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Abstract. We analyze a number of techniques for pricing American options under a regime4

switching stochastic process. The techniques analyzed include both explicit and implicit discretiza-5

tions with the focus being on methods which are unconditionally stable. In the case of implicit6

methods we also compare a number of iterative procedures for solving the associated nonlinear al-7

gebraic equations. Numerical tests indicate that a fixed point policy iteration, coupled with a direct8

control formulation, is a reliable general purpose method. Finally we remark that we formulate the9

American problem as an abstract optimal control problem, hence our results are applicable to more10

general problems as well.11
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1. Introduction. The standard approach to valuation of contingent claims (also15

known as derivatives) is to specify a stochastic process for the underlying asset and16

then construct a dynamic, self-financing hedging portfolio to minimize risk. The17

initial cost of constructing the portfolio is then considered to be the fair value of18

the contingent claim. This has been used with great success in the case of stochastic19

processes having constant volatility in cases of both European and (the more difficult)20

American options.21

However, it is well-known that a financial model which follows a stochastic process22

having constant volatility is not consistent with market prices. Recent research has23

shown that models based on stochastic volatility, jump diffusion and regime switch-24

ing processes produce models that better fit market data. A non-exhaustive list25

of regime switching applications include insurance [22], electricity markets [21, 40],26

natural gas [12, 2], optimal forestry management [11], trading strategies [15], valua-27

tion of stock loans [44], convertible bond pricing [3], and interest rate dynamics [27].28

Regime switching models are intuitively appealing, and computationally inexpensive29

compared to a stochastic volatility, jump diffusion model.30

In this paper we study numerical techniques for the solution of American op-31

tion contracts under regime switching. While our examples focus on problems with32

constant properties in each regime, the numerical methods developed can easily be33

applied to cases where the properties in each regime are more complex. An exam-34

ple would be the use of price dependent regime switching (i.e. default hazard rates)35

in convertible bond pricing [4]. A number of different methods have been proposed36

for handling American options under regime switching models. Semi-analytic ap-37

proaches have been suggested in, for example, [26, 9]. Numerical methods include38

lattice methods [25], penalty methods using explicit forms for the penalty term [29],39
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and a Crank-Nicolson method suggested in [42]. However, in each case such methods40

have fundamental limitations. For example, while the semi-analytic methods can be41

very efficient for certain classes of models, they are difficult to apply, in general, to42

problems with time and asset dependent coefficients, as would be typical of commod-43

ity applications [12, 2]. Lattice methods are popular with practitioners because they44

are easy to understand and to implement. However they are essentially explicit finite45

difference techniques and as such have timestep limitations due to stability consider-46

ations. The penalty method of [29] uses an explicit coupling of the penalty term and47

the regime coupling terms. This avoids expensive iteration at each timestep but at48

the cost of also incurring timestep limitations due to stability considerations.49

We will focus exclusively on methods which are unconditionally stable, and which50

can be easily generalized to handle a variety of stochastic price models. We model51

our American option under regime switching as a set of coupled Partial Differential52

Equation (PDE) Variational Inequalities (VI). As a base case, we discretize these53

PDE-VIs and use an explicit method for the regime coupling terms and the American54

constraint. In order to develop more efficient methods, we formulate the discretized55

PDE-VIs using both a penalty method [20] and a direct control approach [8]. In these56

cases we use implicit methods for the regime coupling and the American constraint.57

This requires solution of a system of nonlinear algebraic equations.58

While implicit coupling methods are more expensive per step than an explicit cou-59

pling method, one also needs to consider the rate of convergence in order to compare60

various methods. In addition, there are a number of iterative methods available for61

solving the nonlinear algebraic equations. We carry out a convergence analysis of the62

iterative method used to solve the nonlinear discretized algebraic equations. It is con-63

venient to consider these equations as a special case of the general form of discretized64

Hamilton Jacobi Bellman (HJB) equations, as discussed in [19, 23]. The previously65

mentioned numeric approaches (for regime switching) are all simply special cases of66

this general form. This allows us to use a single framework to analyze the convergence67

of various iterative methods. These include full policy iteration [30], fixed point policy68

iteration [23], and a method whereby the regime coupling terms are lagged at each69

iteration, but the American option problem is solved to high accuracy within each70

regime [37]. In addition, using the same framework, we also analyze a global-in-time71

iteration procedure suggested in [31] (see also [5, 6]), whereby a sequence of optimal72

stopping problems is solved. We include numerical tests which compare uncondition-73

ally stable methods which do not require the solution of discretized equations at each74

timestep with the approaches described above.75

One significant advantage of our general approach is that our convergence results76

can be immediately applied to any type of optimal control problem (not just an Amer-77

ican constraint) based on regime switching or Markov modulated jump diffusions [18].78

We should also mention that these methods can also be applied to switching problems79

[34], which arise, for example, in optimal operation of power plants. Our methods80

also make no assumptions about the form of the American constraint. The numerical81

experiments indicate that use of Crank-Nicolson timestepping, direct control formula-82

tion, coupled with a fixed point policy iteration is a very effective and general purpose83

method. At the other end of the spectrum we show that the theoretical upper bound84

on the rate of convergence of the global-in-time method coupled with its significant85

storage requirements make this uncompetitive with the other methods.86

The remainder of the paper is organized as follows. The regime switching model87

is formulated in the next section with the no-arbitrage price of an American option88
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given as a system of HJB equations. Section 3 details the three types of discretizations89

(explicit, implicit-direct control and implicit-penalty method) used for approximating90

the resulting optimal control equations. Section 4 describes the general form of the91

algebraic system of equations which occur for the two implicit discretizations. Section92

5 considers the four distinct iterative methods used for solving the algebraic system of93

equations. The following section gives a numerical comparison of the various methods.94

2. Regime Switching: Formulation. Let σj , j = 1, ...,K be a finite set of95

discrete volatilities for our model. Shifts between these states are controlled by a96

continuous Markov chain. Under the real world measure, the stochastic process for97

the underlying asset S is98

dS = µP
j S dt+ σj S dZ +

K∑
k=1

(ξjk − 1) S dXjk ; j = 1, . . . ,K , (2.1)

where dZ is the increment of a Wiener process, and µP
j is the drift in regime j. In99

addition100

dXjk =

{
1 with probability λPjk dt+ δjk
0 with probability 1− λPjk dt− δjk

λPjk ≥ 0 ; j 6= k

λPjj = −
K∑
k=1
k 6=j

λPjk . (2.2)

It is understood that there can only be one transition over any infinitesimal time101

interval, and that λPjk ≥ 0, j 6= k. When a transition from j → k occurs, then the102

asset price jumps S → ξjkS. For notational completeness, ξjj = 1. The superscript103

P refers to the objective probability measure. We assume that ξjk are deterministic104

functions of (S, t).105

Regime switching processes are simple yet rich models of realistic stochastic phe-106

nomena observed in the economy. It is well known, for example, that a two state107

regime switching model with constant parameters can reproduce a volatility smile108

[43]. Figure 2.1 shows one stochastic path for a two regime model, using different pa-109

rameters. The left plot shows spike effects that would be typical of electricity prices110

[21]. The right plot shows a stochastic path typical of an asset price bubble [38].111

Let Vj(S, τ) be the no-arbitrage value of our contingent claim in regime j where112

as usual we have τ = T − t so we are working backwards in time, with T being the113

expiry time of the contingent claim. Suppose we construct a hedging portfolio P such114

that115

P = −Vj + e S +

K−1∑
k=1

wkFk (2.3)

where e is the number of units of the underlying asset with price S, and wk are the116

number of units of the additional hedging instruments with price Fk. Assuming that117

the set of assets with prices {S, F1, ..., FK−1} forms a non-redundant set [28], it is118

possible to set up a perfect hedge. The existence of the perfect hedge allows us to119
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Fig. 2.1: Examples of two state regime switching models. Left: parameters selected
to simulate price spikes, typical of electricity prices. Right: parameters selected to
simulate a bubble in asset prices.

define risk neutral transition probabilities λjk, and the quantities120

λjj = −
K∑
k=1
k 6=j

λjk ; ρj =

K∑
k=1
k 6=j

λjk(ξjk − 1) ; λj =

K∑
k=1
k 6=j

λjk . (2.4)

In practical applications, the quantities λij , ξij are determined by calibration to mar-121

ket prices [3].122

Define the following differential operators123

LjVj =
σ2
jS

2

2
Vj,SS + (r − ρj)SVj,S − (r + λj)Vj

=
σ2
jS

2

2
DSSVj + (r − ρj)SDSVj − (r + λj)Vj

JjV =

K∑
k=1
k 6=j

λjk
λj
Vk(ξjkS, τ) , (2.5)

with DS and DSS denoting the usual partial derivative operators and r the risk-free124

rate. The no-arbitrage price of an American option is then given by [28]125

min

[
Vj,τ − LjVj − λjJjV, Vj − V∗

]
= 0 ; j = 1, . . . ,K , (2.6)

where V∗ is the payoff.126

For computational purposes, equation (2.6) will be posed on the localized domain127

(S, τ) ∈ [0, Smax]× [0, T ] . (2.7)

No boundary condition is required at S = 0 while at S = Smax, a Dirichlet condition128

is imposed (in this paper we use the payoff). The payoff condition when τ = 0 is129

given by130

V(S, 0) = V∗(S) . (2.8)

We truncate any jumps which would require data outside the computational domain.131

The error in this approximation is small in regions of interest if Smax is sufficiently132

large [28]. More precisely, the term Vk(ξjkS, τ) in equation (2.5) is replaced by133

Vk(min(Smax, ξjkS), τ).134
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3. Discretization. In this section we describe three different discretizations of135

equation (2.6). The first method is a partially explicit method which makes use of136

equation (2.6) directly while the other two are implicit methods. The implicit methods137

work with optimal control formulations, one being a direct control and the other using138

a penalty method.139

Define a set of nodes {S1, S2, ..., Simax
}, and denote the nth timestep by τn = n∆τ .140

Let V ni,j be the approximate solution of equation (2.6) at (Si, τ
n), regime j and define141

vectors V n142

V n = [V n1,1, ..., V
n
imax,1, . . . , V

n
1,K , ..., V

n
imax,K ]′, (3.1)

of size N = K × imax. It will sometimes be convenient to use a single or double143

subscript when referring to an entry in V n,144

V n` = V ni,j ; ` = (j − 1)imax + i , (3.2)

which will be clear from the context. In addition, we use the notation145

V n∗,j = [V n1,j , V
n
2,j , . . . , V

n
imax,j ]

′ (3.3)

to denote an approximate solution for a given regime j. Let Lhj ,J hj be the discrete146

form of the operators Lj ,Jj . Our discretization can be represented as147

(Lhj V n)ij = αi,jV
n
i−1,j + βi,jV

n
i+1,j − (αi,j + βi,j + r + λj)V

n
i,j , (3.4)

with three point finite difference operators. A weighted average of central, forward148

and backward differencing is used as described in Appendix A.149

Remark 3.1 (Positive Coefficient Discretization). Algorithm A.1 in Appendix A150

guarantees that the positive coefficient condition151

αi,j ≥ 0 ; βi,j ≥ 0 . (3.5)

holds, with central weighting used as much as possible.152

In the case of J hj , we use linear interpolation for the discretization:153

[J hj V n]i,j =

K∑
k=1
k 6=j

λjk
λj

Ihi,j,kV
n , (3.6)

where154

Ihi,j,kV
n = wV nm,k + (1− w)V nm+1,k , w ∈ [0, 1]

' Vk(min(Smax, ξjkSi), τ
n) . (3.7)

Let (∆S)max = maxi(Si+1 − Si), (∆τ)max = max(τn+1 − τn). The mesh and155

timesteps are parameterized by a discretization parameter h such that156

(∆S)max = C1h ; (∆τ)max = C2h , (3.8)

with C1, C2 being positive constants. We will carry out tests letting h→ 0.157

Observe that the discretization method is at least first order correct, and taking158

into account equations (3.6) and (3.7), note the following results. Let e be the imax159

length vector [1, 1, . . . , 1]′. Then, we have160 [
Lhj e

]
i

= −(r + λj) ; i < imax[
J hj e

]
i

= 1 ; i < imax . (3.9)

Based on these discrete operators, we consider the following three approaches.161
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3.1. Explicit American Constraint and Regime Coupling. A first order162

in time method can be constructed using the following discretization163 (
1

∆τ
− Lhj

)
V̂ n+1
i,j =

V ni,j
∆τ

+ λj [J hj V n]i,j ; i < imax

V̂ n+1
i,j = V∗i ; i = imax

V n+1
i,j = max(V̂ n+1

i,j ,V∗i ) . (3.10)

Proposition 3.1. If a positive coefficient method is used to form Lhj , and linear164

interpolation is used in J hj , then scheme (3.10) is unconditionally stable.165

Proof. Writing out equation (3.10) for i < imax, noting equation (3.4) gives166

(
1

∆τ
+ αi,j + βi,j + r + λj)V̂

n+1
i,j = αi,j V̂

n+1
i−1,j + βi,j V̂

n+1
i+1,j +

V ni,j
∆τ

+ λj [J hj V n]i,j .

Noting equations (3.5), (3.6) and (3.9), this then implies167

(
1

∆τ
+ αi,j + βi,j + r + λj)|V̂ n+1

i,j | ≤ (αi,j + βi,j)‖V̂ n+1
i,j ‖∞ + (

1

∆τ
+ λj)‖V n‖∞.

(3.11)

From ‖V 0‖∞ = ‖V∗‖∞, a straightforward maximum analysis gives168

‖V n+1‖∞ ≤ ‖V n‖∞ . (3.12)

169

Remark 3.2. Note that the regime coupling terms J hj in scheme (3.10) are han-170

dled explicitly, hence method (3.10) requires only solution of K decoupled tridiagonal171

systems in each timestep, and is consequently very inexpensive. However, we can172

expect that convergence as h→ 0 will be at most at a first order rate.173

3.2. Direct Control Discretization. Rewrite equation (2.6) in control form174

[8]175

max
ϕ∈{0,1}

[
Ω ϕ(V∗ − Vj)− (1− ϕ)(Vj,τ − LjVj − λjJjV)

]
= 0 , (3.13)

where we have introduced a scaling factor Ω into equation (3.13). Mathematically,176

of course, the scaling factor does not affect the solution of equation (3.13). However,177

any iterative method will require comparing the two (in general) non-zero terms in178

the max(·) expression. We can see that a scaling factor is required since the two terms179

in the max(·) expression have different units.180

Discretizing equation (3.13) gives181

(1− ϕn+1
i,j )

(
V n+1
i,j

∆τ
− θLhj V n+1

i,j

)
+ Ω ϕn+1

i,j V n+1
i,j

= (1− ϕn+1
i,j )

V ni,j
∆τ

+ Ω ϕn+1
i,j V

∗
i + (1− ϕn+1

i,j )λjθ[J hj V n+1]i,j

+ (1− ϕn+1
i,j )(1− θ)

[
Lhj V ni,j + λj [J hj V n]i,j

]
; i < imax

V n+1
i,j = V∗i ; i = imax , (3.14)
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where182

{ϕn+1
i,j } ∈ arg max

ϕ∈{0,1}

{
Ω ϕ(V∗i − V n+1

i,j )− (1− ϕ)

(
V n+1
i,j − V ni,j

∆τ

− θ
(
Lhj V n+1

i,j + λj [J hj V n+1]i,j
)
− (1− θ)

(
Lhj V ni,j + λj [J hj V n]i,j

))}
,

(3.15)

and our timestepping method is fully implicit (θ = 1) or Crank Nicolson (θ = 1/2).183

3.3. Penalty Method. The penalized form of equation (2.6) [20] is184

Vεj,τ = LjVεj + λjJjVε + max
ϕ∈{0,1}

[
ϕ

(V∗ − Vεj )

ε

]
. (3.16)

We remind the reader that the basic idea of the penalty method is to discretize (3.16)185

and let ε→ 0 as the mesh tends to zero.186

Using fully implicit (θ = 1) or Crank Nicolson (θ = 1/2) timestepping, the discrete187

form of equation (3.16) is then188

V n+1
i,j

∆τ
− θLhj V n+1

i,j +
ϕn+1
i,j

ε
V n+1
i,j =

V ni,j
∆τ

+
ϕn+1
i,j

ε
V∗i + λjθ[J hj V n+1]i,j

+ (1− θ)
[
Lhj V ni,j + λj [J hj V n]i,j

]
; i < imax

V n+1
i,j = V∗i ; i = imax, (3.17)

where189

ϕn+1
i,j ∈ arg max

ϕ∈{0,1}

{
ϕ

ε
(V n+1
i,j − V∗i )

}
. (3.18)

In order to ensure that this discretization is consistent, we choose190

ε = C3 ∆τ . (3.19)

Remark 3.3. Equation (2.6) is a special case of the more general systems of191

Variational Inequalities (VIs) considered in [13], where it is shown that VIs such as192

(2.6) have unique, continuous viscosity solutions. Note that the definition of a vis-193

cosity solution must be generalized for systems of PDEs [13]. It is straightforward194

to show, using the methods in [19] that schemes (3.10), (3.14), and (3.17) are un-195

conditionally l∞ stable (θ = 1), monotone and consistent, and hence converge to the196

viscosity solution. Of course, if V∗ has certain smoothness properties, then smooth197

solutions can be expected in some cases. However, this is not the main focus of this198

work. We are primarily interested in efficiently solving the discretized equations.199

4. Form of the Discretized Equations. For the explicit American method200

(3.10), each timestep requires only the solution of a set of linear tridiagonal systems,201

with no nonlinear iteration being required. However, in the case of both the direct202

control method (Section 3.2) and the penalty method (Section 3.3) we require the203

solution of nonlinear equations at each timestep. In these cases the nonlinear algebraic204

equations are of the form205

A∗(Q) U = C(Q)

with Q` = arg max
Q∈Z

[
−A∗(Q)U + C(Q)

]
`

. (4.1)
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where A∗ is of size N ×N and U, C are vectors of size N . Here A∗ and C denote the206

coefficients of the associated linear systems while Q` is the control for the `th node.207

For many of the methods that we use, it is convenient to separate A∗(Q) as208

A∗(Q) = A(Q)− B(Q) (4.2)

with A(Q) providing the terms which couple only nodes within the same regime and209

B(Q) containing all the terms which couple different regimes. The explicit formulae210

for A(Q),B(Q), C(Q) (and hence for A∗(Q)) are defined in Appendix B.211

Remark 4.1. It is important to note that [A]`,m, [B]`,m, [C]` (and hence also212

[A∗]`,m) depend only on Q`.213

When we separate the regime coupling terms then the following properties of A,B214

become important.215

Proposition 4.1. Assuming that Algorithm A.1 is used, then discretizations216

(3.14) and (3.17) result in matrices A,B having the following properties217

(a) B(Q) ≥ 0 .218

(b) Suppose row ` corresponds to grid node (i, j). Then the `th row sums for219

A(Qk) and B(Qk) are220

Direct Control:221

Row Sum ` ( A(Q) ) =

{
(1− ϕ`)

(
1

∆τ + θ(r + λj)
)

+ ϕ`Ω i < imax

1 i = imax

Row Sum ` ( B(Q) ) =

{
(1− ϕ`)λjθ i < imax

0 i = imax

, (4.3)

Penalty Method:222

Row Sum ` ( A(Q) ) =

{
1

∆τ + θ(r + λj) + ϕ`

ε i < imax

1 i = imax

Row Sum ` ( B(Q) ) =

{
θλj i < imax

0 i = imax

. (4.4)

(c) The matrices A∗(Q) and A(Q) in (B.6) are strictly diagonally dominant M223

matrices [39].224

Proof. (a) follows from equations (3.6-3.7) and the definition of B(Q) in Appendix225

B. (b) follows from properties (3.9), equations (3.14), (3.17) and Appendix B. Since226

a positive coefficient discretization is used, then A∗(Q) and A(Q) have nonpositive227

offdiagonals and strictly positive rowsums, hence they are M matrices [39].228

The following proposition will be useful [23].229

Proposition 4.2. Suppose A,B are N × N matrices, with A being a strictly230

diagonally dominant M matrix, and B ≥ 0. Then231

‖A−1B‖∞ ≤ max
`

{∑
uB`,u∑
uA`,u

}
. (4.5)

232

5. Solution of the Discretized Equations. We consider several techniques233

for solution of equation (4.1) (often split as in (4.2) ) at each timestep.234
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Algorithm 5.1 Policy Iteration

1: U0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do

3: Qk` = arg max
Q`∈Z

{
−A∗(Q)Uk + C(Q)

}
`

4: Solve A∗(Qk)Uk+1 = C(Qk)

5: if k > 0 and max
`

|Uk+1
` − Uk` |

max
[
scale, |Uk+1

` |
] < tolerance then

6: break from the iteration
7: end if
8: end for

5.1. Policy Iteration. Policy iteration is a standard procedure used in dynamic235

programming applications, and is given in Algorithm 5.1. Various options are available236

for solving the system
[
A∗(Qk)

]
Uk+1 = C(Qk) on line 4. For example, a direct sparse237

matrix method can be used (based on e.g. minimum degree ordering), or we can238

use a preconditioned GMRES technique [36] or even a simple iteration based on the239

obvious splitting A∗(Q) = A(Q) − B(Q). If (Uk+1)m is the mth estimate for Uk+1,240

then simple iteration is241

A(Qk)(Uk+1)m+1 = B(Qk)(Uk+1)m + C(Qk) . (5.1)

With respect to convergence of Algorithm 5.1, it is straightforward to prove the242

following [19]243

Theorem 5.1 (Convergence of Policy Iteration). If244

(a) The matrix A∗(Qk) is an M matrix.245

(b) The vector C(Q) and the matrices A∗(Qk) and A∗(Qk)−1 are bounded inde-246

pendent of Qk.247

Then Algorithm 5.1 converges to the unique solution of equation (4.1).248

Proof. For the convenience of the reader, we give a brief outline here, and refer249

to [19] for details. Rearrange Algorithm 5.1 in the form250

A∗(Qk)(Uk+1 − Uk) =

[
−A∗(Qk)Uk + C(Qk)

]
−
[
−A∗(Qk−1)Uk + C(Qk−1)

]
,

(5.2)

and note that since Qk maximizes −A∗(Q)Uk + C(Q) then the right hand side of251

equation (5.2) is nonnegative, and since A∗(Qk) is an M matrix, (Uk+1 − Uk) ≥ 0.252

Uk is bounded independent of k, hence the iterates form a bounded non-decreasing253

sequence.254

Corollary 5.2. Policy iteration converges unconditionally for both the direct255

control (3.14) and penalty (3.17) discretizations.256

Proof. A∗(Qk) is an M matrix from Proposition 4.1. The vector C(Q) and matrix257

A∗(Q) are easily bounded independent of Q (for fixed grid and timesteps), see the258

definitions of these quantities in Appendix B. From Proposition 4.2, we have that259

‖A∗(Q)−1‖∞ ≤ max
`

{
1∑
uA
∗
`,u

}
= max

`

1

Row Sum ` (A(Q)− B(Q))
. (5.3)
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Hence, from Proposition 4.1, we have that260

max
`

1

Row Sum ` (A∗(Q))
≤

{
max(1,∆τ, 1/Ω) Direct Control

max(1,∆τ) Penalty Method
, (5.4)

hence ‖A∗(Q)−1‖∞ is bounded for fixed ∆τ and fixed Ω.261

5.2. Fixed Point-Policy Iteration. In an effort to minimize the work required262

to solve the linear system at each iteration, a fixed point-policy iteration was suggested263

in [23]. The approach makes use of the splitting (4.2) and is given in Algorithm 5.2.264

Algorithm 5.2 Fixed Point-Policy Iteration

1: U0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do

3: Qk` = arg max
Q`∈Z

{
−
[
A(Q)− B(Q)

]
Uk + C(Q)

}
`

4: Solve A(Qk)Uk+1 = B(Qk)Uk + C(Qk)

5: if k > 0 and max
`

|Uk+1
` − Uk` |

max
[
scale, |Uk+1

` |
] < tolerance then

6: break from the iteration
7: end if
8: end for

Theorem 5.3 (Convergence of Fixed Point-Policy Iteration). If the conditions265

required for Theorem 5.1 are satisfied, and, in addition :266

(a) The matrices A(Q) and ‖[A(Q)]−1‖∞ are bounded.267

(b) There is a constant C4 < 1 such that268

‖A(Qk)−1B(Qk−1)‖∞ ≤ C4 and ‖A(Qk)−1B(Qk)‖∞ ≤ C4 . (5.5)

Then the fixed point-policy iteration in Algorithm 5.2 converges.269

Proof. See [23].270

Corollary 5.4. The fixed point-policy iteration converges unconditionally for271

the penalty discretization (3.17) and converges for the direct control discretization272

(3.14) if273

Ω > θ · λ̂ where λ̂ = max
j
λj . (5.6)

274

Proof. Our discretization satisfies the conditions for Theorem 5.1, from Corollary275

5.2. (a) can be shown using the same steps as used to boundA∗(Q) and ‖[A∗(Q)]−1‖∞276

in the proof of Corollary 5.2. To prove (b), consider first the direct control method.277

From Proposition 4.1 and Proposition 4.2278

‖A−1(Qk)B(Qp)‖∞ ≤ max
`

∑
uB(Qp)`,u∑
uA(Qk)`,u

= max
i,j

(1− ϕpi,j)λjθ
(1− ϕki,j)

(
1

∆τ + θ(r + λj)
)

+ ϕki,jΩ
. (5.7)
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Consequently279

max
p∈{k,k+1}

‖A−1(Qk)B(Qp)‖∞ ≤ max
i,j

p∈{k,k+1}

(1− ϕpi,j)λjθ
(1− ϕki,j)

(
1

∆τ + θ(r + λj)
)

+ ϕki,jΩ

≤ max

[
max
j

λjθ∆τ

1 + θ(r + λj)∆τ
, max

j

λjθ

Ω

]
. (5.8)

Consider the penalty method case. Again, recalling Proposition 4.1 and Proposition280

4.2 we have281

‖A−1(Qk)B(Qp)‖∞ ≤ max
`

∑
uB(Qp)`,u∑
uA(Qk)`,u

= max
i,j

θλj
1

∆τ + θ(r + λj) +
ϕk

i,j

ε

. (5.9)

As a result282

max
p∈{k,k+1}

‖A−1(Qk)B(Qp)‖∞ ≤ max
i,j

p∈{k,k+1}

θλj
1

∆τ + θ(r + λj) +
ϕk

i,j

ε

≤ max
j

θλj∆τ

1 + θ(r + λj)∆τ
< 1 . (5.10)

5.3. Local Policy Iteration. In [37], the authors solve a single regime Ameri-283

can pricing problem with jump diffusion by lagging the jump terms and then solving284

the American Linear Complementarity Problem (LCP) (with the frozen jump terms)285

at each iteration. In [42], a block LCP method was suggested, with lagged regime286

coupling terms.287

Based on the above idea we can formulate a type of local policy iteration, as288

given in Algorithm 5.3. Note that line 3 of this algorithm requires the solution of the

Algorithm 5.3 Local Policy Iteration

1: U0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do

3: Solve : max
Q∈Z

{
−A(Q)Uk+1 + B(Q)Uk + C(Q)

}
= 0

4: if converged then
5: break from the iteration
6: end if
7: end for

289

nonlinear local control problem with the regime coupling terms (that is BUk) lagged290

one iteration.291

Convergence of this method was proven in [37], in the context of jump diffusions,292

based on special properties of the (LCP) form of the American pricing problem. Here293

we can give a more general proof of this result, one which can be applied to any294

control problem of the form (4.1).295
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Theorem 5.5. If A(Q) is an M matrix, B(Q) ≥ 0 and296

max
Q∈Z
‖A(Q)−1B(Q)‖∞ ≤ C5 < 1 , (5.11)

then the local policy iteration (5.3) converges. Furthermore, if U∗ is the solution to297

equation (4.1), and Ek = Uk − U∗, then298

‖Ek+1‖∞ ≤ C5‖Ek‖∞ . (5.12)

299

Proof. If U∗ is a solution to equation (4.1) then300

max
Q′∈Z

{
−A(Q′)U∗ + B(Q′)U∗ + C(Q′)

}
= 0 , (5.13)

while from Algorithm 5.3, we have301

max
Q∈Z

{
−A(Q)Uk+1 + B(Q)Uk + C(Q)

}
= 0 . (5.14)

Subtracting equation (5.13) from equation (5.14) we obtain302

0 = max
Q∈Z

{
−A(Q)Uk+1 + B(Q)Uk + C(Q)

}
− max
Q′∈Z

{
−A(Q′)U∗ + B(Q′)U∗ + C(Q′)

}
≤ max

Q∈Z

{
−A(Q)(Uk+1 − U∗) + B(Q)(Uk − U∗)

}
. (5.15)

If Q̂ satisfies303

Q̂ ∈ arg max
Q∈Z

{
−A(Q)(Uk+1 − U∗) + B(Q)(Uk − U∗)

}
. (5.16)

then, from equation (5.15), we have304

A(Q̂)Ek+1 ≤ B(Q̂)Ek , (5.17)

or, since A(Q) is an M matrix,305

Ek+1 ≤ A(Q̂)−1B(Q̂)Ek ≤ C5‖Ek‖∞e, (5.18)

where e = [1, 1, . . . , 1]′. Similarly306

0 = max
Q∈Z

{
−A(Q)Uk+1 + B(Q)Uk + C(Q)

}
− max
Q′∈Z

{
−A(Q′)U∗ + B(Q′)U∗ + C(Q′)

}
≥ min
Q∈Z

{
−A(Q)(Uk+1 − U∗) + B(Q)(Uk − U∗)

}
. (5.19)

Hence if307

Q̄ ∈ arg min
Q∈Z

{
−A(Q)(Uk+1 − U∗) + B(Q)(Uk − U∗)

}
, (5.20)

then308

Ek+1 ≥ A(Q̄)−1B(Q̄)Ek ≥ −C5‖Ek‖∞e . (5.21)
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Equations (5.18) and (5.21) then give result (5.12).309

Corollary 5.6. Local Policy Iteration for equation (3.14) and equation (3.17)310

converges at the rate311

‖Ek+1‖∞
‖Ek‖∞

≤ θλ̂∆τ

1 + θ(r + λ̂)∆τ
where λ̂ = max

j
λj . (5.22)

312

Proof. From Proposition 4.1, discretizations (3.14) and (3.17) ensure that A(Q)313

is an M matrix and that B(Q) ≥ 0.314

For the Direct control method, setting p = k in equation (5.7),315

‖A−1(Qk)B(Qk)‖∞ ≤ max
j

θλj∆τ

1 + θ(r + λj)∆τ
. (5.23)

For the penalty method, from equation (5.9)316

‖A−1(Qk)B(Qk)‖∞ ≤ max
j

θλj∆τ

1 + θ(r + λj)∆τ
. (5.24)

317

Remark 5.1. Note that a sufficient condition for the convergence of simple iter-318

ation (5.1) is ‖A(Qk)−1B(Qk)‖∞ < 1. Consequently, since ‖A(Qk)−1B(Qk)‖∞ < 1319

unconditionally for both the penalty and direct control methods, then simple iteration320

always converges.321

5.4. Global in Time Iteration. In [31] a method was suggested whereby the322

regime coupling terms are frozen and the entire solution is obtained (over all timesteps)323

with these frozen terms. The regime coupling terms are then updated, and the entire324

solution (for all timesteps) is generated again. This is repeated until convergence is325

obtained. A similar idea was suggested for American options with jump diffusion326

[5] and for Asian options under jump diffusion [6]. Effectively, a sequence of opti-327

mal stopping problems is solved. This approach is also popular for impulse control328

problems [33].329

Let (V n)k be the kth iterate for the solution at timestep n. The global in time330

iteration can then be described as in Algorithm 5.4.331

Algorithm 5.4 Global in Time Iteration

1: (V n)0 = payoff; n = 0, ..., L ; j = 1, . . . ,K ; i = 1, . . . , imax ; ∆τ = T/L
2: for k = 0, 1, 2, . . . until converge do
3: for n = 1, 2, . . . , L do

4: Solve : max
Q∈Z

[
−A(Q)(V n)k+1 +B(Q)(V n)k + C(Q)

]
= 0

5: end for
6: if converged then
7: break from the iteration
8: end if
9: end for

We can rewrite Algorithm 5.4 into one which resembles Algorithm 5.3 (Local332

Policy Iteration) as follows. Define the N(L+ 1) length vectors333

V = [(V 0)′, . . . , (V L)′]′, (5.25)
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so that V contains the solution at each node and regime, for all timesteps. Similarly, Q334

contains the controls at each node and regime, for all timesteps. It will be convenient335

to refer to the entries in V using a single or triple index, depending on the context:336

V` = Vi,j,n ; ` = n imaxK + (j − 1)imax + i

= V ni,j . (5.26)

We will also use the notation337

V∗,∗,n = V n , (5.27)

to refer to the N length subvector of V which refers to nodes and regimes associated338

with a single time τn.339

Define N(L + 1) × N(L + 1) matrices A,B and N(L + 1) length vector C as in340

Appendix C. Let Vk be the kth iterate for V. Algorithm 5.4 can now be rewritten as341

in Algorithm 5.5.

Algorithm 5.5 Global in Time Iteration: Rewritten

1: V0 = payoff ; n = 0, ..., L ; j = 1, . . . ,K ; i = 1, . . . , imax ; ∆τ = T/L
2: for k = 0, 1, 2, . . . until converge do

3: Solve : max
Q∈Z

[
−A(Q)V k+1 + B(Q)V k + C(Q)

]
= 0

4: if converged then
5: break from the iteration
6: end if
7: end for

342

Algorithm 5.5 is now identical to Algorithm 5.3, hence we can apply Theorem 5.5343

to obtain344

‖Vk+1 − V∞‖∞
‖Vk − V∞‖∞

≤ ‖A−1B‖∞ . (5.28)

In Appendix C we obtain the bound for the direct control formulation (θ = 1, fully345

implicit case)346

‖A−1B‖∞ ≤
[
1− 1

[1 + ∆τ(λ̂+ r)]L

](
λ̂

λ̂+ r

)
(5.29)

with λ̂ = max λj . Note that since L∆τ = T we have347

λ̂∆τ

1 + (r + λ̂)∆τ
≤ λ̂L∆τ

1 + (r + λ̂)L∆τ

=
λ̂T

1 + (r + λ̂)T

≤
[
1− 1

[1 + ∆τ(λ̂+ r)]L

](
λ̂

λ̂+ r

)
. (5.30)

Consequently, in terms of provable bounds, the convergence rate of the global in time348

iteration is considerably worse than that for local policy iteration (5.22).349
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Expiry Time .50
Exercise American
Strike (Put) K 100
Butterfly Parameters K1,K2 90, 110
Risk free rate r .02
Penalty Parameter ε 10−6∆τ
Scale factor Ω 1/ε
Smax 5000
Convergence Tolerance (e.g. (5.1)) 10−8

Table 6.1: Data for the regime switching, American problem.

If kmax iterations of the global in time algorithm is required to meet the conver-350

gence tolerance, then this is equivalent to the same work as required to determine351

a complete solution with local policy iteration, where on average kmax local policy352

iterations are required in each step. The larger bound on the convergence rate for353

global in time iteration suggests that we can expect the total cost of the global in354

time iteration to be larger than local policy iteration. Indeed, note that the number355

of iterations per timestep for the local policy iteration must tend to unity as ∆τ → 0,356

independent of the mesh size (from equations (5.23-5.24)). It is, of course, not possible357

to do better than this.358

Assuming that L = O(N), then the global in time method requires O(N2) storage,359

since we have to store the entire solution for all timesteps, at each iteration, compared360

to O(N) storage for local policy iteration.361

As a result of the convergence bounds and storage inefficiencies we will not study362

this method further.363

6. Numerical Results. For our example in this section we use a three regime364

model. The numerical tests use the transition probability array λ, jump amplitudes365

ξ and volatilities σ given in equation (6.1). Other data are given in Table 6.1.366

λ =

 −3.2 0.2 3.0
1.0 −1.08 .08
3.0 0.2 −3.2

 ; ξ =

 1.0 0.90 1.1
1.2 1.0 1.3
0.95 0.8 1.0

 ; σ =

 .2
.15
.30

 .

(6.1)

367

We consider two payoffs: a put option with payoff V ∗ = max(K − S, 0), and an368

American butterfly with payoff369

V ∗ = max(S −K1, 0)− 2 max(S − (K1 +K2)/2, 0) + max(S −K2, 0) . (6.2)

We assume the existence of an American contract with payoff (6.2), which can only370

be early exercised as a unit. This contract has been used as severe test case by several371

authors [1, 41, 32].372

The variable timestep selector described in [16] is used. This problem is solved on373

a sequence of (unequally spaced) grids. At each grid refinement, a new fine grid node374

is inserted between each two coarse grid nodes, and the timestep control parameter375

is halved. Table 6.2 shows the number of nodes, variables and timesteps for various376

levels of grid refinement, for both the American put and American butterfly examples.377



16 Y. HUANG AND P.A. FORSYTH AND G. LABAHN

Refine S Nodes Timesteps Timesteps Unknowns
(Put) (Butterfly)

0 51 34 34 153
1 101 66 67 303
2 201 130 132 603
3 401 256 261 1203
4 801 507 519 2403
5 1601 1010 1033 4803
6 3201 2015 2062 9603
7 6401 4023 4118 19203

Table 6.2: Grid/timestep data for convergence study, regime switching example.
On each grid refinement, new fine grids are inserted between each two coarse grid
nodes, and the timestep control parameter is halved.

6.1. Explicit American Constraint and Regime Coupling. We first com-378

pare the explicit coupling scheme (3.10) with a fully implicit method (θ = 1) and a379

Crank-Nicolson method (θ = 1/2), using the fixed point policy iteration of Section 5.2.380

The Crank-Nicolson method uses the standard Rannacher timestepping [35] modifi-381

cation, that is, two fully implicit steps are used at the beginning, and Crank-Nicolson382

thereafter.383

The put payoff results are shown in Table 6.3, and the butterfly results are given384

in Table 6.4. Figure 6.1 shows the value of the American butterfly at t = 0. The385

Crank-Nicolson method requires 3 − 5 iterations per timestep (more details in later386

sections), hence a Crank-Nicolson solution is about 3− 5 times more expensive than387

the explicit coupling method (3.10) at the same grid refinement level. Taking into388

account accuracy requirements one can see that the implicit coupling methods are389

much more efficient than scheme (3.10), unless the requirements are very low. In390

these tables, ratio refers to the ratio of successive changes in the solution as the391

grid/timesteps are refined. A ratio of four would indicate quadratic convergence, and392

a ratio of two would indicate linear convergence. Note Table 6.4 indicates sublinear393

convergence for the explicit coupling method (Butterfly payoff).394

6.2. Full Policy Iteration. In the case of regime switching, an obvious candi-395

date method is policy iteration as in Algorithm 5.1. Each iteration requires solution396

of the sparse matrix (A−B). This matrix has a block tridiagonal structure with extra397

nonzero entries due to the regime coupling terms in B. Note that the incidence ma-398

trix is no longer symmetric. However, one might imagine that modern sparse matrix399

solvers would be able to efficiently solve this linear system.400

Table 6.5 shows the number of non-zeros in the factors of (A − B), at level five401

grid refinement. Since the structure of A − B is nonsymmetric, we use a minimum402

degree ordering based on the structure of (A − B) + (A − B)′. The actual symbolic403

factorization is carried out using the structure of (A−B). The number of nonzeros in404

the factors is highly sensitive to the data in the jump size matrix ξ. For comparison,405

we also computed the number of nonzeros in (A − B) if we set all the jump sizes to406

one (see Table 6.5).407

Table 6.6 gives the normalized CPU time for a complete solution (grid refinement408

level five) using various methods for solution of the sparse matrix (full policy iteration)409

compared with a fixed point policy iteration solution. In the case that an iterative410



METHODS FOR PRICING AMERICAN OPTIONS UNDER REGIME SWITCHING 17

Explicit Coupling Fully Implicit Crank Nicolson
Refine Value Ratio Value Ratio Value Ratio

0 7.255090541 N/A 7.554014817 N/A 7.618940039 N/A
1 7.431866668 N/A 7.586363330 N/A 7.618460248 N/A
2 7.524864056 2.0 7.602663717 1.98 7.618359301 4.7
3 7.571017345 1.97 7.610447983 2.1 7.618341970 5.28
4 7.594451442 1.95 7.614390087 2.0 7.618334755 2.4
5 7.606402700 2.0 7.616354573 1.95 7.618333108 4.4
6 7.612363761 2.0 7.617344461 2.02 7.618332684 3.9
7 7.615345680 2.0 7.617838205 2.0 7.618332568 3.7

Table 6.3: Comparison of various timestepping methods. Value at t = 0, S = 100,
Regime 1. Data in Table 6.1, and in equation (6.1). Grid data in Table 6.2.
Explicit coupling refers to scheme (3.10). Ratio is the ratio of successive changes
as the grid is refined. Put payoff.

Explicit Coupling Fully Implicit Crank Nicolson
Refine Value Ratio Value Ratio Value Ratio

0 3.916837172 N/A 4.408997074 N/A 4.444203298 N/A
1 4.159434148 N/A 4.435239516 N/A 4.452662566 N/A
2 4.281954975 1.98 4.435239516 1.8 4.458280993 1.5
3 4.351246652 1.8 4.455493332 2.4 4.459866276 3.5
4 4.391669077 1.7 4.458045879 2.3 4.460228635 4.4
5 4.415803618 1.7 4.459228339 2.2 4.460321583 3.9
6 4.430834006 1.6 4.459799179 2.1 4.460345221 3.9
7 4.440487206 1.55 4.460078178 2.04 4.460351242 3.9

Table 6.4: Comparison of various timestepping methods. Value at t = 0, S = 93,
Regime 2. Data in Table 6.1, and in equation (6.1). Grid data in Table 6.2.
Explicit coupling refers to scheme (3.10). Ratio is the ratio of successive changes
as the grid is refined. Butterfly payoff.

method was used to solve the full policy matrix, the inner convergence tolerance was411

as given in Table 6.1. It is clear that use of full policy iteration for this problem is412

not efficient, primarily due to the cost of the matrix solve.413

6.3. Fixed Point Policy Iteration. In this section, we will examine some of414

the issues arising in the use of fixed point policy iteration, as described in Algorithm415

5.2. Both the direct control method (Section 3.2) and the penalty formulation (Section416

3.3) will be considered.417

Table 6.7 shows a comparison of the penalty formulation (3.17) with the direct418

control formulation (3.14) for various choices of the scaling factor Ω. The penalty419

parameter was ε = 10−6∆τ . All methods used the same timestep sequence, and420

the solutions agreed to eight digits. All choices of the scaling factor satisfied the421

convergence condition (5.6).422

Examination of the iterates for the direct control method showed that at small423

grid sizes, the iteration appeared to have difficulty determining where the exercise424

boundary was located. This was due to the fact that there were many nodes which425
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Fig. 6.1: American butterfly, regime switching. Data in Table 6.1, and in equation
(6.1),

ξ in ξi,j = 1.0 Number of
equation(6.1) ∀i, j unknowns

282860 33609 4803

Table 6.5: Nonzeros in factors, direct solve of (A−B), level five. Minimum degree
ordering used.

had values very close to the payoff value. Consequently, it appeared to be desirable426

to increase the size of Ω as the grid is refined.427

As a result, a natural choice for Ω is the same form as used for 1/ε, that is,428

Ω =
1

ε
=

C

∆τ
. (6.3)

In this case C is a dimensionless constant. With this form for Ω, both terms in the429

max(·) expression in equation (3.13) have the same units.430

Table 6.7 shows that form (6.3) is a good choice for the direct control formulation,431

for very fine grids. Note that the form (6.3) for the penalty method was suggested in432

[20]. This form of the penalty term guarantees that the discretization of the penalty433

formulation (3.16) is consistent as h→ 0. Note that consistency holds for any C > 0434

[7].435

Table 6.8 shows the effect of the choice of the dimensionless constant C in equation436

(6.3). An American put was used, with grid refinement level 5. For large values of437

the scaling factor Ω (or equivalently 1/ε), one might suspect that the iteration may438

no longer converge, due to floating point precision problems. This will be a result of439

subtracting two nearly equal floating point values in both algorithms.440

Using the methods in [24], we can estimate the largest values of C which can441

be used before round off prevents convergence. For both penalty and direct control442

formulations, the estimate for this maximum value of C (designated by Cmax) which443
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Linear Solution Outer Iterations Inner Iterations CPU time
Method per step per Outer Iteration (Normalized)

Full Policy Iteration, Algorithm 5.1
Direct (Min degree) 2.4 N/A 48.50

GMRES (ILU(0))[36] 2.4 1.91 4.85
Simple Iteration (5.1) 2.4 2.06 1.53

Fixed Point Policy Iteration, Algorithm 5.2
Direct

(tridiagonal) 3.22 N/A 1.0

Table 6.6: Comparison of full policy iteration, Algorithm 5.1, using a direct solve,
full policy iteration with an iterative solution (GMRES), full policy iteration with
simple iteration (5.1), and fixed point-policy iteration Algorithm 5.2, grid refine-
ment level 5. Regime switching, American option, penalty formulation, put payoff.
All methods used the same number of timesteps. Crank Nicolson timestepping used.
Data in Table 6.1, and in equation (6.1).

Refinement Direct Control (Section 3.2) Penalty
Ω = 100 Ω = 104 Ω = 106/(∆τ) Section 3.3

0 5.40 5.40 5.40 5.40
1 4.75 4.75 4.75 4.75
2 4.25 4.25 4.25 4.25
3 3.99 3.75 3.75 3.75
4 3.97 3.70 3.50 3.55
5 4.12 3.75 3.17 3.22
6 4.65 4.26 3.00 3.04
7 6.48 5.19 3.00 3.03

Table 6.7: Number of fixed point-policy iterations per timestep. Penalty refers
to equation (3.17). Direct Control refers to equation (3.14). All methods used the
same total number of timesteps. Crank Nicolson timestepping used. Data in Table
6.1, and in equation (6.1). Grid data in Table 6.2. American put. Fixed point
policy iteration as in Algorithm 5.2.

can be used in finite precision arithmetic is444

Cmax '
tolerance

2δ
, (6.4)

where tolerance is the convergence tolerance in Algorithms 5.1, 5.2, and δ is the unit445

roundoff. In our case, we have tolerance = 10−8 and in double precision δ ' 10−16,446

hence Cmax ' 108. This is a conservative estimate, as can be seen in Table 6.8.447

On the other hand, from equation (5.6), we can see that if C is too small, then448

the direct control fixed point policy iteration is not guaranteed to converge. Equation449

(5.6) suggests that (for this problem) Cmin ' 10−3. Again, this would appear to be a450

conservative estimate (see Table 6.8).451

We remind the reader that the penalty method will converge for any C > 0 as452

h → 0. However, if C is too small, then this will affect the number of correct digits453

for any finite h. From Table 6.3, we can see that about six digits are correct for level454
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Ω or 1/ε Direct Control Penalty
109/(∆τ) *** ***
108/(∆τ) 7.618333108 7.618333108
107/(∆τ) 7.618333108 7.618333108
106/(∆τ) 7.618333108 7.618333107
105/(∆τ) 7.618333108 7.618333106
104/(∆τ) 7.618333108 7.618333088
103/(∆τ) 7.618333108 7.618332912
102/(∆τ) 7.618333108 7.618331174
101/(∆τ) 7.618333108 7.618314664
1/(∆τ) 7.618333108 7.618144290
. . . . . . . . .

10−6/(∆τ) 7.618333108
10−7/(∆τ) ***

Table 6.8: Value of the American put, t = 0, S = 100. Penalty refers to equation
(3.17). Direct Control refers to equation (3.14). All methods used the same total
number of timesteps. Crank Nicolson timestepping used. Data in Table 6.1, and in
equation (6.1). Grid data in Table 6.2. Fixed point policy iteration as in Algorithm
5.2. ∗∗∗ indicates algorithm failed to converge after 300 iterations in any timestep.
Level 5 grid refinement.

five grid refinement. This indicates that for the penalty method, the usable range455

of C = [102, 108] (see Table 6.8). Based on many years of experience with penalty456

methods [45], we have found that it is safe to use a penalty constant C two orders of457

magnitude less than Cmax estimated from equation (6.4). This value also minimizes458

errors at any finite value of h. Defining a practical range of C to be values which give459

accuracy at about the level of the discretization error, and which are two orders of460

magnitude less than Cmax, means that for this problem, we have a practical range of461

C = [102, 106], which is much smaller than the practical range for C for the direct462

control formulation.463

6.4. Local Policy Iteration. Table 6.9 compares the statistics for a solution464

of the American butterfly and American put, obtained using both the fixed point465

policy iteration (Algorithm 5.2) and local policy iteration (Algorithm 5.3). The local466

American problem was formulated with the penalty approach.467

Note that the average number of outer iterations per timestep for the local policy468

iteration is almost the same as the average number of fixed point policy iterations469

per timestep. This suggests that there is not much point in solving the local policy470

iteration to convergence at each outer iteration. The main source of error in the471

iteration appears to be the regime coupling, which requires about three iterations to472

resolve, which is roughly what one would expect in this case from estimate (5.22).473

In general, even for a tridiagonal LCP problem, an iterative method is required474

[14] for the local American problem (line 3 in Algorithm 5.3). In the special case475

of a simple put or call, only a single iteration is necessary [10], since the exercise476

region is simply connected to the boundary. Consequently, for a simple put or call, it477

would always be more efficient to use the direct Brennan and Schwartz method [10] to478

solve the local American problem, as in [37], for the local policy iteration. However,479

the standard Brennan and Schwartz algorithm [10] cannot be directly applied to the480
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Method Outer Iterations Inner Iterations Normalized
per timestep per Outer Iteration CPU time

American Butterfly
Fixed point policy 3.23 N/A 1.0

Local policy 3.20 1.75 1.44
American Put

Fixed point policy 3.17 N/A 1.0
Local policy 3.16 1.73 1.41

Table 6.9: Comparison of local policy iteration (Algorithm 5.3) and fixed point
policy iteration (Algorithm 5.2). Inner iterations refers to the average number of
iterations required to solve the local American problems. Outer iteration refers to
the number of iterations required to resolve the regime coupling. All methods used
the same total number of timesteps. Crank Nicolson timestepping used. Data in
Table 6.1, and in equation (6.1). Grid data in Table 6.2. Refinement level five.

American butterfly.481

Since the number of outer iterations for the local policy iteration is almost identi-482

cal to the number of fixed point policy iterations, use of local policy iteration coupled483

with the Brennan and Schwartz [10] (for the put case) method would not result in484

significant savings compared to the fixed point policy iteration. Since the fixed point485

policy iteration makes no assumptions about the form of the payoff, this would appear486

to indicate that the fixed point policy iteration is a good general purpose method.487

Note that one might expect that the ratio of CPU times in Table 6.9 would be488

roughly the same as the average number of inner iterations per timestep (1.75−1.73).489

The actual CPU time ratio (1.44−1.41) is somewhat less. This is simply because each490

inner penalty iteration is extremely efficient (a tridiagonal solve, followed by a simple491

comparison test). The outer iteration requires more complex data structure manipu-492

lation. Consequently, the actual ratios of CPU times will be highly implementation493

specific.494

7. Conclusions. We have analyzed several methods for pricing American op-495

tions under a regime switching stochastic process. By formulating this problem as an496

abstract optimal control problem, we can obtain some previously known results, for497

some special cases, very simply. However, using our general framework, it is trivial to498

extend these results to other control problems and stochastic processes. For example,499

all the analysis presented here can be applied to Markov modulated jump diffusions500

[18], provided that the integral terms are discretized in the usual fashion [17]. In501

addition, these techniques can also be applied to switching problems [34].502

Our analysis and numerical tests indicate that Crank-Nicolson timestepping, com-503

bined with a fixed point policy iteration, using a direct control formulation, is an504

effective and robust method for solution of American option problems in a regime505

switching context.506

Appendix A. Discrete Equation Coefficients. The discrete equation coef-507

ficients in equation (3.4) are given in the following. We use standard three point508

operators for the first and second derivatives.509

Central Differencing:510
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αcenti,j =

[
(σj)2S2

i

(Si − Si−1)(Si+1 − Si−1)
− (r − ρj)Si
Si+1 − Si−1

]
βcenti,j =

[
(σj)2S2

i

(Si+1 − Si)(Si+1 − Si−1)
+

(r − ρj)Si
Si+1 − Si−1

]
. (A.1)

Forward/Backward Differencing (upstream):511

αupsi,j =

[
(σj)2S2

i

(Si − Si−1)(Si+1 − Si−1)
+ max(0,

−(r − ρj)Si
Si − Si−1

)

]
βupsi,j =

[
(σj)2S2

i

(Si+1 − Si)(Si+1 − Si−1)
+ max(0,

(r − ρj)Si
Si+1 − Si

)

]
. (A.2)

A weighted average of central and upstream differencing is used (see Algorithm512

A.1). The weighting is determined on a node by node basis. This guarantees that513

central differencing is used as much as possible, while guaranteeing that the condition514

(3.5) holds.515

Algorithm A.1 Differencing method

1: for i = 1, 2, . . . do
2: ω = 1
3: if αcenti,j < 0 then

4: ω =
αups

i,j

αups
i,j −αcent

i,j

5: else
6: if βcenti,j < 0 then

7: ω =
βups
i,j

βups
i,j −βcent

i,j

8: end if
9: end if

10: αi,j = ω · αcenti,j + (1− ω) · αupsi,j ; βi,j = ω · βcenti,j + (1− ω) · βupsi,j

11: end for

In order to get some idea of when upstream differencing would be used, it is516

instructive to consider a simple case. Suppose that constant grid spacing is used with517

Si+1 − Si = Si − Si−1 = ∆S, with Si = i∆S. Then, the condition518

(σj)2 ≥ |r − ρj |
i

(A.3)

is required to ensure that αcenti,j ≥ 0, βcenti,j ≥ 0. For the examples used in this paper,519

|r − ρj | < .3 and σ2 > .0225. This suggests that upstream weighting would be used520

for nodes i = 1, ..., i∗, with i∗ < 15. Note that this means that the upstream nodes are521

confined to a region near S = 0, which shrinks as the mesh is refined (since condition522

(A.3) is independent of the mesh spacing). In addition, since Algorithm A.1 uses523

a weighted average of central and upstream differencing, the first order error term524

will generally have a coefficient less than unity. Since upstream weighting is used for525

points remote from the areas of the mesh normally of interest, we can expect close to526

second order convergence at the interesting nodes, which is what we see in practice.527
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Appendix B. Matrix Form: Discrete Equations. In this section we define528

matrices A,B and vector C to represent the discrete equations Sections 3.2 and 3.3.529

Let U and Q be the vectors530

U = [U1,1, ..., Uimax,1, . . . , U1,jmax
, ..., Uimax,jmax

]′

Q = [ϕ1,1, ..., ϕimax,1, . . . , ϕ1,jmax
, ..., ϕimax,jmax

]′ , (B.1)

and let ` be a row index corresponding to grid node (i, j), i.e. ` = (j − 1) ∗ imax + i.531

Then we can write discrete equations (3.14) as follows.532

B.1. Direct Control. The discretized equations (3.14) can then be written in533

terms of matrices A,B and vector C defined as (i < imax)534

[A(Q)U ]` = [AU ]` = (1− ϕ`)
(
U`
∆τ
− θLhjU`

)
+ ϕ`Ω U`

[B(Q)U ]` = [BU ]` = (1− ϕ`)λjθ[J hj U ]`

[C(Q)]` = C` = (1− ϕ`)
V n`
∆τ

+ ϕ`Ω V∗i

+(1− ϕ`)(1− θ)
[
Lhj V n` + λj [J hj V n]`

]
. (B.2)

B.2. Penalty Method. Equation (3.17) can be written in terms of A,B and535

vector C defined as (i < imax)536

[A(Q)U ]` = [AU ]` =
U`
∆τ
− θLhjU` +

ϕ`
ε
U`

[B(Q)U ]` = [BU ]` = λjθ[J hj U ]`

[C(Q)]` = C` =
V n`
∆τ

+
ϕ`
ε
V∗i

+(1− θ)
[
Lhj V n` + λj [J hj V n]`

]
. (B.3)

B.3. Dirichlet Condition. At i = imax, we define (for both discretizations)537

[AU ]` = Uimax,j ; [BU ]` = 0 ; C` = V∗imax
; ` = (j − 1)imax + imax. (B.4)

B.4. General Form. Define a vector of controls Q as in equation (B.1), with538

q` = ϕ`, with admissible controls Z539

Z =
{
ϕ | ϕ ∈ {0, 1}

}
. (B.5)

The final discretized equations (3.14) and (3.17) can then be written as540

sup
Q∈Z

{
−A(Q)V n+1 + B(Q)V n+1 + C(Q)

}
= 0 . (B.6)

Appendix C. Matrix Form of Global in Time Equations (in Algorithm541

5.5). We restrict attention to the case of fully implicit timestepping θ = 1 and a542

direct control formulation. Bearing in mind the subscripting conventions in equation543

(5.26), the discretized equations in Algorithm 5.5 can be written in terms of A,B of544
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the Direct Control discretization (B.2)545

[A(Q)V]` = [AV]` =

{
[A(Q∗,∗,n)V∗,∗,n]` − (1− ϕi,j,n)

Vi,j,n−1

∆τ i < imax, n > 0

Vi,j,n i = imax or n = 0

[B(Q)V]` = [BV]` =

{
[B(Q∗,∗,n)V∗,∗,n]` i < imax, n > 0

0 i = imax or n = 0

[C(Q)]` = C` =

{
ϕi,j,nΩ V ∗i i < imax, n > 0

V∗i i = imax or n = 0
. (C.1)

It follows from Proposition 4.1 and Proposition 4.2 that B ≥ 0, A is an M matrix and546

that547

‖A−1B‖∞ ≤
λ̂

λ̂+ r
. (C.2)

However, we can obtain a sharper bound. Let Y, Z be N(L+ 1) length vectors, with548

Z arbitrary, and AY = BZ. Then549

‖Y ‖∞
‖Z‖∞

= ‖A−1B‖∞ . (C.3)

From equation (C.1), noting Proposition 4.1, and using the fact that B ≥ 0, and A is550

an M matrix gives551

[(1− ϕi,j,n)(1 + (r + λj)∆τ) + Ωϕi,j,n] ‖Y∗,j,n‖∞ ≤ ‖Y∗,∗,n−1‖∞(1− ϕi,j,n)

+(1− ϕi,j,n)λj∆τ‖Z‖∞ .

(C.4)

Noting that when ϕi,j,n = 1, |Yi,j,n| = 0, we need only consider the case ϕi,j,n = 0,552

so that equation (C.4) becomes553

(1 + (r + λj)∆τ)‖Y∗,j,n‖∞ ≤ ‖Y∗,∗,n−1‖∞ + λj∆τ‖Z‖∞ . (C.5)

Suppose ‖Y∗,∗,n‖∞ = ‖Y∗,ĵ,n‖∞, and let λ̂(n) = λĵ . Then equation (C.5) becomes554

(1 + ∆τ(r + λ̂(n)))‖Y∗,∗,n‖∞ ≤ ‖Y∗,∗,n−1‖∞ + λ̂(n)∆τ‖Z‖∞ . (C.6)

Since AY = BZ, note from equation (C.1) that Y∗,∗,0 = 0. Consequently555

‖Y∗,∗,1‖∞ ≤
λ̂(1)∆τ‖Z‖∞

[1 + ∆τ(r + λ̂(1))]

≤ λ̂∆τ‖Z‖∞
[1 + ∆τ(r + λ̂)]

‖Y∗,∗,2‖∞ ≤
λ̂(2)∆τ‖Z‖∞

[1 + ∆τ(r + λ̂(2))]
+

1

[1 + ∆τ(λ̂(2) + r)]

[
λ̂∆τ‖Z‖∞

[1 + ∆τ(r + λ̂)]

]
≤ λ̂∆τ‖Z‖∞

[1 + ∆τ(r + λ̂)]
+

1

[1 + ∆τ(λ̂+ r)]

[
λ̂∆τ‖Z‖∞

[1 + ∆τ(r + λ̂)]

]
. (C.7)
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Continuing in this way, we obtain556

‖Y ‖∞ ≤ ‖Z‖∞
λ̂∆τ

[1 + ∆τ(λ̂+ r)]

[
1 +

1

[1 + ∆τ(λ̂+ r)]
+ · · ·+ 1

[1 + ∆τ(λ̂+ r)]L−1

]
= ‖Z‖∞

[
1− 1

[1 + ∆τ(λ̂+ r)]L

](
λ̂

λ̂+ r

)
(C.8)

which gives557

‖A−1B‖∞ ≤
[
1− 1

[1 + ∆τ(λ̂+ r)]L

](
λ̂

λ̂+ r

)
. (C.9)

Remark C.1 (Crank-Nicolson Timestepping). Note that the above bound is558

obtained only for fully implicit timestepping. If Crank-Nicolson timestepping is used,559

then in order to ensure that A is an M matrix, we would require the usual severe560

timestep condition (i.e. twice the maximum explicit timestep size).561

Remark C.2 (Previous Work). A similar bound as in equation (C.9) was ob-562

tained in [5] in the context of a global in time method for American options under563

jump diffusion. The bound (C.2) was obtained for a global in time method for Amer-564

ican options under regime switching in [31]. The bound in [31] was obtained based on565

a functional iteration approach, and does not appear to be as sharp as bound (C.9),566

in the context of a numerical algorithm.567
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