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Abstract

Infinite reload options allow the user to exercise his reload right as often as he chooses
during the lifetime of the contract. Each time a reload occurs, the owner receives new options
where the strike price is set to the current stock price. We consider a modified version of the
infinite reload option contract where the strike price of the new options received by the owner is
increased by a certain percentage; we refer to this new contract as an increased reload option.
The pricing problem for this modified contract is characterized as an impulse control problem
resulting in a Hamilton-Jacobi-Bellman equation. We use fully implicit timestepping and prove
that the discretized equations are monotone, stable and consistent, implying convergence to
the viscosity solution. We also derive a globally convergent iterative method for solving the
non-linear discrete equations. Numerical examples show that both the exercise policy and the
option value are very sensitive to the percentage increase in the reload strike.

Keywords: Infinite reload options, impulse control problem, viscosity solution, optimal exercise,
implicit constraint

1 Introduction

Numerous companies have included employee stock options in their executive compensation pack-
ages since they are believed to align the executive’s interests with those of the share holders.
However, in the last few years many large firms have stopped issuing new employee stock options.
This change in compensation philosophy may be a direct consequence of the recent changes in
accounting requirements regarding employee stock options in the United-States. Indeed, the Fi-
nancial Accounting Standards Board now requires companies issuing stock options to include these
contracts as an expense on their balance sheet. As such, companies are looking to establish the fair
or no-arbitrage value of these contracts using numerical techniques. In addition, companies who
have issued more exotic, and hence more valuable, stock options may be looking to modify these
contracts in order to reduce their no-arbitrage value and thus minimize the expense associated with
stock options.

In this paper, we will consider a particularly expensive type of employee stock option referred
to as a reload option. These contracts include a reload feature which allows the owner to pay
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the current strike price using a certain amount of his company stock and in return receive new
options where the strike price is set to the prevailing stock price. In the case of an infinite reload
option, the employee is entitled to take advantage of his reload right as often as he chooses prior
to the expiration of the contract. Only limited work has been done regarding the valuation of
reload options. Both [11] and [8] present numerical methods for pricing reload options in the
no-arbitrage framework. The authors of [11] use a binomial model (essentially an explicit finite
difference method) to price infinite reload options and outline the optimal exercise policy which
states that the owner should exercise his option whenever the stock price exceeds the current strike
price. Meanwhile, [8] outlines a binomial pricing model for reload contracts with both finite and
infinite number of reload opportunities where the reload feature is incorporated using dynamic
programming. The work in [9] extends this pricing model to take into consideration possible time
vesting requirements.

Numerous companies that have issued infinite reload options are now looking for ways to reduce
their no-arbitrage price [15]. One particular contractual change which has been considered by some
companies [15] is to increase the strike price of new options received following a reload event by a
certain percentage. We will refer to this modified contract as an increased reload option and will
demonstrate how this contract modification can reduce the option expense.

More specifically, we can summarize this paper’s contributions as follows:

• The increased reload pricing problem is outlined and characterized as an impulse control
problem [5], which results in a Hamilton-Jacobi-Bellman variational inequality. Note that in
our formulation, the infinite reload pricing problem becomes a special case of the increased
reload pricing problem where there is no increase in the reload strike.

• In this context, the question of convergence to the viscosity solution must be addressed.
We show that the discretized Hamilton-Jacobi-Bellman equations satisfy the classic stability,
monotonicity and consistency requirements as outlined in [2].

• Furthermore, the application method of the reload constraint is considered. While a penalty
term is used to impose the reload constraint, we demonstrate how applying the reload con-
straint implicitly results in more accurate results than applying the constraint explicitly. Note
that previous work on reload options involved applying the constraint explicitly [11, 8].

• In addition, we show that both the option value and the optimal exercise policy are highly
sensitive to the increased percentage in the reload strike. Indeed, even a small percentage
increase means that it is no longer optimal to exercise whenever the stock price exceeds the
strike price.

• Finally, we outline how a local volatility surface can be included in our pricing model for
increased reload options.

This paper is structured as follows. Section 2 presents the pricing model for increased reload
options while Section 3 outlines some of the analytical properties of the associated discrete equa-
tions. Some crucial algorithmic solution details are also outlined. Section 4 then presents numerical
results obtained when pricing different increased reload option contracts including infinite reload
options. Finally, Section 5 summarizes our findings and presents concluding remarks.
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2 Increased Reload Pricing Problem

One of the main goals of this paper is to investigate how a particular contract modification can
reduce the no-arbitrage price of infinite reload options. In the case of classic infinite reload options,
the following exchange takes place each time a reload occurs: the owner will pay the current strike
price K using K/S pre-owned company shares and, in return, will receive one unit of company stock
and K/S new reload options where the strike price is set to the current stock price K = S. The
contractual change considered by some companies [15] implies that the strike price of new reload
options received following a reload event is increased to K = S × (1 + p), where p ≥ 0 represents
the fraction increase. We will refer to this modified reload option contract as an increased reload
option. Note that the classic infinite reload option contract is a special case of the increased reload
contract where p = 0.

The value of an increased reload option contract V = V (S, K, t) will depend on the current
company stock price S, the option strike price K and time t. We assume that the company stock
price S follows geometric Brownian motion, namely:

dS

S
= (µ− q)dt + σ(S, K, t)dZ, (2.1)

where µ is the drift rate, q ≥ 0 is the dividend yield, σ(S, K, t) is the volatility of the company
stock and dZ is the increment in a Wiener process. Note that the asset volatility is written as a
function of S, K and t allowing us to model volatility both as a constant and as a function of S,
K and t through the use of a local volatility surface.

At maturity of the contract (t = T ), the owner will receive one unit of stock for each increased
reload option owned, which he can then sell at market value. Hence, the option payoff received by
the employee at expiry is:

Payoff(S, K) = V (S, K, t = T ) = max(S −K, 0), (2.2)

where K is the strike price of the option at expiry and S is the market value of the company stock
at expiry.

A reload constraint V ∗ = V ∗(S, K, t) must be imposed to ensure that the current value of the
increased reload option is never less than the value obtained by the owner following a reload event.
Keep in mind that the owner of an increased reload option will only consider reloading if S > K.
Based on the dynamics of the contract, the increased reload constraint V ∗ is defined as:

V ∗(S, K, t) =

{
(S −K) + K

S V (S, S(1 + p), t) if S > K

0 otherwise
, (2.3)

where V (S, S(1 + p), t) is the value of the new reload option obtained with strike K = S(1 + p).
Note that the infinite reload constraint as stated in [8] and [11] is recovered by setting p = 0 in
equation (2.3).

Defining the differential operator LV as:

LV ≡ σ(S, K, τ)2S2

2
VSS + (r − q)SVS − rV, (2.4)

where r is the risk-free rate of return, the no-arbitrage value of the increased reload option can be
stated as [8, 11]:

min
(

Vτ − LV, V − V ∗
)

= 0, (2.5)
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where V ∗ is the constraint defined in equation (2.3) and τ = T − t is the time to maturity of the
contract. The increased reload pricing problem can also be written as the penalized problem:

lim
ε→0

(
Vτ − LV − 1

ε
max(V ∗ − V, 0)

)
= 0. (2.6)

This pricing problem will be solved numerically using the penalty method outlined in [12]. Note
that [1] demonstrates that the penalization method is a good viscosity approximation for problems
such as that presented in equation (2.6). Well-posedness properties are also outlined in [1].

When option values V (S, K, t) are homogeneous of degree one in both S and K, the increased
reload constraint can be simplified by using the following property [14]:

V (λS, λK, t) = λV (S, K, t), (2.7)

for a given value of λ. Setting λ = K∗

K , we can write:

V (S, K, t) =
K

K∗V

(
SK∗

K
,K∗, t

)
. (2.8)

In the special case where K = S(1 + p), we then obtain:

V (S, S(1 + p), t) =
S(1 + p)

K∗ V

(
K∗

(1 + p)
,K∗, t

)
. (2.9)

Assuming K∗ = K, we can now simplify the reload constraint in equation (2.3) as follows:

V ∗(S, K, t) =

{
(S −K) + (1 + p)V

(
K

(1+p) ,K, t
)

if S > K

0 otherwise
. (2.10)

Therefore, in cases where this similarity reduction can be applied, the constraint in equation (2.10)
can be used when solving equation (2.6). The use of a similarity reduction effectively reduces the
solution of a two-dimensional problem in (S, K) to a one-dimensional problem in (S) only [19].
Since this solution method is only applicable when homogeneity conditions are met, it will be
treated as a special case of the general increased reload pricing problem.

Theoretically, the increased reload pricing problem as outlined in equation (2.6) should be
solved on an unbounded two-dimensional domain. In the context of this paper, we will however
be considering this particular pricing problem on a truncated rectangular two-dimensional S ×K
domain: [0, Smax]× [0,Kmax] where Smax >> Kmax.

2.1 Boundary Conditions

To fully define this problem, we need to specify additional boundary conditions in both the S and K
directions. We begin by considering the case where S → 0. When S = 0, equation (2.6) simplifies
to:

Vτ + rV − 1
ε

max(V ∗ − V, 0) = 0. (2.11)

Similarly, we note that as K → 0, no additional boundary condition is necessary since the differential
operator L in equation (2.4) contains no K derivatives.
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However, some care must be taken when considering the boundary conditions as K → ∞ and
S →∞. For S = Smax, we will apply the following boundary condition:

V = max(Payoff(S, K), V ∗). (2.12)

As K → Kmax, we could assume that the contract contains a cap, whereby no reload is possible
when K ≥ Kmax. In this case, we simply solve:

Vτ − LV = 0; K = Kmax (2.13)

and the reload constraint in equation (2.3) becomes:

V ∗(S, K, t) =

{
(S −K) + K

S V (S, S∗(1 + p), t) if S > K

0 otherwise,
(2.14)

where S∗ = min
(
S, Kmax

(1+p)

)
. Of course, if equation (2.14) is used, then a similarity reduction is not

possible.
Another possibility, and our preferred choice, is to assume that a similarity reduction is valid

for K = Kmax, S(1 + p) > Kmax. In the context of equation (2.4), this amounts to assuming that
σ(S, K, τ) becomes constant as S → Kmax. Making this assumption, the solution for S > Kmax can
be approximated by the similarity solution with little error provided Kmax is selected sufficiently
large.

More precisely, we will modify the reload constraint in equation (2.3) to become:

V ∗(S, K, t) =


(S −K) + K

S V (S, S(1 + p), t) if S > K and S(1 + p) ≤ Kmax

(S −K) + K(1+p)
Kmax

V
(

Kmax
1+p ,Kmax, t

)
if S > K and S(1 + p) > Kmax

0 otherwise.

(2.15)

To summarize, we solve the following equation:

Vτ − LV − 1
ε

max(V ∗ − V, 0) = 0 (2.16)

on the domain [0, Smax]× [0,Kmax] with initial condition:

V (S, K, τ = 0) = max(S −K, 0), (2.17)

and boundary conditions:

Vτ + rV =
1
ε

max(V ∗ − V, 0) for S = 0, (2.18)

V = max(Payoff(S, K), V ∗) for S = Smax, (2.19)

where V ∗ is given by equation (2.15). This fully specifies our option pricing problem. Note that
for finite (Smax,Kmax), this is clearly an approximation to the original pricing problem on [0,∞]×
[0,∞]. We will verify through numerical experiments that the error due to finite Kmax is easily
reduced to negligible values (see Appendix B).

We now study the properties of the discrete equations in the context of the increased reload
pricing problem and show that the numerical scheme obtained is stable, monotone and consistent.
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3 Analysis of the Discrete Equations

Having described the increased reload pricing problem in Section 2, we now consider the discretiza-
tion of equation (2.16) on our [0, Smax] × [0,Kmax] domain. We first describe how the underlying
grid is built and then carry out an analysis of the discrete equations. We will check that the discrete
scheme is consistent, stable and monotone. As outlined in [2], these three properties ensure that
convergence to the viscosity solution [7] is possible provided a strong comparison result applies.
Indeed, [16] demonstrates how some reasonable discretization schemes either never converge or
converge to the wrong solution if these properties aren’t satisfied.

Let us first point out a few details about the mesh construction used for our discrete [0, Smax]×
[0,Kmax] domain. Since equation (2.4) contains no derivatives with respect to K, we can discretize
equation (2.5) using a set of one-dimensional grids. Let K∗ be the initial strike price. We first
build a set of nodes in the K direction {Kj} for j = 0, . . . , jmax such that there there exists an
index l where Kl = K∗.

For a fixed Kj , we then construct a set of S grid nodes {Sj
i } as follows:

Sj
i =

Kj

K∗
Ki

(1 + p)
for i = 0, . . . , jmax − 1

Sj
jmax

=
Kjmax

K∗
Kjmax

(1 + p)
. (3.1)

Note that for any given j, the node
(

Kj

1+p ,Kj

)
is included in the grid.

As shown in Figure 3.1, this type of grid concentrates nodes near the line K = (1 + p)S so
that the constraint can be accurately estimated using equation (2.15). As we shall see, this type of
scaled grid in general requires an interpolation to estimate V ∗. This contrasts with the simple idea
of defining:

Sj
i = Ki for i = 0, . . . , jmax (3.2)

for a given Kj which results in the so-called repeated grids discussed in [20] and [21]. In this case,
no interpolation is required to estimate V ∗. However, tests in [21] show that a scaled grid, along
with diagonal interpolation (to be discussed later) is superior to a repeated grid.

K

S = Kmax0

Kmax

Smax S

Figure 3.1: Example of a scaled grid construction for the two-dimensional [0, Smax] × [0,Kmax]
domain.
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We will now move on to the analysis of the discrete equations for the increased reload option
pricing problem. To outline the dependency of the option value on S, K and τ , the following
notation will be used for the option value in the discrete domain: V n

i,j = V (Sj
i ,Kj , τ

n). The
discrete form of equation (2.6) is obtained by using finite difference approximations and introducing
a discrete penalty term P (V n+1

i,j , (V ∗
i,j)

n+1):

V n+1
i,j − V n

i,j

∆τ
= (1− θ)[LV ]n+1

i,j + θ[LV ]ni,j + P (V n+1
i,j , (V ∗

i,j)
n+1), (3.3)

where 0 ≤ θ ≤ 1 and (V ∗
i,j)

n+1 = V ∗(Sj
i ,Kj , τ

n+1) is the discrete form of the reload constraint.
The discrete form of the differential operator L is defined as:

[LV ]ni,j = αn
i,jV

n
i−1,j + βn

i,jV
n
i+1,j − (αn

i,j + βn
i,j + r)V n

i,j , (3.4)

where αn
i,j and βn

i,j are determined according to the algorithm in Appendix A, and satisfy the
following condition:

αn
i,j ≥ 0 ; βn

i,j ≥ 0 ∀i, j, n. (3.5)

Consequently, for a given value of Sj
i and Kj , the discrete equation is:

V n+1
i,j − V n

i,j

∆τ
= −(1− θ)(αn+1

i,j + βn+1
i,j + r)V n+1

i,j − θ(αn
i,j + βn

i,j + r)V n
i,j (3.6)

+ (1− θ)(αn+1
i,j V n+1

i−1,j + βn+1
i,j V n+1

i+1,j) + θ(αn
i,jV

n
i−1,j + βn

i,jV
n
i+1,j) + P (V n+1

i,j , (V ∗
i,j)

n+1).

Note that θ = 0 implies that a fully implicit method is chosen while θ = 1/2 implies that Crank-
Nicolson timestepping is used.

The discrete penalty term P (V n+1
i,j , (V ∗

i,j)
n+1) is defined as:

P (V n+1
i,j , (V ∗

i,j)
n+1) = Ln+1

i,j

[
(V ∗

i,j)
n+1 − V n+1

i,j

]
, (3.7)

where

Ln+1
i,j = L(V n+1

i,j , (V ∗
i,j)

n+1) =

{
1
ε if (V ∗

i,j)
n+1 > V n+1

i,j and Sj
i > Kj

0 otherwise.
(3.8)

Note that we can also write equation (3.7) as:

P (V n+1
i,j , (V ∗

i,j)
n+1) = max

γ∈{0,1}

γ

ε

[
(V ∗

i,j)
n+1 − V n+1

i,j

]
H
(
Sj

i −Kj

)
, (3.9)

where

H(x) =

{
1 if x > 0
0 otherwise.

(3.10)

Writing the penalty term as a control term, as done in equation (3.9), is sometimes useful for
carrying out analysis of the discrete equations.
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In calculating the constraint (V ∗
i,j)

n+1 in equation (3.7), we will be using diagonal interpolation
along the K = S(1 + p) line to determine V (S, S(1 + p), τ) in equation (2.15). Having determined
m such that Km ≤ Sj

i (1 + p) ≤ Km+1, we use diagonal interpolation:

V (Sj
i , S

j
i (1 + p), τn+1) =V

(
Km

1 + p
,Km, τn+1

)(
1−

Sj
i (1 + p)−Km

Km+1 −Km

)

+ V

(
Km+1

(1 + p)
,Km+1, τ

n+1

)
Sj

i (1 + p)−Km

Km+1 −Km

+O((Km+1 −Km)2). (3.11)

Tests in [21] show that diagonal interpolation for shout options is superior to the usual bilinear
interpolation. Defining the interpolation weight 0 ≤ ω ≤ 1 as:

ω =
Sj

i (1 + p)−Km

Km+1 −Km
, (3.12)

equation (3.11) can be written as:

V (Sj
i , S

j
i (1 + p), τn+1) 'V n+1

l,m (1− ω) + V n+1
l,m+1ω, (3.13)

where l is an index such that Sj
l = Kj/(1 + p) and V n+1

l,j = V (Sj
l ,Kj , τ

n+1). Figure 3.2 shows a
graphical representation of diagonal interpolation along the K = S(1 + p) line.

Consequently, the discrete penalty term can be written as:

P (V n+1
i,j , (V ∗

i,j)
n+1) =

1
ε

[
(V ∗

i,j)
n+1 − V n+1

i,j

]
when (V ∗

i,j)
n+1 > V n+1

i,j

0 otherwise,
(3.14)

where
(V ∗

i,j)
n+1 = Sj

i −Kj +
Kj

Sj
i

(
(1− ω)V n+1

l,m + ωV n+1
l,m+1

)
. (3.15)

Recall that the grid construction ensures that the node Sj
l is included in the one-dimensional grid

built for Kj (see equation (3.1)).
In situations where the similarity reduction is applicable, the discrete penalty term P (V n+1

i,j , (V ∗
i,j)

n+1)
will still be of the general form presented in equation (3.14) but (V ∗

i,j)
n+1 will be (from equation

(2.10)):

(V ∗
i,j)

n+1 = Sj
i −Kj + (1 + p)V n+1

l,j . (3.16)

Note that no interpolation is required in this case since the data point (Sj
l ,Kj) is included in our

initial grid.
We will show that the discrete equation in (3.6) satisfies the stability, monotonicity and consis-

tency requirements which generally lead to the convergence of the numerical solution to the unique
viscosity solution as shown in [4], [3] and [2].

Note that in addition to satisfying these three properties, the original problem in (2.5) must
also satisfy the strong comparison result [2] to conclude that the numerical scheme converges to
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.

V n+1
l,m+1

K

Sm
l Sm+1

l S

Km+1

Km

V (Sj
i , Sj

i (1 + p), τn+1)

V n+1
l,m

Figure 3.2: Diagonal interpolation is used when determining V (Sj
i , S

j
i (1 + p), τn+1) in the infinite

reload constraint presented as equation (2.15).

the unique viscosity solution. While such a result exists for many first and second order equations,
our increased reload pricing problem differs due to the non-local character of the reload constraint
(V ∗

i,j)
n+1 as defined in equations (3.15) and (3.16). However, the authors of [18] consider a quasi-

variational Hamilton-Jacobi-Bellman inequality, similar to our pricing problem in equation (2.5),
with a non-local impulse operator. Indeed, the authors of [18] study a portfolio optimization prob-
lem with a non-linear impulse transaction function. The general equation for the value function
is quite similar to our pricing problem presented in equation (2.5). The authors show that the
solution of this control problem is a constrained viscosity solution as introduced in [17] which satis-
fies a comparison property. Similarly, [6] presents an iterative method for solving quasi-variational
inequalities (with a non-local impulse operator) after having shown that the solution will converge
to the viscosity solution.

While both [6] and [18] indicate that a comparison result is applicable to our pricing problem,
we nonetheless need to verify the stability, monotonicity and consistency requirements as done in
the following sections.

3.1 Stability

We begin by demonstrating that the discrete equation in (3.6) satisfies the l∞-stability requirement
which involves showing that the discrete option value V n+1

i,j is bounded. The following notation
will be used when defining the stability requirement:

∆τ =
T

N
, (3.17)

∆Sj = max
i

(Sj
i+1 − Sj

i ), (3.18)

where T is the contract maturity.
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Definition 3.1 (Stability). The discretization presented as equation (3.6) is l∞-stable if

||V n+1
j ||∞ < C (3.19)

for 0 ≤ n ≤ N , as ∆τ → 0 and maxj ∆Sj → 0, where C is a constant independent of ∆τ and ∆Sj.

The stability of the discrete scheme in (3.6) will be a consequence of the following Lemma.

Lemma 3.2 (Bound for V n+1
i,j ). Assuming that the numerical scheme satisfies the positive coef-

ficient condition presented in equation (3.5), that the boundary conditions are applied as outlined
in Section 2.1 and that the initial conditions are given by equation (2.2), the value of the option
contract will always satisfy:

0 ≤ V n
i,j ≤ Sj

i ∀i, j, n, (3.20)

in the case of fully implicit timestepping (θ = 0).

Proof. For a given j ∈ {0, . . . , jmax}, the discrete scheme as presented in equation (3.6) can be
written out as (for fully implicit timestepping , i.e. θ = 0):

V n+1
i,j = V n

i,j −∆τ(αn+1
i,j + βn+1

i,j + r)V n+1
i,j + ∆ταn+1

i,j V n+1
i−1,j + ∆τβn+1

i,j V n+1
i+1,j

+ ∆τLn+1
i,j

[
Sj

i − V n+1
i,j −Kj +

Kj

Sj
i

(
(1− ω)V n+1

l,m + ωV n+1
l,m+1

)]
, (3.21)

for all i < jmax.
For the pricing problem where j = jmax, it is a simple exercise to show that V n+1

i,jmax
≥

max(Sjmax

i − Kjmax , 0). Consequently, based on the definition of V ∗ in equation (2.15) and re-
calling that Smax >> Kmax, we have that V ∗(Sj

jmax
,Kj) ≥ max(Sj

jmax
−Kj , 0) when i = jmax, for

all j. Consequently, we can write the boundary condition (2.12) in penalized form for i = jmax as
follows:

V n+1
jmax,j = Payoff(Sj

jmax
,Kj) + ∆τLn+1

jmax,j

[
Sj

jmax
− V n+1

jmax,j −Kj +
Kj

Sjmax

l

V n+1
l,jmax

]
, (3.22)

where Payoff(Sj
i ,Kj) = max(Sj

i −Kj , 0) in accordance with equation (2.2).
When the differential operator L is applied to S, the following equation is satisfied:

LS = qS. (3.23)

The discrete form of equation (3.23) for i < jmax is:

Sj
i = Sj

i (1 + q∆τ)−∆τ(αn+1
i,j + βn+1

i,j + r)Sj
i + ∆ταn+1

i,j Sj
i−1 + ∆τβn+1

i,j Sj
i+1. (3.24)

To facilitate our demonstration, we rewrite equation (3.24) so that it has a similar form to equation
(3.21):

Sj
i = Sj

i (1 + q∆τ)−∆τ(αn+1
i,j + βn+1

i,j + r)Sj
i + ∆ταn+1

i,j Sj
i−1 + ∆τβn+1

i,j Sj
i+1

+ ∆τLn+1
i,j

[
Sj

i − Sj
i −Kj +

Kj

Sj
i

(
(1− ω)Sm

l + ωSm+1
l

)]
, (3.25)
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which follows since Sj
i = (1− ω)Sm

l + ωSm+1
l .

When i = jmax, we can also write:

Sj
jmax

= Sj
jmax

+ ∆τLn+1
i,j (Sj

jmax
− Sj

jmax
−Kj +

Kj

Sjmax

l

Sjmax

l ). (3.26)

When i < jmax, we now subtract equation (3.21) from (3.25) which leads us to:

Sj
i − V n+1

i,j =(Sj
i (1 + q∆τ)− V n

i,j)−∆τ(αn+1
i,j + βn+1

i,j + r)(Sj
i − V n+1

i,j )

+ ∆ταn+1
i,j (Sj

i−1 − V n+1
i−1,j) + ∆τβn+1

i,j (Sj
i+1 − V n+1

i+1,j) (3.27)

+ ∆τLn+1
i,j

[
−(Sj

i − V n+1
i,j ) +

Kj

Sj
i

(
(1− ω)(Sm

l − V n+1
l,m ) + ω(Sm+1

l − V n+1
l,m+1)

)]
.

Similarly, when i = jmax, we can subtract equation (3.22) from (3.26) and obtain:

(Sj
jmax

−V n+1
jmax,j) = (Sj

jmax
−Payoff(Sj

jmax
,Kj))+∆τLn+1

jmax,j

[
−(Sj

jmax
−V n+1

jmax,j)+
Kj

Sjmax

l

(Sjmax

l −V n+1
l,jmax

)
]
.

(3.28)
Defining En

i,j = Sj
i − V n

i,j and Ên
i,j = Sj

i (1 + q∆τ) − V n
i,j for i < jmax, we can rewrite equation

(3.27) as:

En+1
i,j (1 + ∆τ(αn+1

i,j + βn+1
i,j + r + Ln+1

i,j ))−∆ταn+1
i,j En+1

i−1,j −∆τβn+1
i,j En+1

i+1,j

−∆τLn+1
i,j

[
Kj

Sj
i

(
(1− ω)En+1

l,m + ωEn+1
l,m+1

)]
= Ên

i,j . (3.29)

Similarly, defining Ên
jmax,j = Sj

jmax
− Payoff(Sj

jmax
,Kj) (when i = jmax), equation (3.28) can be

written as:
En+1

jmax,j(1 + ∆τLn+1
jmax,j)−∆τLn+1

jmax,j

Kj

Sjmax

l

En+1
l,jmax

= Ên
jmax,j . (3.30)

We now define the following vectors:

V n+1
j =


V n+1

0,j

V n+1
1,j
...

V n+1
jmax,j

 ; En+1
j =


En+1

0,j

En+1
1,j
...

En+1
jmax,j

 ; Ên+1
j =


Ên+1

0,j

Ên+1
1,j
...

Ên+1
jmax,j

 (3.31)

and further define:

V n+1 =


V n+1

0

V n+1
1
...

V n+1
jmax

 ; En+1 =


En+1

0

En+1
1
...

En+1
jmax

 ; Ên+1 =


Ên+1

0

Ên+1
1
...

Ên+1
jmax

 . (3.32)

Using the notation outlined in (3.32), equations (3.29) and (3.30) can be combined and written
as:

Qn+1En+1 = Ên, (3.33)
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where Qn+1 is a sparse matrix where each row holds the coefficients for the En+1
i,j equation, and

the entries are such that:[
Qn+1En+1

]
row (i,j)

= En+1
i,j (1+∆τ(αn+1

i,j + βn+1
i,j + r + Ln+1

i,j ))−∆ταn+1
i,j En+1

i−1,j −∆τβn+1
i,j En+1

i+1,j

−
(1− ω)∆τLn+1

i,j Kj

Sj
i

En+1
l,m −

ω∆τLn+1
i,j Kj

Sj
i

En+1
l,m+1, (3.34)

when i < jmax, and similarly the following is satisfied when i = jmax:[
Qn+1En+1

]
row (jmax,j)

= En+1
jmax,j(1 + ∆τLn+1

jmax,j)−∆τLn+1
jmax,j

Kj

Sjmax

l

En+1
l,jmax

. (3.35)

Note that if Ln+1
i,j > 0, then from equation (3.8), we have that Sj

i > Kj . Consequently, taking
into consideration equations (3.34) and (3.35), we note the following concerning the matrix Qn+1:

• the diagonal entries in Qn+1 are positive,

• the off-diagonal entries in Qn+1 are non-positive,

• the row sum of the entries in Qn+1 is strictly positive for all rows.

Hence, we conclude that Qn+1 is an M-matrix.
Recalling that we defined Ên

i,j = Sj
i (1 + q∆τ) − V n

i,j for i < jmax, and Ên
jmax,j = Sj

jmax
−

Payoff(Sj
jmax

,Kj) when i = jmax, we note that, since q ≥ 0:

Ên
i,j ≥ Sj

i − V n
i,j for i < jmax , (3.36)

Ên
jmax,j ≥ 0 for i = jmax , (3.37)

so that:

Ên
i,j ≥ En

i,j for i < jmax, j = 0, . . . , jmax , (3.38)

Ên
jmax,j ≥ 0 for i = jmax, j = 0, . . . , jmax . (3.39)

If we assume that Ên ≥ 0, equation (3.33) then implies:

En+1 = (Qn+1)−1Ên ≥ 0, (3.40)

since the matrix Qn+1 was shown to be an M-matrix. Combining equations (3.38), (3.39) and
(3.40), we also find that Ên+1 ≥ 0. As Ê0 ≥ 0 (a consequence of the initial payoff condition; see
equation (2.2)), we find that:

V n+1
i,j ≤ Sj

i ∀i, j, n. (3.41)

Using the definition of Qn+1 (see equations (3.34) and (3.35)), equation (3.21) can be rewritten
as:

Qn+1V n+1 = V n + An+1, (3.42)
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where the vectors An+1
j and An+1 are defined as:

An+1
j =


∆τLn+1

0,j (Sj
0 −Kj)

∆τLn+1
1,j (Sj

1 −Kj)
...

∆τLn+1
jmax,j(S

j
jmax

−Kj)

 ; An+1 =


An+1

0

An+1
1
...

An+1
jmax

 . (3.43)

Based on the definition of Ln+1
i,j in equation (3.8), we see that the entries in An+1

j are non-
negative:

∆τLn+1
i,j (Sj

i −Kj) ≥ 0 ∀i, j. (3.44)

Consequently, since An+1
j ≥ 0 for all values of j and n, we have that An+1 ≥ 0.

Furthermore, if V n
i,j ≥ 0 for all i, j and n, then equation (3.42) implies the following:

V n + An+1 ≥ 0 → Qn+1V n+1 ≥ 0. (3.45)

Since the matrix Qn+1 was shown to be an M-matrix, we have that:

V n+1 ≥ 0 ∀n. (3.46)

Since the option value is initially set to the payoff (as defined in equation (2.2)), we have that
V 0 ≥ 0 which implies:

V n+1
i,j ≥ 0 ∀i, j, n. (3.47)

Hence, combining this result with equation (3.41) leads us to the following conclusion:

0 ≤ V n+1
i,j ≤ Sj

i for all i, j, n. (3.48)

Since Sj
i ≤ Smax, then the discrete numerical scheme satisfies the stability requirement presented

as Definition 3.1.

Remark 3.3 (Stability for Crank-Nicolson). We can extend the above analysis when Crank-
Nicolson is used (θ = 1/2) to show that Crank-Nicolson timestepping is l∞-stable if the following
timestepping condition is satisfied:

∆τ ≤ 2
αn

i,j + βn
i,j + r

∀i, j. (3.49)

3.2 Consistency

For the purposes of defining consistency in a concise manner, we will outline some notational details.
We first let ∆Kmax = maxj(Kj+1−Kj), ∆Sj

max = maxi(S
j
i+1−Sj

i ) and ∆τmax = maxn(τn+1−τn).
Furthermore, we consider that ∆Kmax, ∆Sj

max and ∆τmax will be parametrized as follows:

∆Kmax = Chmax (3.50)

∆Sj
max = Dhmax (3.51)

∆τmax = Ehmax (3.52)

13



where C, D and E are constants. Finally, we use the following notation for the numerical scheme
in equation (3.6):

gi,j(V n+1
i,j , {V n+1

k,j }k 6=i,{V n
i,j}, V n+1

l,m , V n+1
l,m+1) = V n+1

i,j − V n
i,j + (1− θ)∆τ(αn+1

i,j + βn+1
i,j + r)V n+1

i,j

+ θ∆τ(αn
i,j + βn

i,j + r)V n
i,j − (1− θ)∆τ(αn+1

i,j V n+1
i−1,j + βn+1

i,j V n+1
i+1,j)

− θ∆τ(αn
i,jV

n
i−1,j + βn

i,jV
n
i+1,j)−∆τL(V n+1

i,j , (V ∗
i,j)

n+1)
[
(V ∗

i,j)
n+1 − V n+1

i,j

]
= 0 (3.53)

where 0 ≤ θ ≤ 1 and (V ∗
i,j)

n+1 is defined as in equation (3.15) for i < jmax and as in equation (3.16)
for i = jmax. Note that (V ∗

i,j)
n+1 = V ∗

i,j(V
n+1
l,m , V n+1

l,m+1).

Definition 3.4 (Consistency). The numerical scheme gi,j(V n+1
i,j , {V n+1

k,j }k 6=i, {V n
i,j}, V

n+1
l,m , V n+1

l,m+1)
presented in equation (3.53) will be consistent if, for any smooth test function φ, where φn

i,j =
φ(Sj

i ,Kj , τ
n), we have that:

lim
hmax→0

∣∣∣∣(φτ − Lφ + P
)n+1

i,j
− 1

∆τ
gi,j

(
φn+1

i,j , {φn+1
k,j }k 6=i, {φn

i,j}, φn+1
l,m , φn+1

l,m+1

)∣∣∣∣ = 0. (3.54)

Lemma 3.5 (Consistent Discretization). The numerical scheme gi,j(V n+1
i,j , {V n+1

k,j }k 6=i, {V n
i,j}, V

n+1
l,m , V n+1

l,m+1)
presented in equation (3.53) is consistent according to Definition 3.4.

Proof. In order to demonstrate that our discretization presented as equation (3.53) is consistent,
we will first determine the truncation error of this discretization. We once again carry out our
analysis assuming that fully implicit timestepping is used.

Let φ(S, τ) denote a smooth function with bounded derivatives of all orders with respect to
both S and τ . Using Taylor series and ignoring the penalty term for the moment, we find that:

|Lφn+1
i − [Lφ]n+1

i | = O(∆Sj
max). (3.55)

Similarly, the error stemming from the calculation of the infinite reload constraint can be deter-
mined. The constraint will generally be obtained as outlined in (3.15) using diagonal interpolation
(see equation (3.11)). This will result in an error of the form O((∆Kmax)2). Since this interpolation
occurs when calculating (V ∗

i,j)
n+1 as outlined in equation (3.14), the full error term (for fixed ε)

will be 1
εO((∆Kmax)2).

Consequently, including the error from the timestepping method, we have that:∣∣∣∣(φτ − Lφ + P
)n+1

i,j
− 1

∆τ
gi,j

(
φn+1

i,j ,{φn+1
k,j }k 6=i, {φn

i,j}, φn+1
l,m , φn+1

l,m+1

)∣∣∣∣ =
O(∆Sj

max) +O(∆τmax) +O((∆Kmax)2) (3.56)

when fully implicit timestepping is chosen. This enables us to conclude that the numerical scheme
presented in equation (3.53) satisfies Definition 3.4 and is consistent.

Remark 3.6. In the case when no constraint is active, Crank-Nicolson timestepping is used, and
central weighting is active at node (i, j), then the truncation error is locally second order in ∆τ ,
∆Sj

max.
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3.3 Monotonicity

We now move on to demonstrate that the numerical scheme in equation (3.6) is monotone.

Definition 3.7 (Monotonicity). The numerical scheme gi,j(V n+1
i,j , {V n+1

k,j }k 6=i, V
n
i,j , V

n+1
l,m , V n+1

l,m+1)
presented in equation (3.53) is monotone if

gi,j(V n+1
i,j ,{V n+1

k,j + εn+1
k,j }k 6=i, {V n

i,j + εn
i,j}, V n+1

l,m + εn+1
l,m , V n+1

l,m+1 + εn+1
l,m+1)

− gi,j(V n+1
i,j , {V n+1

k,j }k 6=i, V
n
i,j , V

n+1
l,m , V n+1

l,m+1) ≤ 0 ; ∀εn
i,j ≥ 0, (3.57)

and, for any constants a, a0 ≥ 0 we have:

gi,j(V n+1
i,j + a + a0t,{V n+1

k,j + a + a0t}k 6=i, {V n
i,j + a + a0t}, V n+1

l,m + a + a0t, V
n+1
l,m+1 + a + a0t)

− gi,j(V n+1
i,j , {V n+1

k,j }k 6=i, V
n
i,j , V

n+1
l,m , V n+1

l,m+1) ≥ a0 ; ∀a, a0 ≥ 0. (3.58)

Note that this definition of monotonicity is equivalent to that presented in [13].

Remark 3.8 (Note on the definition of monotonicity). Though the monotonicity definition involves
both equations (3.57) and (3.58), the crucial requirement lies in equation (3.57). As previously noted
in [10], when a > 0 and a0 = 0, condition (3.58) will be satisfied by any consistent discretization
of equation (2.6) assuming r > 0. When a = 0 and a0 > 0, equation (3.58) is equivalent to
requiring that the discrete equations contain a consistent discretization of Vτ in equation (2.6). As
observed in [10], equations (3.57) and (3.58) require gi,j(V n+1

i,j , {V n+1
k,j }k 6=i, {V n

i,j}, V
n+1
l,m , V n+1

l,m+1) to
be increasing in V n+1

i,j and non-increasing in {V n+1
k,j }k 6=i, {V n

i,j}, V n+1
l,m and V n+1

l,m+1.

Lemma 3.9 (Monotone Discretization). Assuming that the discretization satisfies condition (3.5),
the numerical scheme gi,j(V n+1

i,j , {V n+1
k,j }k 6=i, {V n

i,j}, V
n+1
l,m , V n+1

l,m+1), as presented in equation (3.53),
is monotone according to Definition 3.7.

Proof. We will once again outline the proof in the case where fully implicit timestepping is used
(θ = 0). In this case, gi,j(V n+1

i,j , {V n+1
k,j }k 6=i, V

n
i,j , V

n+1
l,m , V n+1

l,m+1) is defined as:

gi,j

(
V n+1

i,j , {V n+1
k,j }k 6=i, V

n
i,j , V

n+1
l,m , V n+1

l,m+1

)
=
(
1 + ∆τ(αn+1

i,j + βn+1
i,j + r)

)
V n+1

i,j

−∆ταn+1
i,j V n+1

i−1,j −∆τβn+1
i,j V n+1

i+1,j − V n
i,j (3.59)

−∆τL(V n+1
i,j , (V ∗

i,j)
n+1)

[
(V ∗

i,j)
n+1 − V n+1

i,j

]
.

Thus, we first perturb {V n+1
k,j }k 6=i in the numerical scheme in equation (3.59):

gi,j(V n+1
i,j ,{V n+1

k,j + εn+1
k,j }k 6=i, V

n
i,j , V

n+1
l,m , V n+1

l,m+1) (3.60)

− gi,j(V n+1
i,j , {V n+1

k,j }k 6=i, V
n
i,j , V

n+1
l,m , V n+1

l,m+1) = −∆ταn+1
i,j εn+1

i−1,j −∆τβn+1
i,j εn+1

i+1,j ≤ 0

Next, we perturb V n
i,j in equation (3.59) and obtain:

gi,j(V n+1
i,j ,{V n+1

k,j }k 6=i, V
n
i,j + εn

i,j , V
n+1
l,m , V n+1

l,m+1) (3.61)

− gi,j(V n+1
i,j , {V n+1

k,j }k 6=i, V
n
i,j , V

n+1
l,m , V n+1

l,m+1) = −εn
i,j ≤ 0
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Defining ε1 = (1− ω)Kj

Sj
i

εn+1
l,m and perturbing V n+1

l,m in equation (3.59), we obtain:

gi,j(V n+1
i,j , {V n+1

k,j }k 6=i, V
n
i,j , V

n+1
l,m + εn+1

l,m , V n+1
l,m+1)− gi,j(V n+1

i,j , {V n+1
k,j }k 6=i, V

n
i,j , V

n+1
l,m , V n+1

l,m+1)

= −∆τL(V n+1
i,j , (V ∗

i,j)
n+1)ε1 −∆τ

[
L(V n+1

i,j , (V ∗
i,j)

n+1 + ε1)− L(V n+1
i,j , (V ∗

i,j)
n+1)

]
((V ∗

i,j)
n+1 + ε1 − V n+1

i,j )

≤ 0 (3.62)

which follows from the definition of ε1 ≥ 0 and the definition of L(V n+1
i,j , (V ∗

i,j)
n+1) in equation

(3.8).
Similarly, we define ε2 = ω

Kj

Sj
i

εn+1
l,m+1 and perturb V n+1

l,m+1 to obtain:

gi,j(V n+1
i,j , {V n+1

k,j }k 6=i, V
n
i,j , V

n+1
d,m , V n+1

d,m+1 + εn+1
d,m+1)− gi,j(V n+1

i,j , {V n+1
k,j }k 6=i, V

n
i,j , V

n+1
d,m , V n+1

d,m+1)

= −∆τL(V n+1
i,j , (V ∗

i,j)
n+1)ε2 −∆τ

[
L(V n+1

i,j , (V ∗
i,j)

n+1 + ε2)− L(V n+1
i,j , (V ∗

i,j)
n+1)

]
((V ∗

i,j)
n+1 + ε2 − V n+1

i,j )

≤ 0 (3.63)

which once again follows from the definition of ε2 ≥ 0 and L(V n+1
i,j , (V ∗

i,j)
n+1) in equation (3.8).

Finally, since we have previously shown that the discretization is consistent, then condition
(3.58) is satisfied.

Remark 3.10 (Similarity Reduction Case). Note that a similar proof of monotonicity can be
carried out in the case where a similarity reduction is possible.

Remark 3.11 (Crank-Nicolson). We can once again extend the above analysis when Crank-
Nicolson is used (θ = 1/2) provided the condition in equation (3.49) is satisfied.

3.4 Solution Algorithm

Before moving on to consider numerical results obtained from the increased reload pricing model,
we take a moment to specify additional algorithmic details about the solution process. Recall that
at each timestep, we will be solving a set of one-dimensional problems each with a different strike
value Kj . More specifically, when the reload constraint is applied implicitly, we will solve the
following equation at each timestep (assuming that fully implicit timestepping is used):

Bn+1
j V n+1

j = V n
j + ∆τLn+1

j (V ∗
j )n+1, (3.64)

where

Ln+1
j =


Ln+1

0,j

Ln+1
1,j
...

Ln+1
jmax,j

 ; (V ∗
j )n+1 =


(V ∗

0,j)
n+1

(V ∗
1,j)

n+1

...
(V ∗

jmax,j)
n+1

 , (3.65)

Ln+1
i,j = L(V n+1

i,j , (V ∗
i,j)

n+1) is defined as in equation (3.8) and (V ∗
i,j)

n+1 is defined as in equation
(3.15) (or (3.16) in the similarity reduction case). Note that the matrix Bn+1

j is built such that:

[Bn+1
j V n+1

j ]i = V n+1
i,j (1 + ∆τ(αn+1

i,j + βn+1
i,j + r + Ln+1

i,j ))−∆ταn+1
i,j V n+1

i−1,j −∆τβn+1
i,j V n+1

i+1,j , (3.66)
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for rows where the diagonal interpolation doesn’t involve the current pricing problem, namely when
Sj

i > Kj+1.
However, for some points Sj

i near Kj , the diagonal interpolation will involve data from the
current pricing problem. Indeed, when Kj ≤ Sj

i ≤ Kj+1, the diagonal interpolation as outlined in
equation (3.15) will use V n+1

l,j and V n+1
l,j+1 to determine V (Sj

i , S
j
i (1 + p), τn+1) as in equation (3.13).

Hence, the rows in Bn+1
j corresponding to these points will contain an extra entry such that:

[Bn+1
j V n+1

j ]i = V n+1
i,j (1 + ∆τ(αn+1

i,j + βn+1
i,j + r + Ln+1

i,j ))−∆ταn+1
i,j V n+1

i−1,j −∆τβn+1
i,j V n+1

i+1,j

−∆τLn+1
i,j

Kj

Sj
i

(1− ω)V n+1
l,j , (3.67)

and consequently (V ∗
i,j)

n+1 for these points will be defined as:

(V ∗
i,j)

n+1 = Sj
i −Kj +

Kj

Sj
i

ωV n+1
l,j+1. (3.68)

Since interpolation is used in calculating the constraint (V ∗
j )n+1, it’s value will generally depend

on the solution from pricing problems with higher strike values: V n+1
h where Kh > Kj . Hence, we

will need to solve each of the V n+1
h problems first before proceeding to value V n+1

j . Consequently,
we will solve the pricing problems in a specific order namely with decreasing strike (i.e. from
j = jmax to j = 0). The detailed solution method is presented as Algorithm 3.69.

Implicit Constraint

For j = 0, . . . , jmax

For i = 0, . . . , jmax

V 0
i,j = Payoff(Sj

i ,Kj)

EndFor i

EndFor j

For n = 0, . . . , T/dt

For j = jmax, . . . , 0

Solve: Bn+1
j V n+1

j = V n
j + ∆τLn+1

j (V ∗
j )n+1

EndFor j

EndFor n

(3.69)

Having noted that equation (3.64) is non-linear, we will use a non-linear iteration to determine
V n+1

j for each j value. We will denote the kth estimate for V n+1
j as (V n+1

j )k = V̄ k
j . Similarly, we

will define (Ln+1
j )k = L̄k

j and (Bn+1
j )k = B̄k

j . Algorithm 3.70 outlines the iteration algorithm to
determine V n+1

j for a given j value. Note that the convergence tolerance, denoted by tol, is chosen
adequately small i.e. tol << 1.
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Non-Linear Iteration

V̄ 0
j = V n

j

For k = 0, . . . ,until convergence

Solve B̄k
j V̄ k+1

j = V n
j + ∆τL̄k

j (V̄
∗
j )k

If max
i

[
|V̄ k+1

i,j − V̄ k
i,j |

max(1, |V k
i,j |)

]
< tol

Stop iteration - Exit For loop
EndFor k

V n+1
j = V̄ k+1

j

(3.70)

Theorem 3.12 (Convergence of Non-linear Iteration). Since the matrix B̄k
j satisfies all the prop-

erties of an M-matrix, the non-linear iteration process used to solve (3.64) is globally convergent.

Proof. Noting equation (3.9), the proof of Theorem 3.12 follows the same steps as in [12], where the
authors prove that the penalty iteration for simple American options is globally convergent.

Remark 3.13. Note that in general B̄k
j is not a tri-diagonal matrix but B̄k

j V̄ k+1
j = V n

j +∆τL̄k+1
j (V̄ ∗

j )k

can be easily solved using a direct sparse solver.

An alternate way of applying the reload constraint in equation (2.15) is to apply the constraint
explicitly. In this case, an intermediate solution value V̂ n+1

j is determined by solving the following
equation:

B̂n+1
j V̂ n+1

j = V n
j , (3.71)

where all rows in B̂n+1
j are defined such that:

[B̂n+1
j V̂ n+1

j ]i = V̂ n+1
i,j (1 + ∆τ(αn+1

i,j + βn+1
i,j + r))−∆ταn+1

i,j V̂ n+1
i−1,j −∆τβn+1

i,j V̂ n+1
i+1,j . (3.72)

Note that the matrix B̂n+1
j is a tri-diagonal matrix and that the resulting system for a given j value

is now linear. As such, no iteration is required when solving equation (3.71).
Once V̂ n+1

j has been determined, the reload constraint is then applied explicitly for each i in
the following way:

V n+1
i,j = max((V ∗

i,j)
n+1, V̂ n+1

i,j ), (3.73)

where (V ∗
i,j)

n+1 is defined as:

(V ∗
i,j)

n+1 = Sj
i −Kj +

Kj

Sj
i

[
(1− ω)V̄ n+1

l,m + ωV n+1
l,m+1

]
, (3.74)

with

V̄ n+1
l,m =

{
V n+1

l,m if m 6= j

V̂ n+1
l,m if m = j,

(3.75)
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where we are using the most recent information to compute (V ∗
i,j)

n+1. Note that in the case when
the similarity reduction is used, (V ∗

i,j)
n+1 is defined as:

(V ∗
i,j)

n+1 = Sj
i −Kj + (1 + p)V̂ n+1

l,j (3.76)

and no interpolation is required to determine (V ∗
i,j)

n+1.
When no similarity reduction is possible, the calculation of (V ∗

i,j)
n+1 still requires interpo-

lation and use of the data from pricing problems with higher strike values. Consequently, the
one-dimensional problems will once again be solved in decreasing order, namely from j = jmax to
j = 0. As such, we can write the complete solution process as done in Algorithm 3.77.

In Section 4, we will show that the implicit application of the reload constraint provides much
more accurate option values when compared to the explicit application of the constraint although
both methods only converge at a first order rate. Note that previous work on reload options in
both [11] and [8] has utilized an explicit application of the reload constraint. Though simpler to
implement and often commonly used in practice for pricing American-type options, this approach
is not the best choice in this case since it results in poor convergence of the numerical results to
the analytical values. Furthermore, as shown in [12], an explicit application of the constraint when
pricing American options can result in oscillations in the gamma (VSS) of the option value.

Explicit Constraint

For j = 0, . . . , jmax

For i = 0, . . . , jmax

V 0
i,j = Payoff(Sj

i ,Kj)

EndFor i

EndFor j

For n = 0, . . . , T/dt

For j = jmax, . . . , 0

Determine V̂ n+1
j by solving B̂n+1

j V̂ n+1
j = V n

j

For i = 0, . . . , jmax

V n+1
i,j = max((V ∗

i,j)
n+1, V̂ n+1

i,j )

EndFor i

EndFor j

EndFor n

(3.77)

Remark 3.14. It is straightforward to show that the explicit constraint (Algorithm 3.77) is uncon-
ditionally stable and monotone when fully implicit timestepping is used.

4 Numerical Results

Having examined the analytical properties of the increased reload pricing equations, we now move
on to consider numerical results obtained when pricing such contracts. We begin by carrying out a
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Parameter Value
σ - Volatility 0.30
r - Risk-free interest rate 0.04
q - Dividend yield 0.0
K - Initial strike price $100
S - Initial asset price $100
T - Contract maturity 10 years

Table 4.1: Parameter values used when pricing increased reload option contracts.

convergence study of the increased reload pricing model in Section 4.1. We also show that companies
can reduce their option expense by replacing infinite reload options (p = 0) by increased reload
options (with p > 0). Next, we demonstrate how the implicit application of the reload constraint in
equation (2.15) is superior to the explicit application of this same constraint when pricing increased
reload options. Finally, we introduce a volatility surface and demonstrate it’s effect on the value of
increased reload options with p = 0.

4.1 Convergence Study

In order to verify the legitimacy of our pricing model for increased reload options, we carry-out
a convergence analysis for both the general case when p 6= 0 and the special case of p = 0. The
numerical values obtained for infinite reload options (p = 0) will be compared with analytical values
for these contracts presented in [8]. The parameter values chosen for the convergence analysis are
presented in Table 4.1 and will be used throughout this section unless otherwise specified. Also,
note that the convergence tolerance in Algorithm 3.70 is set to 1× 10−8 and that ε = ∆τ0 × 10−7

in the penalty term (see equation (3.8)) where ∆τ0 is the initial timestep size on the coarsest grid.
Table 4.2 holds the results of a convergence study carried out for increased reload options when

p = 5%. Let us first shed some light on the content of each column of Table 4.2. The first column
Refinement contains the refinement level used when pricing the contract. Each refinement level
almost doubles the number of grid nodes in both the S and K directions and cuts the initial timestep
size in half. Both of these parameters are included as the second (Nodes) and third (Timesteps)
columns of Table 4.2. The fourth column (Option Value) presents the option value obtained for each
refinement level. The fifth column (Difference) presents the difference between the option value
obtained for two successive refinement operations. Finally, the last column (Ratio) presents the ratio
of two successive difference values. The ratio obtained in the last column indicates the convergence
of the timestepping method used. For example, a ratio of 2 indicates linear convergence while a
value of 4 is associated with quadratic convergence. We note that the convergence ratio obtained in
Table 4.2 for each timestepping method is consistent with local truncation error analysis, assuming
a smooth solution. Indeed, linear convergence is expected when fully implicit timestepping is used
while quadratic convergence is associated with Crank-Nicolson timestepping. Note that constant
timesteps were taken when fully implicit is used while variable timesteps were taken in the case
of Crank-Nicolson. See [12] for details on the timestep selector used and an explanation of the
importance of variable timestepping for American-type constraints.

To further validate our pricing model, we also carry out a convergence study in the special
case when p = 0, the results of which are presented in Table 4.3. We see that in this case, linear
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Increased Reload Options when p = 5%
Refinement Nodes Timesteps Option Value Difference Ratio

Fully Implicit
0 61 100 54.596846 n.a. n.a.
1 121 200 54.704649 0.107803 n.a.
2 241 400 54.749564 0.044915 2.40
3 481 800 54.769482 0.019918 2.25
4 961 1600 54.778859 0.009377 2.12

Crank-Nicolson (variable timesteps)
0 61 101 54.741440 n.a. n.a.
1 121 211 54.773632 0.032192 n.a.
2 241 448 54.784286 0.010654 3.02
3 481 940 54.786926 0.002640 4.04
4 961 1925 54.787581 0.000655 4.03

Table 4.2: Value of an increased reload option with p = 5% at S = $100 using both fully implicit
and Crank-Nicolson timestepping (with variable timesteps) for different refinement levels. Note
that the constraint is applied implicitly as specified in Algorithm 3.69. The initial timestep is
∆τ0 = 0.1 years. Other parameter values are presented in Table 4.1.

Infinite Reload Options
Refinement Nodes Timesteps Option Value Difference Ratio

Fully Implicit
0 61 100 64.428679 n.a. n.a.
1 121 200 64.562116 0.133437 n.a.
2 241 400 64.620278 0.058162 2.29
3 481 800 64.647254 0.026976 2.16
4 961 1600 64.660219 0.012965 2.08

Crank-Nicolson (variable timesteps)
0 61 104 64.548919 n.a. n.a.
1 121 229 64.619955 0.071036 n.a.
2 241 506 64.648809 0.028854 2.46
3 481 1088 64.661325 0.012516 2.31
4 961 2262 64.667198 0.005873 2.13

Table 4.3: Value of an increased reload option with p = 0% (infinite reload option) at S = $100
using both fully implicit and Crank-Nicolson timestepping (with variable timesteps) for different
refinement levels. Note that the reload constraint is applied implicitly as specified in Algorithm
3.69. The initial timestep is ∆τ0 = 0.1 years. Other parameter values are presented in Table 4.1.

convergence was obtained when fully implicit timestepping is used but quadratic convergence was
not obtained when Crank-Nicolson timestepping was chosen. Indeed, Crank-Nicolson only provided
linear convergence. Additional tests using a second order BDF scheme were also carried out with
similar results. Nonetheless, we note that the results in Table 4.3 appear to be converging to the
analytic values for infinite reload option contracts obtained in [8]: $64.67 at S = $100.
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Refinement Percentage Increase (p)
Level Nodes 0% 1% 5% 10% 25%

0 61 64.548919 59.398274 54.741440 52.293088 49.495693
1 121 64.619955 59.431475 54.773632 52.355101 49.631507
2 241 64.648809 59.441275 54.784286 52.370947 49.673673
3 481 64.661325 59.443599 54.786926 52.374873 49.685124
4 961 64.667198 59.444172 54.787581 52.375864 49.688072

Table 4.4: Price of an increased reload option at S = $100 for different p values. Additional
parameters used are presented in Table 4.1. Crank-Nicolson timestepping with variable timesteps
was used; the initial timestep is set to ∆τ0 = 0.1 years.

To complete our analysis, we consider the particular features of the option delta (VS) and gamma
(VSS). Note that these quantities are hedging parameters, and hence are of practical importance.
Figure 4.1 presents the option value, the delta and the gamma of increased reload option contracts
with different values of p. We note that the delta and gamma curves obtained when p = 0 are
distinctly different from those obtained when p > 0. Indeed, the option delta curve for infinite
reload options (p = 0) shows a kink in the curve around the strike (S = $100) resulting in a
discontinuity in the gamma. On the other hand, the delta and gamma curves obtained when p > 0
are all similar to one another and contain no such non-smoothness. Note that the distinct shape
of the gamma curve when p = 0 reflects the optimal exercise policy for this contract. Indeed, the
kink in the option gamma curve implies that it is optimal to exercise the reload option whenever
S > K [11, 8]. However, increased reload option contracts where p > 0 do not follow this optimal
exercise policy which results in smooth delta and gamma curves. Clearly, the non-smoothness of
the solution at S = $100 has a negative effect on the convergence rate.

Finally, we investigate how the option value is affected by the value of p. Recall that this
contract modification is suggested as a tool to reduce option expense for companies issuing infinite
reload options. As such, Table 4.4 presents the value of increased reload options for five different
choices of p. We see that increasing p from 0% to 1% results in an 8% price reduction of the
option contracts. However, we see that setting p to larger values has a less significant impact on
the option value. This trend is confirmed by Figure 4.2 which demonstrates that setting p to any
value greater than 30% results in the same option value. Indeed, beyond that point the value of
the reload contract is essentially identical to the value of a 10 year European option.

Hence, this leads us to conclude that transforming infinite reload options (p = 0) into increased
reload option contracts (with p > 0) results in a significant price reduction for small values of p.
However, the effect of this contract modification is somewhat limited since the option value tends
to the value of a European option for larger choices of p.

In addition, it is also interesting to note that for standard infinite reload options (p = 0%), it
is always optimal to reload whenever S > K [11]. However, for small values of p, i.e. p = 5%, we
can see from Figure 4.1 that it is not optimal to reload for S < $200 (when K = $100). In fact,
when p = 5%, it is optimal to reload only for S ' $214. Consequently, the optimal reload policy is
extremely sensitive to small changes in p.
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Figure 4.1: Option value (V ), delta (VS) and gamma (VSS) for increased reload options with
different p values. The parameters used in the pricing process are presented in Table 4.1.

4.2 Implicit vs Explicit Application of the Reload Constraint

All numerical results presented thus far have been obtained when the reload constraint in equation
(2.15) is applied implicitly (as in Algorithm 3.69). An alternative to this choice is to apply the
reload constraint explicitly at each timestep as outlined in Algorithm 3.77. If we are using a fully
implicit timestepping method, which is only O(∆τ), then one might argue that we might as well use
the simpler Algorithm 3.77 as done in both [11] and [8]. Though much simpler to implement, this
explicit method results in poor accuracy. Indeed, Table 4.5 contains the value at S = $100 of an
increased reload option with p = 0% when the constraint is both applied implicitly and explicitly.
In these examples, we use a similarity reduction so that no interpolation is required to determine
(V ∗

i,j)
n+1 (see equation (3.76)). Note that the numerical results obtained when the constraint is

applied explicitly are very far from the analytic values for infinite reload option contracts obtained
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Figure 4.2: Value of an increased reload option (at S = $100) as a function of the percentage
increase p. The parameters used are presented in Table 4.1.

Explicit Constraint Implicit Constraint
Nodes Timesteps S = 90 S = 100 S = 110 S = 90 S = 100 S = 110

61 100 52.519348 62.233168 72.233168 54.554268 64.428679 74.428679
121 200 53.208489 62.974357 72.974357 54.683619 64.562116 74.562116
241 400 53.678279 63.479419 73.479419 54.739847 64.620278 74.620278
481 800 54.005953 63.831411 73.831411 54.765882 64.647254 74.647254
961 1600 54.236391 64.078763 74.078763 54.778383 64.660219 74.660219

Table 4.5: Value of an increased reload option contract with p = 0% when the reload constraint
(2.3) is applied both implicitly and explicitly. Note that these results are obtained using a simi-
larity reduction. Also, fully implicit timestepping is chosen. The parameter values used in these
calculations are presented in Table 4.1.

in [8]: $54.79 at S = $90, $64.67 at S = $100 and $74.67 at S = $110.
These comments are confirmed by the convergence analysis results presented in Table 4.6.

These results demonstrate that the numerical solution remains far from the analytical option value
for reasonable refinement levels. Indeed, the option value obtained with refinement level 4 when
Crank-Nicolson timestepping is used is still about $0.40 below the analytical value of $64.67 from
[8].

As a side note, both the similarity reduction and the full two-dimensional approach provide
identical results as shown in Table 4.7. Thus, when applicable, the similarity reduction may be
considered as an alternate and less computationally expensive solution method. Furthermore, we
show in Appendix B that the error associated with the boundary condition at Kmax (see equation
(2.15)) can be practically eliminated provided that Kmax is chosen appropriately, i.e. Kmax > 1000.
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Infinite Reload Options - Explicit Constraint
Refinement Nodes Timesteps Option Value Difference Ratio

Fully Implicit
0 61 100 62.233168 n.a. n.a.
1 121 200 62.974357 0.741189 n.a.
2 241 400 63.479419 0.505062 1.47
3 481 800 63.831411 0.351992 1.43
4 961 1600 64.078763 0.247352 1.42

Crank-Nicolson (constant timesteps)
0 61 100 62.995249 n.a. n.a.
1 121 200 63.498765 0.503516 n.a.
2 241 400 63.843231 0.344465 1.46
3 481 800 64.085195 0.241964 1.42
4 961 1600 64.256482 0.171287 1.41

Table 4.6: Value of an increased reload option with p = 0% at S = $100 using both fully implicit
and Crank-Nicolson (constant timesteps) timestepping for different refinement levels. Note that
the reload constraint is applied explicitly in the context of a similarity reduction. Other parameter
values chosen are presented in Table 4.1.

Nodes Timesteps Full 2-D Sim. Red.
61 100 64.428679 64.428679
121 200 64.562116 64.562116
241 400 64.620278 64.620278
481 800 64.647254 64.647254
961 1600 64.660219 64.660219

Table 4.7: Value of an increased reload option contract with p = 0% at S = $100 when the solution
is obtained on a full S ×K grid (Full 2-D) and when the solution is obtained on a single S grid
using the similarity reduction (Sim. Red.). Note that fully implicit timestepping is used and that
the reload constraint is applied implicitly. The parameter values used in these calculations are
presented in Table 4.1.

4.3 Adding a Volatility Surface

In this section, we determine the value of an increased reload option contract with p = 0% when
a volatility surface is used to replace the constant volatility assumption. It is well known that
constant volatility models cannot reproduce observed market option prices. A standard approach
is to assume that σ = σ(S, τ) and to determine σ(S, τ) by calibration [19]. In addition, we consider
two additional modelling assumptions regarding the properties and use of the local volatility surface.
The first modelling assumption is to consider the volatility as a function of the moneyness of
the option. The second modelling assumption implies that the volatility surface is rolled forward
periodically. Both of these assumptions are often used by practitioners and will be considered in
turn.

Let us outline the implications of the first modelling assumption which is referred to as the sticky
delta property. Since local volatility surfaces can be a challenge to calibrate for different combina-
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Vol. Surf. Const. Vol.
Nodes Timesteps Case 1 Case 2 σ = .2359 σ = .3167

61 100 72.330961 81.703373 57.374825 66.113595
121 200 72.386614 81.554748 57.552235 66.237392
241 400 72.414143 81.481324 57.621998 66.292977
481 800 72.427872 81.444101 57.652163 66.319226
961 1600 72.434732 81.425310 57.666067 66.331968

Table 4.8: Value of an increased reload option contract when p = 0% at S = $100 for different
volatility assumptions. Vol. Surf. indicates the use of a volatility surface while Case 1 implies that
equation (4.2) holds and Case 2 implies that both equations (4.2) and (4.3) hold. For comparison
purposes, we include results for two different constant volatility values (Const. Vol.). Note that
fully implicit timestepping is chosen. Additional parameter values are presented in Table 4.1.

tions of strike and asset values, this modelling assumption basically implies that the volatility skew
will always be centered around the current strike of the contract considered.

The sticky delta property stems from the following assumption about asset volatility:

σ(S, K, t) = σ(ρS, ρK, t). (4.1)

Setting ρ = K∗

K , we find that:

σ(S, K, t) = σ

(
S

K
K∗,K∗, t

)
, (4.2)

where S
K represents the moneyness of the option considered. This assumption is especially relevant

for pricing infinite reload options due to the definition of the reload constraint.
The second modelling assumption implies that the volatility surface is rolled forward or updated

periodically. Since employee stock options have longer maturities, it is particularly pertinent to
include this update process in our model. Mathematically, this modelling assumption implies that:

σ(S, K, t) = σ(S, K, t− tr), (4.3)

where tr ≤ t ≤ tr+1 and {tr} represents the times when the local volatility surface is rolled forward.
Table 4.8 presents numerical results obtained when pricing infinite reload options using a volatil-

ity surface and assuming that equation (4.2) and/or equation (4.3) hold. The local volatility surface
used to price these contracts was obtained by calibration to synthetic option prices. As outlined in
[20], synthetic market prices were generated for both vanilla call and put options using the exact
European prices under a Merton jump diffusion model. These synthetic values were generated
monthly from [0, 1.0] and yearly from [1.0, 5.0] for 7 different strike values. Note that σ = .2359
and σ = .3167 are the constant volatility values which reproduce the jump diffusion model price of
an at-the-money call option in the context of a classic Black-Scholes model without jumps when
T = 0.25 years and T = 5 years respectively. See Figure 4.3 for a graphical representation of the
volatility surface obtained. More details regarding the parameters used to generate this volatility
surface are specified in [20].

Table 4.8 shows values obtained when using a volatility surface in pricing increased reload option
contracts with p = 0%. We consider two specific cases namely Case 1 where the volatility surface
described above is used and equation (4.2) holds, and Case 2 where the same volatility surface is
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Figure 4.3: Plot of volatility surface obtained by calibrating to synthetic market prices.

used but now both equations (4.2) and (4.3) hold. Note that in Case 2, the volatility surface is
rolled forward every year during the contract lifetime. For comparison purposes, we also present
option values obtained under the assumption of constant volatility when σ = .2359 and σ = .3167.
The data from Case 1 and Case 2 in Table 4.8 shows the impact of updating the volatility surface
on the contract value. Indeed, we see that rolling forward the volatility surface every year results
in a significant increase in option value. This seems intuitively correct since the volatility surface
flattens out as t grows larger. Furthermore, we can see that the use of a volatility surface, compared
to the assumption of constant volatility, results in increased option values.

Figure 4.4 shows the option value (V ), the delta (VS) and the gamma (VSS) for the cases
considered in Table 4.8. We see that while the shape of the option value curve is relatively unaffected
by the use of a local volatility surface, this is not the case for the delta and gamma of the option.
Indeed, the delta curve (and consequently the gamma curve) is significantly different when a local
volatility surface is used for S < K. Nonetheless, the characteristic non-smoothness at the strike
in the delta curve is preserved when a local volatility surface is added to the pricing model.

5 Conclusion

Infinite reload options are considered as some of the more complex and costly types of employee
stock options. As such, issuing companies who need to include these contracts in their balance
sheets may look for ways to reduce their no-arbitrage value. In this paper, we specify the increased
reload option contract which is obtained by modifying the infinite reload option contract. Instead
of receiving new options where K = S following a reload event (which is the case for infinite reload
options), owners would receive options where K = S × (1 + p), where p is a percentage increase
parameter. Defined in this context, the infinite reload option contract becomes a special case of
the increased reload contract where p = 0. This increased reload option contract can then be used
as a tool to help companies reduce their option expenses.
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Figure 4.4: Plot of the option value (V ), the delta (VS) and the gamma (VSS) obtained when pricing
a 10 year increased reload option contract with p = 0% under different modelling assumptions.
Vol.Surf.- Case 1 implies that a local volatility surface is used and equation (4.2) holds. Vol.Surf.-
Case 2 implies that a local volatility surface is used and equations (4.2) and (4.3) both hold. The
update interval in this case is 1 year. Const. Vol. makes the assumption that σ = .3167 is a
constant parameter. The other parameters used in the pricing process are presented in Table 4.1.

More specifically, the following contributions were made:

• A detailed pricing model for increased reload options was outlined as an impulse control
problem which was expressed as a Hamilton-Jacobi-Bellman equation. A penalization method
was also used to apply the reload constraint.

• In the context of convergence to the viscosity solution, we demonstrated that the discrete
equations obtained from the pricing model are consistent, stable and monotone [2].

• It was also demonstrated that the implicit application of the reload constraint is clearly
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superior to applying the constraint explicitly.

• Furthermore, the effect of the percentage increase parameter value p on both the option value
and the optimal reload exercise policy was outlined. Indeed, setting p to a small non-zero
value results in a significant reduction in contract value. In addition, the exercise policy is
very sensitive to small values of p.

Consequently, since setting p to a small non-zero value significantly reduces the no-arbitrage
price of the stock options considered, this simple contract modification may be easily accepted by
stock option owners and still provide a non-negligible price reduction for issuing companies.

While we considered the impact of a rather simple contract modification on the option value,
there are numerous other changes that could be made to infinite reload options to reduce their
no-arbitrage price. Consider for example imposing a minimum holding period for either company
stock or employee stock options following a reload event. This contract modification would limit
the number of possible reloads during the lifetime of the contract. Consequently, the value of
infinite reload options in this context would drop significantly as this would effectively turn infinite
reload options into reload options with limited reload rights. These different contract modifications
will surely be considered more seriously by companies that have issued stock options that are now
looking to reduce their stock option expense recorded on their balance sheet.

APPENDICES

A Discretization

The partial differential equation (2.6) can be approximated by replacing derivatives by finite dif-
ference approximations. Using the following notation V n

i,j = V (Sj
i ,Kj , τ

n), the discrete version of
equation (2.6) can be written as:

V n+1
i,j

[
1 + (αn+1

i,j + βn+1
i,j + r)(1− θ)∆τ

]
− (1− θ)∆τβn+1

i,j V n+1
i+1,j − (1− θ)∆ταn+1

i,j V n+1
i−1,j =

V n
i,j

[
1− (αn

i,j + βn
i,j + r)θ∆τ

]
+ θ∆τβn

i,jV
n
i+1,j + θ∆ταn

i,jV
n
i−1,j + P (V n+1

i,j , (V ∗
i,j)

n+1), (A.1)

where 0 ≤ θ ≤ 1, P (V n+1
i,j , (V ∗

i,j)
n+1) is the discrete penalty term (as defined in equation (3.7)) and

αn
i,j , β

n
i,j depend on the type of approximation used for the first and second derivatives. Note that

choosing θ = 0 corresponds to fully implicit timestepping while θ = 1/2 results in Crank-Nicolson
timestepping.

The choice of discretization for the derivative terms in equation (2.6) will determine the value
of both αn

i,j and βn
i,j . For example, choosing the higher order central difference scheme leads to the

following values of αn
i,j and βn

i,j :

αn
i,j,central =

(σn
i,jS

j
i )

2

(Sj
i − Sj

i−1)(S
j
i+1 − Sj
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,
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(σn
i,jS

j
i )

2
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i )(S
j
i+1 − Sj

i−1)
+

(r − q)Sj
i

Sj
i+1 − Sj

i−1

, (A.2)
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where σn
i,j = σ(Sj

i ,Kj , τ
n). However, if either αn

i,j,central or βn
i,j,central is negative, oscillations may

appear in the solution. In order to alleviate these oscillations, it is preferable to choose other
discretization techniques at the problem nodes such as forward or backward differences. Forward
differences produces:

αn
i,j,forward =

(σn
i,jS

j
i )

2

(Sj
i − Sj

i−1)(S
j
i+1 − Sj

i−1)
,

βn
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j
i )

2
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i+1 − Sj

i )(S
j
i+1 − Sj

i−1)
+

(r − q)Sj
i

Sj
i+1 − Sj

i

, (A.3)

while backward differences delivers:

αn
i,j,backward =

(σn
i,jS

j
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Algorithmically, the decision between a central or forward discretization at each node is made based
on the criteria presented below:

If
[
αn

i,j,central ≥ 0 and βn
i,j,central ≥ 0

]
then

αn
i,j = αn

i,j,central

βn
i,j = βn

i,j,central

ElseIf
[
βn

i,j,forward ≥ 0
]

then

αn
i,j = αn

i,j,forward

βn
i,j = βn

i,j,forward

Else
αn

i,j = αn
i,j,backward

βn
i,j = βn

i,j,backward

EndIf

(A.5)

Note that the criteria (A.5) guarantees that both αn
i,j and βn

i,j are non-negative. Thus, since r ≥ 0,
we have that the discretization presented in (A.1) will result in a positive coefficient scheme. Note
that a positive coefficient scheme implies the following condition:

αn
i,j ≥ 0 ; βn

i,j ≥ 0 for i = 0, . . . jmax. (A.6)

B Error Introduced by Choice of Kmax

In this section, we carry out a test to determine the error associated with choosing a finite value
for Kmax. Recall that the discrete domain used to price increased reload options is of the form
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Nbr. Nodes Kmax Smax

Grid 1 58 300 900
Grid 2 59 500 2500
Grid 3 60 1000 10000
Grid 4 61 2000 40000

Table B.1: Characteristics of four different grid constructions. Nodes refers to the initial number
of nodes in each of the S and K directions. Also, we have Kmax = Kjmax and Smax = Sj

jmax
for

any j.

[0, Smax]× [0,Kmax] where Kmax = Kjmax and

Smax =
Kmax

K∗
Kmax

1 + p
, (B.1)

where K∗ is the initial contract strike price and p is the percentage increase (see equation (3.1) for
more details). In Section 2.1, we specify the boundary condition at K = Kmax which effectively
assumes that σ(S, K, τ) becomes constant as S → Kmax. This assumption enables us to apply a
similarity reduction at the boundary points. However, such an assumption will introduce a given
amount of error, which is what we now try to determine.

Table B.1 presents the four different initial grids that we will consider in our test. Each grid is
characterized by the number of nodes it contains (Nbr. Nodes) in each of the S and K directions,
as well as the value of both Kmax and Smax

Table B.2 presents the value of a 10 year infinite reload option contract on each of the four initial
grids considered. Recall that the infinite reload option contract is a special case of the increased
reload option contract where p = 0. We evaluate the infinite reload option using a volatility surface
(without the sticky delta property) that is updated every year. The values in Table B.2 demonstrate
that the option value is not significantly affected by the choice of Kmax as long as this parameter is
chosen large enough, i.e. Kmax ≥ 1000. Indeed, the results obtained for grids 3 and 4 are identical.
In addition, note that the error associated with the grid design is negligible for as the grid is refined
and timestep size is reduced. Hence, choosing a reasonable value for Kmax such as Kmax ≥ 1000
results in minimal error.
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