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Abstract5

A numerical technique based on the embedding technique proposed in [21, 33] for dynamic6

mean-variance (MV) optimization problems may yield spurious points, i.e. points which are not7

on the efficient frontier. In [27], it is shown that spurious points can be eliminated by examining8

the left upper convex hull of the solution of the embedded problem. However, any numerical9

algorithm will generate only a discrete sampling of the solution set of the embedded problem. In10

this paper, we formally establish that, under mild assumptions, every limit point of a suitably11

defined sequence of upper convex hulls of the sampled solution of the embedded problem is on the12

original MV efficient frontier. For illustration, we discuss an MV asset-liability problem under13

jump diffusions, which is solved using a numerical Hamilton-Jacobi-Bellman partial differential14

equation approach.15
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1 Introduction19

The main objective of this paper is to analyze convergence properties of the computed mean-20

variance (MV) scalarization optimal points, sequenced by the embedding parameter sampling level,21

in the embedding technique for multi-period MV optimization.22

1.1 Motivation23

Many optimal stochastic control problems in finance can be formulated as a multi-period or con-24

tinuous time MV optimization problem. Typical examples include portfolio optimization [7, 21, 25,25

28, 29, 33], asset-liability management [5, 10, 15, 19, 20, 31], and optimal trade execution[17, 23].26
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In this approach, we seek the optimal trade-off between the two conflicting criteria of maximizing27

the expected wealth of the investment (or trading), over a given time horizon, and minimizing28

investment risk. More specifically, letting Wt denote the total wealth from the investment at29

time t, we aim to maximize E = E[WT ] and minimize V = V ar[WT ], where T is the end of the30

investment/trading horizon. Here, E[·] and V ar[·] respectively denote the expectation and the31

variance operators.32

Mean-variance optimization typically yields pre-commitment strategies [4, 8], which are not33

time-consistent [28, 29, 30]. There has been much discussion about such strategies in the economics34

literature [8]. However, it is argued in [28] that pre-commitment strategies are appropriate in the35

context of pension plan investment. It has also been pointed out that, in the context of optimal trade36

execution, the pre-commitment strategy optimizes trading efficiency as measured in practice [1].37

The pre-commitment policy has also been commonly applied in insurance applications [9, 15, 19, 32].38

As an illustration to relevant issues addressed in this paper, we consider the following applica-39

tion. Consider an investor who has a fixed initial wealth, which can be invested in (i) a risk-free40

asset, e.g., a government bond, or (ii) a risky asset, e.g., a stock market index. We assume that the41

investor can dynamically transfer wealth between these two assets. In addition to these assets, we42

assume that the investor also has fixed liabilities, in the form of deterministic cash outflows. These43

cash outflows are withdrawn at a set of pre-determined (event) dates. These cash outflows are44

usually specified in terms of an initial withdrawal and subsequent withdrawals equal to the initial45

withdrawal inflated at a known inflation rate. This asset-liability problem is assumed to continue46

over a relatively long horizon, e.g. 20 years.47

The problem described above can be viewed as a prototype for the asset allocation problem,48

faced by the holder of a defined contribution pension plan (DCPP) in the sense that, upon retire-49

ment, the holder of a DCPP must invest his assets to generate living expenses over a long term50

horizon. Most existing literature for DCPP adopts an utility function based approach, see e.g., [28]51

and references therein. This may be partly due to the fact that it is more challenging to numerically52

determine the dynamic investment strategy which is optimal in the MV sense. As another concrete53

example, we can consider the case of a charitable endowment, where fixed cash flows (i.e. staff54

salaries) must be funded by an endowment which is invested in risky assets.55

In both cases, the investment strategy can be modeled as a fraction of the total wealth invested56

in the risky asset. In the example considered in this paper, we assume that the underlying risky57

asset follows a jump diffusion process and we constrain the leverage ratio. To the best of our58

knowledge, no closed-form solutions for this problem are presently available in the literature.59

1.2 Background60

Following a standard scalarization method for multi-criteria optimization, a single criterion can be61

formed by a positively weighted sum of the criteria. Unfortunately, in the case of MV optimiza-62

tion, dynamic programming is not directly applicable to the resulting single-objective optimization63

problem, due to the presence of the variance term V ar[WT ].64

1.2.1 Embedding Approach65

To overcome this difficulty, a technique is proposed in [21, 33] to embed the objective of the MV66

scalarization problem in a new optimization problem, which involves E = E[WT ], Q = E[W 2
T ], and67

an embedding parameter γ ∈ (−∞,+∞), instead of E , V, and a positive scalarization parameter68
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µ > 0. The dynamic programming principle can be applied to the embedded optimization problem,69

which gives rise to a non-linear Hamilton-Jacobi-Bellman (HJB) equation, from which optimal70

solutions with respect to the embedded problem can be obtained. For each embedding parameter71

γ, a pair (E ,V) of values is associated with a solution to the corresponding HJB equation, see, e.g.,72

[13, 17, 29].73

We denote by YP the set of all (V, E) corresponding to the original MV scalarization problem.74

We will also refer to YP as the set of scalerization optimal points (SOPs) w.r.t. Y. Let YQ be the75

set of all achievable (V, E) whose combination using an embedding parameter γ yields the optimal76

value of the embedded problem with the embedding parameter γ. Our goal is to determine the set77

YP numerically. It has been established in [21, 33] that the original MV scalarization optimal set78

YP is a subset of the embedded MV objective set YQ. This result has led to widespread adoption79

of the embedding technique in MV optimization.80

Unfortunately, the result that YP ⊂ YQ is insufficient by itself, since there may exist spurious81

points, i.e., points in YQ but not in YP . This problem can arise from nonconvexity of the original82

problem. Furthermore a point in YQ is a point in YP only for an embedding parameter satisfying83

necessary conditions. It is however difficult to verify these conditions in numerical computation;84

consequently a method for eliminating spurious points is required. Note that the imposition of the85

necessary conditions is not an issue when closed form solutions are available since the necessary86

conditions can be imposed explicitly (e.g. see [33]).87

The issue of potential spurious points for the embedding method in the context of numerical88

computation was discussed in [27]. This raises an important issue of how to develop an algorithm for89

elimininating these points. This issue is partially addressed in [27] by identification of scalarization90

optimal points with respect to the embedded MV objective set. Specifically, it is shown that a91

spurious point is a point at which a supporting hyperplane for the embedded MV objective set92

does not exist, i.e. non-SOPs.93

It is further noted in [27] that the full embedded objective set is not available in computation,94

since any numerical algorithm can compute only a single MV point corresponding to a given em-95

bedding γ. As a result, the requirement of constructing the full embedded MV set is relaxed, and96

the focus is on the computed objective set [27]. The computed embedded MV objective set Y†Q is97

defined as the embedded MV objective set with a single embedded MV objective point for each98

embedding parameter. It is shown in [27] that the spurious points are non-SOPs with respect to99

the computed MV set Y†Q. These theoretical results yield a post-processing technique for the em-100

bedding method. This technique is applied to remove spurious points, which are now points in Y†Q101

but not in YP . This requires verification of the existence of a supporting hyperplane at each point102

in the set Y†Q, and hence, has a simple geometrical interpretation. We denote by S(Y†Q) the set of103

points in Y†Q at which supporting hyperplanes exist. The main result in [27] is that S(Y†Q) = YP .104

1.2.2 Alternative Approaches105

There are several other techniques which can be used to circumvent the problem due to the variance106

term in MV optimization. A Martingale method, which is based on the use of Backward Stochastic107

Differential Equations (BSDEs) was used in [7]. Another method, also using BSDEs, is described108

in [12]. This technique is based on requiring that the admissible strategies satisfy a cone constraint.109

Unfortunately, in practice, constraints which can not be expressed as a cone constraint may also110

need to be imposed.111
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Finally, the method most closely related to the embedding method is based on using a Lagrange112

multiplier technique [11, 22]. Formally, this method requires that the problem can be posed as a113

convex optimization problem. This cannot be guaranteed in the case of the optimal execution114

problem discussed in [27], where the differential equations describing the underlying processes are115

nonlinear. It is interesting to observe that the final objective function in the Lagrange multiplier116

method has the same algebraic structure as the objective function in the embedding method.117

1.3 Contributions of this paper118

Although the theoretical results in [27] are important and practically useful, there is one additional119

complication which has not been addressed: it is computationally infeasible to compute the entire120

set Y†Q, since the embedding parameter γ ∈ (−∞,+∞). In practice, we can only compute a solution121

of the embedded optimization problem for a set of finitely sampled embedding parameter values.122

Assume that Γk ⊂ (−∞,+∞) is the set of sampled γ values at the sampling discretization level k,123

and denote the MV finite set corresponding to Γk by (Y†Q)k. We assume that the index k is positively124

proportional to the number of finite values of γ used in computation. A conjecture made in [27]125

is that any reasonable finite sampling method for γ, such as systematically refining uniform grids,126

results in the set S((Y†Q)k) converging to, possibly a subset of, the set S(Y†Q) (or equivalently, the set127

YP ). However, this is by no means obvious, due to the fact that we use supporting hyperplanes of128

(Y†Q)k to determine S((Y†Q)k). Given the importance of the embedding technique and its popularity129

in multi-period MV optimization, it is highly desirable to mathematically establish the validity of130

this conjecture. In other words, it is necessary to analyze asymptotic properties of SOPs with131

respect to the discretization of the embedding parameter. As a result, we can develop a post-132

processing technique for the computed (Y†Q)k to produce S((Y†Q)k).133

The main contributions of this paper can be summarized as follows.134

• We prove that, under mild assumptions on sampling schemes, as k → +∞, every limit point135

in S((Y†Q)k) is a point in S(Y†Q). That is, every point in S((Y†Q)k) obtained from numerically136

solving the embedding problem with sufficiently large k can be an accurate approximation to137

an MV scalarization optimal point.138

• The above result and the results developed in [27] form a numerical framework for determin-139

ing valid (i.e. not spurious) points on the original efficient frontier. As such, these results140

complement the theoretical results of the embedding technique developed in [21, 33] for multi-141

period or continuous time MV optimization. Note that we do not require convexity of the142

original problem.143

• We illustrate the theoretical findings of this paper for an MV asset-liability problem under144

jump diffusions. In this case, the frontier generated by the embedding technique does contain145

spurious points. This example highlights the importance of our post-processing numerical146

method.147

To focus on the main issue of embedding parameter discretization, we assume that each point in148

Y†Q is the exact solution of an embedded optimization problem corresponding to an embedding149

parameter.150

The remainder of this paper is organized as follows. In Section 2, we summarize relevant major151

findings in [27] for removing spurious points which are used in subsequent sections of the paper. The152
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main theoretical results on asymptotic convergence of the computed MV embedded post-processed153

set S((Y†Q)k) are presented in Section 3. In Section 4, we provide a numerical example for the154

MV asset-liability management under jump diffusions. This requires solution of an HJB partial155

integro-differential equation (PIDE). In Section 5 we discuss application of our main results to156

other techniques (such as a Monte Carlo, Backward Stochastic Differential Equation formulation)157

for numerically solving the embedded control problem. Section 6 concludes the paper and outlines158

possible future work.159

2 Removal of spurious points by identifying SOPs160

We first briefly summarize the main results in [27], following notation used in [27]. We denote by161

X(t) the underlying multi-dimensional stochastic process and by x a state of the stochastic system.162

We use c(·) to denote the control, representing a strategy, as a function of the current state, i.e.163

c(·) : (X(t), t) 7→ c = c(X(t), t). Furthermore, we denote by Wt the total wealth at time t. Let164

Ex,tc(·)[WT ] and V arx,tc(·)[WT ] respectively denote the expectation and the variance of the terminal165

wealth WT conditional on the initial state (x, t) and on the control c(·).166

2.1 MV Pareto optimal set167

Since we are mainly interested in identifying spurious points on an efficient frontier, we analyze168

MV optimality in terms of time T achievable expected value and variance of the wealth. We first169

introduce a few definitions.170

Definition 2.1. Let (x0, 0) = (X(t = 0), t = 0) denote the initial state. Let171

Y =
{

(V arx0,0c(·) [WT ], Ex0,0c(·) [WT ]) : c(·) admissible
}

(2.1)

denote the achievable MV objective set and Y denote its closure.172

Definition 2.2. A point (V∗, E∗) ∈ Y is a Pareto (optimal) point if there exists no admissible173

strategy c(·) such that174

Ex0,0c(·) [WT ] ≥ E∗
V arx0,0c(·) [WT ] ≤ V∗ ,

and at least one of the inequalities in equation (2.2) is strict. We denote by P the set of Pareto175

(optimal) points. Note that P ⊆Y.176

Although the above definitions are intuitive, determining the points in P requires solving a177

difficult multi-objective optimization problem, which includes two conflicting criteria. A standard178

scalarization method can be used to combine the two criteria into an optimization problem with a179

single objective. More specifically, for an arbitrary scaler µ > 0, we first define YP (µ) to be the set180

of scalarization optimal points for the parameter µ,181

YP (µ) = {(V∗, E∗) ∈Y : µV∗ − E∗ = inf
(V,E)∈Y

(µV − E)} . (2.2)

We then define the MV scalarization optimal set, denoted by YP , as182

YP =
⋃
µ>0

YP (µ). (2.3)
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where we note that it is possible for YP (µ) to be empty for some µ > 0.183

We recognize the difference between the set of all MV Pareto optimal points P and the set of184

MV scalarization optimal points YP defined in equation (2.3). In general, YP ⊆ P. However, the185

converse may not hold, if the achievable MV objective set Y is not convex. As in [27], we restrict186

our attention to determining YP .187

2.2 Embedding methods188

As noted in [21, 33], the presence of the variance term in equation (2.2) causes difficulty, if we189

attempt to determine YP (µ) by directly solving for the associated value function using dynamic190

programming. To overcome this difficulty, we can make use of the main result in [21, 33] concerning191

the embedding technique. Similar to YP , we can describe embedding optimality in terms of an192

achievable objective point (V, E) ∈ Y.193

Definition 2.3 (Embedded MV objective set). The embedded MV objective set YQ is defined194

by195

YQ =
⋃

−∞<γ<+∞
YQ(γ). (2.4)

where196

YQ(γ) =
{

(V∗, E∗) ∈Y : V∗ + E2
∗ − γE∗ = inf

(V,E)∈Y
V + E2 − γE

}
. (2.5)

Remark 2.1 (Nonemptyness of YQ(γ)). Write V + E2 − γE as V + (E − γ/2)2 − γ2/4. Noting that197

variance V ≥ 0, we have that V+E2−γE is bounded from below for any γ. If Y 6= ∅, then YQ(γ) 6= ∅198

∀γ. Thus inf(V,E)∈Y V + E2 − γE exists and the closure Y contains (V∗, E∗).199

Remark 2.2 (Dynamic programming form). Since200

V + E2 − γE = Ex0,0c(·) [W 2
T ]− (Ex0,0c(·) [WT ])2 + (Ex0,0c(·) [WT ])2 − γEx0,0c(·) [WT ] (2.6)

= Ex0,0c(·) [W 2
T − γWT ] (2.7)

then we can write equation (2.5) in standard control form201

inf
(V,E)∈Y

V + E2 − γE = inf
c(·)

Ex0,0c(·) [W 2
T − γWT ] (2.8)

which is now amenable to solution by a dynamic programming technique.202

Definition 2.4. A point (V, E) ∈ YQ is a spurious point if (V, E) 6∈ YP .203

We also introduce the concept of scalarization optimal points (SOPs) with respect to a set.204

Definition 2.5. Let X be a non-empty subset of Y. We define205

Sµ(X ) =
{

(V∗, E∗) ∈X : µV∗ − E∗ = inf
(V,E)∈X

µV − E
}
, (2.9)

where X is the closure of X . We call a point in Sµ(X ) a scalarization optimal point (SOP) w.r.t.206

(X , µ). We also define207

S(X ) =
{

(V∗, E∗) : (V∗, E∗) is an SOP w.r.t. (X , µ) for some µ > 0
}
. (2.10)

We refer to (V0, E0) ∈ S(X ) as SOP w.r.t. X .208
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Geometrically speaking, an SOP with respect to a set is a point at which there exists a sup-209

porting hyperplane with a positive slope for that set. We make the following assumption on the210

achievable objective set Y.211

Assumption 2.1 (Nonemptyness). We assume that Y is a non-empty subset of {(V, E) ∈ R2 :212

V ≥ 0} and that there exists a positive scalarization parameter µE > 0 such that SµE (Y) 6= ∅.213

Lemma 2.1 (Nonemptyness of Sµ(Y), µ ≥ µE). If Assumption 2.1 holds, then ∀µ ≥ µE, Sµ(Y) 6=214

∅.215

Proof. Let (VE , EE) ∈ SµE (Y). For any given µ ≥ µE , consider ∀(V, E) ∈ Y,216

µV − E ≥ µEV − E ≥ µEVE − EE . (2.11)

Hence, Sµ(Y) 6= ∅ for all µ ≥ µE .217

Remark 2.3. Note that V ≥ 0 always holds since the variance is non-negative. In [27], to ensure218

that YP (µ) 6= ∅, a stronger assumption was made that ∀(V, E) ∈ Y, E ≤ CE, where CE is a constant.219

Due to Lemma 2.1, the results in [27] hold under Assumption 2.1.220

The embedding result of [21, 33] is summarized in Theorem 2.1, under the weaker Assumption221

2.1. An important implication of Theorem 2.1 is that YP ⊆ YQ.222

Theorem 2.1 (Embedding result – Theorem 4.4 in [27]). If Assumption 2.1 holds and µ ≥ µE,223

then Sµ(Y) 6= ∅. Assume (V0, E0) ∈ YP (µ). Then224

µV0 − E0 = inf
(V,E)∈Y

µV − E (2.12)

and225

V0 + E2
0 − γE0 = inf

(V,E)∈Y
V + E2 − γE , i.e. (V0, E0) ∈ YQ(γ), (2.13)

where226

γ =
1

µ
+ 2E0. (2.14)

For subsequent analysis, we present the following uniqueness property of the embedded MV227

objective set YQ(γ) established in [27] .228

Theorem 2.2 (Uniqueness of YQ(γ) – Theorem 4.8 in [27]). If (V, E) ∈ S(YQ), then there exists γ229

such that (V, E) ∈ YQ(γ) and YQ(γ) is a singleton.230

The following result from [27] indicates that spurious points can be identified as not being SOP231

with respect to the embedded MV objective set.232

Theorem 2.3 (Theorem 4.7 in [27]). The SOPs w.r.t. YQ are the same as the SOPs w.r.t. Y, i.e.233

S(YQ) = YP = S(Y). (2.15)

Theorem 2.3 demonstrates that it is possible to generate the original MV SOP set YP from the234

embedded MV objective set YQ. More specifically, a spurious point in YQ is a point at which there235

does not exist a supporting hyperplane with positive slope for YQ. Excluding all these spurious236

points from YQ, we obtain S(YQ), and hence, YP .237
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Remark 2.4 (Existence of Spurious Points). Spurious points can arise from two distinct causes.238

If the original MV problem is not convex, then it is easily seen that spurious points can be gener-239

ated. However, even if the MV problem is convex, a numerical algorithm based on minimizing the240

objective function (2.5) may produce spurious points (as defined in Definition 2.4). This is because241

numerically computed points in YQ may not satisfy all the conditions (2.12)–(2.14). If we have a242

closed form solution, as in [21, 33], then necessary condition (2.14) (where µ satisfies (2.12)) can243

be explicitly imposed, so that this situation does not arise. However, given an arbitrary point in244

YQ, generated by a numerical algorithm, then we cannot verify that condition (2.14) is satisfied,245

without examining the entire set YQ. However, we can ensure that both types of spurious points can246

be eliminated if we consider only the S.O.Ps w.r.t YQ as in Theorem 2.3. Note that spurious points247

were not generated in[21, 33], since the MV problems considered were convex, and the closed-form248

solutions enabled imposition of condition (2.14).249

2.3 Removal of spurious points with respect to the computed embedded MV250

set251

However, Theorem 2.3 cannot be directly used in a numerical algorithm for construction of S(YQ),252

since the entire set YQ is not available in practice. There are two aspects of incompleteness. The253

first is the incompleteness due to availability of only a single solution for each γ. For each embedding254

parameter γ, −∞ < γ < +∞, a numerical algorithm applied to the embedded problem can generate255

only a single embedded MV point (V, E) ∈ YQ(γ). In this case, it is not obvious that the single256

embedded MV point generated by our algorithm will satisfy all the conditions (2.12)–(2.14). This257

first aspect of incompleteness is addressed in [27]; the relevant result is summarized below. The258

second aspect of incompleteness is due to the fact that, in practice, only a finite number of γ values259

can be used to approximate the set YQ. This aspect of incompleteness is the focus of this paper,260

and is discussed in Section 3. We define the computed MV embedded objective set, denoted261

by Y†Q, as follows.262

Definition 2.6 (Computed MV embedded objective set). Let Y†Q(γ) be a singleton subset of YQ(γ).263

Specifically Y†Q(γ) contains either264

• the unique single point which is SOP w.r.t. YQ if YQ(γ) is the singleton set containing a point265

SOP w.r.t. YQ, or266

• an arbitrarily selected single point of YQ(γ) otherwise.267

The computed MV objective set is then defined as268

Y†Q =
⋃

−∞<γ<+∞
Y†Q(γ).

The following theorem shows that YP can be generated from Y†Q.269

Theorem 2.4 (Theorem 5.4 in [27]). Suppose Assumption 2.1 holds. Then270

S(Y†Q) = YP = S(Y) . (2.16)

Following immediately from Theorem 2.4, Lemma 2.1, we have Corollary 2.1.271
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Corollary 2.1. Suppose Assumption 2.1 holds. Then Sµ(Y†Q) 6= ∅,∀µ ≥ µE.272

An important implication of Theorem 2.4 is that, given an MV point (V, E) ∈ Y†Q, we can273

determine whether it is in YP by checking whether it is an SOP with respect to Y†Q.274

3 Asymptotic properties of sets of SOPs with respect to the em-275

bedding parameter sampling276

It is important to note that the procedure given in [27], described so far, requires the entire set277

Y†Q to be available, i.e. an embedded MV point for each γ ∈ (−∞,+∞). However, we typically278

solve the embedded problem for each fixed γ by numerically solving the associated HJB equation.279

Hence, in practice, we can only approximate Y†Q for a finite number of γ values. More specifically,280

we approximate Y†Q using a finite set of γ values, each of which yields a solution to the embedded281

problem (2.13). As a result, a sampling discretization for γ needs to be implemented. In addition, to282

assess convergence of the approximation of Y†Q, a sequence of samplings of γ needs to be computed.283

To capture this, we denote by Γk the finite discrete set of sampled γ values at the sampling284

discretization level k. Examples of methods for constructing Γk are given in §3.2. Let285

(Y†Q)k =
⋃
γ∈Γk

Y†Q(γ) (3.1)

denote the set of all computed MV embedded points using the sampling set Γk. Note that286

(Y†Q)k ⊆ Y†Q. (3.2)

In addition, we need to construct the SOPs of (Y†Q)k, i.e. S((Y†Q)k). A simple method which287

constructs S((Y†Q)k) is described in Algorithm 3.1. Theoretical justification of Algorithm 3.1 is

Algorithm 3.1 Post-processing algorithm to construct S((Y†Q)k) from (Y†Q)k.

1: determine the set (C)k consisting of all the vertices of the convex hull of (Y†Q)k;

2: determine the set (U)k consisting of upper-left boundary points of (C)k;
3: return S((Y†Q)k) ≡ (U)k.

288

given in [27]. In [27], it is conjectured that for sufficiently large k, the points in S((Y†Q)k) sufficiently289

well approximate the points in S((Y†Q)) = YP . In this section, we analyze convergence properties290

of (Y†Q)k as k → +∞. Our aim is to show that, as k → +∞, every limit point of a sequence291

{(Ek,Vk)}, (Ek,Vk) ∈ Sµ((Y†Q)k), is a point in Sµ(Y†Q).292

Remark 3.1 (Intuitive explanation of Algorithm 3.1). Note that (Y†Q)k is a finite set of points. If293

a point is in S((Y†Q)k), then there exists a supporting hyperplane with positive slope at that point.294

These points are also the vertices of the upper left convex hull of (Y†Q)k [27]. The vertices of the295

upper left convex hull of m points can be computed in O(m logm) time, using, for example, the296

algorithm in [2].297
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3.1 Preliminaries298

In preparation for the convergence analysis, we first establish a few technical lemmas. Recall that299

Sµ(Y†Q) =
{

(V∗, E∗) ∈ Y†Q : µV∗ − E∗ = inf
(V,E)∈Y†Q

µV − E
}
. (3.3)

One thing that makes the asymptotic analysis challenging is that, for a given µ, there can be300

multiple points in Sµ(Y†Q). We handle this difficulty by examining the minimum element of Sµ(Y†Q)301

for each given µ.302

Definition 3.1. For Sµ(Y†Q) 6= ∅, µ > 0, we define the minimum element as (Vmin(µ), Emin(µ))303

where304

(Vmin(µ), Emin(µ)) ∈ Sµ(Y†Q), Vmin(µ) ≤ V, Emin(µ) ≤ E , ∀(V, E) ∈ Sµ(Y†Q). (3.4)

3.1.1 Minimum element of Sµ(Y†Q)305

Since any point in Sµ(Y†Q) lies on a supporting hyperplane with a slope µ > 0, we immediately have306

the following Lemma concerning the existence and uniqueness of the minimum element of Sµ(Y†Q).307

Lemma 3.1. Assume that Sµ(Y†Q) 6= ∅ for µ > 0. Then there exists an unique minimum308

(Vmin(µ), Emin(µ)) for Sµ(Y†Q). In addition,309

Vmin(µ) = inf
(V,E)∈Sµ(Y†Q)

V ,

Emin(µ) = µVmin(µ)− inf
(V,E)∈Y†Q

µV − E .

Proof. Let µ > 0 be given. Since Sµ(Y†Q) 6= ∅, there exists the unique value310

f0(µ) = inf
(V,E)∈Y†Q

µV − E . (3.5)

Then,311

µV − E = f0(µ), ∀(V, E) ∈ Sµ(Y†Q). (3.6)

To show existence and uniqueness of Vmin(µ), we note that V ≥ 0, i.e. V is bounded below.312

Hence, inf
(V,E)∈Sµ(Y†Q)

V exists. Let313

Vmin(µ) = inf
(V,E)∈Sµ(Y†Q)

V. (3.7)

Clearly, Vmin(µ) is unique. In addition, we have314

Vmin(µ) ≤ V, ∀ (V, E) ∈ Sµ(Y†Q).
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Now, we show existence and uniqueness of quantity Emin(µ). To this end, note that, there exists315

a sequence {(Vk, Ek)}, (Vk, Ek) ∈ Sµ(Y†Q), such that316

lim
k→+∞

Vk = Vmin(µ).

For any sequence {(Vk, Ek)}, (Vk, Ek) ∈ Sµ(Y†Q), with limk→+∞ Vk = Vmin(µ), we have317

µVk − Ek = f0(µ).

Thus,318

lim
k→+∞

Ek = lim
k→+∞

(µVk) − f0(µ) = µVmin(µ)− f0(µ).

Define the unique value319

Emin(µ) = lim
k→+∞

Ek = µVmin(µ)− f0(µ), (3.8)

or equivalently,320

µVmin(µ)− Emin(µ) = f0(µ). (3.9)

By (3.3), (3.5) and (3.9), it follows that (Vmin(µ), Emin(µ)) ∈ Sµ(Y†Q). From (3.6) and (3.9), we321

have322

Emin(µ) = µVmin(µ)− (µV − E) , ∀ (V, E) ∈ Sµ(Y†Q).

Hence, Lemma 3.1 holds.323

3.1.2 Continuity of (Vmin(µ), Emin(µ))324

Now we show that (Vmin(µ), Emin(µ)) is right-continuous in µ. In the following supporting Lemma,325

we first establish the monotonicity of (Vmin(µ), Emin(µ)).326

Lemma 3.2. Assume Sµ(Y†Q) 6= ∅. Let (Vmin(µ), Emin(µ)) ∈ Sµ(Y†Q), and (Vmin(µ′), Emin(µ′)) ∈327

Sµ′(Y†Q). If µ′ > µ, then328

Vmin(µ′) ≤ Vmin(µ) and Emin(µ′) ≤ Emin(µ). (3.10)

Proof. From Corollary 2.1, Sµ′(Y†Q) 6= ∅. Since (Vmin(µ′), Emin(µ′)) ∈ Sµ′(Y†Q) ⊆Y†Q, there exists a329

sequence {(Vk, Ek)}, (Vk, Ek) ∈ Y†Q, such that330

lim
k→∞

Vk = Vmin(µ′) and lim
k→∞

Ek = Emin(µ′). (3.11)

Since (Vmin(µ), Emin(µ)) ∈ Sµ(Y†Q),331

µVmin(µ)− Emin(µ) ≤ µV − E , ∀ (V, E) ∈ Y†Q. (3.12)

From (3.11) and (3.12), we have332

µVmin(µ)− Emin(µ) ≤ µVmin(µ′)− Emin(µ′). (3.13)
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Interchanging the role of µ and µ′ in (3.13), we have333

−(µ′Vmin(µ)− Emin(µ)) ≤ −(µ′Vmin(µ′)− Emin(µ′)). (3.14)

Adding (3.13) and (3.14) gives334

(µ− µ′)Vmin(µ) ≤ (µ− µ′)Vmin(µ′)⇒ (µ− µ′)(Vmin(µ)− Vmin(µ′)) ≤ 0. (3.15)

Since µ′ > µ, it follows from (3.15) that Vmin(µ′) ≤ Vmin(µ).335

By first multiplying (3.13) and (3.14) with µ′ and µ, respectively, then adding the resulting336

inequalities, we obtain337

(µ− µ′)(Emin(µ)− Emin(µ′)) ≤ 0.

It follows that Emin(µ′) ≤ Emin(µ).338

Next we establish that (Vmin(µ), Emin(µ)) ∈ Sµ(Y†Q) is right-continuous in µ.339

Lemma 3.3. Assume that Sµ(Y†Q) 6= ∅ at µ = µ0. Then, (Vmin(µ), Emin(µ)) ∈ Sµ(Y†Q) are right-340

continuous in [µ0,+∞).341

Proof. From Corollary 2.1, Sµ(Y†Q) 6= ∅ for all µ ≥ µ0. Let (Vmin(µ), Emin(µ)) ∈ Sµ(Y†Q), and342

(Vmin(µ0), Emin(µ0)) ∈ Sµ0(Y†Q). Following Lemma 3.2, we have343

Emin(µ) ≤ Emin(µ0), and Vmin(µ) ≤ Vmin(µ0), ∀µ ≥ µ0. (3.16)

Due to this monotonicity, there exists (EL,VL) ∈Y†Q such that344

lim
µ→µ+0

Emin(µ) = EL, and lim
µ→µ+0

Vmin(µ) = VL. (3.17)

To show right-continuity, we now establish that EL = Emin(µ) and VL = Vmin(µ). From (3.16)-345

(3.17), we conclude that346

EL ≤ Emin(µ0); VL ≤ Vmin(µ0). (3.18)

Since347

µVmin(µ)− Emin(µ) ≤ µV − E , ∀(V, E) ∈ Y†Q,

by letting µ→ µ+
0 and using (3.17), we obtain348

µ0VL − EL ≤ µ0V − E , ∀(V, E) ∈ Y†Q. (3.19)

Since (EL,VL) ∈Y†Q, and (Vmin(µ0), Emin(µ0)) ∈ Sµ0(Y†Q) ⊆ Y†Q, it follows from (3.19) that349

µ0VL − EL = µ0Vmin(µ0)− Emin(µ0).

Hence, (EL,VL) ∈ Sµ0(Y†Q). By Lemma 3.1, we have350

Vmin(µ0) ≤ VL, Emin(µ0) ≤ EL. (3.20)

From (3.18) and (3.20), it follows that EL = Emin(µ) and VL = Vmin(µ).351
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3.1.3 Continuity and monotonicity of γmin(µ)352

We note that the embedding parameter γmin(µ), corresponding to the minimum element, also plays353

an important role in the asymptotic analysis. Next, we show that, assuming (Vmin(µ), Emin(µ))354

exists, the corresponding embedding parameter γmin(µ) is right-continuous and strictly decreasing355

in µ. First, we establish a supporting Lemma that relates the embedding parameter γmin and the356

scalarization parameter µ.357

Lemma 3.4. Assume that Sµ(Y†Q) 6= ∅ and that (Vmin(µ), Emin(µ)) ∈ Sµ(Y†Q). Then, there exists358

a unique γmin(µ) such that359

γmin(µ) =
1

µ
+ 2Emin(µ),

where (Vmin(µ), Emin(µ)) ∈ Y†
Q(γmin(µ))

, (3.21)

and (Vmin(µ), Emin(µ)) is the unique point in Y†
Q(γmin(µ))

⊆ S(Y†Q).360

Proof. Since (Vmin(µ), Emin(µ)) ∈ Sµ(Y†Q) ⊆ S(Y†Q), following Theorem 2.4, we have361

(Vmin(µ), Emin(µ)) ∈ YP = S(Y).

By Theorem 2.3, we have S(Y) = S(YQ). Hence362

(Vmin(µ), Emin(µ)) ∈ S(YQ).

Using Theorem 2.2, we have363

(Vmin(µ), Emin(µ)) ∈ YQ(γ) for some γ,

and YQ(γ) is a singleton. Following Theorem 2.1, there exists an unique γmin(µ), which is defined364

below365

γmin(µ) =
1

µ
+ 2Emin(µ).

By Definition 2.6, Y†Q(γ) contains a single point, so that (Vmin(µ), Emin(µ)) is the unique point in366

Y†
Q(γmin(µ))

. This completes the proof.367

In the following Lemma, we establish the right-continuity and monotonicity of γmin(µ) in µ.368

Lemma 3.5. Assume that Sµ(Y†Q) 6= ∅ for µ = µ0 > 0. Then γmin(µ) is right-continuous and369

strictly decreasing in [µ0,+∞).370

Proof. From Corollary 2.1, Sµ(Y†Q) 6= ∅ for any µ ∈ [µ0,+∞), and from Lemma 3.3, Emin(µ)371

is right-continuous in [µ0,+∞). Thus, from (3.21), γmin(µ) is right-continuous in µ. To show372

monotonicity, note that, for any µ, µ′ ∈ (µ0,+∞) and µ > µ′, we have (noting Lemma 3.2)373

1

µ
<

1

µ′
; Emin(µ) ≤ Emin(µ′). (3.22)

Thus, from (3.21)-(3.22), we have that γmin(µ) is a strictly decreasing function of µ in [µ0,+∞).374
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From Lemma 3.5, γmin(µ) is a strictly decreasing function of µ in [µ0,+∞). Following this,375

we immediately conclude that the inverse function γmin−1
(γ), which yields an unique scalarization376

parameter, is left continuous at γmin(µ0). Specifically, the inverse function γmin−1
(γ) is uniquely377

defined in (γ0
min, γmin(µ0)] for some γ0

min.378

Next we analyze asymptotic properties of embedded MV points corresponding to a set Γk of379

sampled embedding parameter γ under some mild assumptions on Γk, see, e.g., Assumption 3.1.380

Lemma 3.6. Assume that Sµ(Y†Q) 6= ∅ at µ = µ0. Let (Vmin(µ0), Emin(µ0)) ∈ Sµ0(Y†Q). Assume381

that there exists a monotonically increasing sequence of embedding parameters {γk} satisfying382

lim
k→∞

γk = γmin(µ0) ; γk ≥ γk−1 .

Then for sufficiently large k, there exists a unique µk such that383

µk = γmin−1
(γk), µk ≥ µ0,

and384

lim
k→∞

(Vmin(µk), Emin(µk)) = (Vmin(µ0), Emin(µ0)) .

Proof. Since Sµ(Y†Q) 6= ∅ at µ = µ0, from Lemma 3.5, γmin(µ) is monotonically decreasing and385

right-continuous in [µ0,+∞). Hence, from Lemma 3.5, for sufficiently large k, there exists a unique386

µk such that387

µk = γmin−1
(γk), µk ≥ µ0

and µk monotonically decreasing, such that388

lim
k→∞

µk = µ0

Note that (Vmin(µ0), Emin(µ0)) ∈ Sµ0(Y†Q) is unique. In addition there exists unique389

(Vmin(µk), Emin(µk)) ∈ Sµk(Y†Q).

Furthermore,390

lim
k→∞

(Vmin(µk), Emin(µk)) = (Vmin(µ0), Emin(µ0)),

which follows from the right-continuity of (Vmin(µk), Emin(µk)) in [µ0,+∞).391

We conclude this subsection with a lemma which can be used to identify possible spurious points392

by examining only a subinterval of values of the embedding parameter γ.393

Lemma 3.7. Let Assumption 2.1 hold. Assume that there exists E∗ such that394

E∗ = lim inf
µ→+∞

{Eµ : (Vµ, Eµ) ∈ Sµ(Y)} . (3.23)

Then for any µ̂ > µE, there exists γ̂, −∞ < γ̂ <∞, such that395

γ̂ =
1

µ̂
+ 2Emin(µ̂). (3.24)

where (Vmin(µ̂), Emin(µ̂)) ∈ Sµ̂(Y) and (Vmin(µ̂), Emin(µ̂)) ∈ YQ(γ̂). In addition

γ̂ > 2E∗.

14



Proof. Since Assumption 2.1 holds, ∃µE > 0 such that SµE (Y) 6= ∅. Hence (Vmin(µ̂), Emin(µ̂)) ∈396

Sµ̂(Y) for µ̂ ≥ µE . By Theorem 2.1, there exists γ̂, −∞ < γ̂ <∞, such that397

γ̂ =
1

µ̂
+ 2Emin(µ̂). (3.25)

where (Vmin(µ̂), Emin(µ̂)) ∈ YQ(γ̂). From Lemma 3.2, Emin(µ̂) is non-increasing with respect to µ̂.398

Hence, from (3.23), we have that399

Emin(µ̂) ≥ E∗ .
Since µ̂ > 0, from (3.24), we have γ̂ > 2Emin(µ̂) ≥ 2E∗ .400

Remark 3.2. Lemma 3.7 has the following important implication. Suppose that (Vmin, Emin) is401

an optimal MV point for some embedding parameter γ̂, i.e., (Vmin, Emin) ∈ YQ(γ̂). If γ̂ < 2E∗ and402

there exists no γ̃ such that γ̃ > 2E∗ and (Vmin, Emin) ∈ YQ(γ̃), then (Vmin, Emin) is a spurious point.403

3.2 Asymptotic Convergence of S((Y†Q)k)404

Recall that Γk is the finite set of sampled γ values at the sampling discretization level k in the405

computation of the embedding technique. For subsequent analysis in the paper, we make the406

following assumption on Γk.407

Assumption 3.1. Assume that the sequence of finite set discretization refinements Γk ⊂ (−∞,∞),408

k = 1, 2, . . ., used in the computation of the embedding technique satisfies409

Γ1 ⊂ Γ2 ⊂ . . . ⊂ Γk ⊂ Γk+1 ⊂ . . . . (3.26)

In addition, for any fixed γ∗, there exists a monotonically increasing sequence {γik}, where γik ∈ Γk410

and γik ≤ γ∗, such that411

lim
k→∞

γik = γ∗.

Remark 3.3. It is straightforward to construct a sequence of discretization refinements Γk satisfy-412

ing Assumption 3.1. As an example, we consider the following uniform discretization refinements413

when going from level k to level k + 1.414

(1). Add new fine grid nodes between every two coarse grid nodes in Γk.415

(2). Set max(Γk+1) = 2 ∗max(|max(Γk)|, |min(Γk)|),416

(3). Set min(Γk+1) = −2 ∗max(|max(Γk)|, |min(Γk)|).417

Next we investigate the asymptotic property of S((Y†Q)k). Recall that the set S((Y†Q)k) is the418

union of Sµ((Y†Q)k) for all positive µ where419

Sµ((Y†Q)k) =
{

(V∗, E∗) ∈ (Y†Q)k : µV∗ − E∗ = inf
(V,E)∈(Y†Q)k

µV − E
}
. (3.27)
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Lemma 3.8. Assume Sµ(Y†Q) 6= ∅ at µ = µ0. Let (Y†Q)k be computed using the finite refinement420

Γk, where Γk satisfies Assumption 3.1. Then421

lim
k→∞

(
inf

(V,E)∈(Y†Q)k
(µ0V − E)

)
= inf

(V,E)∈Y†Q
(µ0V − E). (3.28)

Proof. Following Lemma 3.1, there exists (Vmin(µ0), Emin(µ0)) ∈ Sµ0(Y†Q). Let422

f = inf
(V,E)∈Y†Q

(µ0V − E), (3.29)

fk = inf
(V,E)∈(Y†Q)k

(µ0V − E).

From (3.2) and (3.26),423

fk ≥ f, and fk+1 ≤ fk.

Hence, lim
k→∞

(
inf

(V,E)∈(Y†Q)k
(µ0V − E)

)
= lim

k→∞
fk exists .424

Next, we prove that (3.28) holds by contradiction. Suppose (3.28) does not hold. Since fk ≥ f ,425

∀k, and fk is monotonically decreasing, it follows that ∃ ε > 0 s.t.426

f < fk − ε, ∀k,

which implies that427

f ≤
(

inf
(V,E)∈(Y†Q)k

(µ0V − E)

)
− ε, ∀k. (3.30)

From Lemma 3.4, there exists γmin(µ0) such that428

γmin(µ0) =
1

µ0
+ 2Emin(µ0).

From Assumption 3.1, there exists a monotonically increasing sequence {γk} such that429

lim
k→∞

γk = γmin(µ0), γk ∈ Γk .

By Lemma 3.6, there exists a sequence {µk} and corresponding sequence {γk = γmin(µk)}, γk ∈ Γk,430

such that431

(Vmin(µk), Emin(µk)) ∈ Sµk(Y†Q) ,

and432

lim
k→∞

(Vmin(µk), Emin(µk)) = (Vmin(µ0), Emin(µ0)).

From Lemma 3.4, note that433

(Vmin(µk), Emin(µk)) ∈ Sµk(Y†Q) = Y†
Q(γmin(µk))

⊂ (Y†Q)k . (3.31)
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Since (Vmin(µ0), Emin(µ0)) ∈ Sµ0(Y†Q), we have434

µ0Vmin(µ0)− Emin(µ0) = inf
(V,E)∈Y†Q

µ0V − E .

In other words, there exists a sequence of points (noting equation (3.31))435

(Vk, Ek) = (Vmin(µk), Emin(µk)) ∈ (Y†Q)k

such that436

lim
k→∞

µ0Vk − Ek = inf
(V,E)∈Y†Q

µ0V − E = f,

which contradicts (3.30).437

Now we establish an asymptotic property for S((Y†Q)k).438

Theorem 3.1. Let (Y†Q)k be computed using the finite refinement Γk of γ, where Γk satisfies439

Assumption 3.1. Assume that Sµ(Y†Q) 6= ∅ for some µ > 0. Let (Vk, Ek) ∈ Sµ((Y†Q)k). Let440

(V∗, E∗) be a limit point of {(Vk, Ek)}. Then (V∗, E∗) ∈ Sµ(Y†Q). If Sµ(Y†Q) is a singleton,i.e.,441

Sµ(Y†Q) = {(V∗, E∗)}, then {(Vk, Ek)} converges to (V∗, E∗).442

Proof. Since (Y†Q)k ⊆ Y†Q, (Vk, Ek) ∈ Y†Q. By Lemma 3.8, we have443

µV∗ − E∗ = lim
k→∞

µVk − Ek = inf
(V,E)∈Y†Q

µV − E .

Hence, any limit point (V∗, E∗) of {(Vk, Ek)} is in S(Y†Q). If Sµ(Y†Q) is a singleton, it follows that444

{(Vk, Ek)} converges to {(V∗, E∗)} = Sµ(Y†Q).445

Remark 3.4. Theorem 3.1 implies that every
limit point of a sequence in Sµ((Y†Q)k) converges

to a point in Sµ(Y†Q) as the refinement level
k → +∞. However, the converse is not true
in general. More specifically, there may exist
points in Sµ(Y†Q) which are not a limit point of

{Sµ((Y†Q)k)}. This can occur if there are three or

more points in Sµ(Y†Q) for a fixed µ. In this case,
only two of these points certainly are limit points
of points in Sµ((Y†Q)k). In Figure 3.1, a picto-
rial illustration of this case is presented. In this
illustration, for a fixed µ, there are five points in
Sµ(Y†Q), only two of which, namely the first and
the fifth (from left to right), are certain to be limit

points of points in Sµ((Y†Q)k).

0
V

E

b

b

b

b

b

part of Y†
Q

part of Y†
Q

are limit points of

points in S((Y†
Q)

k)

same µ

may not be limit points of

points in S((Y†
Q)

k)

Figure 3.1: An illustration of
situations where there exist points
in Sµ(Y†

Q) which may not be limit

points of points in Sµ((Y†
Q)k).

446
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4 An MV optimal asset-liability example447

In this section, we illustrate, using an MV optimal asset-liability example, the asymptotic relation-448

ship of the solution set S((Y†Q)k) corresponding to a sampling of embedding parameter Γk and the449

solution set S(Y†Q) corresponding to the full embedding parameter (−∞,+∞).450

We consider an MV asset allocation problem in which an investor dynamically adjusts positions451

in a risk-free asset, e.g. a bond, and a risky asset, e.g. a stock, to maximize the expected wealth of452

the investment portfolio, given a target level of risk. We refer the reader to [7, 21, 25, 28, 29, 33]453

and references therein, for a more detailed discussion on MV portfolio allocation.454

It is common for investment institutions, such as pension funds or banks, to incorporate li-455

abilities into portfolio allocation decisions. These asset-liability problems can be formulated as456

a multi-criteria MV optimization problem. This problem can then be solved via the embedding457

technique [31].458

In our illustrating example, we focus on a typical case of an asset-liability problem under MV459

criteria where (a) the underlying risky asset follows a jump-diffusion, and (b) the liabilities are of460

the form of deterministic cash outflows. As a concrete example, we can consider the problem faced461

by a university endowment which is invested in risky assets, yet must fund fixed cash flows each462

year (e.g., an endowed chair).463

More specifically, at each instant of a pre-determined set of dates, the investor (i) first withdraws464

an amount, subject to certain inflation rate, from the risk-free asset, and (ii) then rebalances the465

portfolio. We assume in the following that there is a leverage constraint and that trading must466

immediately cease if the investor is insolvent. We refer readers to [13] for discussions of constraints467

on (continuous time) MV portfolio allocation.468

4.1 Underlying processes469

We denote by St and Bt the amounts invested in the risky and the risk-free assets, respectively.470

For use later in the paper, define t− = t− ε, t+ = t+ ε, where ε→ 0+, i.e. t− and t+ respectively471

are instants of time just before and after the (forward) time t.472

Under the objective measure, assume that St follows the process473

dSt
St−

= (η − λκ)dt+ σdZt + d

( πt∑
i=1

(ξi − 1)

)
, (4.1)

where dZt is the increment of a Wiener process, η is the real world drift rate, and σ is the volatility.474

In addition, πt is a Poisson process with positive intensity parameter λ, and ξi are independent and475

identically distributed positive random variables having distribution (4.2). When a jump occurs,476

we have St+ = ξiSt− . As a specific example, consider ξ following a log-normal distribution p(ξ)477

given by [24]478

p(ξ) =
1√

2πζξ
exp
(
−(log(ξ)− ν)2

2ζ2

)
, (4.2)

with parameters ζ and ν. We have E[ξ] = exp(ν + ζ2/2), where E[·] denotes the expectation479

operator, and κ = E[ξ]− 1.480

We assume the dynamics of the risk-free asset Bt follows481

dBt = rBt dt, (4.3)
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where r is the risk-free rate. We make the assumption that η > r, hence, it is never optimal482

(in an MV setting) to short stock. As a result, the amount invested in the risky asset is always483

nonnegative, i.e. St ≥ 0. However, we allow short positions in the risk-free asset, i.e. it is possible484

that Bt < 0.485

We consider the set of pre-determined times, referred to as event times,486

t1 < . . . < tM = T, (4.4)

where T denotes the time horizon of the investment. We also denote by t0 = 0 the inception487

time of the investment. We assume that there is no withdrawal at time t0. At each event time ti,488

i = 1, . . . ,M , the investor (i) first withdraws an amount of cash, denoted by ai, from the risk-free489

asset, and (ii) then rebalances the portfolio. Here, the withdrawal amount ai at the event time ti is490

computed by ai = a(ti − ti−1)ef×ti , where a is the (continuous) constant withdrawal rate, ti − ti−1491

denotes the time interval between two event times ti and ti−1, and f is a (constant) inflation rate.492

4.2 Liquidation value493

In the remainder of the paper, let Xt = (St, Bt) denote the multi-dimensional process and x = (s, b)494

denote the state of the system. We denote by Wt ≡W (St, Bt) = St+Bt, t ≤ T , the total liquidation495

value at time t of the investor’s portfolio. For use later in the paper, we define the solvency region,496

denoted by N , as497

N = {(s, b) ∈ [0,∞)× (−∞,+∞) : W (s, b) > 0} . (4.5)

The bankruptcy (insolvency) region, denoted by B, is defined as498

B = {(s, b) ∈ [0,∞)× (−∞,+∞) : W (s, b) ≤ 0} . (4.6)

4.3 Computing (Y†Q)k499

Recall that (Y†Q)k =
⋃

γik∈Γk

Y†Q(γik ), where Γk is the finite discrete set of sampled γ values at the500

sampling discretization level k. For a given γ = γik ∈ Γk, the MV point Y†Q(γik ) in the computed501

MV embedded objective set (Y†Q)k of the above-described asset-liability problem can be determined502

as described below.503

Let τ = T − t, and τj = T − ti, i = 0, . . . ,M , j = M − i, be the time to maturity at the504

ith event time. Here, τ0 = T and τM = 0. In addition, for use later in the paper, we denote by505

τ+
j = τj + ε, where ε → 0+. We denote by āj , k = 0, . . . ,M − 1, the withdrawal amount in terms506

of the backward time variable τ . Then, we have507

āj = a(τj+1 − τj)ef(T−τj), j = 0, . . . ,M − 1.

We further denote by cj , j = 0, . . . ,M − 1, the control variable representing the amount of the508

risk-free asset after the rebalancing of the portfolio at the event time τj has been carried out; cj509

can take any value in Z = (−∞,+∞).510
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4.3.1 Value function511

Define the value function V (s, b, τ) as512

V (s, b, τ) = inf
c(·)

{
Ex,tc(·)

[
(WT −

γ

2
)2

]}
, (4.7)

which, apart from the constant factor γ2/4, is the objective function in equation (2.8). In addition,513

we define the following operators514

LV ≡ σ2s2

2
Vss + (η − λκ)sVs + rbVb − λV ,

J V ≡
∫ ∞

0
p(ξ)V (ξs, b, τ) dξ . (4.8)

Rebalancing/liquidation conditions and an associated PIDE. At time τ = τj , j =515

0, . . . ,M − 1, we enforce the following conditions:516

(1) If (s, b) ∈ B, we enforce the liquidation condition517

V (s, b, τ+
j ) = V (0,W (s, b)− āj , τj) . (4.9)

(2) If (s, b) ∈ N , we enforce the rebalancing optimality condition518

V (s, b, τ+
j ) = min

cj∈Z
V (S+, B+, τj) (4.10)

S+ = s+ b− āj − cj ; B+ = cj

subject to the leverage condition519

S+

S+ +B+
≤ qmax (4.11)

where qmax is a known constant with a typical value in [1.5, 2.0]. Note that, for the special520

case of τ0, we have V (s, b, τ0) =
(
W (s, b)− γ

2

)2
.521

Within each time period (τ+
j , τj+1], j = 0, . . . ,M − 1, we have522

(1) If (s, b) ∈ B, we enforce the liquidation condition523

V (s, b, τ) = V (0,W (s, b), τ) . (4.12)

(2) If (s, b) ∈ N , V (s, b, τ) satisfies the Partial Integro-Differential Equation (PIDE)524

Vτ = LV + J V, (4.13)

subject to the initial condition (4.10).525
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Localization. The domain for conditions (4.9)-(4.12) and the PIDE (4.13) is (s, b, τ) ∈ Ω∞j ≡526

[0,∞)× (−∞,+∞)× [τ+
j , τj+1]. For computational purposes, we localize this domain to the set of527

points528

(s, b, τ) ∈ Ωj = [0, smax)× [−bmax, bmax]× [τ+
j , τj+1] , (4.14)

where smax and bmax are sufficiently large positive numbers (and are the same for all event time529

periods). Let s∗ < smax. Following [13], we define the following computational sub-domains:530

Ωs0 = {0}×[−bmax, bmax]×[τ+
j , τj+1], Ωs∗ = (s∗, smax]×[−bmax, bmax]×[τ+

j , τj+1],

ΩB = {(s, b, τ) ∈ Ωj\Ωs0\Ωs∗ : W (s, b) ≤ 0}, Ωin = Ωj\Ωs0\Ωs∗\ΩB,
Ωbmax = (0, s∗]×[−bmaxe

rT ,−bmax) ∪ (bmax, bmaxe
rT ]×[τ+

j , τj+1].

At time τ = τj , we enforce (i) the liquidation condition (4.9) in ΩB, and (ii) the optimality condition531

(4.10) in Ωin. Within each time period (τ+
j ,τj+1], j=0, . . . ,M−1, we have the following localized532

problem:533

Vτ = rbVb, (s, b, τ) ∈ Ωs0 ;

Vτ = (σ2 + 2η + λκ2)V, (s, b, τ) ∈ Ωs∗ , where κ2 = E[(J − 1)2];

V = V (0,W (s, b), τ), (s, b, τ) ∈ ΩB;

Vτ = LV + J`V, (s, b, τ) ∈ Ωin, where J`V =

∫ smax/s

0
p(ξ)V (ξs, b, τ) dξ;

V =

(
b

bmax

)2

V (s, sgn(b)bmax, τ), (s, b, τ) ∈ Ωbmax .

(4.15)

Some guidelines for choosing s∗, smax which minimize the effect of the localization error for the jump534

terms can be found in [16]. We refer the reader to [13] for relevant details regarding a derivation535

of (4.15).536

We numerically solve the localized problem (4.15) using finite differences with a semi-Lagrangian537

timestepping method as described in [13].538

4.3.2 Expected value problem.539

We denote by c∗γ(·) the optimal control of problem (4.7). Once we have determined c∗γ(·), we use540

this control to determine541

Ex,tc∗γ [WT ] , (4.16)

since this information is needed in order to determine the corresponding MV embedded point. This542

step essentially involves solving an associated linear PIDE over each event time period [τj , τj+1],543

k = 0, . . . ,M − 1, details of which are similar to those described in [13], and hence, are omitted.544

Using numerical solutions for equations (4.7) and (4.16) at the event time τM = t0, we then545

compute the embedded MV point546

Y†Q(γ) ≡
{

(V∗γ , E∗γ )
}

=
{(
V arx0,0c∗γ(·)

[
WT

]
, Ex0,0c∗γ(·)

[
WT

])}
. (4.17)

Repeating the above-mentioned procedure for all different values of γ ∈ Γk yields the computed547

MV embedded set (Y†Q)k.548
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r σ η ν λ ζ W (0) a f qmax T ∆τ

.0445 0.1765 .0795 -.7883 .0585 .4505 100. 6. 0.03 1.5 20. (yrs) 1. (yr)

Table 4.1: Parameter values for the MV asset-liability example

Refine level Timesteps s nodes b nodes γ nodes γmin γmax

(k)

0 30 62 30 75 −0.5× 105 −0.5× 105

1 60 123 59 151 −1× 105 1× 105

2 120 245 117 303 −2× 105 2× 105

Table 4.2: Computational grid for solving the PIDE (4.13). We refer the reader to [13] for more
details.

4.4 Numerical results549

Recall that (Y†Q)k, computed using Γk, is an approximation to Y†Q. Once we obtain (Y†Q)k for a given550

Γk, we then apply the post-processing method described in Algorithm 3.1 to (Y†Q)k to determine551

S((Y†Q)k). As shown in Section 3, if convergence occurs, this process provides an increasingly552

accurate estimate of S(Y†Q) as k increases. We illustrate this by the MV asset-liability example553

described in the previous section. Table 4.1 summarizes the parameter values in our example. We554

carry out experiments with three levels of refinement, details of which are in Table 4.2.555

Remark 4.1 (Combination of refinements of Γk and of the PIDE grid). Suppose we denote the556

discretization parameter of the PIDE by h, which is inversely proportional to numbers of timesteps,557

s and b nodes. If we fix h, then we should observe convergence of (S(Y†Q)k)h to (S(Y†Q))h as Γk558

is refined, i.e. as k → ∞. However, due the finite mesh size of the PIDE grid, there is PIDE559

discretization error in the numerical solutions. We should then repeat the above convergence test560

for smaller values of h. In our experiments, we take the shortcut of combining the refinements of561

Γk and of the PIDE grid. This combination is reflected in Table 4.2.562

Remark 4.2 (Complexity). Recall that (Y†Q)k =
⋃

γik∈Γk

Y†Q(γik ). For a given γ = γik ∈ Γk, the563

MV point Y†Q(γik ) is computed by solving the associated MV asset-liability problem as described in564

Subsection 4.3. Examination of the solution steps reveals that565

• each re-balancing timestep requires solution of the local optimization problem (4.10) at each566

node.567

• each non-rebalancing timestep requires solution of the PIDE (4.13).568

At each re-balancing times τj, j = 0, . . . ,M − 1, in order to solve the local optimization problems,569

we discretize the control (with discretization parameter h) and the use simple linear search. We570

have found that using a continuous 1-D optimization method is unreliable, and often converges to571

a local, not global, minimum. Each optimization problem is resolved by evaluating the objective572

function O(1/h) times. Since there are O(1/h2) nodes, and O(1) re-balancing timesteps, this gives573

a total complexity of O(1/h3) for all re-balancing timesteps.574
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At each non-rebalancing timestep, the fixed-point iteration developed in [16] is used, which re-575

quires an FFT at each iteration. The total complexity at each non-rebalancing timestep is then576

O(1/h2| log h|), which amounts to a total complexity of O(1/h3| log h|) for all non-rebalancing577

timesteps. Thus, for a single γ, the total complexity is O(1/h3| log h|).578

Remark 4.3 (Spurious points). There is an obvious strategy which generates zero variance: invest579

all wealth in the risk-free asset at all withdrawal times. The certain value of E corresponding to580

this risk-free strategy, denoted by Erf, can be computed by an annuity calculation. We denote by γrf581

the corresponding value of γ which generates this strategy. Since this strategy has zero variance, it582

can be viewed as corresponding to the case µ→∞, i.e. infinitely risk-averse. Hence, from (2.14),583

it follows that γrf = 2Erf . This value γrf should be the smallest possible value of γ which can584

generate a valid point in S(Y†Q). However, as noted in Remark 2.1, a solution to the embedded585

problem exists ∀γ ∈ (−∞,+∞). Consequently, from Remark 3.2, we expect that points in Y†Q(γ),586

γ < γrf , are spurious points.587

In Figure 4.1 (a), we present the computed MV embedded objective sets (Y†Q)k, k = 1, 2,588

plotted as expected value versus variance. In Figure 4.1 (b), we present the same sets, but plotted589

as expected value versus standard deviation, which is a more practically meaningful display of the590

results, since standard deviation and expected value have the same units. Figure 4.1 (c) shows the591

same plot as in Figure 4.1 (b), but zoomed in the lower-left region, where we expect spurious points592

(see Remark 4.3). We make the following observations:593

• In Figures 4.1 (a) and (b), the computed MV embedded objective set (Y†Q)k for k = 2 visually594

coincides with that for k = 1. Further refinement steps show negligible changes. This suggests595

convergence of the numerical solution and of the efficient frontier.596

• Figure 4.1 (c) indicates that the computed MV embedded objective sets (Y†Q)k, k = 1, 2,597

indeed contain spurious points in the lower-left region, as expected.598

To remove spurious points in the computed MV embedded objective sets (Y†Q)k, k = 1, 2, we599

apply the post-processing method described in Algorithm 3.1. After this process, we obtain the600

corresponding sets S((Y†Q)k), which are presented in Figure 4.1 (d). Again, we emphasize the strong601

agreement between the two levels of refinement. Based on the theoretical result of this paper and602

the strong agreement between S((Y†Q)k), k = 1, 2, in Figure 4.1 (d), it appears that every point in603

the set S((Y†Q)2) is indeed close to a point in the set S(Y†Q) = YP , and hence, is MV scalarization604

optimal.605

We note that, in practice, the interesting part of the efficient frontier is in the range γ ∈606

[γrf , q |γrf |], with q being problem dependent, and γrf , as mentioned in Remark 4.3, is the smallest607

γ which can generate a valid point in S(Y†Q). In our case, q = 10 proved to be a reasonable608

parameter. With this range of values for γ, the convergence of S((Y†Q)k), similar to what we609

observed in Figure (4.1), can be obtained with only 15 γ points for k = 1, and 29 γ points for610

k = 2.611

Theorem 3.1 states that, for fixed µ, the limit points of Sµ((Y†Q)k), k → ∞, are points in612

Sµ(Y†Q)). However, the convergence of this procedure will likely be highly dependent on µ. For613

example, if µ is small (i.e. small slope of the supporting hyperplane), then the numerical results will614

be very sensitive to small errors. To illustrate this effect, we carried out the following experiments.615
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Figure 4.1: Plot of (Y†
Q)k and S((Y†

Q)k), k = 1, 2, of the MV asset-liability example with param-
eters in Table 4.1.

First, we compute (Y†Q)k, k = 0, 1, 2. We then selected fixed values of µ, which did not correspond616

to any of the values of γ ∈ Γk. Then, for the fixed values of µ, we compute Sµ((Y†Q)k). Since617

we have only a finite number of points in (Y†Q)k, then this is easily done by exhaustive search. If618

Sµ(Y†Q)k is not a singleton, then we pick that element of Sµ(Y†Q)k which has the smallest variance619
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µ = 0.1 µ = 0.3 µ = 0.4

k
√
Vmin
k Emin

k

√
Vmin
k Emin

k

√
Vmin
k Emin

k

0 711.29 217.87 326.08 129.17 326.08 129.17
1 832.71 238.90 307.60 130.26 264.69 114.55
2 911.84 250.71 298.10 130.90 247.01 111.91

Table 4.3: Numerical illustration of Theorem 3.1.

and expectation, denoted by (Vmin
k , Emin

k ). In Table 4.3, we present (
√
Vmin
k , Emin

k ) for k = 0, 1, and620

2. Observe that, as expected, for moderate values of µ = 0.3, 0.4, the values of mean and standard621

deviation appear to converge somewhat faster than for the µ = 0.1 case. However, from a practical622

point of view, we can see that these errors for small µ have very little effect on the efficient frontier623

(this corresponds to large variances), as can be seen in Figure 4.1 (a). In general, there does not624

seem to be a consistent order of rate of convergence.625

5 Application to higher dimensional problems626

Our main result, Theorem 3.1, is concerned with the convergence of the discretely sampled solution627

of equation (2.8). This result is independent of any particular numerical technique used to solve628

the control problem (2.8).629

However, it is of practical interest to solve the asset-liability problem with several risky assets.630

A difficulty in this case case is that in order to ensure convergence to the viscosity solution of631

the optimal control HJB equation (4.13), we need to construct monotone discretization schemes632

[3]. For the case of correlated risky assets, construction of such schemes is a matter of on-going633

research. We refer the reader to [14] for a discussion of the wide stencil approach to this problem.634

In addition, of course, solving the HJB PDE in higher dimensions becomes problematic, due635

to the computational complexity. Suppose there is one risk-free asset and d risky assets. Let the636

discretization parameter for the PIDE be h, as discussed in Remark 4.2. For simplicity, we consider637

the case where the risky assets follow a pure diffusion process (no jumps). Then, using an argument638

similiar to that used in Remark 4.2, we find that the complexity for a solving the HJB equation for639

a single value of γ is O(1/hd+2), which increases rapidly as d increases.640

If x is the state vector of the system, then recall that our objective is to find the control c(·)641

which solves642

V (x, τ) = inf
c(·)

{
Ex,tc(·)

[
(WT −

γ

2
)2

]}
. (5.1)

An alternative numerical approach for determining the solution of equation (5.1) would be use a643

Monte Carlo method. This would require formulating the control problem (5.1) as a system of644

Backward Stochastic Differential Equations (BSDEs). Some promising results for Monte Carlo645

methods using BSDEs in the context of control problems have been obtained recently, see for646

example [6, 18, 26]. Theorem 3.1 can then be used when sampling the solution of equation (5.1)647

for a finite number of values of γ. Theorem 3.1 ensures us that as the sampling mesh becomes648

finer, the results of these Monte Carlo computations generate an accurate approximation to the649

true efficient frontiers.650
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6 Conclusion651

Many optimal stochastic control problems in finance can be posed in term of a continuous time MV652

optimization problem, which involves two conflicting objectives. Using the standard scalarization653

technique, this multi-criteria optimization problem can be reformulated as a single-objective MV654

scalarization optimization problem. The goal is to determine the original MV scalarization optimal655

set YP . However, dynamic programming can not be applied to the above scalarization optimization656

problem, due to the presence of the variance term. To overcome this difficulty, the embedding657

technique of [21, 33] can be applied to determine the set of computed MV embedded objectives Y†Q,658

which, in general, is a superset of the original MV scalarization optimal set YP . As a result, the659

MV efficient frontiers generated by the embedding technique may contain spurious points, which660

do not belong to the original MV scalarization optimal set YP .661

In [27], it is established that spurious points in the computed MV embedded objective set Y†Q662

are those which are not MV scalarization optimal with respect to Y†Q. In addition, it is established663

that the set of MV SOPs with respect to the computed MV embedded objective set Y†Q is identical664

to the original MV scalarization optimal set YP . Based on these two results, a simple, yet effective,665

post processing technique is developed to eliminate spurious points in the computed MV embedded666

objective set Y†Q.667

In the context of numerical computation, however, significant complexities remain, since it668

is only possible to solve the embedded problem for a finite number of values of the embedding669

parameter, and hence we can only obtain a finite subset of the computed MV embedded objective670

set Y†Q. An important question is whether or not, for sufficiently large number of sampling points671

of the embedding parameter, the set of SOPs with respect to the afore-mentioned finite subset of672

Y†Q can sufficiently well approximate the set of SOPs with respect to Y†Q.673

In this paper, we establish that, for sufficiently large number of sampling points of the embedding674

parameter, every limit point in the set of SOPs with respect to the computed finite subset of Y†Q675

is a point in the set of SOPs with respect to Y†Q, and hence, is MV scalarization optimal. This676

result combined with the analysis and post-processing numerical method developed in [27] form a677

practical numerical framework for eliminating spurious points from the computed MV embedded678

objective set. This framework can essentially be viewed as complementing the theoretical results of679

the popular embedding technique developed in [21, 33] for continuous time (or multi-period) MV680

optimization.681
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