-driven framework has a more favorable terminal wealth distribution than251

benchmark strategies with a higher expected terminal wealth and significantly less downside risk.252

2 Formulation of Stochastic Benchmark Outperformance Problem253

2.1 The Optimization Problem254

Let the initial time t0 = 0 and consider a set T of rebalancing times255

T ≡ {t0 = 0 < t1 < . . . < tN = T}. (2.1)

The fraction of total wealth allocated to each asset is adjusted at times tn, n = 0, . . . , N − 1, with the256

investment horizon tN = T . Consider an investment problem in M assets.257

Assume that, at time t, a fund holds wealth of amount Wm(t) in asset m, m = 1, . . . ,M . The total value258

of the portfolio at t is then259

W (t) =

M∑
m=1

Wm(t) . (2.2)

For any given time t and arbitrary function f(t), define f(t+) = lim
ε→0+

f(t+ ε), and f(t−) = lim
ε→0+

f(t− ε).260

Assume that W (t−0 ) = 0, i.e., the initial value of the portfolio before any cash injection is zero, and let q(tn)261

represent an a priori specified cash injection schedule.262

We denote the allocation at stage n by an allocation vector pn, n = 0, . . . , N−1. Given the allocation con-263

trol vectors p0, p1, . . . , pN−1, the statistical properties of the terminal wealth of the adaptive portfolio W (T )264

can be determined. Similarly, given a benchmark allocation vector p̃n, the final wealth of the benchmark265

portfolio Wb(T ) can also be determined. The time evolution of W (t) and Wb(t) is given by266

for n = 0, 1, ..., N − 1

W (t+n ) = W (t−n ) + q(tn)

Wb(t
+
n ) = Wb(t

−
n ) + q(tn)

W (t−n+1) = pTnR(tn)W (t+n )

Wb(t
−
n+1) = p̃TnR(tn)Wb(t

+
n )

end,
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where R(tn) is the vector of returns on assets in (t+n , t
−
n+1).267

Our first goal is to minimize some measure of underperformance against the benchmark. A natural choice268

is to quadratically penalize the underperformance of the terminal wealth of the adaptive strategy compared269

to a benchmark of the terminal wealth of the constant proportion strategy, as in Li and Forsyth (2019). Note,270

however, that in our case, the benchmark is stochastic. This leads to the following optimization problem271

(E[·] is the expectation operator):272

min
p0,p1,...,pN−1

E
[

min
(
W (T )−Wb(T ), 0

)2]
. (2.3)

Unfortunately an optimal solution3 to (2.3) is trivially the benchmark strategy pn = p̃n,∀n, which273

indicates the formulation (2.3) does not sufficiently capture properties of the desired solution.274

We propose to generate a more ambitious strategy by using an elevated target esT ·Wb(T ) in the objective275

function, i.e.,276

min
p0,p1,...,pN−1

E
[

min
(
W (T )− esT ·Wb(T ), 0

)2]
, (2.4)

where s is the yearly pre-determined target outperformance spread. Consequently, in an ideal case, the277

adaptive strategy will have a terminal wealth of esT · Wb(T ) which indicates that the adaptive strategy278

achieves an annual outperformance spread of return s compared to the benchmark strategy.279

We note, however, that the terminal wealth distribution from (2.4) has a quite significant left tail of280

underperformance instances. Such result is actually expected since we do not pose a penalty on the outper-281

formance, and thus the terminal wealth distribution is not exactly concentrated around the elevated target.282

Therefore, we introduce a additional linear penalty on the outperformance case, hoping to force the terminal283

wealth of the adaptive strategy to be closer to the elevated target. Our asymmetric distribution shaping284

benchmark outperforming formulation becomes285

min
p0,p1,...,pN−1

E
[

min
(
W (T )− esT ·Wb(T ), 0

)2
+ max

(
W (T )− esT ·Wb(T ), 0

)]
. (2.5)

Figure 2.1 illustrates this asymmetric distribution shaping objective function.286
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Figure 2.1: Asymmetric distribution shaping objective function with elevated target esT ·Wb(T ).

3In this case, there may be multiple optimal strategies which make the objective function identically zero. However, if
both benchmark and outperformance portfolio start with the same initial wealth, the optimal strategy is clearly simply the
benchmark strategy.
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We note that such asymmetric penalties gives more favorable terminal wealth distributions than the287

symmetric quadratic penalty objective function of E
[(
W (T ) − esT ·Wb(T )

)2]
, as shown in the numerical288

results in Appendix A.2. We believe it is because the asymmetric penalties incentivizes a more right-289

skewed distribution for the optimizer than the symmetric quadratic penalties because of less penalty on290

outperformance than underperformance.291

While we choose the objective function (2.5) for outperforming a stochastic target in this paper, we note292

that distribution shaping objectives can be problem dependent. If an investor is concerned with left tail risk,293

then it may be appropriate to use an objective function which minimizes CVaR, for example, see (Forsyth,294

2021; Forsyth and Vetzal, 2019). If an investor is concerned with path-dependent performance measures295

such as draw-down and variation over time, then such measures should be incorporated in the objective296

function. For example, the quadratic variation penalty used in (Al-Aradi and Jaimungal, 2018), which is297

time-averaged instantaneous volatility relative to a benchmark, can be introduced to penalize the deviation298

from the benchmark portfolio on a running basis.299

While the discussions of these objective functions are out of the scope of this paper, we remark that300

our proposed data-driven neural network framework does not depend on any specific form of the objective301

function.302

2.2 The Neural Network Approach for Solving the Optimization Problem303

If we postulate parametric stochastic processes for prices of the traded assets, mathematically, the controls304

p0, ..., pN−1 can be determined using dynamic programming. This will result in a nonlinear HJB PDE (see305

(Al-Aradi and Jaimungal, 2018) for example). In the absence of any closed-form solution, computing a306

solution of this problem numerically would be costly, particularly when the problem has a high dimension.307

Consider the simplest allocation problem, for which the portfolio consists of a stock index and a bond index.308

In the case of discrete rebalancing, the state variables would be the dollar amounts in the bond and stock309

indices, for both the adaptive and target portfolios (Dang and Forsyth, 2014). Consequently, even for this310

comparatively simple case, this would result in a four-dimensional HJB PDE.311

Assume that samples of asset returns are available. These samples can come directly from market
observations or from simulations of postulated parametric models. Instead of solving p0, . . . , pN−1 using
dynamic programming, we propose a data driven approach as follows. We represent the optimal control as
a function of several features F (t), i.e., at tn, n = 0, 1, . . . , N − 1,

pn = p(F (tn))

Example 1 (Two Asset Problem with Benchmark W50/50). In our numerical examples, we will focus on312

portfolios consisting of two assets: a stock index and a bond index. The benchmark portfolio in this case313

will be a constant proportion strategy, with 50% stocks and 50% bonds. We will denote the wealth of the314

benchmark strategy in this case as W50/50(t). For this example, for the stochastic target pension allocation315

problem, we use three features for F (t): (i) W (tn), the wealth of the adaptive portfolio at tn, (ii) W50/50(tn),316

the wealth of the constant proportion portfolio at tn, (iii) T-t, time remaining in the investment period. In317

the case that simple stochastic processes are assumed, then it can be shown (in the absence of transaction318

costs) that the controls are only a function of these features (Dang and Forsyth, 2014) .319

We remark that our feature set F (t) for Example 1 is different from the features in Samo and Vervuurt320

(2016) which explicitly use security prices. Instead, at time t our feature set consists of the accumulated321

wealth at t from allocation strategy and benchmark strategy, which depend on the returns of traded assets322

from prior periods. Traded asset prices are not directly used as features for the neural network model.323

This is essentially because, at each rebalancing time, we search for the optimal adaptive strategy amongst all324

strategies with the current level of wealth. In addition, since we evaluate the performance of a trading strategy325

based on the terminal wealth W (T ) only, the trading decision at time t depends on the current accumulated326

wealth and return distribution of future trading periods. Unless the asset price has predictability in its future327

return, including the prices as features is redundant in this context and will likely lead to overfitting of the328

model.329
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We use a 2-layer neural network as the functional form for the optimal control. As a result, the goal of330

the optimization problem is to find the optimal parameters of the neural network.331

F1

F2

F3

h1

h2

h3

p1

p2

Hidden
layer

Input
layer

Output
layer

Figure 2.2: A 2-Layer NN representing the control functions

Assume that h ∈ RH is the output of the hidden layer. Let the matrix z ∈ RDH be the weights from the332

input features F (tn) ∈ RD to the hidden nodes h. We use the sigmoid activation function,333

σ(u) =
1

1 + e−u
,334

and have335

hj(F (tn)) = σ(Fi(tn)zij) .

Here we use double summation convention, i.e.336

Fi(tn)zij ≡
D∑
i=1

Fi(tn)zij , j = 1, ...,H .337

At the output layer, we use the logistic sigmoid function as the activation function. Let the matrix338

x ∈ RHM be the weights for output layer. For asset m, the asset allocation on this asset is given by:339

(
p(F (tn))

)
m

=
exkmhk(F (tn))∑
i e
xkihk(F (tn))

, 1 ≤ m ≤M .340

Note that with the logistic sigmoid activation function, the following constraint is automatically satisfied341

0 ≤ p(F (tn)) ≤ 1, 1T p(F (tn)) = 1 .

This enforces the constraints of no-shorting and no leverage. In addition, insolvency cannot occur.342

The dynamics of the terminal wealth of the adaptive portfolio then becomes343

for n = 0, 1, ..., N − 1

W (t+n ) = W (t−n ) + q(tn)

W (t−n+1) = p(F (tn))TR(tn)W (t+n )

end . (2.6)

We approximate the expectation in equation (2.5) by a finite number of wealth samples of W (T ), com-344

puted from return samples of R(tn) obtained by bootstrapping the historical data. Let W `(T ),W `
b (T ) be345

the final wealth samples for the adaptive and benchmark strategies, obtained using equation (2.6), along the346

`th return sample path R(tn)`, n = 0, 1, . . . , N − 1 .347
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Denote348

g(x) ≡ min
(
x, 0
)2

+ max
(
x, 0
)
. (2.7)

The expectation in equation (2.5) is approximated by349

E
[
g(W (T )− esT ·Wb(T ))

]
' 1

L

`=L∑
`=1

g(W `(T )− esT ·W `
b (T )) (2.8)

Since the approximate function on the right hand side of (2.8) is a nonconvex, continuous but piecewise350

differentiable function of the NN weights, solving the optimization problem is challenging.351

We recognize however that E
[
g(W (T ) − esT ·Wb(T ))

]
is a continuously differentiable function of the352

NN weights assuming that the return distribution is continuous. This motivates us to use the smoothing353

technique from Alexander et al. (2006). In equation (2.8), we replace g(x) by the smoothed approximation354

ḡ(x), to obtain a continuously differentiable approximation,355

ḡ(x) =


x, if x > ε ,
x2

4ε + 1
2x+ 1

4ε, if −ε ≤ x ≤ ε ,
(x+ ε)2, if x < −ε ,

(2.9)

where ε is a predetermined small number. Since we are essentially optimizing the parameters x and z, we356

write the final problem as357

min
x,z

1

L

`=L∑
`=1

ḡ(W `(T )− esT ·W `
b (T )) . (2.10)

Similar to Li and Forsyth (2019), we use the same trust region optimization method (Coleman and Li, 1996)358

to solve the resulting optimization problem.359

We note that Problem (2.10) is an unconstrained optimization problem with H(D + M) variables, i.e.,360

the entries of the parameter matrices x and z. More specifically, the optimization method requires the361

evaluation of the objective function, its derivative with respect to the weight parameters x and z, and the362

Hessian matrix. Each objective function evaluation costs O(H(D +M)NL), or O(L) assuming a fixed NN363

model structure and fixed rebalancing schedule.364

For the gradient evaluation, we note that365

∇x,z

(
1

L

`=L∑
`=1

ḡ(W `(T )− esT ·W `
b (T )

)
(2.11)

=
1

L

`=L∑
`=1

∇W `(T )ḡ · ∇x,zW `(T ). (2.12)

Since ∇W `(T )ḡ is a fixed number and only requires constant effort, we only care about ∇x,zW `(T ). We366

note the following induction relationship:367

∇x,zW `(t−n+1) (2.13)

=∇x,z
(
p(tn)TR(tn)

(
W `(t−n ) + q(tn)

))
(2.14)

=
(
∇x,zp(tn)

)T ·R(tn)W `(t−n ) + p(tn)TR(tn) ·
(
∇x,zW `(t−n )

)
. (2.15)

Since the computational cost of evaluating ∇x,zp(tn) is O(H(D + M)), we know from (2.13) that the368

computational cost of evaluating ∇x,zW `(T ) is O(H(D + M)N). Therefore, the total computational cost369

for evaluating all gradients over L paths is O(H(D +M)NL).370
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Thus the cost of evaluating the gradient is O(H(D + M)NL). For the Hessian matrix used in the371

optimization, it is evaluated numerically using finite difference method, and thus has the computational372

cost of O(H2(D+M)2NL). Given the objective function/gradient/Hessian matrix, solving the trust region373

sub-problem requires O(H3(D + M)3). Since we are proposing a shallow network approach, H(D + M) is374

often small. For example, in the two-asset example presented in this article, H(D + M) = 15, and thus375

the objective function/gradient/Hessian evaluations become the dominant cost and the trust region method376

optimization evaluation cost is negligible.377

3 Non-parametric Data Bootstrap Resampling378

Success in data-driven learning critically depends on the efficient use of data. Standard machine learning379

measures success based on testing the model performance on unseen data which are assumed to have the380

same distribution as the training data. In other words, test results are typically computed based on test381

samples from the same distributions as training samples.382

For training of the optimization problem (2.10), we only have access to a single path of historical returns.383

This lack of data presents a unique challenge in data-driven financial model learning.384

For financial model learning and testing, it is a common practice to train and test strategy performance385

by splitting the historical market data path into two segments - one for training and the other for testing.386

A critical problem in this approach is insufficient data for robust learning and testing. This is especially387

problematic in the context of pension planning due to the long-term investment horizon.388

Li and Forsyth (2019) use block bootstrap resampling to generate training and testing data in data-driven389

financial decision learning. Standard block bootstrap resampling is done by dividing the historical market390

sequential data into blocks with fixed blocksizes and randomly choosing blocks to construct the bootstrap391

resampled data series. To reduce the impact of a fixed blocksize and to mitigate the edge effects at each392

block end, the stationary block bootstrap (Patton et al., 2009; Politis and White, 2004) can be used. A393

single bootstrap resampled path is constructed as follows.394

• First, randomly select a block of the historical market data time series. The blocksize is randomly395

sampled from a shifted geometric distribution with an expected blocksize b̂. The optimal choice for b̂396

is determined using the algorithm described in (Patton et al., 2009).397

• Repeat the previous step and concatenate the new block after the existing data series until the new398

resampled path has reached the desired length.399

• If the selected block exceeds the range of historical data, wrap around the historical data as in the400

circular bootstrap method (Politis and White, 2004; Patton et al., 2009).401

Algorithm 1 presents pseudocode for the stationary block bootstrap.402

In Li and Forsyth (2019), the training dataset is generated using stationary block resampling with one403

expected blocksize and the testing dataset is generated with a different expected blocksize. As Politis and404

Romano (1994) points out, changing the expected blocksizes for block bootstrap resampling essentially405

changes the distribution of the bootstrap resampled data paths. Consequently, such training and testing406

assessments actually perform out-of-distribution tests.407

Intuitively, using the block bootstrap resampling time-series financial market data seems natural. We408

have trained a model, considering all permutations of the financial market data with respect to different and409

random concatenations of time horizons. In addition, testing has been performed on a different distribution410

of the financial market random horizon concatenations, since the testing data uses a different expected411

blocksize from that of the training data. Indeed, evaluating testing performance in this fashion seems to412

uphold a more stringent standard in comparison to the standard machine learning approach which evaluates413

testing performance assuming (unseen) testing samples are from the same distribution of the training data.414

Still, one may have concerns that when the training data and testing data are block bootstrap resampled415

from the same underlying historical market data sequence, one path may appear in both training and testing416
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Algorithm 1: Pseudocode for stationary block bootstrap

/* initialization */

bootstrap samples = [ ];
/* loop until the total number of required samples are reached */

while True do
/* choose random starting index in [1,...,N], N is the index of the last

historical sample */

index = UniformRandom( 1, N );
/* actual blocksize follows a shifted geometric distribution with expected value

of exp block size */

blocksize = GeometricRandom( 1
exp block size );

for ( i = 0; i < blocksize; i = i+ 1 ) {
/* if the chosen block exceeds the range of the historical data array, do a

circular bootstrap */

if index + i > N then
bootstrap samples.append( historical data[ index + i - N ] );

else
bootstrap samples.append( historical data[ index + i ] );

end
if bootstrap samples.len() == number required then

return bootstrap samples;
end

}
end

datasets so that the learning algorithm may benefit from such an unfair edge. To address such concerns, we417

establish a theoretical bound on the probability of training and testing sample sequences being exactly the418

same.419

Theorem 1. Consider generating a sequence of N data points using fixed block resampling from a sequence420

of Ntot distinct observations. Let path P1 be a bootstrap resampled with a fixed blocksize of b1 and path P2421

be a bootstrap resampled with a fixed blocksize of b2. Then the probability of P1 and P2 being identical is422

( 1
Ntot

)lcm( N
b1
, Nb2

), where lcm(a, b) is the least common multiple of integer a, b.423

The proof of Theorem 1 is in Appendix A.1. To put this into perspective, assume a fixed blocksize424

for the training paths of 6 months, and a fixed blocksize for the testing path of 24 months (or 2 years).425

Consider a 30-year investment horizon of monthly return paths randomly generated from historical monthly426

data over 90 years, i.e. N = 30 × 12 = 360 and Ntot = 90 × 12 = 1080. Then the probability of a training427

path being identical to a testing path is ( 1
1080 )lcm( 360

6 , 36024 ) = ( 1
1080 )60 < 10−180. Assume that we use a428

total of 100,000 training paths in the training data and 10,000 testing paths in the testing data. By the429

union bound, the probability of the existence of a pair of identical training and testing paths is bounded by430

100, 000× 10, 000× 10−180 = 10−171.431

Next, we consider the stationary block bootstrap case, in which the blocksizes are randomly generated432

from a shifted geometric distribution. We are able to establish the following theorem about the probability433

of two paths generated with stationary block bootstrap being identical.434

Theorem 2. Consider generating a sequence of N data points using stationary block resampling from a435

sequence of Ntot distinct observations. Let P1 and P2 be two paths generated from the stationary block436

bootstrap resampling from this observation sequence with the expected blocksizes of b̂1 and b̂2 respectively, and437

both have a length of N . The probability of P1 and P2 being identical is438
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1

Ntot

((
1− 1

b̂1

)(
1− 1

b̂2

)
+

1
b̂1

+ 1
b̂1
− 1

b̂1b̂2

Ntot

)N−1
.

The proof of Theorem 2 is also in Appendix A.1. Consider the following example. If the training paths439

are bootstrap resampled with an expected blocksize of 6 months (0.5 years) and the testing paths with an440

expected blocksize of 24 (2 years), for N = 30 × 12 = 360 (30-year horizon) and Ntot = 90 × 12 = 1080.441

Then the probability of a training path being identical to a testing path is 8.737× 10−39.442

If training data set consists of a total of 100,000 training paths and testing data set consists of 10,000443

testing paths, by union bound, the probability of existing a pair of training and testing path being identical444

is bounded by 100, 000× 10, 000× 8.737× 10−39 < 10−29.445

Therefore, even when the training set and testing set are generated from the same data sequence, the446

probability of observing the same path in the training and testing dataset is near zero. This suggests that447

using the block bootstrap resampling to generate training and testing data sets is a robust method for448

enhancing data for the learning framework.449

Remark 1. Under stationary block bootstrap, a path is likely to have large actual blocksizes even if the450

expected blocksize is relatively small, which can result in a higher probability of observing two identical paths451

than under fixed block bootstrap. For example, a path with expected blocksize of 10 years has a 5% probability452

of only containing one block of 30 years, which increases the probability of one path being identical to another453

path, according to Theorem 1.454

4 Performance Assessment and Comparison455

We evaluate and report the performance of the proposed data-driven approach for outperforming a stochastic456

target in the context of a 30 year DC pension plan. In our numerical tests, we focus on portfolios with only457

two assets: a stock index and a bond index, as described in Example 1. The benchmark portfolio is a458

constant weight strategy, which is rebalanced to 50% bonds and 50% stocks annually. We denote the wealth459

of the benchmark strategy at time t by W50/50(t).460

4.1 Original Data and Its Augmentation461

4.1.1 Historical Data462

Our main objective here is to consider the core allocation problem between a risky and a defensive asset (i.e.463

bonds).464

To that end, we use monthly historical data from the Center for Research in Security Prices (CRSP)465

from January 1, 1926 to December 31, 2015.4. Specifically, we use the CRSP 3-month Treasury bill (T-bill)466

index and the CRSP cap-weighted total return index. The latter index includes all distributions for all467

domestic stocks trading on major U.S. exchanges. Since both indexes are in nominal terms, we adjust them468

for inflation using the U.S. CPI index, also supplied by CRSP. We use real indexes since investors saving for469

retirement should be focused on real (not nominal) wealth goals. Note that in (Li and Forsyth, 2019), in the470

context of a fixed (non-stochastic) target based objective function, we have also tested the use of the CRSP471

capitalization weighted index (as the risky asset) and the ten year treasury bond index (as the defensive472

asset). The control strategies are qualitatively similar for either choice of risky and defensive asset. We have473

also carried out similar tests for our stochastic benchmark objective function. The results, using a ten year474

treasury as the defensive asset, can be found in Appendix A.4. For simplicity here, we will focus on the475

CRSP index and the 3-month T-bill case in the main article.476

4More specifically, results presented here were calculated based on data from Historical Indexes, c©2015 Center for Research
in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data Services was used in
preparing this article. This service and the data available thereon constitute valuable intellectual property and trade secrets of
WRDS and/or its third-party suppliers.
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For illustration, we consider here a two-asset allocation in which the wealth of the portfolio is allocated477

to the two indexes. We subsequently refer to the two assets simply as the stock and the bond.478

For the stock index and bond index, Table 4.1 shows the optimal expected blocksize for each index479

estimated from the historical data. When using the resampling method in the proposed data-driven NN480

approach, we simultaneously sample the same block across all asset data sets (i.e. the stock index and bond481

index). Since the optimal blocksize varies with the index, it is not clear which blocksize to use since we need482

to simultaneously resample both indices. Consequently, we will carry out tests with a variety of blocksizes,483

in the ranges reported in Table 4.1.484

Data Series
Optimal expected

block size b̂ (months)
Real 3-month T-bill index 50.1
Real CRSP cap-weighted index 1.8

Table 4.1: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric distribution Pr(b =

k) = (1− v)k−1v. The algorithm in Patton et al. (2009) is used to determine b̂.

4.2 Experiment Setting485

As discussed in Section 1.3, we use an example of an investor in a DC plan to illustrate the application of486

data-driven methodology. In the numerical example, we assume an investor starts with zero wealth (balance)487

in the DC plan, and makes a real cash injection of 10 per year5 for 30 years. At the beginning of every year,488

the investor has the choice to rebalance the DC portfolio and change the allocation weights to a stock index489

fund and a bond index fund. The market data is generated following the methodology in Section 4.1.490

Here we list the parameters used in training and testing the proposed data-driven approach:491

• L: a total of L = 100, 000 bootstrap paths are used for training;492

• Ltest: a total of Ltest = 10, 000 paths are bootstrap resampled from a different expected blocksize than493

the training data for testing the strategy performance;494

• W (0): initial wealth is W (0) = 0;495

• T : the entire investment period is T = 30 years;496

• N : the entire period is divided into N = 30 periods. At the beginning of each period rebalancing497

occurs, i.e., annual rebalancing;498

• q: annual cash injection is q = 10;499

• s: the annual target outperformance rate s = 1% for calculating the elevated target esTW50/50(T ),500

where W50/50(T ) is the terminal wealth of the constant proportion portfolio;501

• 3 features:502

– T − t: time remaining in the investment period,503

– W (t): wealth of the adaptive portfolio at time t,504

– W50/50(t): wealth of the constant proportion portfolio at time t.505

5We will use thousands of dollars as our unit of wealth
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We want to remark that in this numerical example, we are assuming annual contributions of a fixed506

dollar amount. We are aware that many pensioners care about the replacement rate (percentage annual507

employment income replaced by retirement income) which measures how well retirees can maintain their508

lifestyles in retirement. In fact, depending specific assumptions about the salary, one can scale up the cash509

contribution number to estimate whether a good replacement rate can be achieved. We present a realistic510

example at the end of Section 4.3.2 which shows that an investor can expect to achieve a decent level of511

replacement income in 30 years following our DC plan strategy.512

4.3 Assessment of Results513

We now evaluate the performance of the optimal adaptive strategy trained on bootstrap resampled data.514

First, we show the performance of the optimal adaptive strategy trained on the bootstrap resampled data515

with the expected blocksize b̂ = 0.5 years, and tested on bootstrap resampled data with expected blocksize516

of b̂ = 2, which is the average optimal blocksize. When discussing robustness in Section 5.1, we show that517

the strategy performance using alternative training-testing expected blocksize pairs is qualitatively similar.518

Training Results on Bootstrap Data: Expected Blocksize b̂ = 0.5 years

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 678 276 624 0.50 0.84
adaptive 963 474 913 0.27 0.50

Testing Results on Bootstrap Data: Expected Blocksize b̂ = 2 years

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 679 267 629 0.50 0.84
adaptive 962 449 921 0.26 0.50

Table 4.2: Terminal wealth statistics of the optimal adaptive strategy, trained on bootstrap resampled data
with blocksize b̂ = 0.5 years and tested on bootstrap resampled data with blocksize b̂ = 2 years.

Table 4.2 reports performance statistics and the probability of the terminal wealth less than the median519

of the terminal wealth of both strategies. From Table 4.2 , we observe that520

• The median and mean of the optimal adaptive strategy is significantly higher than the constant pro-521

portion strategy.522

• The optimal adaptive strategy has only 26% probability of achieving a lower terminal wealth than523

the median terminal wealth of the constant proportion strategy (median(WCP
T )), while the constant524

proportion strategy has an 84% probability of achieving a lower terminal wealth than the median525

terminal wealth of the NN adaptive strategy (median(WNN
T )).526

It is also worth noting that the standard deviation of the terminal wealth of the optimal adaptive strategy527

is higher than the standard deviation of the terminal wealth of the constant proportion strategy. In the528

context of dynamic trading, a higher standard deviation does not imply that the performance of the strategy529

is poor. In fact, we can observe from Figure 4.1a that the distribution of the terminal wealth of the optimal530

adaptive strategy is significantly more right-skewed. A higher standard deviation of terminal wealth is531

desirable in the right-skewed situation (van Staden et al., 2019). This illustrates why standard deviation532

and Sharpe Ratio are poor measures of risk for inherently non-linear strategies (Lhabitant, 2000). In fact,533

the optimal adaptive dynamic strategy has properties in common with option-based strategies. We also plot534

the CDF plot for the optimal adaptive strategy and the constant proportion strategy in Figure 4.1b.535

We note that the terminal wealth distribution of the optimal adaptive strategy has a slightly worse left536

tail than the constant proportion strategy. The 95% VaR of terminal wealth is 326 for the optimal adaptive537

strategy and 338 for the constant proportion strategy.6 In fact, from Table 4.3 we can see that the adaptive538

strategy has worse 95% and 99% VaR and CVaR than the constant proportion strategy.539

6We measure quantiles of the terminal wealth, not losses. Hence a larger value of VAR is more desirable, i.e. has less risk.
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Figure 4.1: Histogram of terminal wealth W (T ) (adaptive) and W50/50(T ) (constant proportion) and CDF

of wealth difference W (T )−W50/50(T ) based on the testing data (bootstrap data with b̂=2 years)

VaR and CVaR on Testing Data
Strategy 95% VaR 95% CVaR 99% VaR 99% CVaR
constant proportion(p = 0.5) 338 294 265 238
adaptive 326 253 201 169

Table 4.3: VaR and CVaR of terminal wealth of the adaptive strategy and constant proportion strategy.

These tail events occur when the bootstrapped paths correspond to consistently bearish market periods540

when stocks underperform bonds for a long period of time. We recall that the objective function in (2.5) is541

to determine a strategy with the terminal wealth achieving a certain premium over the benchmark strategy,542

rather than to optimize the tail risk metrics of the adaptive strategy such as VaR and CVaR. In other words,543

the objective function is designed to optimize the pathwise terminal wealth difference between the adaptive544

strategy and the constant proportion strategy, hence the idea of “beating the stochastic benchmark target”.545

Figure 4.1c shows the cumulative distribution function (CDF) of the wealth difference W (T ) −W50/50(T )546

that provides a more direct comparison between the optimal adaptive strategy and the constant proportion547

strategy along the same paths. From Figure 4.1c we can see that the probability of the optimal adaptive548

strategy underperforming the constant proportion strategy is less than 10%. When underperformance occurs,549

the magnitude of underperformance is small compared to the magnitude of outperformance.550

If reducing the tail risk has a higher priority in the investment plan, a tail riskmeasure CVaR can be551

included in the objective function accordingly. This, of course, will produce a lower probability of pathwise552

outperformance over the benchmark strategy. However, the proposed framework can be similarly adopted by553

including suitable optimization methods for CVaR optimization, see, e.g., (Alexander et al., 2006; Forsyth,554

2021; van Staden et al., 2021).555

So far, we have analyzed and compared the overall performance based on the terminal wealth. Next, we556

provide more detailed comparisons of the various characteristics of the strategies.557

4.3.1 Strategy Performance Over Time558

Since the objective function for the optimal control (2.5) is defined from the terminal wealth, we examine559

how the optimal adaptive strategy performs over the entire period of investment.560

Figure 4.2 graphs the average and various percentiles of the wealth difference W (t) −W50/50(t) in the561

investment time horizon. From Figure 4.2, we observe that562
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Figure 4.2: Wealth difference and relative wealth difference over time: W (t) denotes the optimal adaptive is
wealth and W50/50(t) denotes the benchmark

• With a high probability, the optimal adaptive strategy achieves higher wealth than the constant pro-563

portion strategy over time.564

• The outperformance of the optimal adaptive strategy in terms of the relative wealth difference is not565

as significant as the wealth difference in dollar values.566

The observations indicate that larger outperformance of the optimal adaptive strategy often occurs when567

the constant proportion strategy performs well. Nevertheless, the outperformance of the optimal adaptive568

strategy in terms of the relative wealth difference is still very impressive with a median value of almost 40%569

at the terminal stage. Of course, if we are primarily interested in relative outperformance, it is a simple570

matter to alter our objective function to focus on achieving this goal.571

Figure 4.2 shows that, even though the objective function only targets the wealth difference of the572

portfolios at the terminal time, without having any direct restrictions on the wealth of the optimal adaptive573

strategy in the interim period, the adaptive strategy still manages to have a statistically higher wealth574

throughout the entire investment period.575

576

4.3.2 Replacement Rate Example577

One common measure to determine the effectiveness of a pension system is the replacement rate, which is578

the percentage annual employment income replaced by retirement income. Often, the retirement income579

consists of two parts: the social benefits and retirement saving accounts (DC plans and tax-free investment580

accounts). Typically, 70% is commonly accepted as an adequate level of replacement rate (Booth, 2004;581

Biggs and Springstead, 2008)582

In Canada, the social benefits include the Canada Pension Plan (CPP) and Old Age Security (OAS),583

and in the US it would be the Social Security. In fact, the social benefit is a significant part of the income of584

retirees. In Canada, the average CPP and OAS payment amount to $20,000 per year7, which translates to585

7Wealthsimple, www.wealthsimple.com/en-ca/learn/how-much-cpp-retirement
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40% of replacement rate based on the average income of $49,000 in Canada8. In the United States, an earlier586

study shows that Social Security benefits provides about 40% of replacement income according to Biggs and587

Springstead (2008). However, a more recent study by Ghilarducci et al. (2017) shows that the replacement588

rate from Social Security for middle income employees ($40,000 - $115,000) is only 29%. Nevertheless, Social589

Security is still a significant source of the retirement income in the United States.590

Consider the example of an employee making $75,000 per year in Canada (which is well above national591

average of $49,000) and contributing $10,000 per year (total employee and employer contribution) to the592

savings plan. According to our numerical results in Table 4.2, the employee can expect a median terminal593

wealth over $900,000 following our adaptive strategy in the DC plan. A 4% annual withdrawal (Bengen,594

1994) out of the terminal balance of $900,000 gives $36,000, which accounts for 48% replacement income.595

If we assume this employee receives the average CPP and OAS of $20,000, i.e. a replacement rate of 26%596

(note that this is a very conservative assumption, since $75,000 annual income is well above national average,597

so the actual government benefits this employee receives will be higher than average), the total retirement598

income of this employee will be $56,000, which is a 75% replacement rate. Similarly, a U.S. employee earning599

$75,000 annually will also be able to achieve more than 70% replacement income under the assumption600

that Social Security provides 29% of replacement rate. In fact, average American employees aged between601

55-64 have an average balance of $100,000 in all retirement saving accounts combined, and having $900,000602

balance in the DC account is enough to provide adequate replacement income, according to the analysis in603

Ghilarducci et al. (2017).604

605

4.3.3 Strategy Characteristics606

We further examine the characteristics of the optimal adaptive strategy. Figure 4.3a shows different per-607

centiles of the stock allocation of the optimal adaptive strategy over time. We observe that608

• In general, the stock allocation (fraction of wealth invested in stocks) decreases when approaching the609

end of the investment horizon.610

• The stock allocation almost always stays above the benchmark allocation of 50%.611

With a red-blue color scheme, Figure 4.3b shows the heatmap of the stock allocation with respect to612

time t and the wealth difference W (t)−W50/50(t). Darker shades of the red color indicate more allocation613

in stocks and darker shades of the blue color indicate more allocation in bonds.614

From Figure 4.3b, we observe that when W (t)−W50/50(t) is positive and large (optimal adaptive strategy615

outperforming), the allocation of wealth to the stock becomes small. The intuitive explanation is that616

the optimal adaptive strategy tends to decrease the wealth allocation to stocks once it has established an617

advantage over the benchmark constant proportion strategy. This also explains why the stock allocation618

almost always stays above 50%. In most cases where the optimal adaptive strategy has established an619

advantage over the constant proportion strategy (as we have seen in Figure 4.2), decreasing the stock620

allocation to 50% to maintain the same allocation strategy as the 50/50 constant proportion strategy locks621

in the outperformance.622

On the other hand, when W (t)−W50/50(t) < 0 (i.e. the adaptive strategy underperforms), the optimal623

policy allocates more wealth to stocks. This is because the stock index has a higher expected return than624

the bond index. To eventually outperform the constant proportion strategy, the adaptive strategy invests625

more wealth in stocks, in an attempt to make up for the lost ground.626

In fact, the optimal adaptive strategy appears to be a contrarian strategy, following which an investor627

buys and sells in opposition to the prevailing sentiment at the time.628

8Government of Canada, www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1110023901
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4.3.4 Historical Backtest Performance629

As a special out-of-sample test, we consider the actual historical path from 1985 to 2015 to backtest the630

performance of the optimal adaptive strategy. We note that the historical path is not a path in the training631

data set.632

From Figure 4.4, we see that the optimal adaptive portfolio always maintains a higher wealth than the633

constant proportion strategy over the entire investment period. While optimizing the performance of the634

adaptive strategy on a specific path is not the goal of our study, it is still quite interesting to see that635

historically the optimal adaptive strategy does better than the constant proportion strategy.636

Note that the adaptive strategy does show a large drawdown in 2002 and 2008. However, our objective637

function is posed in terms of outperformance of the terminal wealth. We see that the adaptive strategy638

outperforms, in the sense that its wealth is always above the benchmark wealth, even in 2002 and 2008. It639

is, of course, possible to add penalties on drawdowns in the objective function. However, this would result640

in less favorable terminal statistics.641

The solid line without markers in Figure 4.4 illustrates the time evolution of the stock allocation on the642

historical path. When the adaptive strategy performs poorly, such as in 2002 and 2008, the strategy allocates643

more wealth to stocks. When the adaptive strategy performs well, the strategy decreases allocation to stocks644

and invests more in bonds.645

4.4 Comparison with the 80/20 Constant Proportion Strategy646

While the average stock allocation from the optimal adaptive strategy varies over time, its average over time647

is about 80%. A natural question is how the optimal adaptive strategy compares with the 80/20 constant648

proportion strategy which invests 80% of the wealth in the stocks and 20% in the bonds.649

Here we compare the optimal adaptive strategy with the 80/20 constant proportion strategy. Recall650

that in Section 4.3, the optimal adaptive strategy is trained on bootstrap resampled data with the expected651

blocksize of 0.5 years and the test dataset is bootstrap resampled data with the expected blocksize of 2 years.652

We compare the optimal adaptive strategy and 80/20 strategy on the same test dataset.653

In Figure 4.5, we plot CDFs of WNN (T )−W50/50(T ) and W80/20(T )−W50/50(T ), i.e., the wealth difference654

of the optimal adaptive strategy and the 80/20 strategy from the 50/50 strategy respectively.655
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We observe that the optimal adaptive strategy controls tail risk better than the 80/20 strategy. Specif-656

ically, the probability of the optimal adaptive strategy underperforming the 50/50 strategy is lower than657

the 80/20 strategy. When underperformance against the 50/50 strategy occurs, the magnitude of underper-658

formance for the optimal adaptive strategy is less than the magnitude of underperformance for the 80/20659

strategy, as in Figure 4.5.660

It is worth noting that the 80/20 strategy has more upside than the optimal adaptive strategy. However,661

we should remind the readers that less upside is a natural result of our choice of the double-sided penalty662

objective function. As reflected in the asymmetric objective function, our goal is not to achieve extremely663

large outperformance over the 50/50 strategy, but to reach the elevated target with high probability and664

to control the downside risk. The optimal adaptive strategy achieves those goals better than the 80/20665

strategy. To better demonstrate this, we plot the following CDF of outperformance of both strategies over666

the elevated target esT ·W50/50(T ), in Figure 4.6b.667
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We also observe that the optimal adaptive strategy has a smaller probability of underperforming the668

elevated target (37.3%) than the 80/20 strategy (46.8%). This means the optimal adaptive strategy is more669

likely to reach the elevated target and thus achieve the pre-determined annual outperformance spread.670

Moreover, we observe from the enlarged CDF plot in Figure 4.6b that the optimal adaptive strategy671

consistently controls underperformance better than the 80/20 strategy, in the sense that the optimal adaptive672

strategy underperforms less than the 80/20 strategy when the elevated target is not met.673

5 Robustness Assessment674

To further evaluate the robustness of the optimal adaptive strategy, we assess optimal control models from675

the following three perspectives:676

• We test the strategy learned from the bootstrap data with a given expected blocksize on bootstrap677

data with multiple different expected blocksizes.678

• We train the model on a dataset simulated from a synthetic parametric model and test it on the679

bootstrap resampled dataset.680

• We train the strategy learned on bootstrap data from one segment of the historical data and test the681

strategy on bootstrap data from another segment of the historical data.682
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We generate the bootstrap resampled data by sampling directly from the specified historical data sequence683

for training the optimal control model.684

5.1 Testing Using Different Blocksizes685

We test the adaptive strategy learned on bootstrap resampled data with a given blocksize on bootstrap686

resampled data with different blocksizes.687

For illustration, here we only show the testing results of the strategy learned on bootstrap resampled688

data with expected blocksize of 0.5 years, where test data sets are bootstrap resampled data with blocksizes689

ranging from 1-10 years. We note that training on data sets using a different blocksize, and testing on other690

blocksizes produces qualitatively similar results.691

Training Results on Bootstrap Data with Expected Blocksize = 0.5 : Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 678 276 624 0.50 0.86
adaptive 963 474 913 0.26 0.50

Testing Results on Bootstrap Data: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 624 0.50 0.84
NN adaptive 955 466 909 0.27 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631 0.50 0.84
NN adaptive 958 445 917 0.26 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626 0.50 0.85
NN adaptive 953 409 915 0.24 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632 0.50 0.87
NN adaptive 960 393 928 0.23 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635 0.50 0.88
NN adaptive 961 383 928 0.22 0.50

Table 5.1: Terminal wealth statistics of the adaptive strategy trained on bootstrap resampled data with
expected blocksize b̂ = 0.5 years. Tested on bootstrap resampled data with blocksizes from 1 to 10 years.

We can observe from Table 5.1 that692

• The mean and the median terminal wealth of the adaptive strategy remain similar across different693

blocksizes.694

• The adaptive strategy has a more favorable terminal wealth distribution as it is more likely to achieve695

the terminal wealth higher than the median terminal wealth of the constant proportion strategy.696

Table 5.1 demonstrate that the outperformance of the adaptive strategy over the benchmark strategy697

is robust across different expected blocksizes. We include more testing results from strategies trained with698

other expected blocksizes in Appendix A.5.699

5.2 Strategy Trained on Synthetic Data700

In this section, we generate synthetic data from a parametric model calibrated to historical data. We then701

test the strategy on bootstrap resampled data. Clearly, the synthetic data from the parametric model will702

have a different distribution compared to the resampled data.703

5.2.1 Synthetic Data Generation704

The synthetic data is generated based on a jump-diffusion stochastic process. Let S(t) and B(t) respectively705

denote the wealth invested in the stocks and bonds at time t, t ∈ [0, T ]. Specifically, we will assume that S(t)706
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represents the unit amount invested in a broad stock market index (CRSP cap-weighted index), while B(t)707

is the unit amount invested in short term default-free government bonds (in our case, the 3-month T-bill).708

Recall that t− = t − ε, ε → 0+, i.e. t− is the instant of time before t, and let ψ be a random number709

representing a jump multiplier. When a jump occurs, S(t) = ξS(t−). Allowing discontinuous jumps lets us710

explore the effects of severe market crashes on the stock holding, and nonnormal returns. We assume that711

ξ follows a double exponential distribution ((Kou, 2002); (Kou and Wang, 2004)). If a jump occurs, pup is712

the probability of an upward jump, while 1− pup is the chance of a downward jump. The density function713

for y = log ξ is714

f(y) = pupη1e
−η1y1y≥0 + (1− pup)η2eη2y1y≤0. (5.1)

For future reference, note that715

E[y = log ξ] =
pup
η1
− (1− pup)

η2
, E[y = ξ] =

pupη1
η1 − 1

+
(1− pup)η2
η2 − 1

(5.2)

We assume that S(t) evolves according to716

dS(t)

S(t−)
= (µ− λE[ξ − 1])dt+ σdZ + d

( πt∑
i=1

(ξi − 1)
)
, (5.3)

where µ is the (uncompensated) drift rate, σ is the volatility, dZ is the increment of a Wiener process, πt717

is a Poisson process with positive intensity parameter λ, and ξi are i.i.d. positive random variables having718

distribution (5.1). Moreover, ξi, πt, and dZ are assumed to all be mutually independent.719

We assume that the dynamics of the amount B(t) invested in the defensive asset are720

dB(t) = rB(t)dt, (5.4)

where r is the (constant) rate. This is obviously a simplification of the real bond market. We remind the721

reader that, ultimately, our NN method is entirely data-driven, and will be based on bootstrapped stock and722

bond indexes.723

Based on (5.3) and (5.4), we use the methods in (Dang and Forsyth, 2016) to calibrate the process724

parameters. We use a threshold technique (Cont et al., 2011) to identify jump frequency and distribution,725

and the methods in (Dang and Forsyth, 2016) to determine the remaining parameters. Annualized estimated726

parameters for the cap-weighted stock index is provided in Table 5.2.727

µ σ λ pup η1 η2 r
Real CRSP Cap-Weighted Stock Index and 3-month T-bill Index
.08889 .14771 .32222 0.27586 4.4273 5.2613 0.00827

Table 5.2: Estimated annualized parameters for double exponential jump diffusion model. Cap-weighted
index, deflated by the CPI. Sample period 1926:1 to 2015:12.

We then generate the synthetic data based on the parametric model with the calibrated parameters728

through Monte Carlo simulations.729

5.2.2 Strategy Performance730

We test the performance of the strategy trained on synthetic data on bootstrap data with expected blocksize731

b̂ = 2 years. Note that the testing performance with other expected blocksizes is very similar to each other732

so we only show results for b̂ = 2 years.733
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Training Results on Synthetic Data : Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 714 383 630 0.50 0.82
adaptive 1019 651 930 0.29 0.50

Testing Results on Bootstrap Data with Expected Blocksize = 2 years

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 679 267 630 0.50 0.84
adaptive 944 431 912 0.26 0.50

Table 5.3: Terminal wealth statistics of the adaptive strategy trained on synthetic data and tested on
bootstrap resampled data with expected blocksize b̂ = 2 years

Table 5.3 shows that the adaptive strategy learned from synthetic data performs well on the test set734

of bootstrap resampled data. The adaptive strategy have significantly higher median and mean terminal735

wealth than the constant proportion strategy in both training and testing.736

We do notice that in the testing results, the adaptive strategy has slightly lower mean and median737

terminal wealth, as well as a lower standard deviation than in training results. This is hardly surprising738

since the training and test data have different distributions. However, overall, the strategy appears to be739

quite robust. Further distribution comparisons can be found in Appendix A.6.740

5.3 Robustness Test with Training/Testing Split741

In §5.1 and §5.2, both training and testing datasets are generated from either a parametric model or bootstrap742

resampled data from a single historical return path from 1926-2015. A possible criticism of such an approach743

is that both the training data and testing data share the same information source. In particular, is it possible744

for the training data to have a forward-looking bias?745

We argue that there is no forward-looking bias in the described training and testing data generation746

process. Recall that in the experiments, training data and testing data have different expected blocksizes,747

and thus different distributions. Specifically, when bootstrap resampling randomly with different expected748

blocksizes, the ordering of blocks of data points is randomly shuffled and any sequential ordering information749

is destroyed. Further, Theorem 1 and 2 show that the probability of an entire path in the training dataset750

reappearing in the testing dataset is vanishingly small. This is due to the random block resampling nature751

of the bootstrap algorithm.752

Nonetheless, to provide additional evidence of robustness, we compare the following two different cases:753

Case #1: We train the adaptive strategy on bootstrap resampled data from the entire historical path754

from 1926 to 2015. We test the strategy on bootstrap resampled data from the last 30 years of the755

historical path from 1986-2015. There is an overlap between the underlying historical path for training756

and testing (1986-2015). We show that such overlap does not introduce an advantage in terms of the757

strategy performance by comparing it with case #2 - the non-overlap case.758

Case #2: We train the adaptive strategy on bootstrap resampled data from the first 60 years of the759

historical path from 1926 to 1985. We test the strategy on the same bootstrap resampled data generated760

from the last 30 years of the historical path from 1986-2015 as in case #1. Consequently, there is no761

overlap between the underlying historical paths we use for generating training data and testing data762

at all.763

Figure 5.1 and Figure 5.2 show these two cases schematically. Case #2 is the more stringent test case as764

there are zero overlaps between the underlying historical data for the generation of the training set and the765

testing set.766

Note that, for Case #1 and #2, the underlying historical data for testing data has only a 30-year window.767

Recall that our investment horizon in our previous experiments was T = 30 years. In order to obtain more768

meaningful block bootstrap resampling results for the non-overlap window, we will reduce the investment769

horizon to T = 15 years, for both cases in this section.770
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Figure 5.1: Case #1: use historical data from 1926-2015 for generating training data, and 1986-2015 for
testing. There is an overlap between the underlying historical paths for training and testing.
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Figure 5.2: Case #2: “non-overlap” case where underlying market data for training and testing data has no
overlaps. Case #2 uses the same testing dataset as case #1.
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Figure 5.3: Comparison of testing results for the two cases: case #1: train: 1926-2015, test: 1986-2015; case
#2: train: 1926-1985, test: 1986-2015.
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We first compare the CDF of the terminal wealth of the two cases. From Figure 5.3a we can observe that771

Case #1 and Case #2 have almost identical CDF curves. The almost identical CDF curves for Case #1 and772

Case #2 (the non-overlap case) - supports our argument that forward-looking bias is not a concern in our773

approach. Despite using the entire historical period as the underlying data for training, case #1 does not774

have a superior CDF than Case #2, in which the underlying market data for training data and testing data775

have no overlaps. In Figure 5.3b, we show the median of wealth difference between the adaptive strategy776

and the constant proportion strategy for both cases. Again, Case #1 and Case #2 have almost identical777

performances, despite that the median stock allocation for the two cases are slightly different, as shown in778

Figure 5.3c. In fact, we find that the different percentiles of the two cases are really close to each other, and779

that Case #2 has slightly better tail risk control than Case #1 (5th percentile), which further proves that780

the overlap does not introduce performance advantage as the non-overlap case actually has less tail risk.781

The percentile results can be found in Appendix A.7.782

In conclusion, the results further illustrate the robustness of our approach and show that forward-looking783

bias is not a concern in our work.784

6 Target-date Funds as Benchmark785

In recent years, target-date funds (also known as life-cycle funds) have gained much popularity amongst786

investors. Target-date funds operate with the premise that the investor retires at a certain target date. The787

fund adjusts the asset allocation as the calendar time gets closer to the target date. Often, the fund allocates788

between a stock fund and a bond fund.789

Typically, target-date funds employ a deterministic glide-path style of asset allocation, in which the fund790

maintains a high percentage of stock allocation in the earlier phase of the investment. As time goes by, the791

stock allocation decreases and the bond allocation increases. For example, the 40-year Vanguard target-date792

fund (Donaldson et al., 2015) starts with a 90% stock allocation for the first 15 years, and gradually decreases793

the stock allocation to 50% at year 40 (the decrease is almost linear as observed from Figure 6.1)9. A major794

part of target-date funds’ popularity comes from this glide-path design, as it fits well with the common belief795

that younger investors can better withstand market risk than older investors.

Figure 6.1: Target-date fund stock allocation from Vanguard (Donaldson et al., 2015)

796

9For simplicity, we have lumped together US and International stocks as an allocation to stocks, and the total allocation to
US bonds, international bonds and TIPS as an allocation to bonds
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6.1 Target-date Fund and Constant Proportion797

However, recent research, based on empirical (Esch and Michaud, 2014; Arnott et al., 2013) and theoretical798

work (Graf, 2017; Forsyth and Vetzal, 2019) suggests that the purported advantages of target-date funds799

may have been oversold. This research indicates that the terminal wealth distributions of a deterministic800

glide-path and a constant proportion strategy having the same expected terminal wealth, are virtually801

indistinguishable.802

In order to confirm this analysis, we have determined that a constant weight strategy with 73% in stocks803

and 27% in bonds has approximately the same expected terminal wealth as the Vanguard glide path in804

Figure 6.1 (based on bootstrap resampling).805

We then empirically computed the terminal wealth cumulative distribution function of the Vanguard806

target-date fund and 73/27 constant proportion strategy using historical bootstrapped resampled data.807

From Figure 6.2, we can observe that the terminal wealth distributions of the two strategies are almost808

identical. Therefore, outperforming a target-date fund in terms of terminal wealth distribution is essentially809

the same problem as outperforming a constant proportion strategy.810
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Figure 6.2: CDF of terminal wealth of Vanguard TDF and 73/27 strategy

6.2 Outperforming the Vanguard Target-date Fund811

Nevertheless, outperforming the Vanguard target-date fund or the 73/27 constant proportion strategy ap-812

pears to be very challenging, if we retain our constraint that use of leverage is not permitted. This is simply813

because such strategies are already heavy in stocks, and thus inevitably the learned strategy needs to be814

heavier in stocks in order to achieve a higher expected terminal wealth, but the leverage constraint imposes815

an upper bound on the stock holdings.816

As an experiment, we train the model on bootstrap resampled data with the Vanguard target-date fund817

as the benchmark and set the outperformance spread in the objective function to be 50 basis points. We818

can reasonably argue that the learned adaptive strategy has a more attractive terminal wealth distribution819

compared to the Vanguard target-date fund since the CDF of the adaptive strategy shown in Figure 6.3a is820
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more right-skewed with a slightly worse left tail. However, we can also observe from Figure 6.3b that the821

learned strategy has a median stock allocation of almost 100%, and a mean allocation above 90%. In other822

words, half of the time the strategy simply allocates all wealth to the stock, which makes the learned adaptive823

strategy seem quite trivial and not so adaptive as we expect10. This happens simply because stock-heavy824

allocation nature of the Vanguard target-date fund leaves little room for improvement, and thus forces the825

adaptive strategy to go all stock so that the outperformance spread of 50 bps can be achieved.826

We remark that, in terms of terminal wealth distribution, we could expect more interesting results if we827

allowed use of leverage. However, this is usually not advisable in a retirement savings account.828
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Figure 6.3: Testing results on bootstrap resampled data with b̂ = 2 years. The neural network is trained on
bootstrap resampled data with b̂ = 0.5 years.

6.3 Outperforming a Conservative Target-date Fund829

In order to illustrate the capability of our proposed framework in a more meaningful way, we choose a more830

conservative target-date fund as the benchmark since it provides more room for improvement. The target831

date of the benchmark strategy is set to be 40 years from initiation. In the first 15 years, the fund allocates832

80% in stocks and 20% in bonds. After the first 15 years, the stock allocation linearly decreases to 40% at833

the target date, while the bond allocation increases accordingly. In other words, this benchmark strategy834

shifts the stock allocation of the Vanguard 40-year target-date fund down by 10%. We remark that this835

conservative benchmark strategy is used in Vanguard report (Donaldson et al., 2015) and described as a836

more conservative target-date fund. We also note that even in this so-called conservative target-date fund,837

the time-average stock allocation over 40 years is still about 68% and thus has a substantial amount of838

market exposure.839

In the next experiment, we set the outperformance target spread s in objective function (2.5) to be 50840

basis points. As in Section 4.3, the parameters of the neural network are trained on bootstrap resampled841

data with the expected blocksize of 0.5 years, and tested on bootstrap resampled data with an expected842

blocksize of 2 years. The only difference here is that the benchmark strategy is a target-date fund, instead843

of a constant proportion strategy.844

First and foremost, we can observe from Figure 6.4a that the learned adaptive strategy has a more845

right-skewed terminal wealth distribution than the conservative target-date fund. When we examine the846

actual allocation of the adaptive strategy in Figure 6.4c, we can see that the adaptive strategy tends to hold847

10We remark that such a strategy is still better than a strategy that is always 100% stock allocation, when evaluated under
the two-sided objective function 2.5 and in terms of tail risk.
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Figure 6.4: Testing results on bootstrap resampled data with b̂ = 2 years. The neural network is trained on
bootstrap resampled data with b̂ = 0.5 years. The benchmark is the conservative Vanguard strategy.

more stocks in the earlier periods. This establishes an early advantage over the benchmark conservative848

target-date fund. Once the advantage is established, the adaptive strategy derisks (shifts to bonds) more849

aggressively compared to the linear decrease in stock allocation in the target-date fund.850

Such asset allocation behavior also explains why it was difficult for the framework to learn an interesting851

strategy when benchmarking with the more aggressive Vanguard target-date fund. The default Vanguard852

target-date fund starts with 90% stock allocation, and forces the adaptive strategy to full stock allocation853

so that the adaptive strategy can establish an early advantage.854

In conclusion, we have shown in this section that:855

• Outperforming a deterministic glide path target-date fund in terms of terminal wealth distribution is856

essentially the same problem as outperforming a constant proportion strategy.857

• Outperforming the Vanguard target-date fund will lead to an almost all stock strategy, as the Vanguard858

target-date fund is stock heavy and leaves little room for learning a non-trivial adaptive strategy859

(assuming that a no-leverage constraint is imposed).860

• When choosing a more conservative target-date fund as the benchmark strategy, we are able to learn a861

non-trivial adaptive strategy that outperforms the benchmark target-date fund with high probability862

and has a better terminal wealth distribution. Note that the more conservative glide path still has a863

time-averaged fraction in stocks of about 68%.864

865

7 Limitations866

A common limitation of machine learning applications in finance is the lack of a theoretical performance867

guarantee. Unfortunately, in our case, there is also no theoretical guarantee on whether the trained strategy868

has really converged to the theoretical optimal strategy. However, the relative performance nature of this869

specific use case compensates this limitation to a certain degree, as one can always empirically compare the870

learned strategy with the benchmark strategy.871

The bootstrap resampling method we use in this framework may also prevent the application of our872

methodology in a wide range of investment problems. Bootstrap resampling requires a long data history and873

enough data points. Depending on the nature of the problem, using bootstrap resampling may not always874

be feasible and could largely limit the choice of the asset basket. For example, in an asset allocation problem875

where assets are single name stocks, it is likely that the stocks have different length of history. Bootstrap876

resampling is not easily modifiable to account for mismatches and gaps in the historical individual stock877

data.878

879

29



8 Conclusions880

In this article, we propose a data-driven framework for computing the optimal asset allocation for out-881

performing a stochastic benchmark target based on market asset return observations. The scenario-based882

dynamic asset allocation problem is solved directly assuming a neural network representation for the optimal883

control, without using dynamic programming. This leads to a method that avoids the curse of dimensionality884

which is a critical issue in dynamic allocation for outperforming a stochastic benchmark.885

In addition, we design an asymmetric distribution shaping objective function which is capable of produc-886

ing an optimal strategy which can yield significantly larger median terminal wealth than the target, with887

only a small probability (and magnitude) of underperformance. We emphasize that our methodology can888

encompass a wide class of objective functions, which can be tailored to the risk preferences of individual889

investors.890

We use block bootstrap resampling to augment historical financial market data. The training data is891

generated by block bootstrap resampling from market asset returns. This leads to a data-driven approach892

for determining the optimal dynamic asset allocation, avoiding the need to make a parametric asset price893

model as well as model parameter estimations. We further provide mathematical justifications for using894

block bootstrap resampling to generate both training and testing datasets.895

The proposed method is illustrated in the DC pension allocation problem, which is a practically relevant896

and important problem on its own. We evaluate and analyze the performance of the optimal NN adaptive897

strategy based on CRSP 3-month Treasury bill (T-bill) index for the defensive asset and the CRSP cap-898

weighted total return index for the risky asset from 1926:1-2015:12. Our method is straightforward to use899

for portfolios with more assets. We include an example with three month T-bills, 10 year treasuries, and a900

capitalization weighted CRSP index in Appendix A.3.901

We illustrate the robustness of our approach from three different perspectives.902

• We show that the adaptive strategy trained on bootstrap resampled data with a given expected block-903

size performs consistently well on bootstrap resampled data with different expected blocksizes (thus904

different distributions).905

• We show that the adaptive strategy learned on synthetic data performs well on bootstrap resampled906

data, despite the fact that the methodology for generating the datasets are quite different.907

• We compare the performance of our strategy with the strategy learned in an non-overlap setting where908

the underlying market data for the training dataset and testing dataset has no overlap. We show that909

the non-overlap case has a comparable performance which supports our argument that forward-looking910

bias should not be a concern in our approach.911

We remark here that results we have obtained in this article are based on the assumption that the training912

and testing datasets have similar distributions. In recent years we have observed the slowing down of economic913

growth globally, and many worry that the COVID-19 pandemic could bring an irreversible impact on the914

global economy. Others believe that the constantly decreasing interest rates and the unprecedented negative915

rates will attract more funds to stocks from fixed income investments, and lead to the further widening of916

the yield spread between stocks and bonds. Note that our historical data was based on the years 1926-2015,917

which encompasses the great depression, a world war, periods of high inflation, the dot-com bubble and the918

financial crisis of 2008. This data, which we use for training, certainly contains many difficult periods for919

investors. While it is certainly true that an optimal strategy learned from past data may not be optimal920

if the future financial market behaves significantly differently from the past, we should perhaps recall the921

quote922

The four most expensive words in the English language are: ”This time it’s different.” (Sir John923

Templeton)924

In summary, we cannot predict the future, and the best we can do is to prepare for the future by learning925

from history.926
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Basing our optimal control on a shallow Neural Network representation using only a small number of927

financially relevant feature variables results in a strategy that is financially intuitive and implementable.928
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A Appendix935

A.1 Proofs for Theorem 1 and 2936

We mathematically establish Theorem 1 and 2.937

For a path P, we use the following notations:938

b̂ = expected blocksize in stationary block bootstrap

N = number of total datapoints in the path

Ntot = number of total datapoints to bootstrap from

P[i] = the ith data point in path P
(A.1)

We also make the following definitions.939

Definition 1. Assume that a path P of length N , which contains blocks [B1, . . . Bk], is resampled from the940

original data path of length Ntot. The decision index list [I1, . . . , Ik] of the path P is defined as the list of941

starting indices of every block in the resampled path with I1 = 1, Ii = 1 +
∑i−1
j=1 |Bj |, i = 2, . . . k, where |Bj |942

denotes the number of points in the block Bj. If Ik is the starting index of the last block in the path, then,943

for index completeness, we define Ik+1 ≡ N + 1.944

Remark 2 (Decision Index List Example). Given a decision index list [I1, . . . , Ik], associated with a path945

P, then the data point of the path, which starts at decision index Ii, is P[Ii].946

Definition 2. For any two paths P1 and P2, the combined decision index list of P1 and P2 is the merged947

index list (with only a single copy of each index) of the decision index lists of P1 and P2. The merged list948

[I1, . . . , Ip] retains the order properties of the original lists, i.e. Ii+1 > Ii and Ip+1 = N + 1.949

Definition 3. For any two paths P1 and P2, we define Ncdi(P1,P2) as the length of the combined decision950

index list of P1 and P2.951

Lemma 1. Consider either the fixed block resampling or stationary resampling from a sequence of Ntot952

distinct observations. Two paths P1 and P2 with [I1, I2, . . . , Icdi] as the combined decision index list are953

identical if and only P1[Ij ] = P2[Ij ] at any Ij, j = 1, . . . , Ncdi.954

Proof. First, P1 equals to P2 clearly implies that P1[Ij ] = P2[Ij ] at any Ij , j = 1, . . . , Ncdi. Con-955

versely, assume that P1[Ij ] = P2[Ij ], j = 1, . . . , Ncdi. For any j, j = 1, . . . , Ncdi, the entire segment956

P1[Ij ], . . . ,P1[Ij+1−1] is from the same resampled subblock of the original data. Similarly, the the entire seg-957

ment P2[Ij ], . . . ,P2[Ij+1−1] is from the same resampled subblock of the original data. Since P1[Ij ] = P2[Ij ],958
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then P1[Ij ], . . . ,P1[Ij+1− 1] and P2[Ij ], . . . ,P2[Ij+1− 1] are identical. Thus, the entire paths P1 and P2 are959

identical.960

961

962

THEOREM 1. Consider fixed block resampling sequences of N points from a sequence of Ntot distinct963

observations . Let path P1 be a bootstrap resampled path with a fixed blocksize of b1 and path P2 be a964

bootstrap resampled path with a fixed blocksize of b2. Then the probability of P1 and P2 being identical is965

( 1
Ntot

)lcm( N
b1
, Nb2

), where lcm(a, b) is the least common multiple of integer a, b.966

967

968

Proof. Let I denote the combined decision index list of P1 and P2, with Ncdi the total number of combined969

decision points and Ij denoting the jth index within I.970

From Lemma 1, two paths are identical if and only if P1[Ij ] = P2[Ij ] at any Ij , j = 1, . . . , Ncdi.971

For any j = 1, . . . , Ncdi, since each starting point of either P1 or P2 is chosen independently with equal972

probability P(P1[Ij ] = P2[Ij ]) = 1
Ntot

. In addition973

P(P1[Ij ] = P2[Ij ], j = 1, . . . , Ncdi(P1,P2)) =

Ncdi(P1,P2)∏
j=1

P(P1[Ij ] = P2[Ij ])

= (
1

Ntot
)Ncdi(P1,P2)

.974

Since Ncdi(P1,P2) = lcm(Nb1 ,
N
b2

), the probability of P1 and P2 being identical is ( 1
Ntot

)lcm( N
b1
, Nb2

).975

Next, we consider the stationary block bootstrap resampling, in which the blocksizes are randomly976

generated from a shifted geometric distribution.977

Properties 1 (Properties of a Geometric Distribution). Suppose the integer m > 0 is drawn from a shifted978

geometric distribution, with E[m] = 1/p, then979

P[m = k] = (1− p)k−1p
P[m ≥ k] = (1− p)k−1 . (A.2)

We rewrite equation (A.2) in a form amenable to manipulation. Let980

(1− p) = e−λ , (A.3)

so that equation (A.2) becomes981

P[m = k] = e−λk(eλ − 1)

P[m ≥ k] = e−λ(k−1)

λ = − log[1− p] . (A.4)

Denote the expected blocksize by b̂, then in our case, p = 1/b̂, and consequently982

λ = − log

[
1− 1

b̂

]
. (A.5)

Lemma 2. Suppose [I1, . . . , Ik] be the decision index list of a block resampled path of length N with the983

expected blocksize of b̂. Then the probability of the decision index list [I1, . . . , Ik] occurring is e−λ(N−1)(eλ −984

1)k−1, with λ = − log[1− 1
b̂
].985
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Proof. By definition, Ij+1 > Ij for any j = 1, . . . , k − 1, and Ik+1 = N + 1. The probability of path P986

having [I1, . . . , Ik] as the decision index list is equal to the probability of path P having the first block with987

blocksize of I2−I1, . . ., the kth block with blocksize of Ik+1−Ik. Denote the blocks of path P as B1, . . . , Bk.988

According to Properties 1,989

P(blocksize(Bj) = Ij+1 − Ij) =

{
e−λ(Ij+1−Ij)(eλ − 1), if j < k

e−λ(Ik+1−Ik−1), if j = k

The probability of path P having [I1, . . . , Ik] as the decision index list is

k∏
j=1

P(blocksize(Bj) = Ij+1 − Ij) = e−λ(Ik+1−I1−1)(eλ − 1)k−1 = e−λ(N−1)(eλ − 1)k−1.

990

Lemma 2 shows that the probability of a stationary block resampled path P with an expected blocksize991

of b̂ having a decision index list is uniquely determined by the expected blocksize b̂, the path length N , and992

the length k of the decision index list.993

Lemma 3. Suppose two paths P1 and P2 of the length N are generated by stationary block bootstrap resam-994

pling with the expected blocksizes of b̂1 and b̂2 respectively. Then995

P(Ncdi(P1,P2) = k) =

(
N − 1

k − 1

)
e−(λ1+λ2)(N−1)(eλ1+λ2 − 1)k−1

λ1 = − log

[
1− 1

b̂1

]
; λ2 = − log

[
1− 1

b̂2

]
. (A.6)

Proof. Let f(b̂, n) denote the occurrence probability of a stationary block resampled path of length N with996

the expected blocksize of b̂ and a decision index list of length n (this is given by Lemma 2).997

Suppose [I1, . . . , Ik] is a combined index list of any two paths P1 and P2. Let v be the number of998

overlapped indices and i be the number of non-overlapped indices for P1 respectively, corresponding to999

[I1, . . . , Ik].1000

Enumerating the possible values for v, the number of overlapped indices and values for i, the number1001

non-overlapped indices in P1, the probability of a combined decision index list [I1, . . . , Ik] occurring equals1002

k∑
v=1

((k − 1

v − 1

) k−v∑
i=0

(
k − v
i

)
f(b̂1, v + i)f(b̂2, k − i)

)
. (A.7)

Note that1003

k∑
v=1

((k − 1

v − 1

) k−v∑
i=0

(
k − v
i

)
f(b̂1, v + i)f(b̂2, k − i)

)
=

k∑
v=1

((k − 1

v − 1

) k−v∑
i=0

(
k − v
i

)
e−λ1(N−1)(eλ1 − 1)v+i−1e−λ2(N−1)(eλ2 − 1)k−i−1

)
=e−(λ1+λ2)(N−1)

k∑
v=1

((k − 1

v − 1

)(
eλ1+λ2 − eλ1 − eλ2 + 1

)v−1( k−v∑
i=0

(
k − v
i

)
(eλ1 − 1)i(eλ2 − 1)k−v−i

))
=e−(λ1+λ2)(N−1)

k∑
v=1

((k − 1

v − 1

)(
eλ1+λ2 − eλ1 − eλ2 + 1

)v−1(
eλ1 + eλ2 − 2

)k−v)
=e−(λ1+λ2)(N−1)(eλ1+λ2 − 1)k−1

33



Since there are
(
N−1
k−1

)
combinations of the decision index list of length k, we conclude

P(Ncdi(P1,P2) = k) =

(
N − 1

k − 1

)
e−(λ1+λ2)(N−1)(eλ1+λ2 − 1)k−1.

1004

Using Lemma 1 and Lemma 3, we establish the probability of two paths generated with stationary block1005

bootstrap resampling being identical.1006

1007

THEOREM 2. Let P1 and P2 be two paths of the length N generated from the stationary block bootstrap1008

resampling from a sequence ofNtot distinct observations with the expected blocksizes of b̂1 and b̂2 respectively.1009

The probability of P1 and P2 being identical is1010

1

Ntot

((
1− 1

b̂1

)(
1− 1

b̂2

)
+

1
b̂1

+ 1
b̂1
− 1

b̂1b̂2

Ntot

)N−1
.

1011

1012

Proof. Using Lemma 1, P1 = P2 if and only if the observations from P1 and P2 are equal at each of the
index in the combined decision index list. Thus

P
(
P1 = P2|Ncdi(P1,P2) = k

)
=

(
1

Ntot

)k
.

Additionally, following Lemma 3, we have1013

P(P1 = P2) =

N∑
k=1

P
(
Ncdi(P1,P2) = k

)
· P
(
P1 = P2|Ncdi(P1,P2) = k

)
=

N∑
k=1

(
N − 1

k − 1

)
e−(λ1+λ2)(N−1)(eλ1+λ2 − 1)k−1(

1

Ntot
)k

=
e−(λ1+λ2)(N−1)

Ntot

N∑
k=1

(
N − 1

k − 1

)(eλ1+λ2 − 1

Ntot

)k−1
=
e−(λ1+λ2)(N−1)

Ntot

(
1 +

eλ1+λ2 − 1

Ntot

)N−1
=

1

Ntot

(
e−(λ1+λ2) +

1− e−(λ1+λ2)

Ntot

)N−1
=

1

Ntot

((
1− 1

b̂1

)(
1− 1

b̂2

)
+

1
b̂1

+ 1
b̂1
− 1

b̂1b̂2

Ntot

)N−1
.

1014

A.2 Results from Symmetric Quadratic Objective Function1015

In this section, we show that the asymmetric penalties give a more favorable terminal wealth distribution1016

compared to a symmetric quadratic penalty objective function E
[(
W (T )− esT ·Wb(T )

)2]
.1017

We train two adaptive strategies under our proposed asymmetric objective function (2.5) and the quadratic1018

symmetric objective function with the same bootstrap resampled dataset (expected blocksize of 0.5 years),1019

and test the two strategies on the same bootstrap resampled dataset with expected blocksize of 2 years. The1020

following results are all testing results.1021
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We can see from Table A.1 that the terminal wealth of the adaptive strategy trained with the asymmetric1022

objective function achieves a higher expected and median terminal wealth. We can also observe that the1023

terminal wealth distribution from the asymmetric objective function is more right-skewed than the distribu-1024

tion from the quadratic symmetric objective function from Figure A.1a. In fact, if we compare the path-wise1025

terminal wealth, as shown in Figure A.1b, we can clearly see that the asymmetric objective function leads1026

to higher terminal wealth most of the time.1027

We believe the superior performance from the asymmetric objective function is because the linear penalty1028

on outperformance incentivizes a more right-skewed distribution for the optimizer than the symmetric1029

quadratic penalties, in terms of both underperformance and outperformance.1030

Testing Results on Bootstrap Data with Expected Blocksize = 2 years
Strategy E(WT ) std(WT ) median(WT ) Pr(WT < 500) Pr(WT < 600)
asymmetric objective 940 430 885 0.15 0.23
symmetric objective 864 387 811 0.18 0.28

Table A.1: Terminal wealth statistics of adaptive strategies trained on bootstrap resampled data with
expected blocksize b̂ = 0.5 years and tested on bootstrap resampled data with expected blocksize b̂ = 2
years
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Figure A.1: Terminal wealth and terminal wealth difference, comparing symmetric and asymmetric objective
functions.

A.3 The Three-asset Case1031

While we only present an example with two assets in the main article, the proposed framework can be easily1032

extended to more assets. Here we present results from an example with three assets - the capitalization1033

weighted CRSP stock index, the 3-month T-bill index, and the 10-year T-bond index. We choose the1034

benchmark to be a 40/30/30 split constant proportion strategy, where 40% of the wealth is allocated to the1035

cap-weighted stock index, 30% to the 3-month T-bill index, and 30% to the 10-year T-bond index.1036

We train the neural network model on bootstrap resampled data with an expected blocksize of 0.51037

years, with the proposed asymmetric objective function 2.5. We then test the learned adaptive strategy on1038

bootstrap resampled data with an expected blocksize of 2 years.1039
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Figure A.2: CDF of terminal wealth for the 3 asset case
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(a) Training on bootstrap data with b̂=0.5 years
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(b) Testing on bootstrap data with b̂=2 years

Figure A.3: CDF of terminal wealth difference for the 3 asset case, where Wb(T ) indicate the terminal wealth
of the constant proportion benchmark strategy
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We can see from the Figure A.2 that the adaptive strategy has a consistently more right-skewed distri-1040

bution of the terminal wealth compared with the constant proportion benchmark strategy. The path-wise1041

comparison of terminal wealth difference also shows consistent outperformance compared to the adaptive1042

strategy in both training and testing.1043

The framework can easily include more assets. However, the choice of which assets to use, especially1044

considering the recent interest in factor indexes, is beyond the scope of this work.1045

A.4 Results from Alternative Datasets1046

Here we show the results based on alternative historical datasets - the equal-weighted CRSP stock index1047

and the 10-year treasury bond index. The historical outperformance of equal-weighting has been attributed1048

to such portfolios having higher exposure to value, size, and market factors (Plyakha et al., 2014). While1049

historically the 10-year (real) T-bond has not always had the same behavior as the 3-month T-bill, we1050

find that the learned adaptive strategy has also consistently outperforms the benchmark strategy on the1051

alternative datasets.1052

We train the neural network model on bootstrap resampled data from the alternative datasets with1053

an expected blocksize of 0.5 years, with the proposed asymmetric objective function 2.5. We then test1054

the learned adaptive strategy on bootstrap resampled data from the alternative datasets with an expected1055

blocksize of 2 years.1056

0 500 1000 1500 2000 2500 3000

Terminal Wealth W(T)

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

CDF of Terminal Wealth

adaptive

constant

(a) Training on bootstrap data with b̂=0.5 years
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Figure A.4: CDF of terminal wealth - equal-weighted stock index and 10-year T-bond index
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Figure A.5: CDF of terminal wealth difference - equal-weighted stock index and 10-year T-bond index, where
Wb(T ) indicate the terminal wealth of the constant proportion benchmark strategy

From Figure A.4, we can clearly see that the learned adaptive strategy has a more right-skewed terminal1057

wealth distribution in both training and testing. From Figure A.5, we can see that the adaptive strategy1058

outperforms the benchmark strategy with more than 90% probability in both training and testing. Such1059

results show us that the framework is capable of learning a good adaptive strategy that outperforms the1060

benchmark strategy with different underlying historical datasets.1061

A.5 Additional Robustness Testing Results1062

As mentioned in section 4.3, we only showed terminal wealth statistics for the strategy trained with bootstrap1063

resampled with expected blocksize b̂ = 0.5 years. Here we show the testing performance of strategies trained1064

on bootstrap data with different blocksizes on different testing sets (bootstrap resampled from different1065

blocksizes). The results show that the adaptive strategy consistently outperforms the constant proportion1066

strategy.1067

Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.81
NN adaptive 949 478 874.84 0.27 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.81
NN adaptive 942 459 878.60 0.27 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.81
NN adaptive 945 438 882.74 0.26 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.83
NN adaptive 940 404 881.87 0.23 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.84
NN adaptive 945 388 892.84 0.22 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.85
NN adaptive 942 373 895.88 0.22 0.50

Table A.2: Trained on bootstrap resampled data with b̂ = 1 years
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Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.83
NN adaptive 962 491 903.07 0.27 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.83
NN adaptive 954 470 905.02 0.27 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.84
NN adaptive 958 446 912.31 0.26 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.85
NN adaptive 954 409 914.34 0.23 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.87
NN adaptive 961 392 928.89 0.22 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.88
NN adaptive 961 380 930.15 0.21 0.50

Table A.3: Trained on bootstrap resampled data with b̂ = 2 years

Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.86
NN adaptive 995 495 963.03 0.26 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.87
NN adaptive 988 478 963.28 0.25 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.88
NN adaptive 994 458 973.65 0.25 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.89
NN adaptive 997 427 976.51 0.22 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.90
NN adaptive 1011 415 993.88 0.21 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.92
NN adaptive 1015 409 996.57 0.20 0.50

Table A.4: Trained on bootstrap resampled data with b̂ = 5 years
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Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.86
NN adaptive 980 480 945.12 0.25 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.86
NN adaptive 973 464 947.99 0.25 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.87
NN adaptive 979 443 957.32 0.25 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.88
NN adaptive 981 412 959.86 0.21 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.90
NN adaptive 994 399 976.44 0.21 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.91
NN adaptive 996 390 980.07 0.20 0.50

Table A.5: Trained on bootstrap resampled data with b̂ = 8 years

Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.84
NN adaptive 963 468 920.86 0.25 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.84
NN adaptive 957 451 923.63 0.25 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.85
NN adaptive 962 431 932.13 0.25 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.87
NN adaptive 962 399 937.08 0.22 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.88
NN adaptive 973 384 951.40 0.21 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.90
NN adaptive 973 373 954.63 0.20 0.50

Table A.6: Trained on bootstrap resampled data with b̂ = 10 years

A.6 Robustness: Distribution Comparison Based on Test Results From the1068

Synthetic Model1069

We observe from Figure A.6 that the terminal wealth distributions of the adaptive strategy are consistently1070

right-skewed and have similar shapes in training and testing, which indicates that the NN strategy similarly1071

outperforms the constant proportion in both training and testing.1072

We also show the plot of the CDF of the wealth difference W (T ) − W50/50(T ) to give a more direct1073

comparison between the adaptive strategy and constant proportion strategy on the same paths.1074

From Figure A.7 we can see that the probability of the adaptive strategy underperforming the constant1075

proportion strategy is less than 10% for both training and testing. When underperformance occurs, the scale1076

of underperformance is small compared to the scale of potential outperformance. Therefore, we conclude1077

that the adaptive strategy controls tail risks consistently in both training and testing, despite the fact that1078

the training dataset is synthetically generated and the testing dataset is bootstrap resampled data.1079

1080
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(a) Training on synthetics data (b) Testing on bootstrap data with b̂=0.5 years

Figure A.6: Histogram of terminal wealth. Model trained on synthetic data and tested on bootstrap resam-
pled data with expected blocksize of 2 years
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(a) Training on synthetics data

-200 -100 0 100 200 300 400 500

W(T)-W
50/50

(T)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

CDF of Terminal Wealth Difference

CDF

(b) Testing on bootstrap data with b̂=2 years

Figure A.7: CDF of terminal wealth difference W (T )−W50/50(T )
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Stock Allocation Heatmap
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(a) Stock allocation heatmap - training (b) Stock allocation heatmap - testing

Figure A.8: Stock allocation heatmap w.r.t. wealth difference

In terms of the allocation strategy, we can see from A.8 that this policy is consistent with the results in1081

Figure 4.3b (bootstrap resampling case) in the sense that the learned strategy is a contrarian strategy that1082

takes more risk when behind, and derisks when ahead. We do want to point out that the heatmap in Figure1083

A.8b is not as smooth as the heatmap in the training case in Figure A.8a.1084

We believe that this is due to the fact that, in the testing case, the strategy itself is learned from synthetic1085

data, which has a different distribution compared with the bootstrap resampled data used in testing.1086

1087

A.7 Percentile Results with Training/Testing Split1088
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Figure A.9: Percentiles of wealth difference W (T )−W50/50(T ) for the two cases
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Figure A.10: Stock allocation for the two cases

In Figure A.9, we can see that both cases have almost identical wealth difference in different percentiles,1089

except that Case #2 has slightly better tail risk control (%5 percentile) than Case #1. This actually further1090

proves that the overlap does not introduce performance advantage as the non-overlap case actually has less1091

tail risk.1092

In Figure A.10, we compare the actual strategies, i.e., stock allocations of both cases. This time we can1093

observe some differences between Case #1 and Case #2. From the median and mean plot, we can observe1094

that Case #2 tends to derisk (decrease allocation in the stocks) more aggressively over time than Case #1.1095

We believe the difference comes from the difference in the distributions between the different segments of the1096

underlying historical market returns. However, the difference between allocation strategies is not significant.1097

In fact, the average stock holding over time are quite similar for both cases. In addition, we have already1098

observed similar strategy performances in terms of terminal wealth distributions from figure 5.3a and figure1099

A.9.1100

A.8 Reduced Stock Market Returns1101

The outbreak of the global COVID-19 pandemic has led to some concerns about the recovery of the global1102

economy and expectation of lower future returns, especially in the stock markets. Historically, the real1103

(geometric) returns from the U.S. equities have been around 6.6% (Dimson et al., 2020). Recent industry1104

reports, however, estimate the future real (geometric) returns from U.S. stock market to drop to as low as1105

3.8%(AQR, 2021), which is almost 300 basis points less than the average historical returns.1106

We remark that a lower level of stock returns do not change the main observations in this aritcle. Specifi-1107

cally, in the context of outperforming a stochastic benchmark strategy, lower stock market returns adversely1108

affect the performance of the benchmark strategy as well as the learned adaptive strategy. Consequently, the1109

proposed neural network methodology is still able to learn an adaptive strategy that beats the benchmark1110

strategy.1111

In the following numerical example, we apply the same experiment setting in Section 4.3, but reduce all1112
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historical stock returns by 300 basis points11. We train and test the neural network on two separate sets of1113

bootstrap resampled data from historical data with reduced returns.1114

Testing Results on Bootstrap Data with Original Historical Price

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 679 267 629 0.50 0.84
adaptive 962 449 921 0.26 0.50

Testing Results on Bootstrap Data with Historical Stock Returns Reduced by 300 bps

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 520 213 480 0.50 0.73
adaptive 648 344 599 0.36 0.50

Table A.7: Terminal wealth statistics of the optimal adaptive strategy. Table shows comparison between
testing results on bootstrap data of original historical data and historical data with stock returns adjusted
by -300 bps.

In Table A.7, we have included typical statistics on the terminal wealth in the case of reduced stock1115

returns. We have included the original results from Section 4.3 for comparison. As can be seen from Table1116

A.7, while the terminal wealth levels of the adaptive strategy drops, the benchmark constant proportion1117

strategy also drops significantly.1118

0 500 1000 1500 2000 2500 3000

$

0

0.2

0.4

0.6

0.8

1
CDF of Terminal Wealth

Constant proportion 

 Adaptive

Adaptive
Constant

(a) Testing results with original historical data

0 500 1000 1500 2000 2500

$

0

0.2

0.4

0.6

0.8

1
C

u
m

u
la

ti
v
e

 P
ro

b
a

b
ili

ty

CDF of Terminal Wealth

Constant proportion 

 Adaptive

Adaptive

Constant

(b) Testing results with stock returns reduced by 300 bps

Figure A.11: CDF of Terminal Wealth

From Figure A.11, we observe that the learned adaptive strategy has a more right-skewed terminal1119

wealth distribution compared to the benchmark constant proportion strategy. In addition, we observe from1120

Figure A.12 that the adaptive strategy has a high chance of beating the benchmark strategy in pathwise1121

comparisons. We note that, when the stock returns are adjusted for -300 bps, the advantage of the adaptive1122

strategy decreases slightly. As can be observed from Figure A.12, the adaptive strategy has only less than 10%1123

of probability of underperforming the benchmark constant proportion strategy with the original historical1124

data, but this probability of underperforming the benchmark strategy increases to around 20% in the case1125

of reduced stock returns. We believe that this is due to the narrower gap between stock returns and bond1126

11We remark that this is not what we the authors expect of future market returns. Nor do such scenarios form any investment
suggestions. Our purpose is to use such very conservative market assumptions to address some potential concerns regarding
the performance of our proposed methodology under an extreme market scenario. This is essentially a robustness check.
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(a) Testing results with original historical data
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(b) Testing results with stock returns reduced by 300 bps

Figure A.12: CDF of Terminal Wealth Difference

returns, which adversely affects the adaptive strategy, since it usually starts off with a higher allocation in1127

stocks.1128

However, even in such an adverse scenario, we still see the clear outperformance of the adaptive strategy:1129

it has a more favorable terminal wealth distribution and a high chance of beating the benchmark. This1130

alleviates the potential concern of the proposed methodology in an environment of lower stock market1131

returns.1132
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