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Abstract1

Optimal stochastic control methods are used to examine decumulation strategies for a defined2

contribution (DC) plan retiree. An initial investment horizon of fifteen years is considered, since3

the retiree will attain this age with high probability. The objective function reward measure is4

the expected sum of the withdrawals. The objective function tail risk measure is the expected5

linear shortfall with respect to a desired lower bound for wealth at fifteen years. The lower6

bound wealth level is the amount which is required to fund a lifelong annuity fifteen years after7

retirement, which generates the required minimum cash flows. This ameliorates longevity risk.8

The controls are the withdrawal amount each year, and the asset allocation strategy. Maximum9

and minimum withdrawal amounts are specified. Specifying a short initial decumulation horizon,10

results in the optimal strategy achieving: (i) median withdrawals at the maximum rate within11

2-3 years of retirement (ii) terminal wealth larger than the desired lower bound at fifteen years,12

with greater than 90% probability and (iii) median terminal wealth at fifteen years considerably13

larger than the desired lower bound. The controls are computed using a parametric model14

of historical stock and bond returns, and then tested in bootstrap resampled simulations using15

historical data. At the fifteen year investment horizon, the retiree has the option of (i) continuing16

to self-manage the decumulation policy or (ii) purchasing an annuity.17

Keywords: optimal control, DC plan decumulation, variable withdrawal, tail risk, asset allo-18

cation, resampled backtests19

JEL codes: G11, G2220
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1 Introduction22

It is clear that there is an international trend towards deprecation of defined benefit (DB) pension23

plans in favour of defined contribution (DC) plans.1 This is simply because corporations and24

governments are not prepared to take on the risk of DB plans.25

The holder of a DC plan has two challenges. The first challenge is to devise an investment26

strategy which will accumulate significant wealth by the time of retirement. The second challenge27

is managing the decumulation strategy during retirement. This paper focuses on the decumulation28

phase of a DC plan.29

aDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
paforsyt@uwaterloo.ca, +1 519 888 4567 ext. 34415.

1See, for example, “The extinction of defined-benefit plans is almost upon us,” Globe and Mail,
October 4, 2018. https://www.theglobeandmail.com/investing/personal-finance/retirement/
article-the-extinction-of-defined-benefit-pension-plans-is-almost-upon-us/
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Following the maxim “a goal properly set is halfway reached,” 2 our objective in this paper is to30

set an appropriate goal for a decumulation strategy. Once the goal is set, then this generates an31

investment/withdrawal strategy for the decumulation phase.32

There is a stream of academic literature that suggests that DC plan holders should purchase33

annuities upon retirement. However, in practice, this is very unpopular with DC plan holders34

(MacDonald et al., 2013; Peijnenburg et al., 2016). In fact MacDonald et al. (2013) list many35

reasons for the lack of interest in annuities, including meager payouts in the current low interest36

rate environment, poor pricing due to adverse selection, no true inflation protection, counterparty37

risk, and no liquidity.38

Another stream of literature focuses on the optimal timing of annuity purchase (Milevsky, 1998;39

Gerrard et al., 2006; Milevsky and Young, 2007; Di-Giacinto and Vigna, 2012). Essentially, this40

research is based on the idea that a DC plan retiree may be better off investing in a mix of stocks41

and bonds, until she reaches an age where the mortality credits from an annuity give better returns42

than the stock-bond portfolio.43

Although many suggestions for decumulation strategies are based on maximizing traditional44

utility functions (see e.g. Bernhardt and Donnelly (2018)), practitioners advocate decumulation45

strategies which provide minimum (real) cash flows each year to fund expenses (Tretiakova and46

Yamada, 2011).47

This has led to the popularity of various heuristic rules of thumb for asset allocation and de-48

cumulation strategies (Bernhardt and Donnelly, 2018). An example is the ubiquitous four per cent49

rule. Based on historical backtests, Bengen (1994) suggests investing in a portfolio of 50% bonds50

and 50% stocks, and withdrawing 4% of the initial capital each year (adjusted for inflation). Over51

historical rolling year 30 year periods, this strategy would have never depleted the portfolio.52

Recently, the decumulation/investment problem has been posed as a problem in optimal stochas-53

tic control (Forsyth, 2021). Realistic constraints on the controls were applied, including minimum54

and maximum withdrawal amounts per year, and no-leverage, no-shorting constraints on the asset55

allocation policy. This required numerical solution of a Hamilton-Jacobi-Bellman equation. Simi-56

larly to the four per cent rule heuristic, longevity risk was not explicitly taken into account.57

The objective function in Forsyth (2021) involved minimizing tail risk (essentially CVAR) and58

maximizing the total withdrawals, over a fixed thirty year period, assuming the DC plan holder59

retires at age 65. Choosing the fixed thirty period was regarded as a conservative, practical choice60

of investment horizon. Of course, one could simply specify the longest possible lifespan for a 6561

year old, but this would result in very low withdrawal amounts. Even the thirty year horizon might62

be construed as overly conservative, since a 65 year old Canadian male has only a 0.13 chance of63

reaching age 95 3. The optimal control for withdrawals in Forsyth (2021) can be summarized as64

follows: the median optimal strategy is to withdraw at the minimum rate during the early stages65

of retirement (i.e. 5-10 years), and then to withdraw at the maximum rate during the later years.66

It is easy to understand why this strategy is optimal in terms of maximizing expected with-67

drawals, and minimizing tail risk. The investor withdraws the minimum amount during the early68

stage of retirement, which avoids the possibility of large withdrawals during market downturns,69

hence reducing sequence of return risk. Then, with a smaller time remaining, and a high proba-70

bility of larger wealth accumulation, it is safe to withdraw at the maximum rate. However, this71

strategy is somewhat disappointing. Although clearly optimal, in the sense of maximizing the72

objective function, most retirees would prefer to withdraw larger amounts in the early stages of73

retirement, when they are more active.74

2Widely attributed to Abraham Lincoln, although this may be apocryphal.
3Canadian pensioners mortality, CPM2014, Canadian Society of Actuaries, www.cia-ica.ca/docs/

default-source/2014/214013e.pdf
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Consequently, in this paper, we modify the approach in Forsyth (2021). Our first modification75

is to use a smaller investment horizon (fifteen years in this case). Secondly, our objective function is76

to maximize total withdrawals, and to minimize risk as measured by a linear shortfall with respect77

to a fixed target minimum wealth at 15 years. This approach has the following advantages78

(i) The shorter time horizon forces larger withdrawals earlier.79

(ii) The probability that a Canadian male, retiring at age 65, attains the age of 80 is about 0.76.80

Hence living to this age (15 years after retirement) is a high probability event.81

(iii) We use a fixed shortfall target wealth, in contrast to a CVAR-type risk measure. Our target82

wealth is the amount which would be required to fund a lifetime annuity (starting at the age83

of 80), which generates the minimum required cash flows. This ameliorates longevity risk.84

(iv) Use of a fixed shortfall target is inherently time consistent and is an intuitive, easily explained85

risk measure. CVAR-type risk measures are a common tail risk measure in finance. However,86

CVAR risk measures result in strategies which are not formally time consistent, but are87

implementable, since a CVAR-type risk measure generates an induced time consistent strategy88

(Forsyth, 2020a). Fixed target shortfall risk avoids this sort of complication.89

As noted above, retirees are reluctant to purchase annuities. Our strategy attempts to maximize90

withdrawals earlier, while still maintaining high median wealth values after 15 years. At the end of91

the 15 year investment horizon, the retiree can then embark on the second stage of the decumulation92

process. In the event that the investments have performed well, the retiree can continue self-93

managing the decumulation process. However, assuming poor investment results, as characterized94

by the mean of the worst 5% of outcomes, the investor still has enough wealth to purchase a lifetime95

annuity, satisfying minimum required cash flows. A risk averse investor might choose to annuitize96

at this point, taking advantage of mortality credits, and the longevity hedge of annuities.97

Our focus in this paper is on the first stage (to 15 years) of the decumulation process. At the98

end of 15 years, the retiree has to decide on the tradeoff between maximizing withdrawals, hedging99

longevity risk, and managing the portfolio. At this point, it is probably not possible to propose100

any sort of general strategy, since the choices amongst the different policies will depend crucially101

on each individual’s preferences. Consequently, our suggested two stage decumulation strategy102

generates useful advice for most retirees for the initial decumulation period (15 years), leaving the103

strategy for the second stage to be determined on a case by case basis.104

We determine the parameters of our stochastic process model for stock and bond indices by105

calibration to historical data in the range 1926:1-2019:12. All stochastic process models are real (in-106

flation adjusted). The optimal strategies are computed based on the calibrated parametric stochastic107

processes. We refer to simulated market based on the calibrated parametric stochastic processes as108

the synthetic market. We test for robustness by applying the controls computed in the synthetic109

market to simulations based on stationary block bootstrapped historical data (Politis and Romano,110

1994; Politis and White, 2004; Patton et al., 2009; Dichtl et al., 2016). We refer to the market based111

on bootstrapping historical data as the historical market.112

Our main results are113

(i) Compared to a minimum risk strategy, median withdrawals in the early years of retirement114

can be increased significantly, with very small increases in tail risk. This is a direct result of115

allowing some flexibility in the withdrawals.116

(ii) The strategy is robust, in the sense that the efficient frontiers, computed using the controls117

determined in the synthetic market, are virtually identical in the historical and synthetic118

markets.119
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This would appear to suggest that a good strategy for DC plan decumulation is to break up the120

investment horizon into early and late periods. This allows more flexibility in terms of strategies,121

with no need to pre-commit for very long periods. We suggest that our strategy is applicable to many122

retirees during the early stage of retirement. During the later stage of retirement, we agree with123

Bernhardt and Donnelly (2018), that (referring to decumulation strategies) “There is no solution124

that is appropriate for everyone and neither is there a single solution for any individual.”125

2 Formulation126

We assume that the investor has access to two funds: a broad market stock index fund and a127

constant maturity bond index fund.128

The investment horizon is T . Let St and Bt respectively denote the real (inflation adjusted)129

amounts invested in the stock index and the bond index respectively. In the absence of an investor130

determined control (i.e. cash withdrawals or rebalancing), all changes in St and Bt result from131

changes in asset prices. We model the stock index as following a jump diffusion.132

In addition, we follow the usual practitioner approach and directly model the returns of the133

constant maturity bond index as a stochastic process, see for example Lin et al. (2015); MacMinn134

et al. (2014).135

Let St− = S(t − ε), ε → 0+, i.e. t− is the instant of time before t, and let ξs be a random136

number representing a jump multiplier. When a jump occurs, St = ξsSt− . Allowing for jumps137

permits modelling of non-normal asset returns. We assume that log(ξs) follows a double exponential138

distribution (Kou, 2002; Kou and Wang, 2004). If a jump occurs, psu is the probability of an upward139

jump, while 1− psu is the chance of a downward jump. The density function for y = log(ξs) is140

f s(y) = psuη
s
1e
−ηs1y1y≥0 + (1− psu)ηs2e

ηs2y1y<0 , (2.1)

where ηs1 (ηs2) is the exponential distribution parameter for an up (down) stock jump. We also141

define142

κsξ = E[ξs − 1] =
psuη

s
1

ηs1 − 1
+

(1− psu)ηs2
ηs2 + 1

− 1 . (2.2)

In the absence of control, St evolves according to143

dSt
St−

=
(
µs − λsξκsξ

)
dt+ σs dZs + d

 πs
t∑

i=1

(ξsi − 1)

 , (2.3)

where µs is the (uncompensated) drift rate, σs is the volatility, dZs is the increment of a Wiener144

process, πst is a Poisson process with positive intensity parameter λsξ, and ξsi are i.i.d. positive145

random variables having distribution (2.1). Moreover, ξsi , π
s
t , and Zs are assumed to all be mutually146

independent.147

Similarly, let the amount in the bond index be Bt− = B(t − ε), ε → 0+. As in MacMinn148

et al. (2014), we assume that the constant maturity bond index follows a jump diffusion process.149

Consequently, in the absence of control, Bt evolves as150

dBt
Bt−

=
(
µb − λbξκbξ + µbc1{Bt−<0}

)
dt+ σb dZb + d

 πb
t∑

i=1

(ξbi − 1)

 , (2.4)
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where the terms in equation (2.4) are defined analogously to equation (2.3). In particular, πbt is a151

Poisson process with positive intensity parameter λbξ, and ξ
b
i has distribution152

f b(y = log ξb) = pbuη
b
1e
−ηb1y1y≥0 + (1− pbu)ηb2e

ηb2y1y<0 , (2.5)

where where ηb1 (ηb2) is the exponential distribution parameter for an up (down) bond jump. and153

κbξ = E[ξb − 1]. ξbi , π
b
t , and Zb are assumed to all be mutually independent. The term µbc1{Bt−<0}154

in equation (2.4) represents the extra cost of borrowing (the spread).155

The diffusion processes are correlated, i.e. dZs ·dZb = ρsbdt. The stock and bond jump processes156

are assumed mutually independent. See Forsyth (2020b) for justification of the assumption of stock-157

bond jump independence.158

We define the investor’s total wealth at time t as159

Total wealth ≡Wt = St +Bt. (2.6)

We impose the constraints that (assuming solvency) shorting stock and using leverage (i.e. bor-160

rowing) are not permitted, which would be typical of a DC plan retirement savings account. In161

the event of insolvency (due to withdrawals), the portfolio is liquidated, trading ceases and debt162

accumulates at the borrowing rate. In the insolvency case, it is assumed that the investor continues163

to withdraw (i.e. borrow) from the account.164

3 Notational conventions165

Consider a set of discrete withdrawal/rebalancing times T166

T = {t0 = 0 < t1 < t2 < . . . < tM = T} (3.1)

where we assume that ti − ti−1 = ∆t = T/M is constant for simplicity. To avoid subscript clutter,167

in the following, we will occasionally use the notation St ≡ S(t), Bt ≡ B(t) and Wt ≡ W (t). Let168

the inception time of the investment be t0 = 0. We let T be the set of withdrawal/rebalancing169

times, as defined in equation (3.1). At each rebalancing time ti, i = 0, 1, . . . ,M − 1, the investor170

(i) withdraws an amount of cash qi from the portfolio, and then (ii) rebalances the portfolio. At171

tM = T , the final cash flow qM occurs, and the portfolio is liquidated. In the following, given a time172

dependent function f(t), then we will use the shorthand notation173

f(t+i ) ≡ lim
ε→0+

f(ti + ε) ; f(t−i ) ≡ lim
ε→0+

f(ti − ε) . (3.2)

We assume that there are no taxes or other transaction costs, so that the condition174

W (t+i ) = W (t−i )− qi ; ti ∈ T (3.3)

holds. Typically, DC plan savings are held in a tax advantaged account, with no taxes triggered175

by rebalancing. With infrequent (e.g. yearly) rebalancing, we also expect transaction costs to be176

small, and hence can be ignored. It is possible to include transaction costs, but at the expense of177

increased computational cost (Staden et al., 2018).178

We denote by X (t) = (S (t) , B (t)), t ∈ [0,T ], the multi-dimensional controlled underlying179

process, and by x = (s, b) the realized state of the system. Let the rebalancing control pi(·) be the180

fraction invested in the stock index at the rebalancing date ti, i.e.181

pi
(
X(t−i )

)
= p

(
X(t−i ), ti

)
=

S(t+i )

S(t+i ) +B(t+i )
. (3.4)
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Let the withdrawal control qi(·) be the amount withdrawn at time ti, i.e. qi
(
X(t−i )

)
=182

q
(
X(t−i ), ti

)
. Note that formally, the controls depend on the state of the investment portfolio,183

before the rebalancing occurs, i.e. pi(·) = p
(
X(t−i ), ti)

)
= p

(
X−i , ti

)
, and qi(·) = q

(
X(t−i ), ti)

)
=184

q
(
X−i , ti

)
, ti ∈ T , where T is the set of rebalancing times.185

However, it will be convenient to note that in our case, we find the optimal control pi(·) amongst186

all strategies with constant wealth (after withdrawal of cash). Hence, with some abuse of notation,187

we will now consider pi(·) to be function of wealth after withdrawal of cash188

pi(·) = p(W (t+i ), ti)

W (t+i ) = S(t−i ) +B(t−i )− qi(·)
S(t+i ) = S+

i = pi(W
+
i ) W+

i ; B(t+i ) = B+
i = (1− pi(W+

i )) W+
i . (3.5)

A control at time ti, is then given by the pair (qi(·), pi(·)) where the notation (·) denotes that the189

control is a function of the state.190

Let Z represent the set of admissible values of the controls (qi(·), pi(·)). As is typical for a DC191

plan savings account, we impose no-shorting, no-leverage constraints (assuming solvency). We also192

impose maximum and minimum values for the withdrawals. We apply the constraint that in the193

event of insolvency due to withdrawals (W (t+i ) < 0), trading ceases and debt (negative wealth)194

accumulates at the appropriate bond rate of return (including a spread). We also specify that the195

stock assets are liquidated at t = tM .196

More precisely, let W+
i be the wealth after withdrawal of cash, then define197

Zq = [qmin, qmax] , (3.6)

Zp(W+
i ,ti) =


[0,1] W+

i > 0 ; ti ∈ T ; ti 6= tM

{0} W+
i ≤ 0 ; ti ∈ T ; ti 6= tM

{0} ti = tM

. (3.7)

(3.8)

198

The set of admissible values for (qi,pi), ti ∈ T , can then be written as199

(qi,pi) ∈ Z(W+
i ,ti) = Zq ×Zp(W+

i ,ti) . (3.9)

For implementation purposes, we have written equation (3.9) in terms of the wealth after withdrawal200

of cash. However, we remind the reader that sinceW+
i = W−i −q, the controls are formally a function201

of the state X(t−i ) before the control is applied.202

The admissible control set A can then be written as203

A =

{
(qi, pi)0≤i≤M : (qi, pi) ∈ Z(W+

i ,ti)

}
(3.10)

An admissible control P ∈ A, where A is the admissible control set, can be written as,204

P = {(qi(·), pi(·)) : i = 0, . . . ,M} . (3.11)

We also define Pn ≡ Ptn ⊂ P as the tail of the set of controls in [tn, tn+1, . . . , tM ], i.e.205

Pn = {(qn(·), pn(·)) . . . , (pM (·), qM (·))} . (3.12)

For notational completeness, we also define the tail of the admissible control set An as206

An =

{
(qi, pi)n≤i≤M : (qi, pi) ∈ Z(W+

i ,ti)

}
(3.13)

so that Pn ∈ An.207
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4 Risk and reward208

4.1 A measure of risk: definition of linear shortfall (LS)209

Let E[·] be the expectation operator, and, given a shortfall target W ∗, we define the linear shortfall210

w.r.t. W ∗, LSW ∗211

LSW ∗ = E[min(WT −W ∗,0)] , (4.1)

where WT = W (T ), i.e. the terminal wealth. Note that since we have used WT in equation (4.1)212

(final wealth, not loss), our objective is to maximize LSW ∗ .213

This risk measure is closely related to Conditional Value at Risk (CVAR). To see this, given an214

expectation operator E[·], as noted by Rockafellar and Uryasev (2000), CVAR(α) can be written as215

216

CVARα = sup
W ∗

E

[
W ∗ +

1

α
min(WT −W ∗, 0)

]
. (4.2)

CVAR(α) has the convenient interpretation as the mean of the worst α fraction of outcomes.217

Typically α ∈ {.01, .05}. Note that the definition of CVAR in equation (4.2) uses the probability218

density of the final wealth distribution, not the density of loss. Hence, a larger value of CVAR (i.e.219

a larger value of average worst case terminal wealth) is desired.220

CVAR is not formally time consistent (Forsyth, 2020a). However, if we maximize CVAR at time221

zero, (for a given value of initial wealth) which effectively specifies the VAR value W ∗, and then222

recompute the optimal control at future times (with this fixed value of W ∗), then this strategy is223

an induced time consistent strategy, and hence is implementable (Strub et al., 2017; 2019; Forsyth,224

2020a). However, in our context, it is more natural to specify W ∗ at time zero. W ∗ is the (real)225

estimate of the cost of an annuity purchased at the terminal time T , which (possibly combined with226

other assets) would generate the required minimum cash flows.227

Since W ∗ is fixed, then this risk measure will trivially generate a time consistent control. From228

the definitions (4.1) and (4.2), we have the following result. Suppose229

E[1WT<W ∗ ] = α , (4.3)

then the relationship between CVARα and LSW ∗ is230

CVARα = W ∗ +
LSW ∗
α

. (4.4)

Remark 4.1 (CVAR LS relationship). In general, for arbitrary W ∗, but fixed α, equation (4.4) will231

not be valid.232

4.2 A measure of reward: expected total withdrawals (EW)233

We will use expected total withdrawals as a measure of reward in the following. More precisely, we234

define EW (expected total withdrawals) as235

EW = E

[i=M∑
i=0

qi

]
. (4.5)
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5 Objective Function236

Define X+
0 = X(t+0 ), X−0 = X(t−0 ). Since expected withdrawals (EW) and linear shortfall (LS) are237

conflicting measures, we use a scalarization technique to find the Pareto optimal points for this238

multi-objective optimization problem. Informally, for a given scalarization parameter κ > 0, we239

seek to find the control P0 that maximizes240

EW(X−0 , t
−
0 ) + κ LSW ∗(X−0 , t

−
0 ) = E

X+
0 ,t

+
0

P0

[i=M∑
i=0

qi + κ

(
min(WT −W ∗, 0)

)]
. (5.1)

More precisely, we define the EW-LS problem EWLSt0 (κ) in terms of the value function V (s,b,t−0 ),241

with (s,b,t) ∈ Ω = [0,∞)× (−∞,+∞)× [0,∞).242

(EWLSt0 (κ)) : V
(
s,b, t−0

)
= max

P0∈A

{
E
X+

0 ,t
+
0

P0

[
i=M∑
i=0

qi + κ

(
min(WT −W ∗, 0)

)
∣∣∣∣X(t−0 ) = (s,b)

]}
(5.2)

subject to



(St, Bt) follow processes (2.3) and (2.4); t /∈ T
W+
` = S−` +B−` − q` ; X+

` = (S+
` , B

+
` )

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`

(q`(·), p`(·)) ∈ Z(W+
` ,t`)

` = 0, . . . ,M ; t` ∈ T

.(5.3)

6 Dynamic programming solution of the EW-LS problem243

We use standard dynamic programming methods to solve problem (5.2). We define the value244

function at time t−n ,245

V (s, b, t−n ) = max
Pn∈An

{
EX̂

+
n ,t

+
n

Pn

[
i=M∑
i=n

qi + κ

(
min((WT −W ∗),0)

)∣∣∣∣X̂(t−n ) = (s,b)

]}
.

(6.1)

subject to



(St, Bt) follow processes (2.3) and (2.4); t /∈ T
W+
` = S−` +B−` − q` ; X+

` = (S+
` , B

+
` )

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`

(q`(·), p`(·)) ∈ Z(W+
` ,t`)

` = n, . . . ,M ; t` ∈ T

. (6.2)

Recalling the definitions of Zp,Zq in equations (3.6-3.7), then the dynamic programming prin-246

ciple applied at tn ∈ T would then imply247

V (s,b, t−n ) = max
q∈Zq

max
p∈Zp(w−−q,t)

{
q +

[
V ((w− − q)p, (w− − q)(1− p), t+n )

]}
= max

q∈Zq

{
q +

[
max

p∈Zp(w−−q,t)
V ((w− − q)p, (w− − q)(1− p), t+n )

]}
w− = s+ b . (6.3)

8



The optimal control pn(w) at time tn is then determined from248

pn(w) =

{
arg max
p′∈[0,1]

V (wp′, w(1− p′), t+n ), w > 0 ; tn 6= tM

0, w ≤ 0 or tn = tM
. (6.4)

The control for q is then determined from249

qn(w) = arg max
q′∈Zq

{
q′ + V ((w − q′)pn(w − q′)), (w − q′)(1− pn(w − q′))),t+n )

}
.

(6.5)

Remark 6.1 (qn(·), pn(·) control functions). From the right hand sides of equation (6.4) and250

equation (6.5), and noting equation (6.3), we can deduce the following results:251

(i) The optimal control for qn(·) is a function only of the total portfolio wealth before withdrawals252

w− = s+ b, i.e. qn = qn(w−).253

(ii) The optimal control for pn(·) is a function only of the total portfolio wealth after withdrawals254

w+ = w− − qn(w−), i.e. pn = pn(w+).255

At t = T , we have256

V (s, b,T+) = κmin((s+ b−W ∗), 0) . (6.6)

For t ∈ (tn−1,tn), there are no cash flows, discounting (all quantities are inflation adjusted), or257

controls applied, hence, for h→ 0+,258

V (s,b,t) = E

[
V (S(t+ h), B(t+ h), t+ h)

]
; t ∈ (tn−1, tn − h) . (6.7)

Cognizant of processes (2.3) and (2.4), and using Ito’s Lemma for jumps (Tankov and Cont, 2009),259

we follow the usual arguments to obtain260

Vt +
(σs)2s2

2
Vss + (µs − λsξκsξ)sVs + λsξ

∫ +∞

−∞
V (eys, b, t)fs(y) dy +

(σb)2b2

2
Vbb

+ (µb − λbξκbξ)bVb + λbξ

∫ +∞

−∞
V (s, eyb, t)f b(y) dy − (λsξ + λbξ)V + ρsbσ

sσbsbVsb = 0 ,

t ∈ (tn−1,tn) . (6.8)

Remark 6.2 (Use of running sum of future withdrawals). Note that the objective function in261

equation (6.1) is written as (the expectation operator is understood)262

Objective Function =
i=M∑
i=n

qi + κ

(
min((WT −W ∗),0)

)
. (6.9)

Instead of using the future running sum of withdrawals, an alternative would be average future263

withdrawals, i.e.264

Alternative Objective Function =

(
1

M − n+ 1

i=M∑
i=n

qi

)
+ κ′

(
min((WT −W ∗),0)

)
.(6.10)
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The optimal controls which maximize equation (6.10) will also maximize equation (6.9) if265

κ′ =
κ

M − n+ 1
. (6.11)

In other words, use of equation (6.9) (running sum) increases the weight on the risk term as n→M266

(t→ T ), compared to equation (6.10) (average remaining cash flows). Intuitively, this makes sense.267

As the terminal time is approached, the investor puts greater emphasis on minimizing the risk of268

falling below the target.269

6.1 Numerical algorithm: EW-LS270

We use the dynamic programming formulation of the EW-LS problem EWLSt0 (κ)) as outlined in271

equations (6.1-6.2). We discretize the state space (s,b), and solve PIDE (6.8) between rebalancing272

times using a Fourier method (Forsyth and Labahn, 2019).273

We discretize the p controls and then solve the optimization problem (6.4) using exhaustive274

search over the discretized p values, linearly interpolating the right hand side discrete values of275

V in equation (6.4) as required. We also discretize the controls for q in the range [qmin, qmax] in276

increments of one thousand dollars, and determine the optimal control for q by exhaustive search.277

We use a fixed discretization of the q controls since it is realistic to assume that retirees will change278

withdrawal amounts in fairly coarse increments.279

We have carried out grid refinement studies (see Appendix C ), which indicate that the PDE280

solution values (for EW and LS) have errors in the third digit (which is certainly accurate enough281

for practical purposes). We compute and store the controls in the synthetic market.282

For reporting purposes, we then use the stored controls, and then carry out Monte Carlo simula-283

tions in the synthetic market. This allows us to generate a variety of statistics of interest. Similarly,284

we use stored controls, and also carry out bootstrap resampling simulations in the historical market.285

6.1.1 Stabilization286

If Wt �W ∗, and t→ T , then Pr[WT < W ∗] ' 0. For large values of Wt, the withdrawal is capped287

at qmax. In this case, the control only weakly effects the objective function. Although these states288

have low probability, it is desirable to enforce a particular choice of control. To this end, we changed289

the objective function in Problem 5.2 to290

V
(
s,b, t−0

)
= max

P0∈A

{
E
X+

0 ,t
+
0

P0

[
i=M∑
i=0

qi + κ

(
min(WT −W ∗, 0)

) stabilization︷ ︸︸ ︷
+εWT∣∣∣∣X(t−0 ) = (s,b)

]}
. (6.12)

We used the value ε = +10−6 in the following test cases. Using a positive value for ε has the effect of291

forcing the strategy to invest in stocks when Wt is very large, and t→ T , when the control problem292

is ill-posed. An alternative would be to use a negative value of ε, which would force the investor293

to allocate to an all bond portfolio for large values of wealth. However, it seems more reasonable294

to use a positive value for ε, which generates large possible values of wealth at age 80. Note that295

using this small value of ε = 10−6 gave the same results as ε = 0 for the summary statistics, to four296

digits.297
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7 Investment scenario298

Table 7.1 shows our base case investment scenario. We will use thousands as our units of wealth in299

the following. For example, a withdrawal of 40 per year corresponds to $40,000 per year, with an300

initial wealth of 1000 ($1,000,000). Thus, a withdrawal of 40 per year would correspond to the use301

of the four per cent rule (Bengen, 1994).302

To make this example more concrete, this scenario would apply to a retiree who is 65 years old,303

with a pre-retirement salary of 100 ($100,000) per year, with a total value of DC plan holdings at304

retirement of 1,000 ($1,000,000). In Canada, a retiree would be eligible for government benefits305

(indexed) of about 20 per year. If the investor targets withdrawing 40 per year from the DC plan,306

then this would result in total real income of about 60 per year, which is about 60% of pre-retirement307

salary. The initial phase of the decumulation occurs for 15 years, taking the retiree to age 80.308

For risk management purposes, we will assume that the retiree owns mortgage free real estate309

worth about 400, which will retain its value in real terms over 15 years. In a worst case scenario,310

we assume that the retiree can borrow 200 using a reverse mortgage, at age 80.311

7.1 Data and calibration312

In Appendix A, we give the details concerning the historical return data used, and the method for313

fitting the parameters for the parametric stock and bond processes (2.3) and (2.4). Briefly, the314

historical data is obtained from the Center for Research in Security Prices (CRSP) over the period315

1926:1-2019:12. We check for the robustness of our results by testing the strategies determined316

based on the parametric model using bootstrap resampling of the historical data.317

7.2 Choice of W ∗ for LSW ∗318

We fix W ∗ in equation (4.1) at the initial time. Let ax be the present value of an annuity which319

pays one dollar per year (real), for the remaining lifetime of an x year old Canadian male. Given320

a portfolio value of WT , then the lifetime annuity amount per year, which can be purchased with321

this wealth is WT /ax. Using a (pessimistic) value of real interest rates of zero, 4 then using the322

CPM2014 tables, we find that 1/a80 ' 0.10. This suggests that WT = 400 would generate 40 per323

year (all units: thousands) from a lifelong annuity purchased at age 80, with the implication that324

we should set W ∗ = 400.325

Of course, setting W ∗ = 400 does not guarantee that WT ≥ 400, for any given value of κ in326

equation (5.1). In addition, fairly priced, real annuities are not available in the Canadian market.327

For example, as of October, 2020, a survey of online posted rates for a lifetime annuity for an 80328

year old male (no guarantee, nominal dollars) resulted in 1/a80 in the range 0.087− 0.097.329

In view of this, we should regard W ∗ as a parameter, and post-hoc, check other criteria to330

determine if the risk is acceptable, for a given value of κ. Assume that the CVAR(5%) of the331

portfolio at t = T is > 300, and that the investor borrows 200 using his reverse mortgage (all units:332

thousands). In other words, the mean worst 5% of outcomes gives a total of 500 (real) at age 80.333

Using the best posted annuity rate gives 1/a80 = .097, which results in a (nominal) payout of about334

48.5 per year, which we assume to roughly equate to the target payout of 40 per year real. Clearly,335

there is significant uncertainty regarding the actual annuity payouts 15 years in the future, but it336

4From Table A.1, we can see that the average real return of 10 year treasuries is about 0.0239. Using this interest
rate, a fairly priced real annuity (using the CPM2014 tables) would have 1/a80 ' 0.11.
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seems that as long as CVAR(5%)+200 ≥ 500, this suggests that the retiree can be reasonably sure5337

of purchasing a lifetime annuity which generates 40 real (even for the worst 5% of outcomes).338

In the following numerical examples, we set W ∗ = 400 (units: thousands) in the definition of339

LS in equation (4.1). This fixed value of W ∗, represents a desired minimum WT , with a linear340

penalty for undershooting this amount. Varying the scalarization parameter κ in (5.1) traces out341

the EW-LS frontier. We will use the additional criteria that CVAR(5%) ≥ 300 (units: thousands),342

to select an appropriate point on the EW-LS frontier. This effectively specifies a suitable value of343

κ.344

Investment horizon T (years) 15
Equity market index CRSP Cap-weighted index (real)
Bond index 10-year Treasury (US) (real)
Initial portfolio value W0 1000
Cash withdrawal times t = 0,1, . . . , 15
Withdrawal range [qmin, qmax]
Equity fraction range [0,1]
Borrowing spread µbc 0.0
Rebalancing interval (years) 1
Market parameters See Table A.1

Table 7.1: Input data for examples. Monetary units: thousands of dollars.

7.3 Synthetic market345

We fit the parameters for the parametric stock and bond processes (2.3 - 2.4) as described in346

Appendix A. We then compute and store the optimal controls based on the parametric market347

model. Finally, we compute various statistical quantities by using the stored control, and then348

carrying out Monte Carlo simulations, based on processes (2.3 - 2.4).349

7.4 Historical market350

We compute and store the optimal controls based on the parametric model (2.3-2.4) as for the351

synthetic market case. However, we compute statistical quantities with the stored controls, but using352

bootstrapped historical return data directly. We remind the reader that all returns are inflation353

adjusted. In Appendix B, we give details concerning the stationary block bootstrap resampling354

technique.355

8 Synthetic and historical markets: constant withdrawals q = 40,356

constant proportion strategy357

We consider the scenario in Table 7.1. As a benchmark, we consider withdrawing at a constant rate358

of 40 per year (units: thousands of dollars). This would correspond to the 4% rule suggested in359

(Bengen, 1994). We also assume that the portfolio is rebalanced to a constant weight in stocks each360

year. Recall that both bond and stocks follow jump diffusion processes. Hence, in the synthetic361

5More precisely, the investor has enough wealth to purchase the desired annuity, as measured by the mean of the
worst 5% of outcomes.
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market, it is possible (although unlikely) that both stock and bond holdings can jump to zero,362

leaving the investor insolvent, without having the funds required for withdrawals, even including363

real estate. The same effect can also occur in the bootstrap resampling tests (i.e. repeated sampling364

from months with large stock drawdowns and high inflation). Hence, we focus on CVAR (5%) at365

the end of the first stage decumulation, as a reasonable risk measure, and not purely the worst case.366

367

Table 8.1 shows the results for various equity weights in the synthetic market, while Table 8.2368

shows results for the bootstrapped historical market.369

The results are roughly comparable for both synthetic and historical markets. In both cases,370

the largest (best) value of LSW ∗ = E[min((WT −W ∗),0)] and CVAR(5%) occurs at p = 0.30. Note371

that LSW ∗ does not precisely track CVAR(5%), since the relationship (4.4) holds only if the W ∗ is372

the 5% VAR (see equation (4.3) ). However, it appears that LSW ∗ and CVAR(5%) do give similar373

risk rankings.374

For both synthetic and historical markets, the best CVAR(5%) is about 300 (units thousands of375

dollars), at constant equity weight of p = 0.30. This meets our criteria of CVAR(5%) + 200 ≥ 500,376

which we estimate to be sufficient to purchase a real lifetime annuity of 40 per year, for an 80-year377

old male. Recall that we are not suggesting that the investor actually buys an annuity at T = 15378

years, but that this constant equity weight strategy does meet our tail risk criteria.379

Equity Weight Median[WT ] E[min(WT −W ∗,0)] CVAR (5%)

0.0 609.03 -20.051 181.12
0.20 818.26 -5.4987 293.65
0.30 922.24 -5.0422 299.54
0.40 1025.0 -6.1912 277.45
0.60 1223.4 -12.073 183.20

Table 8.1: Synthetic market results assuming the scenario given in Table 7.1, with qmax = qmin = 40,
and p` = constant in equation (5.3). Stock index: real capitalization weighted CRSP stocks; bond
index: real 10-year US treasuries. Parameters from Table A.1. W ∗ = 400. Units: thousands of
dollars. Statistics based on 2.56× 106 Monte Carlo simulation runs.

Equity Weight Median[WT ] E[min(WT −W ∗,0)] CVAR (5%)

0.0 612.56 -18.332 199.06
0.20 809.13 -5.0769 301.19
0.30 908.27 -4.4439 311.12
0.40 1007.2 -5.1714 296.62
0.60 1203.2 -9.4341 221.91

Table 8.2: Historical market results (bootstrap resampling) assuming the scenario given in Table 7.1,
except that qmax = qmin = 40, and p` = constant in equation (5.3). Stock index: real capitalization
weighted CRSP stocks; bond index: real 10-year US treasuries. Historical data in range 1926:1-
2019:12. Parameters from Table A.1. W ∗ = 400. Units: thousands of dollars. Statistics based on
105 bootstrap resampling simulations. Expected blocksize 0.25 years.
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9 Synthetic and historical markets: constant withdrawals q = 35,380

constant proportion strategy381

Alternatively, we can reduce the constant withdrawal rate to 35 per year, for 15 years (up to age382

80). The synthetic market results are shown in Table 9.1 and the bootstrapped historical results are383

given in Table 9.2 Again, the results are roughly comparable for both the synthetic and historical384

markets, with the largest value of LSW ∗ = E[min((WT−W ∗),0)] occurring at p = 0.3. This constant385

equity value also generates the (best) largest value of CVAR. In this case, the largest value of CVAR386

is 382 for p = 0.3 (synthetic market) compared to CVAR(5%)= 394 for p = 0.3 in the historical387

market. These strategies comfortably meet our tail risk criteria of CVAR(5%) + 200 ≥ 500, but of388

course at the expense of smaller minimum withdrawals.389

Note that using a constant withdrawal of q = 35 coupled with p = 0.3, while giving an acceptable390

result in terms of risk, has an undesirable spending pattern. The retiree has taken small withdrawals391

for the first 15 years. At the end of 15 years, the median remaining wealth is greater than 1000,392

meaning that the retiree can now increase spending in the years after 80, either by continuing to393

manage the portfolio or purchasing an annuity. Consequently, the constant proportion, constant394

withdrawal strategy is producing a spending pattern exactly the opposite of our objective, i.e. this395

strategy produces small spending before age 80, and increases spending after age 80.396

Equity Weight Median[WT ] E[min(WT −W ∗,0)] CVAR (5%)

0.0 703.39 -9.0266 255.84
.20 923.11 -1.9584 374.97
.30 1032.3 -1.9461 382.05
.40 1140.0 -2.7371 360.12
.60 1348.4 -6.7687 264.64

Table 9.1: Synthetic market results assuming the scenario given in Table 7.1, with qmax = qmin = 35,
and p` = constant in equation (5.3). Stock index: real capitalization weighted CRSP stocks; bond
index: real 10-year US treasuries. Parameters from Table A.1. W ∗ = 400. Units: thousands of
dollars. Statistics based on 2.56× 106 Monte Carlo simulation runs.

Equity Weight Median[WT ] E[min(WT −W ∗,0)] CVAR (5%)

0.0 706.99 -7.5741 274.00
0.2 913.53 -1.7123 382.66
0.3 1017.7 -1.6249 393.72
0.4 1121.4 -2.1367 379.58
0.6 1325.9 -4.9388 303.68

Table 9.2: Historical market results (bootstrap resampling) assuming the scenario given in Table 7.1,
except that qmax = qmin = 35, and p` = constant in equation (5.3). Stock index: real capitalization
weighted CRSP stocks; bond index: real 10-year US treasuries. Historical data in range 1926:1-
2019:12. Parameters from Table A.1. W ∗ = 400. Units: thousands of dollars. Statistics based on
105 bootstrap resampling simulations. Expected blocksize 0.25 years.
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10 Synthetic market: efficient frontiers397

In Appendix D, we give the detailed efficient EW-LS frontiers, computed in the synthetic market.398

The results are shown graphically in Figure 10.1, for both the cases (qmin, qmax) = (40,60) and399

(qmin, qmax) = (35,60). In Table 10.1, we show the detailed results for two specific points on the400

EW-LS curves.401

κ E[min(W −W ∗,0)] E[
∑

i qi]/(M + 1) CVAR (5%) Median[WT ] Prob[WT < W ∗]

qmin = 40, qmax = 60

20 -4.825 52.99 304.5 600.7 .0610
qmin = 35, qmax = 60

50 -1.880 51.51 362.6 626.3 .0294

Table 10.1: Synthetic market results for optimal strategies, assuming the scenario given in Table 7.1.
Stock index: real capitalization weighted CRSP stocks; bond index: ten year treasuries. More details
in Appendix D. Parameters from Table A.1. Units: thousands of dollars. Statistics based on 2.56×106

Monte Carlo simulation runs. Control is computed using the Algorithm in Section 6.1, stored, and
then used in the Monte Carlo simulations. (M + 1) is the number of withdrawals. M is the number
of rebalancing dates. W ∗ = 400. ε = 10−6.

In Figure 10.1(a), we also show the point (EW,LS) = (40,−5.04), the best result (in terms of402

LS risk) from Table 8.1 for the constant withdrawal, constant weight strategy with 40 per year.403

This compares with the point κ = 20 in Table 10.1, for (qmin, qmax) = (40,60), which is404

(EW,LS) = (53,−4.83). In other words, at this point on the efficient frontier, the strategy gener-405

ated by solving Problem 5.2 never withdraws less than 40 per year, has smaller tail risk (as measured406

by LS) and has an expected average withdrawal of 53. In terms of CVAR, the constant withdrawal407

strategy (p = 0.3) has CVAR(5%)= 300, compared with 305 for the optimal strategy. Note that408

Pr[WT ≥ 400] ' 0.94.409

In Figure 10.1(b), we also show the point (EW,LS) = (35,−1.95), which is the best result from410

Table 9.1 for p = 0.30. From Table 10.1, we can see that for κ = 50, (qmin, qmax) = (35,60), the411

optimal strategy from Problem 5.2 generates (EW,LS) = (51.5,−1.88). In other words, the optimal412

strategy never withdraws less than the constant withdrawal rate of 35, has a smaller risk as measured413

by LS, and an expected average withdrawal rate of 51.5. In terms of CVAR(5%), we see that the414

point (EW,LS) = (51.5,−1.88) has a CVAR of 363, compared with the best constant weight,415

constant withdrawal strategy which has a CVAR of 382. In this case, this point on the efficient416

frontier has a larger (better) tail risk as measured by LSW ∗ , and a slightly worse CVAR(5%) risk,417

but we never withdraw less than 35 per year, but with a much larger expected average withdrawal.418

We remind the reader that we are directly targeting risk as measured by LS in solving Problem419

5.2, and that CVAR is not directly targeted, although CVAR and LS are related as in equations420

(4.3-4.4). In addition, we have that that Pr[WT ≥ 400] ' 0.97.421

10.1 Synthetic market: optimal controls, withdrawals, wealth and heat map,422

(qmin, qmax) = (40,60)423

In this section, we show the synthetic market results for the scenario in Table 7.1, with (qmin, qmax) =424

(40,60), for the case κ = 20, (EW,LS) = (53,−4.83). Figure 10.2 shows the percentiles of the optimal425

controls for the fraction in the stocks, the total wealth, and the withdrawals as a function of time.426

Up to about 10 years, the fraction in stocks (5th to 95th percentiles) is in the range 0.15−0.35. The427
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Figure 10.1: EW-LS frontiers. Scenario in Table 7.1. Optimal control computed from problem
(5.2). Parameters based on real CRSP index, real 10-year US treasuries (see Table A.1). Control
computed and stored from Problem 5.2 (synthetic market). Frontier computed using 2.56 × 106 MC
simulations. Units: thousands of dollars. ε = 10−6. W ∗ = 400.

median withdrawals are at the minimum for the first two years, and then increase to the maximum428

by year three.429

Figure 10.3 shows the heat maps for the optimal fraction in stocks and the optimal withdrawals.430

Note that the control for the fraction in stocks is shown as a function of wealth after withdrawals,431

and the control for the withdrawals is shown as a function of wealth before withdrawals (see Remark432

6.1).433

10.2 Historical market: optimal controls, withdrawals, wealth and heat map,434

(qmin, qmax) = (35, 60)435

In this section, we compute and store the optimal controls in the synthetic market, for the scenario436

in Table 7.1, with (qmin, qmax) = (35, 60), for the case κ = 30, with (EW,LS) = (52,−1.87). These437

controls are then tested in the historical market, using 105 stationary block bootstrap resamples,438

with blocksize 0.25 years. The percentiles of the controls and wealth as a function of time are shown439

in Figure 10.4. Note that the additional flexibility of allowing smaller minimum withdrawals (35440

compared to our target of 40), means that, the median withdrawal rate is at the maximum rate441

after the first year. The heat maps of the controls are shown in Figure 10.5.442

10.3 Bang-bang control for withdrawals443

From Figure 10.3(b) and Figure 10.5(b) we can see that the optimal withdrawal, as a function444

of wealth before withdrawals, is either the maximum or minimum withdrawal, with a very small445

transition zone. This means that the optimal withdrawal is very close to a bang-bang type control.446

In Forsyth (2021), an analysis was carried out, assuming that the rebalancing interval tends to447

zero and that withdrawals occur at a continuous rate q̂ ∈ [q̂min, q̂max]. Note that the objective448

function in Forsyth (2021) is different from the objective function in this work, but the analysis of449

the continuously rebalanced problem is similar. Hence, it is possible to prove, in the continuous450

rebalancing limit, that the withdrawal controls are bang-bang, i.e. the optimal strategy is either to451

withdraw at the maximum rate q̂max or the minimum rate q̂min. Of course, in our case, we have452

discrete rebalancing, and so the withdrawal control is not strictly bang-bang, but we can see from453

the heat maps that the control is very close to bang-bang.454
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Figure 10.2: Scenario in Table 7.1. Optimal control computed from problem Problem 5.2. Scenario
in Table 7.1. Parameters based on the real CRSP index, and real 10-year treasuries (see Table A.1).
Control computed and stored from the Problem 5.2 in the synthetic market. Synthetic market, 2.56×
106 MC simulations. qmin = 40, qmax = 60, κ = 20. W ∗ = 400. ε = 10−6. Units: thousands of
dollars.

(a) Fraction in stocks (b) Withdrawals

Figure 10.3: Heat map of controls: fraction in stocks and withdrawals, computed from Problem 5.2,
cap-weighted real CRSP, real 10 year treasuries. Scenario given in Table 7.1. Control computed and
stored from the Problem 5.2 in the synthetic market. qmin = 40, qmax = 60, κ = 20. W ∗ = 400.
ε = 10−6. Normalized withdrawal (q − qmin)/(qmax − qmin). Units: thousands of dollars.

11 Robustness check: historical market455

As a check on robustness of our results to parametric model misspecification, we carry out the456

following tests. The efficient EW-LS frontiers are computed in the synthetic market. The controls457

computed in the synthetic market are stored. These controls are used to construct the efficient EW-458

LS frontiers in the historical market, as well as in the synthetic market. The comparisons of the these459

frontiers are shown in Figure 11.1, for both the (qmin, qmax) = (40,60) and (qmin, qmax) = (35,60).460

The efficient frontiers for the synthetic and historical markets are very close, indicating that the461

controls computed in the synthetic market are robust to parametric model misspecification.462

As mentioned previously, it is necessary to estimate an expected blocksize for use in the station-463

ary block bootstrap resampling procedure. In Figure 11.2 we show the EW-LS frontiers, based on464
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Figure 10.4: Scenario in Table 7.1. Optimal control computed from Problem 5.2. Scenario in
Table 7.1. Parameters based on the real CRSP index, and real 10-year treasuries (see Table A.1).
Control computed and stored from the Problem 5.2 in the synthetic market. Simulations carried out
in the historical market, using 105 stationary block bootstrap resamples. Blocksize = 0.25 years.
qmin = 35, qmax = 60, κ = 30. W ∗ = 400. ε = 10−6. Units: thousands of dollars.

(a) Fraction in stocks (b) Withdrawals

Figure 10.5: Heat map of controls: fraction in stocks and withdrawals, computed from Problem 5.2,
cap-weighted real CRSP, real 10 year treasuries. Scenario given in Table 7.1. Control computed and
stored from the Problem 5.2 in the synthetic market. qmin = 35, qmax = 60, κ = 30. W ∗ = 400.
ε = 10−6. Normalized withdrawal (q − qmin)/(qmax − qmin). Units: thousands of dollars.

controls determined in the synthetic market, and tested in the historical market, computed using465

different blocksizes, for the case (qmin, qmax) = (40,60). The detailed frontiers are given in Appendix466

E. The efficient frontiers are fairly robust to different choices of expected blocksize, varying from467

0.25 to 1.0 years.468

12 Discussion469

We can see that allowing adaptive controls, both in the equity fraction and in the withdrawal470

amounts, improves the results considerably, compared to a constant weight, constant withdrawal471

strategy. For example, if we consider fixing the minimum withdrawal to be the same as the constant472
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Figure 11.1: EW-LS frontiers, comparison of synthetic frontiers, and frontier generated from (i)
controls computed in the synthetic market (ii) control tested in the historical (bootstrapped) market.
Scenario in Table 7.1. Parameters based on real CRSP index, real 10-year US treasuries (see Table
A.1). Control computed and stored, historical frontier computed using 105 bootstrap resampled sim-
ulations, blocksize 0.25 years. Historical data in range 1926:1-2019:12. Units: thousands of dollars.
W ∗ = 400.
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Figure 11.2: EW-LS frontiers, comparison of frontier generated from (i) controls computed in the
synthetic market (ii) control tested in the historical (bootstrapped) market. Scenario in Table 7.1.
(qmin, qmax) = (40,60). Parameters based on real CRSP index, real 10-year US treasuries (see Ta-
ble A.1). Control computed and stored, historical frontier computed using 105 bootstrap resampled
simulations, expected blocksizes as shown, in years. (qmin, qmax) = (40,60). Historical data in range
1926:1-2019:12. Units: thousands of dollars. W ∗ = 400.

withdrawal amount (assuming a constant weight equity strategy), and examine the point on the473

efficient frontier with similar risk, as measured by LSW ∗ , we observe the following.474

(i) The expected average withdrawal is considerably larger than the constant withdrawal amount.475

(ii) The flexible withdrawal amount is never less than the fixed constant withdrawal amount.476

(iii) By construction, the LSW ∗ tail risk is the same or better than the constant weight, constant477

withdrawal policy. The CVAR(5%) risk is comparable.478

In this sense, for practical purposes, the optimal policy, with stock fraction controls and flexible479
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withdrawals, dominates the constant stock fraction, constant withdrawal strategy.480

Our base scenario assumed a target withdrawal strategy of 40 per year (units thousands). If481

we allow more flexibility in the withdrawals, i.e. minimum of 35 per year, maximum 60 per year,482

then there are points on the efficient frontier with LS risk less than the constant weight, constant483

withdrawal strategy (35 per year), but with expected average withdrawals of more than 50 per year.484

This indicates that withdrawal flexibility can be used to both reduce risk and increase expected485

average withdrawals.486

The optimal strategies directly targeted tail risk as measured by LSW ∗ (W ∗ = 400). However,487

if we compare the various strategies after the fact, using CVAR(5%), our ranking of strategies is488

essentially the same. This suggests that these strategies are fairly robust to the particular measure489

of tail risk used.490

Compared with previous results (Forsyth, 2021), (optimal strategy for longer investment hori-491

zons, objective function based on CVAR risk measure), we have increased withdrawals in the early492

years of retirement. These strategies have median withdrawals at the maximum withdrawal rates,493

within 2-3 years of retirement.494

13 Conclusions495

If we rule out the use of immediate lifelong annuities, then a major problem with decumulation496

strategies is uncertain longevity. One way around this is to specify a long decumulation period, i.e.497

30 years. This is a conservative approach, but the optimal withdrawal controls (Forsyth, 2021) are498

such that the retiree withdraws as the minimum specified rate for 10 − 15 years after retirement.499

This obviously reduces the risk of ruin before year 30 (i.e. before age 95 for a 65-year old retiree), but500

this is perhaps an undesirable spending pattern. In addition, of course, the probability of attaining501

age 95, is quite low. Therefore, it is probable that the retiree will pass away, leaving considerable502

wealth unspent.503

At first sight, it might seem reasonable to use mortality weighted cash flows in the objective504

function. However, since the retiree does not actually purchase an annuity (by assumption), mor-505

tality credits are not actually earned. Hence, this does not produce the required minimum cash506

flows.6507

As an alternative, in this work, we suggest initially examining a shorter decumulation horizon of508

15 years. At the end of 15 years, we specify a tail risk target for the portfolio (including borrowing509

secured by real estate) that would be sufficient to purchase a lifelong annuity, at age 80, which510

would provide for minimum desired cash flows. Note that we are not suggesting that the retiree511

actually purchase an annuity at age 80. The annuity value is simply an appropriate tail risk target.512

Of course, the retiree’s median wealth at age 80 will be considerably greater than this minimum513

target. In these cases, the retiree then has the flexibility to (i) continue on with the self-managed514

DC account or (ii) combine the DC account with an annuity. Note that the probability of a 65 year515

old Canadian male attaining the age of 80 is about 0.76, so that a 15 year decumulation period516

occurs with high probability.517

The shorter investment horizon does indeed improve the spending pattern. The median with-518

drawal rate is at the maximum, within 2-3 years of retirement.519

This suggests that breaking up the decumulation horizon into early and late portions is a de-520

sirable strategy. Focusing on maximizing total withdrawals during the early stage, while ensuring521

that the tail risk at 15 years is small, is both a low risk and high satisfaction policy. The tail risk522

6A retiree at any point in time is either alive or dead. If alive, the retiree needs the full minimum cash flow, not
the mortality weighted cash flow.
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target is based on the fact that lifelong annuity payouts increase considerably by age 80, so this tail523

risk target represents a cost effective fall back strategy.524
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Appendix528

A Data529

We use data from the Center for Research in Security Prices (CRSP) on a monthly basis over the530

1926:1-2019:12 period.7 Our tests use the CRSP 10 year US treasury index for the bond asset and531

the CRSP capitalization-weighted total return index for the stock asset. This latter index includes532

all distributions for all domestic stocks trading on major U.S. exchanges.8 All of these various533

indexes are in nominal terms, so we adjust them for inflation by using the U.S. CPI index, also534

supplied by CRSP. We use real indexes since retirees should be focused on real (not nominal) cash535

flows.536

We use the threshold technique (Mancini, 2009; Cont and Mancini, 2011; Dang and Forsyth,537

2016) to estimate the parameters for the parametric stochastic process models, (2.3) and (2.4).538

Note that the data is inflation adjusted, so that all parameters reflect real returns. Table A.1 shows539

the results of calibrating the models to the historical data. The correlation ρsb is computed by540

removing any returns which occur at times corresponding to jumps in either series, and then using541

the sample covariance. Further discussion of the validity of assuming that the stock and bond jumps542

are independent is given in Forsyth (2020b).543

An obvious generalization of processes (2.3) and (2.4) would be to include stochastic volatil-544

ity effects. However, previous studies have shown that stochastic volatility appears to have little545

consequences for long term investors (Ma and Forsyth, 2016).546

CRSP µs σs λs psup ηs1 ηs2 ρsb

0.0877 0.1459 0.3191 0.2333 4.3608 5.504 0.04554

10-year Treasury µb σb λb pbup ηb1 ηb2 ρsb

0.0239 0.0538 0.3830 0.6111 16.19 17.27 0.04554

Table A.1: Estimated annualized parameters for double exponential jump diffusion model. Value-
weighted CRSP index, 10-year US treasury index deflated by the CPI. Sample period 1926:1 to 2019:12.

7More specifically, results presented here were calculated based on data from Historical Indexes, ©2020 Center for
Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data
Services was used in preparing this article. This service and the data available thereon constitute valuable intellectual
property and trade secrets of WRDS and/or its third-party suppliers.

8The 10-year Treasury index was constructed from monthly returns from CRSP back to 1941. The data for
1926-1941 were interpolated from annual returns in Homer and Sylla (2005).
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Data series Optimal expected
block size b̂ (months)

Real 10-year Treasury index 4.2
Real CRSP capitalization-weighted index 3.1

Table B.1: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric distribution
Pr(b = k) = (1 − v)k−1v. The algorithm in Patton et al. (2009) is used to determine b̂. Historical
data range 1926:1-2019:12.

B Historical market: stationary block bootstrap resampling547

We use the stationary block bootstrap method (Politis and Romano, 1994; Politis and White, 2004;548

Patton et al., 2009; Dichtl et al., 2016). A crucial parameter is the expected blocksize. Sampling549

the data in blocks accounts for serial correlation in the data series. We use the algorithm in Patton550

et al. (2009) to determine the optimal blocksize for the bond and stock returns separately, see Table551

B.1. We use a paired sampling approach to simultaneously draw returns from both time series.552

In this case, a reasonable estimate for the blocksize for the paired resampling algorithm would be553

about 0.25 years. Detailed pseudo-code for block bootstrap resampling is given in Forsyth and554

Vetzal (2019).555

C Convergence test: synthetic market556

We carry out an initial test of convergence of our numerical method for the EW-LS problem. We557

localize the problem to a grid with (s,b) ∈ [smin, smax] × [−bmax,+bmax], using artificial boundary558

conditions as discussed in (Forsyth and Labahn, 2019). We set (smin, smax) = (100e−8, 100e+8), and559

bmax = smax. Increasing smax by ten and decreasing smin by ten resulted in no change to the solution560

to six figures. Table C.1 shows the results for solution of the PDE on a sequence of grids. For each561

refinement level, we store the optimal control, and use this control in Monte Carlo simulations. The562

PDE solution appears to converge at roughly a second order rate. In the following, we will report563

results based on (i) determining the control from the PDE solution (using the 2048 × 2048 grid564

in Table C.1 ) and (ii) using this control in Monte Carlo simulations. This allows us to generate565

various statistical quantities of interest.566

D Detailed efficient frontiers: synthetic market567

Tables D.1 and D.2 give the detailed results from the synthetic market used to construct Figure568

10.1. Tables D.3 and D.4 give the details for the results computed in the historical market, used to569

construct Figure 11.1.570

E Effect of blocksize571

Tables E.1 and E.2 show the historical market results for the case (qmin, qmax) = (40,60), using572

expected blocksizes of 0.5 and 1.0 years respectively. These tables can be compared to Table D.3573

which uses an expected blocksize of 0.25 years.574
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Algorithm in Section 6.1 Monte Carlo

Grid E[(WT −W ∗)] E[
∑

i qi]/(M + 1) Value E[(WT −W ∗)] E[
∑

i qi]/(M + 1)
Function

512× 512 -3.88020 49.4266 14.777 -3.61668 49.4139
1024× 1024 -3.68539 49.5038 54.982 -3.61868 49.5044
2048× 2048 -3.62496 49.5079 67.134 -3.61705 49.5033
4096× 4096 -3.61089 49.5090 69.965 -3.61691 49.5067

Table C.1: Convergence test, real stock index: deflated real capitalization weighted CRSP, real bond
index: deflated ten year Treasuries. Scenario in Table 7.1. Parameters in Table A.1. The Monte
Carlo method used 107 simulations. κ = 200. Grid refers to the grid used in the Algorithm in Section
6.1: nx×nb, where nx is the number of nodes in the log s direction, and nb is the number of nodes in
the log b direction. Units: thousands of dollars (real). (M + 1) is the total number of withdrawals. M
is the number of rebalancing dates. qmin = 40.0. qmax = 60. W ∗ = 400.0 (Problem 5.2), Algorithm
in Section 6.1.

κ E[min(W −W ∗,0)] E[
∑

i qi]/(M + 1) CVAR (5%) Median[WT ] Prob[WT < W ∗]

∞ -3.561 40.00 330.6 839.7 .0395
2000 -3.566 47.31 328.8 708.9 .0399
200 -3.617 49.50 327.3 661.2 .0420
50 -3.973 51.37 320.5 626.5 .0481
30 -4.343 52.25 313.2 612.3 .0539
20 -4.825 52.99 304.5 600.7 .0610
15 -5.328 53.52 296.0 529.3 .0676
10 -7.187 54.91 266.1 567.8 .0871
5 -10.12 56.20 224.5 554.6 .1150
2 -18.13 57.73 129.9 549.1 .1796

Table D.1: Synthetic market results for optimal strategies, assuming the scenario given in Table 7.1.
Stock index: real capitalization weighted CRSP stocks; bond index: ten year treasuries. Parameters
from Table A.1. Units: thousands of dollars. Statistics based on 2.56 × 106 Monte Carlo simulation
runs. Control is computed using the Algorithm in Section 6.1, stored, and then used in the Monte
Carlo simulations. qmin = 40.0, qmax = 60. (M + 1) is the number of withdrawals. M is the number
of rebalancing dates. W ∗ = 400. ε = 10−6.
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κ E[min(W −W ∗,0)] E[
∑

i qi]/(M + 1) CVAR (5%) Median[WT ] Prob[WT < W ∗]

∞ -1.334 35.00 399.1 932.1 .0179
2000 -1.342 46.02 383.7 733.1 .0182
200 -1.445 49.07 375.2 669.8 .0208
100 -1.581 50.23 369.8 648.8 .0236
50 -1.880 51.51 362.6 626.3 .0294
30 -2.277 52.46 354.6 610.2 .0364
20 -3.143 53.73 337.2 597.1 .0485
15 -3.727 54.37 325.8 573.6 .0566
10 -4.644 55.07 309.6 564.4 .0688
2 -14.43 57.36 171.4 551.6 .1643

Table D.2: Synthetic market results for optimal strategies, assuming the scenario given in Table 7.1.
Stock index: real capitalization weighted CRSP stocks; bond index: ten year treasuries. Parameters
from Table A.1. Units: thousands of dollars. Statistics based on 2.56 × 106 Monte Carlo simulation
runs. Control is computed using the Algorithm in Section 6.1, stored, and then used in the Monte
Carlo simulations. qmin = 35.0, qmax = 60. (M + 1) is the number of withdrawals. M is the number
of rebalancing dates. W ∗ = 400. ε = 10−6.

κ E[min(W −W ∗,0)] E[
∑

i qi]/(M + 1) CVAR (5%) Median[WT ] Prob[WT < W ∗]

∞ -3.174 40.0 338.5 829.1 .0387
2000 -3.175 47.17 336.6 701.2 .0390
200 -3.223 49.40 335.6 653.3 .0403
100 -3.302 50.28 334.0 636.2 .0424
50 -3.500 51.30 330.00 617.5 .0469
30 -3.833 52.19 323.4 602.5 .0532
20 -4.271 52.93 315.4 590.5 .0602
15 -4.727 53.47 307.8 582.2 .0676
10 -6.497 54.85 279.7 556.8 .0881
5.0 -9.282 56.14 241.2 542.6 .1175
2.0 -17.11 57.22 150.5 535.9 .1874

Table D.3: Control computed in the synthetic market, assuming the scenario given in Table 7.1.
Stock index: real capitalization weighted CRSP stocks; bond index: ten year treasuries. Parameters
from Table A.1. Units: thousands of dollars. Statistics based on 105 bootstrap resampling of the
historical data. Historical data in range 1926:1-2019:12. Expected blocksize b̂ = .25 years. qmin = 40.0,
qmax = 60. (M + 1) is the number of withdrawals. M is the number of rebalancing dates. W ∗ = 400.
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κ E[min(W −W ∗,0)] E[
∑

i qi]/(M + 1) CVAR (5%) Median[WT ] Prob[WT < W ∗]

∞ -1.136 35.0 405.3 928.2 .0166
2000 -1.140 45.90 389.6 725.7 .0167
200 -1.210 49.00 380.8 662.0 .0188
100 -1.348 50.18 375.6 640.4 .0217
50 -1.547 51.48 369.3 617.3 .0272
30 -1.869 52.43 362.8 600.3 .0343
20 -2.638 53.68 347.3 574.3 .0469
15 -3.167 54.32 336.9 563.1 .0534
10 -4.008 55.03 322.2 553.2 .0690
5.0 -6.426 56.13 284.4 541.9 .0985
2.0 -13.48 57.55 190.1 538.0 .1714

Table D.4: Control computed in the synthetic market, assuming the scenario given in Table 7.1.
Stock index: real capitalization weighted CRSP stocks; bond index: ten year treasuries. Parameters
from Table A.1. Units: thousands of dollars. Statistics based on 105 bootstrap resampling of the
historical data. Historical data in range 1926:1-2019:12. Expected blocksize b̂ = .25 years. qmin = 35.0,
qmax = 65. (M + 1) is the number of withdrawals. M is the number of rebalancing dates. W ∗ = 400.

κ E[min(W −W ∗,0)] E[
∑

i qi]/(M + 1) CVAR (5%) Median[WT ] Prob[WT < W ∗]

∞ -3.896 40.00 322.6 830.2 .0447
2000 -3.898 47.19 322.1 701.9 .0451
200 -3.958 49.37 320.9 654.7 .0465
100 -4.051 50.25 318.9 637.8 .0489
50 -4.274 51.26 314.6 619.6 .0536
30 -4.622 52.14 308.4 605.4 .0597
20 -5.086 52.88 300.6 593.2 .0671
15 -5.591 53.43 292.6 585.0 .0742
10 -7.331 54.81 264.5 559.6 .0942
5.0 -10.32 56.09 225.7 544.4 .1236
2.0 -18.54 57.67 133.3 536.9 .1905

Table E.1: Control computed in the synthetic market, assuming the scenario given in Table 7.1.
Stock index: real capitalization weighted CRSP stocks; bond index: ten year treasuries. Parameters
from Table A.1. Units: thousands of dollars. Statistics based on 105 bootstrap resampling of the
historical data. Historical data in range 1926:1-2019:12. Expected blocksize b̂ = .5 years. qmin = 40.0,
qmax = 60. (M + 1) is the number of withdrawals. M is the number of rebalancing dates. W ∗ = 400.
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κ E[min(W −W ∗,0)] E[
∑

i qi]/(M + 1) CVAR (5%) Median[WT ] Prob[WT < W ∗]

∞ -4.208 40.00 315.9 831.7 .0488
2000 -4.212 47.19 315.6 703.1 .0493
200 -4.283 49.37 314.4 656.1 .0513
100 -4.370 50.23 312.7 639.2 .0526
50 -4.586 51.28 309.0 621.2 .0591
30 -4.921 52.11 303.6 606.8 .0656
20 -5.371 52.85 296.7 594.1 .0728
15 -5.832 53.40 290.0 585.5 .0795
10 -7.600 54.79 264.1 559.4 .0993
5.0 -10.28 56.09 228.3 544.8 .1247
2.0 -18.01 57.68 138.3 534.6 .1896

Table E.2: Control computed in the synthetic market, assuming the scenario given in Table 7.1.
Stock index: real capitalization weighted CRSP stocks; bond index: ten year treasuries. Parameters
from Table A.1. Units: thousands of dollars. Statistics based on 105 bootstrap resampling of the
historical data. Historical data in range 1926:1-2019:12. Expected blocksize b̂ = 1.0 years. qmin = 40.0,
qmax = 60. (M + 1) is the number of withdrawals. M is the number of rebalancing dates. W ∗ = 400.
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