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Abstract. A continuous time mean-variance (MV) problem optimizes the bi-objective criteria5

(V, E), respectively representing variance V and expected value E of a random variable at the end6

of a time horizon T . This problem is computationally challenging since the dynamic programming7

principle cannot be directly applied to the variance criterion. An embedding technique has been8

proposed in [18, 25] to generate the set of MV scalarization optimal points, which is in general a9

subset of the mean-variance Pareto optimal points. However, there are a number of complications10

when we apply the embedding technique in the context of a numerical algorithm. In particular,11

the frontier generated by the embedding technique may contain spurious points which are not MV12

optimal. In this paper, we propose a method to eliminate such points, when they exist. We show13

that the original MV scalarization optimal objective set is preserved if we consider the scalarization14

optimal points (SOPs) with respect to the MV objective set derived from the embedding technique.15

Specifically, we establish that these two SOP sets are identical. For illustration, we apply the proposed16

method to an optimal trade execution problem, which is solved using a numerical Hamilton Jacobi17

Bellman (HJB) PDE approach.18
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1. Introduction. This paper addresses the question of how to determine the23

mean-variance (MV) Pareto optimal points when applying the embedding technique24

[18, 25] to solve a continuous time mean-variance optimization problem. For illustra-25

tion and motivation, we begin with the important optimal trade execution problem26

[4, 19, 14, 3], which is solved using a numerical Hamilton Jacobi Bellman (HJB)27

Partial Differential Equation (PDE) approach.28

When liquidating a large share position, an investment bank is faced with the29

following dilemma. If a large sell order is placed on the market, the average execution30

price obtained per share will be significantly lower than the pre-trade price, due to31

liquidity or price impact effects. The obvious alternative is to break up the large sell32

order into a number of small orders, and spread these orders over time. This will33

minimize the price impact, but expose the bank to the risk that the average price per34

share will also be less than the pre-trade price, due to the stochastic motion of the35

stock price.36

The conflicting objectives of maximizing trading revenue (minimizing price im-37

pacts) and minimizing risk can be naturally formulated as maximizing E = E[B(T )]38

and minimizing V = V ar[B(T )], where B(T ) is the cash balance at the end of trading39
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horizon T , where E[·] is the expectation operator, and V ar[·] is the variance. In line40

with previous work, we assume that trading takes place continuously at a finite rate41

[5, 20, 3]. In this approach, risk is measured in terms of variance [12, 11]. Alter-42

natively, risk can be measured in terms of quadratic variation [4] and Value-at-Risk43

[14].44

Using a standard method for multicriteria optimization, a positive scalariza-45

tion combination of the multiple criteria is optimized to obtain Pareto optimal so-46

lutions. Typically, dynamic programming is then applied to solve the resulting opti-47

mal stochastic control problem. Unfortunately, in the case of mean-variance criteria,48

dynamic programming cannot be readily applied due to the variance term. An em-49

bedding technique, which uses Q = E[B(T )2] instead of the variance V = V ar[B(T )],50

has been proposed in [18, 25] to overcome this difficulty.51

We note that the optimal strategy computed from the embedding technique [12]52

is a pre-commitment strategy [7], which is not necessarily time consistent. However,53

as pointed out in [3], the pre-commitment strategy corresponds to the situation where54

a trading desk optimizes the measured sample mean and variance across a large col-55

lection of similar trades. Consequently, the pre-commitment MV strategy optimizes56

trading effectiveness as measured in practice [24]. In addition, optimal trading strate-57

gies typically work on the time scale of one day or less, hence the strategies are58

essentially pre-commitment in any case.59

Using dynamic programming, a combination of the objectives (Q, E) from the60

embedding technique is optimized. This optimization problem can be expressed in61

the form of a nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation.62

We refer to [12] for the details of the numerical methods used to solve the HJB63

equation.64

In [18, 25], it has been established that an MV scalarization optimal control is also65

an optimal control for the embedded problem. Let YP denote the set of the original66

MV scalarization optimal (V, E) objectives. Assume that YQ denotes the set of the67

(embedded) mean-variance (V, E) objective with a suitable combination equal to an68

optimal value of the embedding problem for a parameter γ. The result in [18, 25]69

effectively implies that the original MV scalarization optimal set YP is a subset of the70

(embedded) MV objective set YQ generated by an embedding technique. Points in71

YQ, which do not correspond to points in YP , are termed spurious points.72

To the best of our knowledge, conditions under which the converse result holds73

have not been established. Thus we are faced with the problem of determining whether74

the optimal control computed from the embedding technique is necessarily an opti-75

mal control for the original MV scalarization optimization problem. Unfortunately76

there can be multiple objective points (V, E) (associated with admissible controls)77

which yield the single optimal objective of the embedding technique for a specific78

embedding parameter. For example, there can exist two solutions that optimize the79

embedding objective function but achieve different MV objectives. Consequently it is80

not immediately clear how to identify which MV points from the embedding technique81

belong to the original MV optimal set YP .82

For the optimal trade execution, this problem is compounded since the optimal83

control may not be unique. In addition, a numerical algorithm will, in general, com-84

pute only a single optimal solution. To see the non-uniqueness of the optimal trade85

execution strategy, we note that, due to price impact effects, rapid selling will lower86

the average price obtained for the shares. As a trivial example, consider the case where87

the desired outcome is a zero variance. This can be achieved by selling all shares at88
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an infinite rate at the initial time t = 0+. This strategy will result in zero expected89

gain (E = 0) and zero variance (V = 0). Alternatively, the trader could wait until90

T−, and then sell all shares at an infinite rate, and achieve the same result. There91

are infinitely many such strategies which yield the same Pareto point (E ,V) = (0, 0).92

For more discussion of this, we refer a reader to [12].93

In general the mean-variance frontier generated by the embedding technique may94

contain spurious points that are not MV Pareto optimal. This gives rise to a number95

of issues when we use the embedding method to numerically compute the optimal96

solution based on a non-linear Hamilton Jacobi Bellman (HJB) partial differential97

equation. Furthermore, it is necessary to devise techniques to identify when the solu-98

tions from the embedding formulation yield Pareto mean-variance optimal solutions.99

In this paper, we provide a method to identify the MV scalarization optimal100

points in YP when using the embedding technique. Let Y denote the MV objective101

set achievable by admissible strategies. Thus YP is the set of MV points which are102

scalarization optimal with respect to Y. We address the identification problem by103

considering the MV scalarization optimal points (SOPs) with respect to the embedded104

MV objective set YQ from the embedding technique. In the context of the numerical105

computation, we assume that a numerical algorithm generates a single embedded MV106

point (V, E) for each embedding parameter γ. We denote this computed embedded107

objective set by Y†Q. We similarly consider MV SOPs with respect to the computed108

MV objective set Y†Q.109

The main contributions of the paper can be summarized as follows.110

• We establish that, if an embedded objective point (V, E) is MV scalarization111

optimal with respect to the embedded MV objective set YQ, it is scalarization112

optimal with respect to the achievable MV objective set Y (thus MV Pareto113

optimal).114

• We prove that the set of the MV scalarization optimal points with respect115

to the computed embedded objective set Y†Q is identical to the scalarization116

optimal set with respect to the achievable MV objective set Y.117

• The above two results allow us to develop a simple technique which can118

be used to eliminate the potential spurious MV points from the computed119

embedded objective set Y†Q.120

• We demonstrate the application of these results to the optimal trade execution121

problem.122

Note that these new mathematical results have a clear geometric interpretation:123

a scalarization optimal point with respect to a set corresponds to a point at which a124

supporting hyperplane with a positive slope for the set exists. Hence, for the computed125

MV set Y†Q, a point (V, E) ∈ Y†Q is spurious if, at (V, E), there does not exist a126

supporting hyperplane for Y†Q with a positive slope. We also emphasize that the127

results in this paper are not specific to the optimal trade execution problem. Indeed128

they can be applied to any continuous time MV optimization problem. However, for129

concreteness, we will first formulate the MV problem specifically for the optimal trade130

execution problem. The reader should have no difficulty applying our main results to131

other continuous time MV optimization problems.132

2. Optimal Trade Execution Model. Optimal trade execution is concerned133

with balancing price impact (larger for faster execution) and timing risk (larger for134

slower execution). In this section we briefly outline our optimal trade execution model.135

We refer readers interested in optimal trade execution in general to [4, 14, 3, 2, 15]136
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and to [12, 23] for more details about our formulation. Let137

S = Price of the underlying risky asset,

B = Balance of the risk free bank account,

A = Number of shares of the underlying asset.

The optimal execution problem over t ∈ [0, T ] has the initial condition138

S(0) = sinit, B(0) = 0, A(0) = αinit. (2.1)

In this article, for concreteness, we consider the selling case where αinit > 0. At139

t = T ,140

S = S(T ), B = B(T ), A = A(T ) = 0, (2.2)

where B(T ) is the cash generated by selling shares and investing in the risk free bank141

account B, with a final liquidation at t = T− to ensure that A(T ) = 0. The objective142

of optimal execution is to maximize the expected value of B(T ), while at the same143

time minimizing its variance.144

In the following, we only consider feedback control trading strategies v(·) that145

specify a buying rate v as a function of the current state, i.e. v(·) : (S(t), B(t), A(t), t) 7→146

v = v(S(t), B(t), A(t), t) (i.e. Markovian w.r.t. (S,B,A)). Since v is the buying147

rate, v < 0 will denote selling, which is the example we consider in this paper.148

Note that in using the shorthand notation v(·) for the mapping, and v for the value149

v = v(S(t), B(t), A(t), t), the dependence of v on the current state is implicitly as-150

sumed.151

By definition,152

dA(t) = v dt. (2.3)

We assume that due to temporary price impact, selling shares at the rate −v at the153

market price S(t) gives the execution price Sexec(v, t) ≤ S(t). It follows that154

dB(t) =
(
rB(t)− vSexec(v, t)

)
dt, (2.4)

where r is the risk free rate.155

We suppose that the market price of the risky asset S follows a Geometric Brow-156

nian Motion (GBM), where the drift term is modified due to the permanent price157

impact of trading [5]:158

dS(t) =
(
η + g(v)

)
S(t) dt+ σS(t) dW(t),

η is the drift rate,

g(v) is the permanent price impact function,

σ is the volatility,

W(t) is a Wiener process under the real world measure. (2.5)

2.1. Trading Impact Function. We assume that the temporary price impact159

scales linearly with the asset price, i.e.160

Sexec(v, t) = f(v)S(t), (2.6)
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where161

f(v) = (1 + κs sgn(v)) exp[κt sgn(v)|v|β ],

κs = the bid-ask spread parameter,

κt = the temporary price impact factor,

β = the price impact exponent. (2.7)

Here we assume 0 ≤ κs < 1, so that Sexec(v, t) ≥ 0, regardless of the magnitude of v.162

For various studies which suggest the form (2.7), see [5, 19, 21].163

The permanent price impact function g(v) is assumed to be of the form164

g(v) = κpv,

κp = the permanent price impact factor. (2.8)

As explained in [13], this form of permanent price impact function eliminates the165

possibility of round-trip price manipulation [5, 17, 2, 15].166

2.2. Liquidation Value. Recall that we restrict attention to the selling case in167

this paper. In this case, we assume that B(T ) = B(T−). Effectively, this penalizes the168

liquidation strategy if A(T−) 6= 0, since these remaining shares are simply discarded.169

The optimal strategy should avoid any path where A(T−) 6= 0. This formulation170

also allows for the (remote) possibility that it may be optimal to simply discard any171

remaining unsold shares at the end of trading [16].172

Remark 2.1 (Discarding Shares). Since B(T ) = B(T−), this allows for shares to173

be discarded at the terminal instant (we do not gain any revenue from these shares).174

Any strategy which instantaneously discards a finite number of shares at any point175

in [0, T ) cannot be superior to the same strategy which discards the same number of176

shares at t = T . Hence allowing instantaneous discarding of a finite number of shares177

at the terminal time, produces the same Pareto points as any strategy which allows178

for discarding shares in [0, T ). Effectively this means that the Pareto points computed179

allowing discarding shares at the terminal time are the same Pareto points as would180

be computed using the admissible set allowing for discarding shares at any time in181

[0, T ).182

We now introduce some additional notations for subsequent presentation. We use183

X(t) = (S(t), B(t), A(t)) to denote the multi-dimensional process and x = (s, b, α)184

to denote a state. We will also use the notation X(t) = x as a shorthand for185

(S(t), B(t), A(t)) = (s, b, α). Let Ex,tv(·)[B(t)] be the expectation of B(T ) conditional on186

the initial state (x, t) and on the control v(·) : (x, t) 7→ v = v(x, t). More specifically,187

we denote188

E[ · ] : Expectation operator,

Ex,tv(·)[ · ] : E[ · |X(t) = x] when observed at time t with v(·) being the strategy

and the stochastic process X(t) = (S(t), B(t), A(t)) being given by (2.3-2.5).

Similarly we define V arx,tv(·)[B(T )] as the variance of B(T ) conditional on the initial189

state (x, t) and the control v(·). In addition we introduce the following definitions.190

Definition 2.1. A strategy v(·) : (x, t) 7→ v = v(x, t) is said to be admissible if191

v(x, t) ∈ [vmin, 0] and v(x, t) = 0 when A(t) = 0, where vmin ≤ 0. We also require192

that193

−
∫ T−

0

v(X(t), t) dt ≤ αinit . (2.9)
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Note that in view of Remark 2.1, since we also permit discarding shares at the194

terminal time, the Pareto points computed will also be the same Pareto points which195

allow for instantaneously discarding a finite number of shares at any time in [0, T ].196

Remark 2.2 (Admissible Strategies). The lower bound constraint is not practi-197

cally restrictive since the continuous trading model is only a proxy for actual discrete198

trades in the real market practice; the continuous trading rate can be considered to199

be an averaging of discrete trades over a finite interval. Indeed a continuous model200

breaks down for extremely small time periods. Our numerical example sets vmin such201

that one sixth of the average daily volume is liquidated in ' 10−4 sec. Trading rates202

this large cannot be observed in practice using any reasonable averaging interval for a203

continuous trading rate model.204

Remark 2.3 (Prohibition of Price Manipulation Strategies). Note that we require205

v ≤ 0 to prohibit any strategies which involve buying during the course of completing206

a sell order. Intermediate buying during a sell order is only optimal if the stochastic207

model admits price manipulation strategies. For the time periods of interest (e.g. less208

than one day) the drift term η in equation (2.5) can be considered negligible. From209

a mathematical point of view, price-manipulation strategies are possible if a round-210

trip trade results in positive expected revenues [2, 15] when the drift term η = 0. As211

pointed out in [2, 15], this is dangerous and unstable in the world of high-frequency212

trading, and quite possibly illegal. Our requirement that v ≤ 0 for a sell order satisfies213

one of the regularity conditions for an admissible strategy discussed in [15]. Trading214

algorithms which violate this condition may result in the following observed unstable215

market effects due to the interaction of trading algorithms amongst high-frequency216

traders (HFTs) [10]217

“...HFTs began to quickly buy and then resell contracts to each other218

generating a “hot-potato” volume effect as the same positions were219

rapidly passed back and forth. Between 2:45:13 and 2:45:27, HFTs220

traded over 27,000 contracts, which accounted for about 49 percent221

of the total trading volume, while buying only about 200 additional222

contracts net.”223

3. Mean Variance Pareto Optimal Set. In this paper, we characterize op-224

timality in terms of the mean and variance values achieved by admissible strategies.225

We first characterize Pareto optimality and scalarization optimization based on the226

mean variance objective sets.227

Definition 3.1. Let (x0, 0) = (X(t = 0), t = 0) denote the initial state. Let228

Y =
{

(V arx0,0
v(·) [B(T )], Ex0,0

v(·) [B(T )]) : v(·) admissible
}

(3.1)

denote the achievable mean-variance objective set and Ȳ denote its closure.229

Definition 3.2. An MV point (V∗, E∗) ∈ Ȳ is a Pareto (optimal) point if230

there exists no admissible strategy v(·) such that231

Ex0,0
v(·) [B(T )] ≥ E∗

V arx0,0
v(·) [B(T )] ≤ V∗ , (3.2)

and at least one of the inequalities in equation (3.2) is strict. We denote the set of232

Pareto points by P ⊆ Ȳ. This definition essentially states that the mean-variance233

tradeoff of a Pareto point cannot be strictly dominated by that of any admissible234

strategy.235
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Although the above definition is economically intuitive, solving for P is a difficult236

problem since it requires simultaneously optimizing two (conflicting) criteria. A stan-237

dard scalarization method combines the two criteria into a single objective, using a238

weighted sum of the two criteria. Specifically, we use a positive weighting parameter239

µ > 0, and solve the scalarization optimization problem240

P (x, t;µ) = inf
v(·)

{
µV arx,tv(·)[B(T )]− Ex,tv(·)[B(T )]

}
. (3.3)

Definition 3.3. For µ > 0, let241

YP (µ) =
{

(V∗, E∗) ∈ Ȳ : µV∗ − E∗ = inf
(V,E)∈Y

µV − E
}
, (3.4)

where Ȳ denotes the closure of Y. We denote the MV scalarization optimal set242

as243

YP =
⋃
µ>0

YP (µ). (3.5)

In the context of optimal trade execution, our objective is to determine the set of244

points YP .245

Remark 3.1 (Optimal Strategies). In practical application, we are also inter-246

ested in the optimal strategies v(·) which generate YP . However, for the purposes of247

addressing the issues which arise using the embedding technique [25, 18] as part of a248

numerical algorithm, we define the optimal trade execution problem as determining249

the set YP .250

The original scalarization optimal set YP is with respect to the achievable objec-251

tive set Y. Since the embedding method and its numerical implementation generate252

a subset of the achievable MV objectives, we also consider scalarization optimality253

with respect to a subset.254

Definition 3.4. Let X be a non-empty subset of Ȳ. We define255

Sµ(X ) =
{

(V∗, E∗) ∈ X̄ : µV∗ − E∗ = inf
(V,E)∈X

µV − E
}
. (3.6)

where X̄ is the closure of X . We call a point in Sµ(X ) a scalarization optimal point256

(SOP) w.r.t. (X , µ).257

We also define258

S(X ) =
{

(V∗, E∗) : (V∗, E∗) is an SOP w.r.t. (X , µ) for some µ > 0
}
. (3.7)

We refer to (V0, E0) ∈ S(X ) as SOP w.r.t. X .259

Remark 3.2. Note that Definition 3.4 generalizes Definition 3.3 in the sense260

that Sµ(Y) = YP (µ) and S(Y) = YP .261

Remark 3.3. A point (V0, E0) ∈ Sµ(X ) has the geometric interpretation that, at262

(V0, E0), there exists a supporting hyperplane [9] for X with positive slope µ.263

In general, every point in YP (µ) is in the Pareto optimal set P but the converse264

may not hold. If the achievable objective set Y is convex, however, then every point in265

P is in YP (µ) for some µ > 0. This paper is concerned with determining
⋃
µ>0 YP (µ).266

The more difficult problem of determining the entire set P, in the most general case,267

is beyond the scope of this paper.268
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As pointed out in [18, 25], due to the variance term, the value function P (x, t;µ)269

is not amenable to solution by means of dynamic programming. To overcome this270

difficulty, a technique is proposed in [18, 25] to embed the objective in equation (3.3)271

in the value function below (parameterized by γ)272

Q(x, t; γ) = inf
v(·)

{
Ex,tv(·)[(B(T )− γ/2)2]

}
, (3.8)

which can be solved by dynamic programming. Note that the strategy v(·) may not273

be time consistent since γ = γ(t, x) [8], i.e., γ depends on the initial state.274

In [25, 18], it has been shown that an optimal control for the value function275

P (x, t;µ) is an optimal solution for the value function Q(x, t; γ). We note that an276

optimal control may not be attained if Y is not a closed set. In this paper, we discuss277

optimality with respect to the closed objective set. To be precise, we consider the set278

of points ȲP , which include the limit points of the Pareto optimal points of admissible279

strategies.280

In [1] an alternative to the embedding approach is suggested, which solves Problem281

3.4 directly, for a fixed value of µ. The approach in [1] reformulates the problem as282

a nested minimization problem. The inner minimization requires solution of an HJB283

equation, with v as the control. This HJB equation contains an additional control,284

which is the variable for the outer minimization problem. This is perhaps more285

efficient if it is desired to determine a single point YP (µ). However, the embedding286

technique described here is undoubtedly more efficient if it is of interest to generate a287

large number of points in YP (i.e. draw the efficient frontier), which is the objective of288

this article. This is simply due to the fact that, when using the embedding technique289

in general, a single point on the frontier is generated with a single HJB equation solve.290

In addition, if Y is not convex, then YP (µ) may not be a singleton. In this case, the291

method in [1] would (apparently) generate only a single point in YP (µ). As a result,292

varying µ and using the method in [1] may not generate all the points in YP . The293

method we suggest in this paper is theoretically capable of generating all the points294

in YP . In fact, in our particular optimal trade execution application, we can compute295

the entire efficient frontier using a single HJB solve [12].296

4. Preservation of SOP Using the Embedded MV Objective Set. We297

note that the embedding optimization problem (3.8) is equivalent to298

inf
v(·)

{
Ex,tv(·)[(B(T )2)]− γEx,tv(·)[(B(T ))]

}
.

Hence (3.8) is optimization using a scalar combination of the criteria (Q, E), i.e.,299

inf
v(·)

{
Q− γE

}
(4.1)

where Q = Ex,tv(·)[B(T )2] and E = Ex,tv(·)[B(T )].300

To see how the mean and variance are embedded in the scalarization optimization301
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problem (3.8), we note that, from V = V arx,tv(·)[B(T )],302

V + E2 − γE (4.2)

=V arx,tv(·)[B(T )] + (Ex,tv(·)[B(T )])2 − γEx,tv(·)[B(T )]

=Ex,tv(·)[B(T )2]− (Ex,tv(·)[B(T )])2 + (Ex,tv(·)[B(T )])2 − γEx,tv(·)[B(T )]

=Ex,tv(·)[B(T )2 − γB(T )]

=Ex,tv(·)[(B(T )− γ/2)2]− γ2/4. (4.3)

Since adding a constant term −γ2/4 does not change the solution of an optimiza-303

tion problem, the objective in problem (3.8) can be regarded as V arx,tv(·)[B(T )] +304

(Ex,tv(·)[B(T )])2− γEx,tv(·)[B(T )]. In terms of the mean and variance (V, E) of B(T ), the305

objective is simply V + E2 − γE . Thus we define the embedded MV objective set to306

be the set of mean and variance which yields this optimal objective value.307

Definition 4.1. The embedded MV objective set from problem (3.8) is308

YQ =
⋃

−∞<γ<+∞
YQ(γ). (4.4)

where309

YQ(γ) =
{

(V∗, E∗) ∈ Ȳ : V∗ + E2∗ − γE∗ = inf
(V,E)∈Y

V + E2 − γE
}
. (4.5)

For the subsequent analysis, we make the following technical assumption on the310

achievable objective set Y.311

Assumption 4.1 (Bounded Properties of Y). We assume that Y is a non-empty312

subset of {(V, E) ∈ R2 : V ≥ 0, E ≤ CE} for some constant CE.313

Remark 4.1. In the context of our optimal execution problem it can be easily314

proven that 0 ≤ E ≤ CE [22], which is a natural result of forbidding a short position315

(Definition 2.1) when selling. The assumption V ≥ 0 always holds since the variance316

is non-negative. Although in our context 0 ≤ E ≤ CE, we need only require that317

E ≤ CE in the following.318

Assumption 4.1 immediately leads to the following technical Lemmas.319

Lemma 4.2. Suppose Assumption 4.1 holds. For any µ > 0, YP (µ) is non-empty,320

i.e., there exists (V0, E0) ∈ YP (µ) ⊆ Ȳ such that321

µV0 − E0 = inf
(V,E)∈Y

µV − E . (4.6)

322

Proof. Since µ > 0, E ≤ CE , and V ≥ 0 for any (V, E) ∈ Y , the objective function323

µV − E is bounded below. Hence the result immediately follows.324

Remark 4.2. If X is a nonempty subset of Ȳ, then for any µ > 0, Sµ(X ) is325

non-empty by a trivial generalization of Lemma 4.2.326

Lemma 4.3. Suppose Assumption 4.1 holds. If (V ′, E ′) ∈ Ȳ, then327

µV ′ − E ′ ≥ inf
(V,E)∈Y

µV − E . (4.7)

Similarly,328

V ′ + E ′2 − γE ′ ≥ inf
(V,E)∈Y

V + E2 − γE . (4.8)
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329

Proof. From Lemma 4.2, inf(V,E)∈Y µV − E exists. Similarly, writing equation330

(4.8) as V + (E − γ/2)2 − γ2/4, and using Assumption 4.1 implies that inf(V,E)∈Y V +331

E2 − γE also exists. The results immediately follow since the objective functions are332

continuous.333

Next we present a characterization of the main property of the embedding tech-334

nique given in [18, 25] in terms of the achievable objective set.335

Theorem 4.4. Suppose Assumption 4.1 holds. Let (V0, E0) ∈ Ȳ and µ > 0 be336

such that337

µV0 − E0 = inf
(V,E)∈Y

µV − E , i.e., (V0, E0) ∈ YP (µ). (4.9)

Then338

V0 + E20 − γE0 = inf
(V,E)∈Y

V + E2 − γE , i.e., (V0, E0) ∈ YQ(γ), (4.10)

where339

γ =
1

µ
+ 2E0. (4.11)

We include the proof of this result from [18, 25] below, since we will use some of the340

similar steps to prove our new results.341

Proof. Assume to the contrary that (4.10) does not hold. Then, by Lemma 4.3,342

inf
(V,E)∈Y

V + E2 − γE < V0 + E20 − γE0. (4.12)

Then there exists (V∗, E∗) ∈ Y such that343

V∗ + E2∗ − γE∗ < V0 + E20 − γE0.

Rearranging and multiplying by µ > 0 gives344

µ
(
V∗ + E2∗ − (V0 + E20 )

)
− γµ(E∗ − E0) < 0 (4.13)

Define the function345

πµ(v, e) = µv − µe2 − e. (4.14)

Note that346

πµ(v + e2, e) = µv + µe2 − µe2 − e = µv − e , (4.15)

and let347

πµv =
∂πµ

∂v
; πµe =

∂πµ

∂e
. (4.16)

Since πµ(v, e) is a concave quadratic in (v, e), we have,348

πµ(v +4v, e+4e) ≤ πµ(v, e) + πµv (v, e)4v + πµe (v, e)4e
= πµ(v, e) + µ4v − (1 + 2µe)4e. (4.17)
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A direct application of (4.17) gives349

πµ(V∗ + E2∗ , E∗) ≤ πµ(V0 + E20 , E0) + µ
(
V∗ + E2∗ − (V0 + E20 )

)
− (1 + 2µE0)(E∗ − E0)

= πµ(V0 + E20 , E0) + µ
(
V∗ + E2∗ − (V0 + E20 )

)
− γµ(E∗ − E0)

< πµ(V0 + E20 , E0), (4.18)

where we have used (4.11) in the equality and (4.13) in the last inequality.350

By (4.15), the strict inequality (4.18) means that351

µV∗ − E∗ < µV0 − E0,

which contradicts equation (4.9). Hence (4.10) holds.352

It is immediate that the following holds.353

Corollary 4.5. Suppose Assumption 4.1 holds. Then YP ⊆ YQ.354

Now we are ready to establish that the embedding technique preserves the scalar-355

ization optimal point set YP .356

Lemma 4.6. Assume Assumption 4.1 holds. For any µ > 0,357

inf
(V,E)∈Y

µV − E = inf
(V′,E′)∈YQ

µV ′ − E ′. (4.19)

358

Proof. Let (V0, E0) be a SOP w.r.t. (Y, µ). By Corollary 4.5, YP ⊆ YQ, hence359

(V0, E0) ∈ YQ. Consequently,360

µV0 − E0 = inf
(V,E)∈Y

µV − E ≥ inf
(V′,E′)∈YQ

µV ′ − E ′. (4.20)

Equality follows since the reverse inequality361

inf
(V,E)∈Y

µV − E ≤ inf
(V′,E′)∈YQ

µV ′ − E ′ (4.21)

holds by YQ ⊆ Ȳ.362

Theorem 4.7. Suppose Assumption 4.1 holds. The SOPs w.r.t. YQ are the363

same as the SOPs w.r.t. Y, i.e.,364

S(YQ) = YP = S(Y). (4.22)

365

Proof. From Corollary 4.5, we have that YP ⊆ YQ. By definition, YQ ⊆ Ȳ.366

Suppose (V0, E0) ∈ S(YQ). Hence there exists µ > 0 such that367

µV0 − E0 = inf
(V,E)∈YQ

µV − E . (4.23)

Since (V0, E0) ∈ Ȳ, then from Lemma 4.6,368

µV0 − E0 = inf
(V,E)∈Y

µV − E . (4.24)

Thus (V0, E0) ∈ S(Y). On the other hand, suppose (V0, E0) ∈ S(Y). Then369

µV0 − E0 = inf
(V,E)∈Y

µV − E . (4.25)
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Since S(Y) = YP ⊆ YQ, we have (V0, E0) ∈ YQ. From Lemma 4.6,370

µV0 − E0 = inf
(V,E)∈YQ

µV − E , (4.26)

hence (V0, E0) ∈ S(YQ).371

Before concluding this section, we establish a uniqueness property: if (V, E) is a372

SOP with respect to YQ for some embedding parameter γ, then (V, E) is the unique373

point in YQ(γ).374

Theorem 4.8. Suppose Assumption 4.1 holds. If (V, E) ∈ S(YQ), then there375

exists γ such that (V, E) ∈ YQ(γ) and YQ(γ) is a singleton.376

Proof. Let (V∗, E∗) be a SOP w.r.t. YQ for some µ∗. By Lemma 4.6, (V∗, E∗) ∈377

YP (µ∗). Hence, following Theorem 4.4, there exists γ∗ such that378

(V∗, E∗) ∈ YQ(γ∗), where γ∗ =
1

µ∗
+ 2E∗. (4.27)

Suppose there is another (V0, E0) ∈ YQ(γ∗). Since both points are in YQ(γ∗) we have379

that380

V∗ + E2∗ − γ∗E∗ = V0 + E20 − γ∗E0 = inf
(V,E)∈Y

V + E2 − γ∗E , (4.28)

Hence381

V0 + E20 − (V∗ + E2∗ )− γ∗(E0 − E∗) = 0 . (4.29)

Consider the function πµ
∗
(v, e) = µ∗v−µ∗e2−e as in Theorem 4.4. Following similar382

steps as in the proof of Theorem 4.4, we obtain (using equations (4.27) and (4.29))383

πµ
∗
(V0 + E20 , E0) ≤ πµ∗(V∗ + E2∗ , E∗) + µ∗(V0 + E20 − (V∗ + E2∗ ))− (1 + 2µ∗E∗)(E0 − E∗)

= πµ
∗
(V∗ + E2∗ , E∗) + µ∗(V0 + E20 − (V∗ + E2∗ )− γ∗(E0 − E∗))

= πµ
∗
(V∗ + E2∗ , E∗) . (4.30)

Recalling that πµ
∗
(v + e2, e) = µ∗v − e, then equation (4.30) yields384

µ∗V0 − E0 ≤ µ∗V∗ − E∗. (4.31)

Since (V∗, E∗) ∈ YP (µ∗) and (V0, E0) ∈ Ȳ,385

µ∗V∗ − E∗ = inf
(V,E)∈Y

µ∗V − E ≤ µ∗V0 − E0. (4.32)

Hence386

µ∗V0 − E0 = µ∗V∗ − E∗ . (4.33)

Rewrite equations (4.29) and (4.33) as387

µ∗(V∗ − V0)− (E∗ − E0) = 0 (4.34)

(V∗ − V0) + (E∗ − E0)(E∗ + E0 − γ∗) = 0 . (4.35)

Using equation (4.27), equation (4.35) becomes388

(V∗ − V0) + (E∗ − E0)(E0 − E∗ − 1/µ∗) = 0 . (4.36)

Solving equations (4.34) and equation (4.36) for (E∗ − E0) gives the unique solution389

E∗ = E0 and V∗ = V0.390

Remark 4.3 (Properties of YQ(γ)). For a fixed γ, YQ(γ) is either391
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• A singleton containing a SOP w.r.t. YQ, or392

• A set which may contain any number of elements. If any of these elements393

are SOP w.r.t. YQ, then these elements are singleton members of YQ(γ′),394

γ′ 6= γ.395

Moreover, for (V∗, E∗) ∈ S(YQ), given the optimal objective value (V∗+E2∗−γE∗),396

Theorem 4.8 allows us to uniquely reconstruct V∗ given E∗. Note that E∗ can be397

easily determined from the optimal control of Problem (4.1). We further note that398

the optimal control v(·) which generates a given point in S(YQ) may not be unique.399

5. Preservation of SOP Using the Computed Embedded MV Set. In400

§4, we have established that the set YP of MV SOPs is preserved using the embedding401

method in the sense that the set of the embedded MV points, which yield scalarization402

optimal values for the embedded optimization problems, is identical to YP . This is an403

interesting theoretical property illustrating the ability of the embedding method to404

generate the original MV SOP set YP . A spurious point corresponds to a point in YQ405

at which there does not exist a supporting hyperplane with positive slope supporting406

YQ. However, this property does not have immediate practical use in computation407

since the achievable objective set YQ is not available in the context of computation.408

Furthermore, for each embedding parameter −∞ < γ < +∞, we can only expect409

a numerical algorithm to generate a single embedded MV point (V, E) ∈ YQ. Specif-410

ically, a possible computational technique to determine the embedded MV set is as411

follows:412

(a) For each embedding parameter −∞ < γ < +∞, solve the embedding opti-413

mization problem (3.8) to determine a single optimal control v∗γ(·).414

(b) Compute the corresponding MV point (V∗γ , E∗γ ).415

(c) Determine the computed MV set416

Y†Q =
⋃

−∞<γ<+∞
{(V∗γ , E∗γ )} . (5.1)

In general only one out of possibly many optimal controls (which all minimize V +417

E2 − γE) is selected by the above algorithm. We denote the subset of YQ generated418

by this algorithm as Y†Q. In view of Remark 4.3 we define Y†Q as follows419

Definition 5.1 (Numerical YQ). Let Y†Q(γ) be a singleton subset of YQ(γ). Specif-420

ically Y†Q(γ) contains either421

• the unique single point which is SOP w.r.t. YQ if YQ(γ) is the singleton set422

containing a point SOP w.r.t. YQ, or423

• an arbitrarily selected single point of YQ otherwise.424

The computed MV objective set is then defined as425

Y†Q =
⋃

−∞<γ<+∞
Y†Q(γ) =

⋃
−∞<γ<+∞

{(V∗γ , E∗γ )}.

426

Following Definition 5.1, we immediately have the following properties for Y†Q.427

Lemma 5.2. Suppose Assumption 4.1 holds. Then Y†Q(γ) has the following prop-428

erties:429

(a) Y†Q ⊆ YQ.430

(b) S(YQ) ⊆ Y†Q.431

(c) YP ⊆ Y†Q.432
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Proof. From Definition 5.1, Y†Q ⊆ YQ clearly holds.433

Assume that (V∗, E∗) ∈ S(YQ), applying Theorem 4.8, then

∃γ, such that (V∗, E∗) ∈ YQ(γ),

which contains a single point. Using Definition 5.1, (V∗, E∗) ∈ Y†Q. Thus S(YQ) ⊆ Y†Q.434

In addition, Theorem 4.7 implies that YP = S(YQ). Using (b), we conclude (c)435

holds.436

We now show that it is possible to identify and remove spurious points from only437

the computed MV points Y†Q. Similar to the approach with respect to YQ, the main438

idea is to consider SOP with respect to the computed MV set Y†Q. We first establish439

an auxiliary Lemma.440

Lemma 5.3. Suppose Assumption 4.1 holds. For any µ > 0,441

inf
(V,E)∈YQ

µV − E = inf
(V′,E′)∈Y†Q

µV ′ − E ′. (5.2)

442

Proof. Let (V0, E0) ∈ YQ be SOP w.r.t. (YQ, µ). By Theorem 4.8, there exists γ,443

such that (V0, E0) ∈ YQ(γ) and YQ(γ) is a singleton. Hence (V0, E0) ∈ Y†Q by Lemma444

5.2.445

This implies that446

µV0 − E0 = inf
(V,E)∈YQ

µV − E ≥ inf
(V′,E′)∈Y†Q

µV ′ − E ′.

The reverse inequality holds since Y†Q ⊆ YQ.447

Next we establish that SOP with respect to Y†Q preserves SOP with respect to Y.448

Theorem 5.4. Suppose Assumption 4.1 holds. Then449

S(Y†Q) = YP = S(Y) . (5.3)

450

Proof. By Theorem 4.7, we know that S(YQ) = YP . Hence we need only show451

that S(Y†Q) = S(YQ).452

Suppose (V0, E0) ∈ S(YQ). Hence there exists µ > 0 such that453

µV0 − E0 = inf
(V,E)∈YQ

µV − E . (5.4)

From Lemma 5.2, S(YQ) ⊆ Y†Q, hence (V0, E0) ∈ Y†Q. From Lemma 5.3,454

µV0 − E0 = inf
(V,E)∈Y†Q

µV − E , (5.5)

and (V0, E0) ∈ S(Y†Q).455

On the other hand, suppose (V0, E0) ∈ S(Y†Q). Then456

µV0 − E0 = inf
(V,E)∈Y†Q

µV − E . (5.6)

From Lemma 5.2, (V0, E0) ∈ YQ. Following Lemma 5.3,457

µV0 − E0 = inf
(V,E)∈YQ

µV − E , (5.7)
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hence (V0, E0) ∈ S(YQ).458

Theorem 5.4 implies that the set S(Y†Q) is identical to YP which contains all the459

MV Pareto points that can be obtained by scalarization of the original MV Pareto460

problem. This is, of course, the best that can be done, given that the embedded461

technique is designed to solve the scalarization optimization problem for the MV462

Pareto problem. Following Theorem 5.4, a MV point (V, E) ∈ Y†Q is spurious if there463

exists no supporting hyperplane at (V, E) with a positive slope for Y†Q.464

Remark 5.1 (Significance of Theorem 5.4). A numerical algorithm can be used465

to generate Y†Q. The set of points S(Y†Q) is thus identical to the the set of Pareto466

points YP that is obtained by scalarization of the original MV Pareto problem.467

6. SOP for a Finite Set. Finally we establish a property for SOPs for a set468

containing a finite number of points. This result will be used in the postprocessing469

technique described in §7.2 to identify SOPs w.r.t. Y based on an approximate MV470

set, which has only a finite number of points.471

Assume that A = {(Vi, Ei) : i = 1, · · · , N} is a finite set and conv A denotes the472

convex hull of A. Define C∗(A) as the upper-left boundary of conv A, i.e.,473

C∗(A) = {(V∗, E∗) : (V∗,−E∗) is a minimal element of conv{(V,−E) : (V, E) ∈ A}}.
(6.1)

Here a minimal element is with respect to the componentwise inequality, see, e.g.,474

[9]. We show next that S(A) can be obtained from the upper-left boundary C∗(A) of475

conv A.476

Theorem 6.1. Assume that the set A = {(Vi, Ei) : i = 1, · · · , N} has a finite477

number of points. Let C∗(A) be the upper-left boundary of conv A defined in (6.1).478

Then479

S(A) = C∗(A) ∩ A. (6.2)

480

Proof. Assume (V∗, E∗) ∈ C∗(A) ∩ A. Since the set conv{(V,−E) : (V, E) ∈ A}481

is convex, and A has a finite number of points, following a dual characterization of482

minimal elements, see, e.g., [9], there exists µ > 0, such that (V∗, E∗) solves483

inf
(V,−E)∈conv{(V,−E): (V,E)∈ A}

µV − E . (6.3)

Since (V∗, E∗) ∈ A, this implies that (V∗, E∗) solves484

inf
(V,E)∈A

µV − E .

Consequently (V∗, E∗) ∈ S(A).485

Conversely, let (V∗, E∗) ∈ S(A). This implies that (V∗, E∗) ∈ A and (V∗, E∗)486

solves,487

inf
(V,E)∈A

µV − E

for some µ > 0. Since A has a finite number of points, it can be easily shown (by488

contradiction) that (V∗, E∗) solves489

inf
(V,−E)∈conv{(V,−E): (V,E)∈ A}

µV − E .

Following the sufficient condition for a minimal element of a set, as given in [9],490

(V∗, E∗) ∈ C∗(A). Consequently (V∗, E∗) ∈ C∗(A) ∩ A. This completes the proof.491
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7. Optimal Trade Execution: a Computational Example. In this section492

we use the optimal trade execution problem, with the objective of determining YP ,493

to illustrate how to use the mathematical properties established in §4 and §5 to post-494

process an efficient frontier computed using the embedding technique. This problem495

is introduced in §2.496

7.1. Computing Y†Q(γ). The computed MV set Y†Q(γ) can be determined by497

solving an HJB PDE and then running Monte Carlo simulations as follows. We refer498

readers to [23] for more detail. Let τ = T − t and499

V (s, b, α, τ ; γ) = inf
v(·)

{
Ex,tv(·)

[(
B(T )− γ

2

)2]}
(7.1)

Using standard dynamic programming, V (s, b, α, τ ; γ) is the viscosity solution to500

the Hamilton Jacobi Bellman PDE:501

Vτ =
σ2s2

2
Vss + ηsVs + rbVb + inf

v∈[vmin,0]

{
− vsf(v)Vb + vVα + g(v)Vs

}
, (7.2)

with the initial condition502

V (s, b, α, 0; γ) =

(
b− γ

2

)2

. (7.3)

We solve equation (7.2) using a finite difference method as described in [12].503

Let the optimal control of problem (7.2) be denoted by v∗γ(·). Once we have504

determined v∗γ(·), we can use Monte Carlo simulations to compute the embedded MV505

points:506

(V∗γ , E∗γ ) =
(
V arx0,0

v∗γ(·)
[
B(T )

]
, Ex0,0

v∗γ(·)
[
B(T )

])
. (7.4)

Remark 7.1 (Non-unique controls in optimal trade execution). We can see507

immediately from equation (7.2) that if Vb = Vα = Vs = 0 at (s, b, α, τ), then the508

optimal control can be arbitrary at this point. In fact, the numerical results in [12]509

demonstrate existence of large regions where the value function is flat, suggesting510

non-unique optimal strategies which give essentially the same value of the objective511

function.512

7.2. Numerical Estimates of Y†Q. Our theoretical result in Theorem 5.4 es-513

tablishes that S(Y†Q) = S(Y). This implies that we can determine whether a MV514

point (V, E) is in YP by checking whether it is an SOP with respect to Y†Q. This515

requires that the entire set Y†Q is available. In practice, however, we can compute516

(V∗γ , E∗γ ) only for a finite number of of γ ∈ (−∞,∞) values.517

More precisely, Y†Q needs to be approximated in two aspects:518

(a) Y†Q(γ) can be computed for only a finite number of γ values, giving rise to a519

finite set error. In other words, we compute only a (finite) subset of Y†Q.520

(b) For a fixed γ, Y†Q(γ) needs to be approximated by a sequence converging to521

Y†Q(γ), due to PDE discretization errors, Monte Carlo sampling error, and522

timestepping errors.523
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We denote by (Y†Q)k an approximation computed with a fixed grid size for γ, a fixed524

mesh size (for the numerical PDE solve), and a fixed number of Monte Carlo simula-525

tions (using a fixed timestep to solve the SDEs). The solution for (Y†Q)k+1 uses a finer526

grid for γ, a finer mesh for PDE, increased Monte Carlo simulations, and timesteps.527

In practice, we can compute a sequence of approximations (Y†Q)k and generate528

S
(
(Y†Q)k

)
. We expect convergence to occur, in the sense that the difference between529

S
(
(Y†Q)k+1

)
and S

(
(Y†Q)k

)
is sufficiently small for sufficiently large k. We also assume530

that for k sufficiently large, S(Y†Q) can be arbitrarily well approximated by S
(
(Y†Q)k

)
.531

Provided we use a convergent method to solve the HJB PDE, and an increasing532

number of Monte Carlo simulations on each refinement level k, we do not expect533

that the PDE discretization and the Monte Carlo errors are of much concern. More534

importantly, it is not obvious what properties are required to ensure that the finite535

sampling of the γ values (the finite set error) will produce a good approximation to536

S(Y†Q) as k becomes large. This will require a precise definition of convergence in537

terms of sets, and a precise requirement on the sampling method for the set of γ538

values. We conjecture that any reasonable sampling method (i.e. a systematically539

refined uniform grid) for γ will produce a good approximation as k becomes large,540

but we have no proof of this. We leave these important questions to future work.541

7.3. Relevant Range for γ. For the case of optimal trade execution with buy-542

ing rate v ≤ 0, we have 0 ≤ E ≤ CE , with CE a positive constant and γ ∈ (0,∞). In543

practice we are only interested in a subrange of γ. Recall that for MV scalarization544

optimal points with respect to Y,545

γ =
1

µ
+ 2Ev∗(·) [B(T )] , (7.5)

where 1/µ can be regarded as a risk aversion coefficient. If µ is large, then γ '546

2Ev∗(·) [B(T )]. Large µ would correspond to the lower end of the MV frontier. In547

practice, we are only interested in strategies which do not have too large a price548

impact. This roughly corresponds to strategies with the expected cash flow per share549

at least 99% of the arrival price. If S0 is the arrival price, then the smallest value550

of γ of interest would thus typically be γ ' 2 ∗ (.99S0). The upper end of the551

MV frontier corresponds to trading at a constant rate which completes the trade.552

This constant trading strategy is known to maximize the expected cash flow under553

typical assumptions. Since we are only interested in practically relevant strategies,554

we consider γ < 4 ∗ S0. Hence a range of γ ∈ [2 ∗ (.99S0), 4 ∗ S0] is a good estimate555

for the useful section of the efficient frontier.556

7.4. Computing S
(
(Y†Q)k

)
. As discussed in Section 7.2, we assume that S

(
Y†Q
)

557

can be identified by S
(
(Y†Q)k

)
as k → ∞. Note however that (Y†Q)k is a discrete558

set. We now describe an approach for determining S
(
(Y†Q)k

)
, based on the result in559

Theorem 6.1.560

Standard algorithms exist for generating the (vertices of the) convex hull of a561

finite set of points, see, e.g., [6]. Consequently the upper-left boundary C∗(A) of562

the convex hull convA can be determined by starting from the left-most vertex of563

convA and ending at the top-most vertex of convA by going clockwise. This process564

is illustrated in Figure 7.1. (If there are multiple left-most/top-most vertices, the565

upper-left convex hull starts with the top-most left-most vertex and ends with the566

right-most top-most vertex).567
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b
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b

b
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b S(A)

upper left boundary of convex hull

b A \ S(A)

Fig. 7.1: Given a finite set of points A, the solid line shows the upper left boundary
of the convex hull of A. The solid dots are the scalerization optimal points S(A).

σ η r κp κt κs sinit αinit β T vmin

0.2 0.0 0.0 0.0 3× 10−5 0.0 100 1.0 0.5 1/250 -106/T

Table 7.1: Parameter Values for the Optimal Trade Execution Example

7.5. Numerical Results. Recall that (Y†Q)k denotes an approximation to Y†Q,568

computed using a finite number of values of γ and a finite mesh size, where k is569

the refinement index. We then apply the post-processing step (described in §7.4) to570

(Y†Q)k. This leads to determination of S((Y†Q)k), using Theorem 6.1. If convergence571

occurs, this will provide an increasingly accurate estimate of S(Y) as k increases. We572

illustrate this by a numerical example.573

Table 7.1 summarizes the parameter values in our example. The price impact574

factor κt corresponds roughly to liquidating one-sixth of the daily trading volume of575

a large-cap stock; see [23] for how this estimation is done. The estimate in [23] uses576

β = 1. For our value of β = 0.5, the calculation needs to be modified slightly.577

Subplot (a) in Figure 7.2 graphs (Y†Q)k for two grid refinement levels (correspond-578

ing to parameters in Table 7.2). We note that the efficient frontier for refinement level579

zero visually coincides that for refinement level one; this suggests convergence of the580

numerical solution and the frontier. Subplot (b) shows a curve of expected cash flow581

versus standard deviation, which is a more practically meaningful display of the re-582

sults because standard deviation and expected value have the same units. Since the583

number of γ values is quite large, the computed efficient frontiers appear smooth.584

Note that the method used in [12] generates an arbitrary number of points along the585

efficient frontier (i.e. many different values of γ) from a single solution of the HJB586

PDE.587

From Figure 7.2, we see that for this example every point of (Y†Q)k lies on the588

upper-left boundary of the convex hull of (Y†Q)k. Therefore, every point in (Y†Q)k is589

in its MV scalarization optimal set, following Theorem 5.4. This suggests that, in590

this case, the scalarization formulation generates all the Pareto points. Of course this591

will not be true in general due to the fact that the achievable objective set Y can be592

non-convex, since B(T ) is a nonlinear function of the control v in equation (2.7). We593

expect that, in some cases, the post-processing algorithm will generate gaps in the594

efficient frontier, corresponding to cases where the scalarization formulation does not595

generate all the Pareto points.596
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Refine Timesteps s nodes b nodes α nodes v nodes MC sample γ nodes
Level size

0 2000 369 1 11 8 10,000 65

1 4000 737 1 21 15 40,000 129

Table 7.2: Computational grid for both solving HJB PDE equation (7.1) and
running Monte Carlo simulations. There is only one node in the b direction since
we use a similarity reduction to eliminate a variable. We refer an interested reader
to [23] for more details.
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Fig. 7.2: Plot of (Y†Q)k for parameters in Table 7.1. Expected value refers to the
average execution price per share. The initial share price is 100. Subplot (a) shows
S((Y†Q)k) for two different refinement levels. Subplot (b) shows the same Pareto
points plotted as expected value versus standard deviation. Note that the efficient
frontier for refinement level zero visually coincides that for refinement level one.
Further refinement steps show a negligible change. This suggests convergence of
the numerical solution and the frontier.

In this particular example, Figure 7.2 shows that S
(
(Y†Q)k

)
= (Y†Q)k, which597

provides strong evidence that S
(
Y†Q
)

= Y†Q. In addition, (Y†Q)k also suggests that598

Y†Q is a continuous monotone increasing curve. This indicates that a simple uniform599

sampling of γ will produce a convergent method (see the discussion in Section 7.2)600

for this particular example.601

8. Conclusion. Many problems in finance can be reduced to a multi-period602

MV optimization. The standard scalarization optimal method for the multi-objective603

optimization yields a subset of MV Pareto optimal points. Using the embedding604

technique of [18, 25], an embedded MV set is determined. This embedded problem605

can be solved using dynamic programming. In the context of the optimal trade606

execution, the optimal strategy is determined by solving an HJB equation.607

However, when using a numerical method to solve the HJB equation, several issues608

arise. This technique generates embedded MV points (V, E) indirectly and these can609
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be a superset of the MV Pareto points. In addition, there may be more than one610

optimal strategy, given by the solution of the HJB equation, which generates the same611

value of the objective function. In practice, any numerical algorithm used to solve612

the embedded problem will generate only one such strategy. This raises the question613

of whether this strategy corresponds to a MV Pareto optimal point. In addition, it614

is important to determine which embedded MV points are MV scalarization optimal615

for the achievable MV objective value set Y.616

In this paper, we establish that, if an embedded objective point (V, E) is MV617

scalarization optimal with respect to the embedded MV objective set, it is scalar-618

ization optimal with respect to the achievable MV objective set (thus MV Pareto619

optimal). In addition, we prove that the set of the MV scalarization optimal points620

with respect to the computed embedded objective set Y†Q is identical to the scalariza-621

tion optimal set with respect to the achievable MV objective set. These two results622

allow us to develop a simple post processing technique which can be used to eliminate623

spurious points in the (computed) embedded objective set.624

In practical application, we can only obtain an approximation to the solution of625

the embedded problem. In particular, we can only compute a finite set of optimal626

points for the embedded problem. Assuming that this finite set approximates the627

complete solution set sufficiently well, we can apply our post-processing algorithm to628

obtain the Pareto points of the original MV problem.629

It remains to determine the characteristics of the MV problem with which finite630

sampling of the solution of the embedded problem can be shown to approximate631

(arbitrarily well) the complete solution of the embedded problem. We leave this to632

future work.633
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