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Abstract

Segregated funds have been an extremely popular Canadian investment vehicle during the
past few years. These instruments provide long term maturity guarantees and often include
extremely complex option features. One heavily debated feature is the reset feature; the ability
to lock in market gains. In typical cases, investors have the ability to do this two or four times per
year. The valuation of this embedded optionality has been controversial. Recently, regulators
have announced that firms offering these products will be subject to new capital requirements.
In this paper we discuss the effects of market parameters, such as volatility and interest rates,
on the cost of providing a segregated fund guarantee. We also demonstrate how the level of
optimality in investors’ use of the reset feature affects the cost of providing such a guarantee.
For each scenario, we provide the appropriate management expense ratio (M.E.R.) which should
be charged as well as demonstrating the current liability using a given fixed M.E.R. Further, we
explore ways of modifying standard contracts so as to reduce the required hedging costs. We
also take a closer look at some intuitive reasons why the reset feature requires such a dramatic
increase in the hedging costs. Finally, we present an approximate method for handling the reset
feature which can be computed very efficiently. This method provides accurate results when the
correct proportional fee is being charged.



1 Introduction

In terms of total sales volume, segregated funds have been one of the most successful Canadian

financial products over the past several years. Essentially, these contracts are mutual fund invest-

ments, augmented with additional features provided by insurers. These extra features include a

maturity guarantee (typically for a period of ten years) and mortality benefits. In addition, in many

cases investors have the ability to switch from one underlying fund to another (while maintaining

their guarantee levels) and also to reset their guarantee. This reset feature has sparked a great

deal of controversy and debate. It allows the investor to lock in market gains at any time, up to a

maximum, for example, of two or four times per year. When the reset feature is used, the maturity

date of the guarantee is changed to ten years from the date of the reset.

In light of the stricter capital requirements recently imposed by OSFI1, some companies have

begun selling more restricted versions of these contracts. Other companies have discontinued the

sale of these contracts altogether, deeming the capital requirements to be too onerous. However,

large volumes of contracts already sold remain outstanding, and companies need to manage their

risk exposure, or at least allocate sufficient capital and reserves.2

The purpose of this paper is to shed some light on the intuition behind the valuation of the

reset option embedded in segregated funds. The results we present are derived from a financial

option pricing model based on the numerical solution of a set of linear complementarity problems,

described in detail in Windcliff et al. (2001). As our focus in this paper is exclusively on results,

we shall not describe the model in detail here. Readers who are interested in more of the technical

aspects should consult Windcliff et al. (2001).

We find that the option features provided by these contracts are so complex that intuition often

fails. In particular we address the following questions:

• Why does the reset feature seem to be so valuable?

• Can we modify these contracts so as to reduce the hedging costs?

Note that our “heuristic” and “intuitive” descriptions of issues related to these contracts are not

meant to be taken as rigorously correct. Instead, they are intended to illustrate some of the subtle

points which are very elusive to track down, even though in some cases they will seem obvious in

retrospect. We emphasize, however, that our results are based on a rigorous model.

We also provide concrete demonstrations of the sensitivity of the value to some common model-

ing input parameters. These include variations in the volatility of the underlying mutual fund and

1The Office of the Superintendent of Financial Institutions (OSFI) is a Canadian regulatory agency.
2According to the consulting firm Investor Economics, the total amount of individual segregated fund contracts

issued by Canadian insurers was $45 billion (CDN) as of August 2000, up from $9 billion at the end of 1995. 47%
of these assets had a maturity guarantee of 100%. Note that although not every insurer provides optionality such as
reset provisions, many of them either do or did at one time.
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changes in the risk free interest rate. Another input parameter which is important in the valuation

and hedging of these contracts is the level of optimality displayed by the investors, both in terms

of their use of the reset option and in terms of their lapsation behaviour.

In this paper, we use two different measures of the cost of providing the guarantee portion of

these contracts.

Appropriate M.E.R.: Given a particular contract and market conditions, we would like to de-

termine the appropriate proportional fee that the customer should pay in order to cover the

cost of providing the guarantee portion of the segregated fund contract. We assume that the

insurer charges a proportionate fee, re, to cover its risk management expenses, over and above

the proportionate fees it charges to cover investment management expenses, administration

costs, distribution costs, and the cost of capital.

Residual cost, net of future incoming fees: If the correct proportionate fee is being charged,

then, by definition, the contract has zero net value to the insurer at inception (treating the

cost of capital as an expense). However, if a different fee is being charged, or if fund market

values have changed, then we would like to determine the value to the insurer of a contract

given a particular proportional fee.

Throughout this paper we will see a central theme. If one adopts a no-arbitrage perspective (as

in modern financial option valuation), in many cases these contracts appear to be significantly

underpriced, in the sense that the current deferred fees being charged are insufficient to establish a

dynamic hedge for providing the guarantee. This is particularly true for cases where the underlying

fund has a relatively high volatility. This finding might raise concerns at institutions writing such

contracts.

2 General Description of Model and Key Assumptions

In this section we describe some of the main aspects and assumptions of the approach we use for

valuing the guarantee portion of a segregated fund. We use modern financial option pricing theory

to solve for the no-arbitrage value of the embedded options (both the initial guarantee, which can

be viewed as a simple put option, and the reset option). The basic idea involves the construction of

a dynamic hedging portfolio to replicate the payoffs of the option components. As this portfolio is

self-financing, the entire cost of setting it up is incurred at the outset. Since the hedging portfolio

produces the same payoffs as the embedded options, the no-arbitrage principle (i.e. any two assets

with identical payoffs in future circumstances must have identical values today) implies that the

value of the options is equal to the initial cost of the hedging portfolio.3

3Extensive treatments of financial option valuation can be found in texts such as Hull (2000) or Wilmott (1998).
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As a general observation, note that we use a numerical partial differential equation (PDE)

method which we solve backwards in time. This allows us to develop a rigorous treatment of

optimal resets. By solving backwards in time, we are always able to determine the required cost

to hedge the remaining portion of the contract. In contrast, techniques such as Monte Carlo

simulations are solved forward in time. Although there has been a lot of recent progress in this

area (see Boyle et al., 1999, for example), Monte Carlo techniques cannot handle resets with the

same level of rigor. As noted above, the low level details of our approach are described in Windcliff

et al. (2001) and will not be repeated here.

However, it is important that we explicitly state some of the key assumptions made in using

our approach. First, we assume that the dynamic hedging portfolio can be formed using a basket

of stocks which are contained in the underlying mutual fund, but not the mutual fund itself. In

other words, hedging is based on an underlying asset where no M.E.R. is charged. This also implies

that there is no basis risk introduced by the hedging. Since the underlying mutual fund can be

actively managed, this may be very difficult to achieve in practice. Thus the results computed here

are a lower bound to the no-arbitrage value, and additional reserves will be required for this basis

risk. Second, we assume that markets are frictionless. In theory, the dynamic hedge is adjusted

continuously through time at zero transactions costs. In practice one would use a discretely adjusted

hedging portfolio, implying that the payoffs of embedded options will not be perfectly replicated by

the hedging portfolio. Moreover, non-zero transactions costs will also increase the cost of hedging

and thus the value of the options.4 Finally, we also assume that the volatility of the underlying

mutual fund and the risk free rate of interest are deterministic (known) processes. In this paper, for

reference, they are taken to be constant (i.e. the risk free rate is constant, and the underlying mutual

fund evolves according to geometric Brownian motion). In other words, we adopt the standard

Black-Scholes framework. This has well-known limitations, and many practitioners compensate

by using the volatility parameter as a kind of “fudge factor”. Nonetheless, this framework does

provide a useful benchmark. We remark that there has been considerable research into more

sophisticated option valuation models in the context of simple equity options. Examples include

constant elasticity of variance models (Cox, 1975), stochastic volatility models (Heston, 1993),

jump-diffusion models (Merton, 1976), models with stochastic interest rates (Rabinovitch, 1989),

etc. Incorporating the additional complexity of these models into the segregated fund context

presents an interesting possibility for future research.

3 Base Scenario

A summary of the important features of a prototypical segregated fund guarantee is given in Table 1.

This is the base scenario for the valuations in this paper. It is our intention to show that even this

4See Boyle and Hardy (1997) for a discussion of these issues in the case of simple maturity guarantees, without
reset provisions.
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Investor profile 50 year old female.

Investor optimality 25% p.a.

Deterministic lapse rate 5% p.a.

Optimal (anti-selective) lapsing Yes.

Initial investment $100

Maturity term 10 years, maximum expiry on investor’s 80th birthday.

Resets Two resets per year permitted until the investors 70th

birthday. Upon reset:
Guarantee level = Asset level
Maturity extended by 10 years.

M.E.R. Total M.E.R. of 3.0% with 2.5% allocated to fund man-
ager of underlying fund and re = .5% being used to fund
maturity guarantee.

D.S.C. Sliding scale from 5% in first year to 0% after 5 years in
fund.

Volatility σ = 17.5%

Interest rate r = 6%

Table 1: Valuation assumptions for base scenario.

relatively simple contract is very expensive (given our assumptions about the risk free rate and the

level of volatility). Contracts which provide further optionality can be dramatically more expensive

to hedge.

We will assume an initial investment of $100. The investor initially receives a guarantee at this

level which matures in 10 years. As is well known (see, e.g. Brennan and Schwartz, 1976; Boyle and

Schwartz, 1977), this guarantee can be thought of as a ten year European put option with a strike

price of $100 (ignoring mortality provisions). However, additional complexity is introduced by the

fact that the guarantee level can be reset by the investor up to two times per year. Upon reset, the

guarantee level is set to the prevailing value of the fund, and the maturity date is extended to be

10 years from the reset date.

No initial fee is charged to enter into the contract. Instead, a total M.E.R. of 3.0% is charged.

Of this, 2.5% covers investment management expenses and other expenses as described above and

the remaining 50 basis points (b.p.) is used to compensate the insurer for providing the guarantee.

Back end fees are charged upon early redemption. In this work, we use a sliding scale from 5%

in the first year to 0% in the sixth and further years. It is assumed that the deferred sales charge

(D.S.C.) goes entirely to the management of the underlying mutual fund. Consistent with standard

practice, none of this fee is allocated for funding the guarantee portion of these contracts.

A standard mortality feature is provided. If the investor dies, the guarantee is provided im-

mediately (at the time of death). In this work, we use mortality data for a Canadian female aged
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50 years. In Windcliff et al. (2001), we show that the contribution of the mortality feature to the

value of these contracts is minimal for this demographic type. Of course, for older investors with

higher mortality rates, this may no longer be the case. The contract expires after the investor’s

80th birthday; i.e. the maximum duration of the contract is 30 years. The investor is not allowed

to reset the guarantee level after her 70th birthday. Again, we are trying to demonstrate that even

relatively simple segregated fund guarantees with the reset feature can be very valuable. Some

companies offer guarantees which allow the investor to reset the guarantee during the final years

of the contract and permit maximum maturity dates which are more aggressive than the 80 year

age limit we impose here.

The value of the guarantee will also depend upon market conditions. Here we assume that the

guarantee is provided on a moderate volatility fund with σ = 17.5%. We also assume a risk free

interest rate of r = 6%.

Finally, we need to make some assumptions regarding the behaviour of contract holders. First,

the level of investor optimality, i.e. how effectively they use the reset feature, will have important

effects on the cost of providing the guarantee portion of these contracts. For the base case, we

assume a level of optimality of 25%. By this we mean that if it is optimal to reset, then over a one

year interval 25% of the investors will do so.5 Second, investors can lapse out of the contract. This

can happen in two ways:

• For liquidity or other reasons, some investors will simply choose to close their accounts. We

assume that 5% of the accounts are lapsed deterministically each year; i.e. independently of

the value of the fund.

• In some situations, lapsing can be an optimal strategy for investors. For example, if a very

high M.E.R. is being charged, it may be optimal for investors to lapse to avoid paying the

fees. This is sometimes referred to as “anti-selective” lapsation. It is particularly likely if the

value of the embedded options is fairly low (say, because all reset opportunities have been

used and the underlying fund value is well above the guarantee), at least relative to the cost

of paying the fees to remain in the contract.6 For anti-selective lapsing, we use the same level

of investor optimality as we use for triggering the reset feature, i.e. 25%.

Note that lapsation in and of itself cannot be assumed to be beneficial to the insurer when a deferred

fee is charged. Lapsation reduces future fee income. As pointed out in Windcliff et al. (2001), if

this happens in a situation where it is unlikely that any payoffs will ultimately have to be made,

the insurer can be worse off.

5This interpretation assumes that the sizes of investor accounts are approximately equal. More accurately, we
assume that of the total units of fund we are guaranteeing, over a year 25% of the guarantees are reset when it is
optimal to do so.

6As mentioned above, a D.S.C. is applied to investors’ accounts during the first five years of the contract. This
effectively provides a penalty for lapsing during this time, as investors lose a percentage of the value of their accounts
if they close them. This obviously reduces the chances of anti-selective lapsation.
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4 Intuition and Heuristics

So far, we have claimed that the reset feature can make these contracts quite expensive to hedge.

In Section 4.1 we provide some intuitive reasons as to why this is so. We also try to clarify some

common misunderstandings regarding deferred payment schemes. In Section 4.2 we provide some

heuristics for hedging positions which would be used in a dynamic hedging scheme.

4.1 Effect of the Reset Feature

Intuitively, a 10 year at-the-money put option provides a lower bound for the value of a segregated

fund guarantee. This is because, if the reset feature is never used, we simply have a standard

European put option.7 Clearly, the segregated fund guarantee cannot be worth less than this 10

year option, but is it really worth more?

For simplicity, we begin our discussion by assuming that the cost of providing the guarantee

is paid for up front. In other words, we consider the case of a single premium contract, with

no deferred proportional fees. In Figure 1(a) we see that the cost of the providing a put option

is monotonically decreasing in the asset value, whereas the cost of providing a segregated fund

guarantee swings upwards for high asset levels. This happens because for high asset levels, it is

optimal for the investor to lock in at a new higher guarantee level, and the value of the guarantee

is relative to the current guarantee setting. As a result, the key difference when including the reset

feature in a contract is that the contract should never be thought of as being out-of-the-money.

In order to fund the guarantee, it is typical to charge a proportional fee over the life of the

contract. This approach attempts to overcome two problems which arise when the contract is paid

for up front. First, the present value of the future incoming fees is also proportional to the current

level of the underlying fund. This combats the effect described above of providing a new higher

guarantee level. Second, unless the possibility that the guarantee level is reset to a higher level

is taken care of appropriately in the hedging strategy, there is a potential for large hedging losses

during the life of the contract. Consider the following simple example:

• An investor purchases a segregated fund. The underlying mutual fund is an index fund. The

value of the index (and the guarantee level) is, say 10,000.

• To hedge downside risk, the insurer shorts the index (or does something similar, such as

buying at-the-money put options or taking a short position in index futures contracts).

• Four days later, there is news that interest rates are likely to fall and the index rises abruptly

to 10,300. At the same time, the investor resets his guarantee level.

7This ignores the mortality aspect of the contract. As noted earlier, for the investor demographic type we are
considering, this feature does not have signficant value.
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Figure 1: The cost of hedging a segregated fund guarantee with the reset feature.

• The insurer then liquidates the original hedging strategy (which has lost money) and sets up

a new hedge to cover the new guarantee level. However, the proportional fees collected from

the investor over the four days will probably not cover the loss on the hedging position.

In other words, the insurer is exposed to a double-edged sword: the liability increases if the fund

drops significantly (so that the initial guarantee is valuable), or if it rises significantly (so that the

investor resets and receives a new at-the-money guarantee which is worth more than the original

one). Clearly, it is more expensive to hedge this than a situation where the liability increases in

only one direction. The idea behind charging a proportional fee over the life of the contract is that

investors who utilize the reset feature will pay more in fees, since the maturity date of the contract

is extended by 10 years upon reset.

So, instead of charging for the guarantee up front, we now receive a stream of incoming propor-

tional fees. This changes our notion of the cost of providing the guarantee. This now refers to the

required cost of setting up a hedge to cover the guarantee, net of the future incoming proportional

fees. When no fees are provided to fund the guarantee, re = 0 b.p., the liability is simply the initial

cost of the contract shown above (Figure 1(a)). In Figure 1(b) we show the required cost, net of

incoming fees, of providing the guarantee as a function of the current asset level. As the propor-

tional fee, re, is increased, the net residual cost of providing the guarantee decreases for higher asset

levels. The relevant problem is to determine re so that at contract inception the net residual cost of
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providing the guarantee is zero. An important point to note is that as re is increased, the upward

swing at high asset levels is pulled downwards and eventually has a profile which is similar to that

of a put option. The implication is that using a deferred proportional fee does work, provided

that the appropriate proportional fee is collected. However, concerns have been raised that some

companies have sold these contracts for a fee which is too low.8 In the next section we describe

some of the consequences for the hedging scheme of undercharging using a deferred fee.

4.2 Hedging Heuristics

Suppose that we have a fixed M.E.R. and are interested in hedging the product, given the income

stream from the deferred payments. We would like to develop heuristic approaches which allow us

to qualitatively understand the required hedging for such a contract.

Here we will consider two cases for illustrative purposes: i) no fees are charged; and ii) the

correct proportional fee (for the base scenario) of 80 b.p. is charged. Figure 2(a) plots the residual

cost, net of future incoming fees, for these two cases. According to standard option pricing theory,

given the value of an option, V , on an underlying asset with price S, one can establish a dynamic

hedge by holding the fraction delta (∆ = ∂V/∂S) in the underlying asset and holding the remainder,

V −∆S, in a risk free account. A graph of delta as a function of the current asset level is presented

in Figure 2(b).

Note how the graph of the residual hedging cost behaves as the deferred fee which is collected

varies (Figure 2(a)). When no fee is charged, the graph has three distinct regions.

• When the asset value is low, the cost of hedging is dominating by the hedging of the current

guarantee level (which is in-the-money) and behaves like a put option. Here ∆ will be negative

and we should have a short position in a basket of stocks which simulates the underlying

mutual fund.

• When the asset value is high, the curve turns upwards. Here, since ∆ is positive, we hold a long

position to protect ourselves against the investor locking in at a new higher level. Remember

that in this scenario the option has been paid for up front and the hedging strategy must be

able to support itself without the aid of incoming fees. We will extend this model to include

fees below.

• In between (near at-the-money), we are not certain which of the two types of outcomes we

should try and hedge. Here, ∆ ≈ 0, and we put the hedging resources in a risk free account.9

8See Windcliff et al. (2001); Falloon (1999), among others.
9This assumes a “delta-neutral” hedging strategy. In theory, this is all that is needed, but it does assume

continuous adjustment of the hedging position. In practice, positions can only be adjusted discretely. A more
sophisticated approach which attempts to account for this is a “gamma-neutral” strategy. This would require holding
a position in other options, even if the position has ∆ ≈ 0. Readers interested in further details about this type of
hedging should consult texts such as Hull (2000) or Wilmott (1998).
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Figure 2: The dynamic hedging of a segregated fund guarantee with the reset feature.

Notice that this is probably the most likely scenario (at least in a generally rising market)

since at high asset levels the investor should reset and the contract would be at-the-money.

This qualitative behaviour can be seen in Figure 2(b) on the curve corresponding to re = 0 b.p.

As re is increased, the curve at higher asset levels is pulled downwards. Eventually, as a

sufficiently large re is charged, the curve becomes monotonically decreasing. When this happens,

the ∆ hedging parameter (which corresponds to the slope of the curve of the value) is always

negative, and hence we should always have a short position. We believe that most practitioners

would consider this intuitive.

The problem arises from the fact that in some cases the deferred fee is not large enough to

make the curve of the value monotonically decreasing. Here, we are somewhere between the two

scenarios described above. In fact, it is possible that sometimes we will have to have a long position

in the underlying when the asset level is high. This happens because the future incoming fees will

not be sufficient to cover the hedging costs for the remainder of the contract. The important result

to note is that we cannot ignore the reset feature when devising a hedging plan.

Another point needs to be made with regard to hedging. The graphs above of the hedging cost

as a function of the asset value are snapshots taken at the time of the initial sale of the contract.

Thus, the results given in this paper are only strictly applicable for some small time interval near

the time of the initial sale date. In order to dynamically hedge these contracts, we really need the

time evolution of the hedging costs as shown in Figure 3. Since this time evolution is very smooth,

the general qualitative properties discussed above hold throughout much of the life of the contract.
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5 Variations

Our model takes several important input parameters from the market. For example, the cost of

providing the guarantee will depend upon the volatility of the fund for which the guarantee is being

provided. Other important factors include the risk free rate and the level of optimality displayed

by investors.

5.1 Effect of Volatility and Risk Free Interest Rate

One very important parameter which we must estimate from the market when valuing these guar-

antees is the volatility of the underlying fund. In this paper, we give results for simple constant

volatility models. The base scenario uses a volatility of σ = 17.5%. Guarantees offered on more

volatile funds can be dramatically underpriced. In Figure 4 we present a plot of the residual cost,

net of future incoming fees, of providing a segregated fund guarantee given the fixed fee, re = 50

b.p. for various levels of volatility. In this figure we can see that for guarantees written on higher

volatility funds, the residual cost, net of incoming fees, is positive. This indicates that the insurer

will not be able to cover the costs of dynamic hedging with this choice of re. Figure 4 also contains

a table which shows the proportional fee which should be charged in order to cover the hedging

costs for the given volatilities.

Another important parameter in the model is the risk free interest rate. Figure 5 demonstrates

that small changes in our assumptions about the risk free rate can have dramatic impacts on the cost

of providing these guarantees. It is worth reiterating here that our assumptions that the interest
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rate and volatility are constant are clearly unrealistic, especially given the long term nature of these

contracts. In practice, we would have to carefully consider how to estimate these parameters in

order to minimize the effects of these simplifying assumptions. For example, we would probably

want to use a volatility parameter that is consistent with prevailing implied volatilities from options

markets, rather than the historical volatility of the underlying funds in question.

We should point out that these results might be viewed as conservative in that we are assuming

a degree of investor optimality of 25%. We discuss the effect of investor behaviour in the next

section. Typically, segregated funds are sold with a value of re in the range of 40 to 80 b.p. In view

of the results in Figures 4 and 5, we can see that these fees are appropriate for low to moderate

volatility funds and interest rates that are not very low, even when we assume that investors do

not use their reset options with a high level of efficiency.

5.2 Effect of Investors’ Behaviour

Another very important parameter which our model uses is the level of optimality displayed by

investors when using the reset feature. Strictly speaking, from a no-arbitrage viewpoint, one should

assume that investors act optimally. In practice, most investors do not act optimally and we would

like to incorporate this into our model.

One should note that by assuming that investors act non-optimally and charging fees based

on this, insurers expose themselves to three additional sources of risk. First, these contracts are

extremely long term and it is possible that there may be secular changes in investors’ behavior over
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Figure 6: The effect of investor optimality. Left: residual cost, net of future incoming fees, of
providing a segregated fund guarantee when re = 50 b.p. Right: required fee to cover dynamic
hedging costs.

the life of the contract. Similar changes are known to have occurred in other contexts, for example

prepayment rates on mortgages in the U.S. Second, there may be considerable uncertainty about

the current level of investor optimality, since few insurers appear to be in a position to measure

this with any degree of rigor. Third, it may be possible for a single knowledgeable investor to

take a relatively large position, affecting our assumption about the level of optimality displayed by

investors.

As shown in Figure 6, the degree of optimality displayed by investors has a large impact on the

required hedging costs of these contracts. Why is it so expensive to hedge a contract which is reset

optimally? Investors who reset optimally are more likely to catch the peaks in the market, and

thus they end up with higher guarantee levels. Alternatively, they are likely to (anti-selectively)

lapse much sooner, thus depriving the insurer of fee income.

5.2.1 Optimal Exercise Boundary

Collecting data to determine quantitatively the level of optimality is difficult and requires knowledge

of the optimal exercise boundary. In other words, we could compare data on investors’ use of their

reset options with the optimal exercise boundary to assess whether the appropriate optimality level

should be 25% (as assumed in our base scenario above) or some other number. At this stage, we do

not have sufficient data on the use of the reset provision by investors to do this. However, we are

able to compute the optimal exercise boundary. Figure 7 illustrates this for a contract which allows

the investor one reset per annum. Note that this boundary applies only to the initial contract sold
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Figure 7: The optimal exercise boundary of a segregated fund guarantee which allows one reset
per annum, assuming a proportional fee of re = 50 b.p. Note that this is for the initial contract
sold, where the investor has not reset. Once the investor does reset, the exercise boundary changes.

to the investor, i.e. for the first use of a reset. Once the investor resets, the exercise boundary

changes. A rough heuristic for the contract specifications and market parameters used suggests

that these contracts should be reset when the value of the fund is approximately 10% to 25% above

the current guarantee level.10

The location of the exercise boundary depends on the current maturity date of the contract. We

can see that there is a trade-off between getting a higher guarantee level by resetting and deferring

the maturity date of the contract by another ten years. The jumps in the location of the optimal

exercise boundary occur because the investor receives a new reset opportunity each year.

5.2.2 Effect of Deterministic Lapsing

As mentioned above, for a variety of reasons investors may withdraw from these contracts inde-

pendently of the value of the underlying fund. In Figure 8 we compare the net value of these

contracts for different levels of investor deterministic lapsing. As is to be expected, an increase

in the deterministic lapse rate reduces the net cost of hedging these contracts because fewer peo-

ple are remaining in the fund to collect any payoffs made by the guarantee. However, as seen in

10In a report prepared by a Canadian Institute of Actuaries task force (Canadian Institute of Actuaries, 2000), it
is suggested that contracts can be viewed as being “optimally” reset when the value of the underlying fund is more
than 15% above the guaranteed level.
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the accompanying table, the required proportional fee does not decrease as rapidly as might have

been anticipated. This is because, as the rate of deterministic lapsing is increased, the number of

investors remaining in the fund (and thus the value of the future incoming fees) decreases.

Note that the lapsation model used is very simple; some given fraction of the investors lapse out

of the contract every year. This approach probably undervalues these contracts when the guarantee

is deep-in-the-money. In this situation, investors would be better off remaining in the segregated

fund and receiving their minimum locked in value rather than lapsing and throwing away their

guarantee.

5.2.3 Anti-Selective Lapsation

Because of investors’ ability to lapse anti-selectively, institutions that have removed the reset feature

from their product offerings may not have reduced their risk exposure as much as one might initially

believe. Consider a case where there are no reset provisions or mortality benefits, so we have

just a ten year European put option. Assume for simplicity that the correct proportional fee is

being charged for this contract, and that there are no back end fees, so that investors can lapse

without penalty. In the absence of explicit reset options, investors have the ability to create resets

synthetically by lapsing and then re-entering the contract. Why then does it appear that the

explicit reset option creates so much additional value? The reason is that we haven’t adequately

valued the ability of investors to perform resets synthetically. When investors are not charged a

single up front fee, they have a valuable type of default option: they can avoid continuing to pay
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for a deep out-of-the-money put and acquire a new at-the-money guarantee with no additional

expense. If we simply think of these contracts as a ten year puts and ignore this default option,

we significantly undervalue them. Our model which incorporates resets is effectively including this

option, and this is why it appears to generate much higher values.11 Of course, in practice various

factors do constrain investors’ ability to follow this synthetic reset strategy. Back end fees are levied

in the first few years. There may be tax consequences associated with withdrawing funds from an

account. Moreover, to the extent that the proportional fees being charged are too low, investors

have an incentive to remain in their existing contracts. However, our main point is that removing

explicit reset provisions may not be a panacea if investors can effectively reset on their own.

6 Contract Modifications

To this point, we have seen that it can be very expensive to hedge contracts which include the reset

feature. In this section, we look at possible approaches which may reduce the cost of providing

these guarantees. Specifically, we explore some ways of modifying these contracts so that they

remain attractive to the investor, yet are less expensive to hedge in the market.

At the outset, we should observe that in our research we have investigated many possible

modifications of these contracts. It has been our experience that limiting contract features which

depend on the optimality of investors’ actions does not reduce the value of these contracts as much

as might be expected.

6.1 Effect of Number of Reset Opportunities

One example of a contract modification which depends on the optimality displayed by investors

is altering the number of reset opportunities per annum. Clearly, the value of the contract must

decrease as the number of reset opportunities decreases. In Figure 9 we show the cost of providing

a segregated fund guarantee with one to four reset opportunities per annum, for both 25% and

100% levels of investor optimality.

If we look at the lower collection of curves, corresponding to a 25% optimal investor profile,

the cost does decrease as expected, but the curves are virtually indistinguishable. Further, in

the accompanying table we see that the required proportional fee is virtually unaffected and is

approximately 80 b.p. for either one, two or four resets allowed per annum. Why is the effect of

this contract modification so small? The reason is that we are already assuming a high degree of

investor non-optimality. In effect, we are limiting a feature which we are assuming the investors

are not using efficiently anyways.

11In fact, the synthetic reset strategy could be executed at any time. Therefore, the number of possible resets is
unlimited (unlike in our model).
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Figure 9: The effect of the number of resets available per annum. Left: residual cost, net of
future incoming fees, of providing a segregated fund guarantee offering one, two and four reset
opportunities per annum, when re = 50 b.p., assuming 25% and 100% investor optimality. Right:
required fee to cover dynamic hedging costs.

In the upper collection of curves in Figure 9, corresponding to 100% optimal investor behaviour,

the differences become noticeable. This is also reflected in the accompanying table. Thus, reducing

the number of reset opportunities slightly reduces the risk exposure to investors who make effective

use of their optionality while maintaining a product with the attractive ability to lock in market

gains for risk averse investors.

6.2 75% Guarantee Level

One approach which has been implemented by many institutions is the offering of a 75% guarantee

level. Here the investor is provided with a guarantee at 75% of the original principal invested and

upon reset the guarantee level is set to be 75% of the asset value at the time of the reset. Offering

this reduced guarantee level does make these contracts much less expensive to hedge. In Figure 10

we compare the cost of establishing a hedging strategy, net of future incoming fees, for a contract

which offers a reduced 75% guarantee with the full guarantee offered in the base case. Notice

that for a proportional fee of 50 b.p. the full guarantee is a liability under the market conditions

σ = 17.5%, r = 6% assuming a 25% optimal investor profile. On the other hand, under these same

conditions, the 75% guarantee can be offered at a profit by the insurer. The proportional fee which

is required to cover the insurance costs is 25 b.p., as seen in the accompanying table.

Since this contract variation is quite common, we explore the effects of variations in volatility,

interest rate and investor optimality for 75% guarantees. In Table 2 we observe that the reduction

in the cost of providing the 75% guarantee decreases for higher volatility funds when compared
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with the results for the full guarantee. For a low volatility fund where σ = 15%, the required

proportional fee is smaller by a factor of four. However, for a high volatility fund with σ = 25%,

the required proportional fee is only smaller by a factor of two. This occurs because a more volatile

fund has a greater likelihood of large swings in asset value which are required in order for the 75%

guarantee to be in-the-money at maturity. The effect of interest rates on the cost of providing a

75% guarantee shown in Table 2 is similar that found for the full guarantee contract.

Table 2 also illustrates that offering a 75% guarantee reduces the value of the contract’s sensi-

tivity to the degree of optimality shown by investors when compared with the results for the full

guarantee in Figure 6. This occurs because the contract received upon reset has been decreased in

value by the restricted 75% guarantee. Since the reset feature will be used less for a 75% guarantee,

the level of optimality displayed by investors plays less of a role in valuing these contracts.

7 An Efficient Approximation for Valuing Segregated Fund Guar-

antees

In order to rigorously model the reset feature contained in segregated funds, it is necessary to

maintain state variables corresponding to the number of reset opportunities used during the current

year, and the current maturity date of the contract in addition to the current value of the underlying

mutual fund. Moreover, although it is unnecessary in the geometric Brownian motion setting we

are using here, in some circumstances an additional state variable may be required for the current
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Volatility (σ) 75% guarantee Full guarantee
(r = 6%, α = 25%) (from Figure 4)

15% 15 b.p. 55 b.p.
17.5% 25 b.p. 80 b.p.
20% 40 b.p. 105 b.p.
25% 70 b.p. 155 b.p.

Interest rate r 75% guarantee Full guarantee
(σ = 17.5%, α = 25%) (from Figure 5)

5 35 b.p. 115 b.p.
6 25 b.p. 80 b.p.
7 15 b.p. 55 b.p.

Investor optimality 75% guarantee Full guarantee
(σ = 17.5%, r = 6%) (from Figure 6)

25% 25 b.p. 80 b.p.
50% 30 b.p. 95 b.p.
100% 45 b.p. 130 b.p.

Table 2: Effect of volatility, interest rate and investor optimality on the proportional fee required
for a 75% maturity guarantee.

guarantee level (see Windcliff et al., 1999, for further discussion). This results in a three (or more)

dimensional system which is time-dependent. Solving this numerical problem can be quite expensive

computationally. However, due to the structure of the mathematical problem very efficient parallel

algorithms can be implemented to reduce the valuation time on multiprocessor computers (see

Windcliff et al., 2000).

An alternative approach which reduces the dimensionality of the numerical problem (and hence

the computation time) is to build on the intuition described in section 5.2.3. As we have seen,

a contract that allows anti-selective lapses but no resets may be almost as valuable as a contract

that does allow resets. It follows that we can derive an approximate value for the latter contract

by modelling the former. Instead of explicitly modelling the reset feature, we simply model anti-

selective lapses. In effect we assume that the contract is correctly priced, and that the value of the

contract (net of future fees) is zero at the point of reset. In other words, we assume that it makes

no difference to the insurer whether the investor resets or lapses. If the value of the contract were

to fall below zero, then the investor should reset, thereby obtaining a contract with zero net worth.

This approximation can be very accurate, as shown in Figure 11(a) for our base scenario.

Further, the complexity of the numerical computation is equivalent to pricing a (long term) standard

American put option. This can readily be handled using lattice methods such as binomial or

trinomial trees or finite difference methods. These techniques allow for very rapid computation and

are also quite straightforward to implement.

However, one must be careful when making such approximations. If the correct proportional

fee is not being charged, the net value of the ten year guarantee is not zero, contradicting the

assumption made in the approximation. In this case, the heuristic handling of the reset feature can
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Figure 11: Results computed using an approximation of the reset feature.

severely underestimate the value. One example is shown in Figure 11(b), where we attempt to price

a guarantee on a high volatility fund, σ = 25%, using a proportional fee of re = 50 b.p.12 Note also

that in situations like this our estimates of hedging parameters can also be very inaccurate.

8 Conclusions

In this paper we discuss some of the financial implications of pricing and hedging segregated fund

guarantees which include the reset feature. Some of the key results include:

• Segregated fund guarantee products which offer the reset feature appear in some cases to be

underpriced by Canadian insurers when valued using a no-arbitrage approach.

• We have presented intuitive reasoning regarding why it can be quite expensive to hedge the

reset feature, and presented some heuristics for establishing a hedging strategy.

• We have also presented rigorous numerical results, based on the model developed in Windcliff

et al. (2001), which show appropriate proportional fees as well as the cost of providing a

segregated fund guarantee (net of future incoming fees) for a given fixed fee structure.

• We have investigated the possibility of modifying these contracts so that they remain attrac-

tive to investors yet are less expensive to hedge. We note that these contracts do not become

12The correct proportional fee, from Figure 4, is re = 155 b.p.
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less expensive to hedge by limiting contract features which we are assuming are being used

non-optimally.

• Limiting the value of the guarantee to 75% of the current level of the asset does reduce the

hedging cost substantially. The value of the resulting contract is relatively less sensitive to

optimal investor behaviour, but more sensitive to high volatility.

• If the correct proportional fee, re, is being charged, handling resets by imposing a minimum

value constraint at zero can be an accurate approximation. This approximation allows these

contracts to be valued in the time required to value a standard American put option. However,

care must be taken if the proportional fee being charged is too small.

The results given in this paper can be viewed as the minimum cost of providing these guarantees

since we are modeling a contract which has much less optionality than many existing marketed

contracts and we have assumed a low degree of investor optimality. Also, additional reserves may

be required to handle unhedged risks such as basis risk, volatility risk, and interest rate risk as well

as transactions costs.
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