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Abstract

The pricing equations derived from uncertain volatility models in finance are often cast in the
form of nonlinear partial differential equations. Implicit timestepping leads to a set of nonlinear
algebraic equations which must be solved at each timestep. To solve these equations, an iterative
approach is employed. In this paper, we prove the convergence of a particular iterative scheme for
one factor uncertain volatility models. We also demonstrate how non-monotone discretization
schemes (such as standard Crank-Nicolson timestepping) can converge to incorrect solutions, or
lead to instability. Numerical examples are provided.
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1 Introduction

An option is a financial contract entered into by two parties, a buyer and a seller. The buyer of
the contract obtains the right to trade an underlying asset, such as a stock, for a specified price,
called the strike price, on or before a maturity date. Options which provide the right to buy the
underlying asset are known as calls, whereas options conferring the right to sell the underlying
asset are referred to as puts. When the option contract is entered into, the option buyer pays a
price to the seller. In return for this price, the seller agrees to meet any obligations arising from
the contract. For example, the seller of a call option agrees to sell the underlying asset to the buyer
of that option for the strike price should the buyer exercise their right to purchase. Option buyers
are said to have long positions, while option sellers have short positions.

There are many varieties of options. European options may only be exercised on the maturity
date. American options may be exercised any time up to and including the maturity date. Path-
dependent options have payoffs which depend on the history of the underlying asset, such as the
average price (an Asian option) or the maximum price (a lookback option) over some period of
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time. Barrier options have payoffs that depend on whether or not the price of the underlying asset
reaches specified levels during the contract.

Regardless of the type of option, the seller of the contract is faced with two decisions: what price
to charge for the contract, and how to hedge the resulting risk exposure. It turns out that in many
situations it is possible (at least in theory) to find hedging strategies which completely eliminate
this risk. By the no-arbitrage principle, the fair price to charge for the contract is then simply the
cost of this hedge. The principal source of risk is the price of the underlying asset. The seller of a
call option is faced with the possibility of having to sell the underlying asset for a much lower price
than its current market price should the price of the underlying asset rise dramatically before the
option matures. The probability of large movements in the underlying asset price depends on its
volatility.

Several models for volatility have been proposed in the option pricing literature. The simplest
model assumes constant volatility. This was the approach taken by Black and Scholes (1973)
and Merton (1973) in the work which laid the foundations for the modern analysis of options
and is still the industry standard. However, it is generally agreed that constant volatility cannot
explain observed market prices for options. More complicated models assume volatility surfaces
across underlying asset prices and time (see, e.g. Andersen and Brotherton-Ratcliffe, 1998; Coleman
et al., 1999, and references therein). These surfaces are often constructed by the implied volatilities
under the Black and Scholes model for a variety of currently traded contracts. A third modelling
approach uses stochastic volatility, in which the volatility is assumed to follow some random process
(Heston, 1993). A downside of stochastic volatility for numerical pricing methods is an increase in
the number of state variables that need to be considered.

Another approach, and the one that will be studied in this paper, is uncertain volatility. The
uncertain volatility model was independently developed by Lyons (1995) and Avellaneda et al.
(1995). In this case, volatility is assumed to lie within a range of values. As such, prices obtained
under a no-arbitrage analysis are no longer unique. All that can be computed are the best case and
worst case prices, for a specified long or short position. By assuming the worst case, an investor
can hedge his/her position and obtain a non-negative balance in the hedging portfolio, regardless
of the actual volatility movement, provided that volatility remains within the specified range.

Several studies have already considered uncertain volatility for one factor problems (see, e.g.
Lyons, 1995; Avellaneda et al., 1995; Dokuchaev and Savkin, 1998; Lyons and Smith, 1999; Forsyth
and Vetzal, 2001). These studies show that pricing in uncertain volatility models involves nonlinear
partial differential equations (PDEs). For simple options with convex payoffs, the solution reduces
to that of a constant volatility problem with one of the extreme volatility values. Most authors
therefore choose to study more exotic options with non-convex payoff functions. Barrier options
seem to be the most popular. The nonlinearity of the problem also means that portfolio evaluation
is more difficult (Avellaneda and Buff, 1999).

When solving a nonlinear PDE, there is always the question of the uniqueness of the solution.
For example, it is well known that nonlinear conservation law hyperbolic PDEs do not have unique
solutions once shocks form. In this case, the physically correct solution satisfies the E-condition
(LeVeque, 1990). In financial applications, the relevant solution is the viscosity solution (Fleming
and Sonar, 1993). It is known that a stable, consistent and monotone discretization of financial
(non-conservative) PDEs converges to the viscosity solution (Barles, 1997). We provide a brief
introduction to viscosity solutions in the Appendix of this paper.

The use of an implicit discretization method results in a set of nonlinear algebraic equations
which must be solved at each timestep. We show that the iterative scheme developed in this
paper is globally convergent. We also derive conditions which ensure that the discrete scheme is
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monotone and hence converges to the financially relevant solution. We then show, by means of
numerical examples, that non-monotone (but implicit) schemes can lead to incorrect solutions, or
to instability.

The organization of this paper is as follows. In section 2, we review the basics of the uncertain
volatility model. In section 3, we discuss some theoretical convergence issues for one factor problems.
In particular, we show how the nonlinear iteration at each timestep is globally convergent, and we
discuss monotonicity properties of the numerical scheme (which are important for convergence to
the desired viscosity solution). We then proceed to give some numerical examples in section 4.
Finally, we provide some conclusions in section 5.

2 Basic Background

Following standard arguments, the PDE for the fair price of a contingent claim on one asset in the
Black-Scholes model with uncertain volatility is given by

Uτ =
σ(Γ)2

2
S2USS + rSUS − rU, (2.1)

where S represents the underlying asset price, T is the maturity time of the option, τ = T − t is
time in the backwards direction, Γ = USS , σ(Γ) is the uncertain volatility (more details below),
and r is the risk-free interest rate. At S = 0, we have the boundary condition

Uτ = −rU, (2.2)

while at S →∞, we have a Dirichlet condition

U ' A(τ)S +B(τ), (2.3)

where A and B can be determined by financial reasoning. In practice, we use a finite computational
domain so that condition (2.3) is applied at a finite value Smax .

The volatility is assumed to lie within the range

σmin ≤ σ(Γ) ≤ σmax .

With a range of possible volatility values, equation (2.1) is nonlinear and does not possess a unique
solution. Nevertheless, the best/worst case values are expected to be unique. These values are
found by either maximizing or minimizing the diffusion term by selecting σ according to the value
of Γ = ∂2U/∂S2. Hence, we have written σ(Γ) in equation (2.1) to denote the explicit dependence
of volatility on the value of gamma. Specifically, if we consider the worst case for an investor with
a long position in the option, then

σ(Γ)2 =

{
σ2

max if Γ ≤ 0
σ2

min if Γ > 0
. (2.4)

On the other hand, the best case for an investor with a long position is determined by

σ(Γ)2 =

{
σ2

max if Γ > 0
σ2

min if Γ ≤ 0
. (2.5)
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Prices for investors with short positions are given by the negative of the solutions when applying
equations (2.4) and (2.5). Note that the Leland (1985) model of transaction costs can be formulated
as a nonlinear PDE which is mathematically identical to equation (2.1) with nonlinearities of the
form (2.4)-(2.5) (see Wilmott, 1998, for details).

To solve the nonlinear PDE (2.1) numerically, we must select an appropriate discretization
scheme. If an implicit method is used, then an iterative approach (such as Newton’s method) must
be used at each timestep to solve the discrete equations. The convergence of a particular iterative
scheme will be addressed in the next section.

3 Numerical Convergence Issues

3.1 A Finite Difference Discretization

Assuming a European style option, equation (2.1) can be discretized by a standard finite difference
method with variable timeweighting to give

Un+1
i − Uni = (1− θ)

[
(−αn+1

i − βn+1
i − r∆τ)Un+1

i + αn+1
i Un+1

i−1 + βn+1
i Un+1

i+1

]
+ θ

[
(−αni − βni − r∆τ)Uni + αni U

n
i−1 + βni U

n
i+1

]
. (3.1)

Fully implicit and Crank-Nicolson discretizations correspond to cases of θ = 0 and θ = 1/2 respec-
tively. The form of αi and βi depends on the choice of finite difference stencil. Discretizing the
first derivative term of equation (2.1) with central differences leads to

αni,central =
[

σ(Γni )2S2
i

(Si − Si−1)(Si+1 − Si−1)
− rSi
Si+1 − Si−1

]
∆τ

βni,central =
[

σ(Γni )2S2
i

(Si+1 − Si)(Si+1 − Si−1)
+

rSi
Si+1 − Si−1

]
∆τ. (3.2)

If αi,central is negative, oscillations may appear in the solution (βi,central is always positive). The
oscillations can be avoided by using forward differences at the problem nodes, leading to:

αni,forward =
σ(Γni )2S2

i

(Si − Si−1)(Si+1 − Si−1)
∆τ

βni,forward =
[

σ(Γni )2S2
i

(Si+1 − Si)(Si+1 − Si−1)
+

rSi
Si+1 − Si

]
∆τ. (3.3)

Algorithmically, we decide between a central or forward discretization at each node for equation
(3.1) as follows:

If
[

σ2
minS

2
i

(Si − Si−1)(Si+1 − Si−1)
− rSi
Si+1 − Si− 1

]
≥ 0 then

αi = αi,central

βi = βi,central

Else
αi = αi,forward

βi = βi,forward

EndIf

(3.4)
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Note that the use of σmin in the test condition guarantees that αi and βi are always positive,
regardless of the choice of σ(Γ). For the second derivative term, and also for the approximation of
Γni = (USS)ni , we use

(Uss)
n
i = Γni =

∑
j∈ηi

2(Unj − Uni )
(Si+1 − Si−1)|Sj − Si|

, (3.5)

where ηi = {i+ 1, i− 1}.
Note that a finite volume approach as in Zvan et al. (2001) would lead to the same form of

discretization as equation (3.1). Wherever forward differencing is used, a finite volume approach
would use upstream weighting.1 One advantage of finite volume methods is the potential for higher
order flux limiters. For typical values of σ, r and grid spacing, forward differencing is rarely required
for single factor options. However, for multi-factor options, a flux limiter can be highly beneficial
(Zvan et al., 2001). Consequently, for ease of notation in our single factor analysis, we have used
a finite difference discretization. Note again that forward differencing is only used at nodes where
αi,central < 0. In practice, since this occurs at only a small number of nodes remote from the region
of interest, the limited use of a low order scheme does not result in poor convergence as the mesh
is refined. As we shall see, requiring that all αi and βi are non-negative has important theoretical
ramifications.

The set of algebraic equations (3.1) is non-smooth due to the form of equations (2.4)-(2.5). The
non-smoothness can be made clear by re-writing the discrete equations at each node as

gi = −Un+1
i + Uni + (1− θ)

∑
j∈ηi

∆τγij(Un+1
j − Un+1

i )− r∆τUn+1
i


+ θ

∑
j∈ηi

∆τγij(Unj − Uni )− r∆τUni

+ (1− θ)∆τ
σ(Γn+1

i )2S2
i

2
Γn+1
i

+ θ∆τ
σ(Γni )2S2

i

2
Γni = 0, (3.6)

where

γij =


rSi/(Si+1 − Si−1) if j = i+ 1 and central differences
rSi/(Si+1 − Si) if j = i+ 1 and forward differences
−rSi/(Si+1 − Si−1) if j = i− 1 and central differences
0 if j = i− 1 and forward differences.

(3.7)

For future reference, note that if we define αi and βi as in algorithm (3.4), then

γij +
σ2

minS
2
i

(Si+1 − Si−1)|Sj − Si|
≥ 0. (3.8)

Consider now a long investment. The nonlinear component of equation (3.6) can be written as

σ(Γ)2Γ =

{
max(σ2

minΓ, 0) + min(σ2
maxΓ, 0) ; worst case long

max(σ2
max Γ, 0) + min(σ2

minΓ, 0) ; best case long.
(3.9)

1On a uniform grid in one space dimension, the finite volume method and finite difference method give identical
discretizations. On non-uniform grids, upstream weighting and forward differencing give slight differences, although
the form of the discretizations remains identical.
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In order to apply Newton iteration to the non-smooth equations (3.6), we must specify the
element of the generalized Jacobian that will be used in the Newton iteration (Qi and Sun, 1993;
Pang and Qi, 1993; Sun and Han, 1997). We will define the derivatives for best case long as

∂σ(Γ)2Γ
∂Γ

=

{
σ2

max if Γ > 0
σ2

min if Γ ≤ 0,
(3.10)

and for worst case long as

∂σ(Γ)2Γ
∂Γ

=

{
σ2

min if Γ > 0
σ2

max if Γ ≤ 0.
(3.11)

For further ease of analysis, we can also write the discrete equations (3.1) in matrix form. Let
Un+1 = [Un+1

0 , Un+1
1 , . . . , Un+1

m ]′, Un = [Un0 , U
n
1 , . . . , U

n
m]′ and[

M̂nUn
]
i

= −
[
(−αni − βni − r∆τ)Uni + αni U

n
i−1 + βni U

n
i+1

]
. (3.12)

The first and last rows of M̂ are modified as needed to handle the boundary conditions. In our case,
the boundary conditions (2.2) and (2.3) are of Dirichlet type. These conditions can be enforced
by setting αi and βi to zero for the first and last rows, and using an appropriate right hand side.
By using forward differencing to ensure that αni and βni are positive, matrix M̂ is an M -matrix—a
diagonally dominant matrix with positive diagonals and non-positive off-diagonals. Note that all
of the elements of the inverse of an M -matrix are non-negative. The discrete equations (3.1) can
then be written in a compact matrix form:[

I + (1− θ)M̂n+1
]
Un+1 =

[
I − θM̂n

]
Un. (3.13)

In the analysis of the following sections, we alternate between the discrete equation representa-
tion (3.6) and the matrix representation (3.13) as appropriate. Generally speaking, the matrix form
is useful when discussing properties of the algorithm (e.g. convergence of the Newton iteration),
while the discrete equation form is suitable for determining properties of the equation (e.g. showing
monotonicity).

3.2 Convergence of the Uncertain Volatility Iteration

Because of the simple (although non-smooth) form of the Jacobian, we can analyse the Newton
iteration in detail. Let (Un+1)k be the kth estimate for Un+1. The Newton iteration at each
timestep is then determined by the following scheme:

Uncertain Volatility Iteration

Let (Un+1)0 = Un

For k = 0, 1, 2, . . . until convergence

Solve
[
I + (1− θ)M̂((Un+1)k)

]
(Un+1)k+1 =

[
I − θM̂(Un)

]
Un

If max
i

|(Un+1
i )k+1 − (Un+1

i )k|
max(1, |(Un+1

i )k+1|)
< tolerance then quit

EndFor

(3.14)
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For notational convenience, define

M̂k ≡ M̂((Un+1)k)

Ūk ≡ (Un+1)k,

so that the basic algorithm (3.14) can be written as[
I + (1− θ)M̂k

]
Ūk+1 =

[
I − θM̂n

]
Un. (3.15)

Our main result in this section can be summarized in the following theorem:

Theorem 1 (Convergence of the nonlinear iterations) If the matrix M̂ in equation (3.12)
is an M -matrix, and [I − θM̂n]Un is bounded, then the nonlinear iteration (3.14) converges to the
unique solution to equation (3.13), given any initial iterate Ū0. Moreover, the iterates converge
monotonically. For Ūk sufficiently close to the solution, convergence is quadratic.

Proof . We will first prove that this algorithm is globally convergent by showing that the iterates
form non-increasing (non-decreasing) sequences which are bounded from below (above). Writing
equation (3.15) for iteration k gives[

I + (1− θ)M̂k−1
]
Ūk =

[
I − θM̂n

]
Un,

which can also be expressed as[
I + (1− θ)M̂k

]
Ūk + (1− θ)

[
M̂k−1 − M̂k

]
Ūk =

[
I − θM̂n

]
Un. (3.16)

Subtracting equation (3.16) from equation (3.15) gives[
I + (1− θ)M̂k

]
(Ūk+1 − Ūk) = (1− θ)

[
M̂k−1 − M̂k

]
Ūk. (3.17)

We wish to show that the iterates form a bounded non-increasing or non-decreasing sequence.
Expanding the right hand side of equation (3.17) using definition (3.12) for node i leads to

(1− θ)
([
M̂k−1 − M̂k

]
Ūk
)
i

=

(1− θ)
[
(−αki + αk−1

i − βki + βk−1
i )Uki + (αki − αk−1

i )Uki−1 + (βki − βk−1
i )Uki+1

]
. (3.18)

This expression can be simplified using definitions (3.2)-(3.5) to obtain

(1− θ)
([
M̂k−1 − M̂k

]
Ūk
)
i

= (1− θ)∆τ
S2
i

[
(σki )2 − (σk−1

i )2
]

2
Γki ; k ≥ 1. (3.19)

For clarity, we will examine the sign of the right hand side of equation (3.19) in different cases.
In particular, we must determine the sign of

[
(σki )2 − (σk−1

i )2
]

Γki , as all other factors are clearly
positive. Consider first a worst case long position in the option, so that definition (2.4) applies for
the values of σ(Γ). Then

Case 1. Γki ≤ 0 implies that (σki )2 = σ2
max . Then we have

[
(σmax )2 − (σk−1

i )2
]

Γki ≤ 0.
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Case 2. Γki > 0 implies that (σki )2 = σ2
min . Then we have

[
(σmin)2 − (σk−1

i )2
]

Γki ≤ 0.

Thus, in either case, and for any i, expression (3.19) is less than or equal to zero. By expression
(3.17), and the fact that M̂k is an M -matrix, it follows that

Ūk+1 − Ūk ≤ 0 ; k ≥ 1, (3.20)

and hence the iterates form a non-increasing sequence.
Consider now a best case long position so that definition (2.5) applies for the values of σ(Γ).

Then

Case 3. Γki ≤ 0 implies that (σki )2 = σ2
min . Then we have

[
(σmin)2 − (σk−1

i )2
]

Γki ≥ 0.

Case 4. Γki > 0 implies that (σki )2 = σ2
max . Then we have

[
(σmax )2 − (σk−1

i )2
]

Γki ≥ 0.

In these cases, for any i, expression (3.19) is greater than or equal to zero. By expression (3.17),
and the fact that M̂k is an M -matrix, it follows that

Ūk+1 − Ūk ≥ 0 ; k ≥ 1, (3.21)

and hence the iterates form a non-decreasing sequence, for all iterations after the first iteration
(k ≥ 1) at each timestep. A similar analysis can be done for short positions.

Now that we have shown the iterates to be non-increasing or non-decreasing, we need to show
that they are bounded. To do this, let b = [1− θM̂n]Un. We assume that ‖b‖∞ is bounded. Now,
by equations (3.12) and (3.15), we have[

I + (1− θ)M̂k
]
Ūk+1 = b[

1 + (1− θ)(αki + βki + r∆τ)
]
Ūk+1
i = (1− θ)αni Ūk+1

i−1 + (1− θ)βki Ūk+1
i+1 + bi. (3.22)

Now let Umax = maxi(Ūk+1
i ), Umin = mini(Ūk+1

i ), bmax = maxi(bi) and bmin = mini(bi). Then since
all coefficients of the U terms are positive, we have[

1 + (1− θ)(αki + βki + r∆τ)
]
Ūk+1
i ≤ (1− θ)αni Umax + (1− θ)βki Umax + bmax

Umax ≤
bmax

1 + (1− θ)r∆τ
. (3.23)

Similarly,

Umin ≥
bmin

1 + (1− θ)r∆τ
. (3.24)

Thus ‖Uk+1
i ‖∞ ≤ ‖b‖∞, independent of k. Consequently, since the iterates are either non-increasing

or non-decreasing, and ‖Uk+1
i ‖∞ is bounded independent of k, the iteration (3.15) converges.

As for uniqueness, suppose we have two solutions to equation (3.15), U1 and U2, such that[
I + (1− θ)M̂1

]
U1 =

[
I − θM̂n

]
Un (3.25)[

I + (1− θ)M̂2

]
U2 =

[
I − θM̂n

]
Un. (3.26)
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where M̂1 = M̂(U1), M̂2 = M̂(U2). We can rewrite equation (3.25) as[
I + (1− θ)M̂2

]
U1 + (1− θ)

[
M̂1 − M̂2

]
U1 =

[
I − θM̂n

]
Un. (3.27)

Subtracting equation (3.26) from equation (3.27) gives[
I + (1− θ)M̂2

]
(U1 − U2) = (1− θ)

[
M̂2 − M̂1

]
U1. (3.28)

In component form (note the analogy to equation (3.19)), this becomes([
I + (1− θ)M̂2

]
(U1 − U2)

)
i

= (1− θ)∆τ S
2
i ((σ(Γ1)2)i − (σ(Γ2)2)i)

2
(Γ1)i. (3.29)

Consider a best case long position. In this situation, the right hand side of equation (3.29) is always
non-negative (best case long), so that we have U1 ≥ U2. Interchanging subscripts gives U2 ≥ U1,
and hence U1 = U2. Similar arguments can be used for best case short positions, and worst case
positions.

Note that since Γni as defined by equation (3.5) is a simple linear function of Uni and Unj ,
the non-smooth equations (3.6) are strongly semi-smooth (Qi and Zhou, 2000). This means that
convergence will be quadratic in a sufficiently small neighbourhood of the solution (Qi and Sun,
1993).

Thus, we have shown that iteration (3.14) will converge to a unique solution at each timestep.
However, this says nothing about convergence to the viscosity solution of the PDE as the timestep
and mesh size are reduced. This topic will be discussed in the next section.

3.3 Convergence to the Viscosity Solution

In the previous section, global convergence of the Newton iteration for the nonlinear algebraic
equations at each timestep was proven. However, since the PDE is nonlinear, questions remain
about global convergence to the correct solution. In a financial context, we would like to ensure
convergence to the viscosity solution (Crandall et al., 1992). A brief discussion of viscosity solutions
is provided in the Appendix. From the work of Barles (1997), we know that a stable, consistent,
and monotone discretization will converge to the viscosity solution. To this end, it is helpful to
review the concept of a monotone discretization.

The set of discrete equations (3.6) can be written as

gi(Un+1
i , Un+1

j , Uni , U
n
j ) = 0 ∀i ; j ∈ ηi. (3.30)

With a monotone discretization, a positive perturbation to any of {Un+1
j , Uni , U

n
j } produces a

positive perturbation of Un+1
i . If gi is differentiable, then this is equivalent to stating that

∂Un+1
i

∂Uni
= − ∂gi/∂U

n
i

∂gi/∂U
n+1
i

≥ 0

∂Un+1
i

∂Un+1
j

= −
∂gi/∂U

n+1
j

∂gi/∂U
n+1
i

≥ 0

∂Un+1
i

∂Unj
= −

∂gi/∂U
n
j

∂gi/∂U
n+1
i

≥ 0. (3.31)

In the case of nondifferentiable gi, which is the case for the uncertain volatility discretization, we
will use the following definition of monotonicity:
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Definition 1 (Monotone Discretizations) A discretization of the form (3.30) is monotone if
either

gi(Un+1
i , Un+1

j + ρn+1
j , Uni + ρni , U

n
j + ρnj ) ≥ gi(Un+1

i , Un+1
j , Uni , U

n
j ) ∀i ; j ∈ ηi

∀ρni ≥ 0, ∀ρn+1
j ≥ 0, ∀ρnj ≥ 0

gi(Un+1
i + ρn+1

i , Un+1
j , Uni , U

n
j ) ≤ gi(Un+1

i , Un+1
j , Uni , U

n
j ) ∀i ; j ∈ ηi

∀ρn+1
i ≥ 0 (3.32)

or

gi(Un+1
i , Un+1

j + ρn+1
j , Uni + ρni , U

n
j + ρnj ) ≤ gi(Un+1

i , Un+1
j , Uni , U

n
j ) ∀i ; j ∈ ηi

∀ρni ≥ 0, ∀ρn+1
j ≥ 0, ∀ρnj ≥ 0

gi(Un+1
i + ρn+1

i , Un+1
j , Uni , U

n
j ) ≥ gi(Un+1

i , Un+1
j , Uni , U

n
j ) ∀i ; j ∈ ηi

∀ρn+1
i ≥ 0 (3.33)

This somewhat longwinded definition, with either condition (3.32) or (3.33), avoids having to define
gi(. . . ) with a standard sign convention.

The difficulty in verifying these relations for the discrete equations (3.6) comes from the non-
linear term. However, note that

Γni (Uni , U
n
j + ρnj ) = Γni (Uni , U

n
j ) + ρnj

2
(Si+1 − Si−1)|Sj − Si|

; ∀ρnj ≥ 0

Γni (Uni + ρni , U
n
j ) = Γni (Uni , U

n
j )− ρni

∑
j∈ηi

2
(Si+1 − Si−1)|Sj − Si|

; ∀ρni ≥ 0. (3.34)

Further, regardless of whether σ(Γ) is defined for best or worst case, it follows from equations
(2.4)-(2.5) that

σ(Γ)2Γ + σ2
max ∆Γ ≥ σ(Γ + ∆Γ)2(Γ + ∆Γ)≥ σ(Γ)2Γ + σ2

min∆Γ ; ∀∆Γ ≥ 0

σ(Γ)2Γ− σ2
max ∆Γ ≤ σ(Γ−∆Γ)2(Γ−∆Γ)≤ σ(Γ)2Γ− σ2

min∆Γ ; ∀∆Γ ≥ 0. (3.35)

We are now in a position to test equations (3.6) for monotonicity, and hence determine the
conditions under which convergence to the viscosity solution is guaranteed. This will be done
separately for the fully implicit and Crank-Nicolson cases.

3.3.1 Fully Implicit Discretization

For a fully implicit discretization, we set θ = 0 in equation (3.6) to obtain

gi = −Un+1
i + Uni +

∑
j∈ηi

∆τγij(Un+1
j − Un+1

i )− r∆τUn+1
i

+ ∆τ
σ(Γn+1

i )2S2
i

2
Γn+1
i = 0. (3.36)

In order to show convergence to the viscosity solution of this discretization, we will use the following
lemmas:

10



Lemma 1 (Monotonicity of the fully implicit discretization) The fully implicit discretiza-
tion (3.36) is monotone, independent of any choice of ∆τ and grid spacing.

Proof . Note that all Unj terms have disappeared in equation (3.36). Consider perturbing Un+1
j

by an amount ε > 0. In this case, using relations (3.34), (3.35), and (3.36) gives

gi(Un+1
i , Un+1

j + ε, Uni ) ≥ gi(Un+1
i , Un+1

j , Uni ) + ∆τε
(

σ2
minS

2
i

(Si+1 − Si−1)|Sj − Si|
+ γij

)
≥ gi(Un+1

i , Un+1
j , Uni ), (3.37)

where the last line follows from relation (3.8). Continuing in the same manner, we perturb Un+1
i

by ε > 0 to get:

gi(Un+1
i + ε, Un+1

j , Uni ) ≤ gi(Un+1
i , Un+1

j , Uni )− ε

−∆τε
∑
j∈ηi

(
σ2

minS
2
i

(Si+1 − Si−1)|Sj − Si|
+ γij

)
−∆τεr

≤ gi(Un+1
i , Un+1

j , Uni ). (3.38)

Again, the factor in the summation is guaranteed to be positive by relation (3.8). It is obvious
from equation (3.36) that

gi(Un+1
i , Un+1

j , Uni + ε) ≥ gi(Un+1
i , Un+1

j , Uni ). (3.39)

The monotonicity of equation (3.36) now follows directly from definition (3.32).

Lemma 2 (Stability of the fully implicit discretization) The fully implicit discretization
(3.36) is unconditionally stable.

Proof . Define

Unmax = max(max
i
Uni , Uimax )

Unmin = min(min
i
Uni , Uimax ), (3.40)

where imax is the node where boundary condition (2.3) is specified. Then from Lemma 1 we have
that a fully implicit discretization is unconditionally monotone. It follows that

Un+1
max ≤ U∗max

Un+1
min ≥ U

∗
min , (3.41)

where U∗max , U
∗
min are given from the solutions to

gi(U∗max , U
∗
max , U

n
max ) = 0

gi(U∗min , U
∗
min , U

n
min) = 0. (3.42)

Hence, from equation (3.36) and equation (3.42), we see that

Unmax ≥ Un+1
i ≥ Unmin

1 + r∆τ
; ∀i, (3.43)

completing the proof.

Let ∆S = maxi(Si+1 − Si). Our main result concerning convergence of the fully implicit
discretization is the following:

11



Theorem 2 (Convergence of the fully implicit discretization) The fully implicit
discretization (3.36) converges unconditionally to the viscosity solution of the nonlinear PDE (2.1),
as ∆τ,∆S → 0.

Proof . In Barles (1997) it is shown that a consistent, stable, monotone discretization converges
to the viscosity solution. Since (3.36) is a consistent discretization, Theorem 2 follows directly from
the results of Barles (1997), and Lemmas 1-2.

3.3.2 Crank-Nicolson Discretization

For a Crank-Nicolson discretization, we set θ = 1/2 in equation (3.6) to obtain

gi = −Un+1
i + Uni +

1
2

 ∑
j∈i+1,i−1

∆τγij(Un+1
j − Un+1

i )− r∆τUn+1
i


+

1
2

∑
j∈ηi

∆τγij(Unj − Uni )− r∆τUni

+
1
2

∆τ
σ(Γn+1

i )2S2
i

2
Γn+1
i

+
1
2

∆τ
σ(Γni )2S2

i

2
Γni = 0 (3.44)

As with the fully implicit discretization, we will first determine the conditions for monotonicity.

Lemma 3 (Monotonicity of the Crank-Nicolson discretization) The Crank-Nicolson
discretization (3.44) is monotone if the timestep is selected such that

∆τ < min
i

r +
∑
j∈ηi

[
σ2

maxS
2
i

(Si+1 − Si−1)|Sj − Si|
+ γij

]−1

. (3.45)

Proof . Following the fully implicit analysis above, we immediately obtain in the Crank-Nicolson
case (for ε > 0)

gi(Un+1
i , Un+1

j + ε, Uni , U
n
j ) ≥ gi(Un+1

i , Un+1
j , Uni , U

n
j )

gi(Un+1
i , Un+1

j , Uni , U
n
j + ε) ≥ gi(Un+1

i , Un+1
j , Uni , U

n
j )

gi(Un+1
i + ε, Un+1

j , Uni , U
n
j ) ≤ gi(Un+1

i , Un+1
j , Uni , U

n
j ).

Using relations (3.34), (3.35), and (3.44) gives (ε > 0)

gi(Un+1
i , Un+1

j , Uni + ε, Unj ) ≥ gi(Un+1
i , Un+1

j , Uni , U
n
j ) + ε(1− r∆τ)

−∆τε
∑

j∈i+1,i−1

(
σ2

maxS
2
i

(Si+1 − Si−1)|Sj − Si|
+ γij

)
. (3.46)

Since σmax ≥ σmin , it follows from equation (3.8) that

γij +
σ2

maxS
2
i

(Si+1 − Si−1)|Sj − Si|
≥ 0. (3.47)

12



Consequently, for the perturbation (ε > 0) to produce a positive change, we require

0 < ε

1− r∆τ −∆τ
∑

j∈i+1,i−1

(
σ2

maxS
2
i

(Si+1 − Si−1)|Sj − Si|
+ γij

) ∀i. (3.48)

To ensure that the timestep condition is satisfied for all i, the worst case is

∆τ < min
i

r +
∑
j∈ηi

[
σ2

maxS
2
i

(Si+1 − Si−1)|Sj − Si|
+ γij

]−1

, (3.49)

which completes the proof.

Note that condition (3.45) implies that a Crank-Nicolson scheme will be monotone only if the
timestep size is less than twice the maximum stable explicit timestep size.

Lemma 4 (Stability of the Crank-Nicolson Discretization) If condition (3.45) is satisfied,
then the Crank-Nicolson discretization is stable.

Proof . If condition (3.45) is satisfied, then by Lemma 3, the Crank-Nicolson discretization is
monotone, and stability of the discrete equations follows by bounding the Ui values as was done in
the fully implicit case (see Lemma 2).

Combining these results allows us to state the following theorem:

Theorem 3 (Convergence of the Crank-Nicolson discretization) If condition (3.45) is sat-
isfied, then the Crank-Nicolson discretization (3.44) converges to the viscosity solution of the non-
linear PDE (2.1) as ∆τ,∆S → 0.

Proof . Again, this follows directly from Lemmas 3 and 4 and the results of Barles (1997) since
the condition of the theorem ensures a monotone, stable, and consistent discretization.

If condition (3.45) is not satisfied, then for θ = 1/2 (Crank-Nicolson) in equation (3.13), we
have [

I +
M̂n+1

2

]
Un+1 =

[
I − M̂n

2

]
Un, (3.50)

or

Un+1 =

[
I +

M̂n+1

2

]−1 [
I − M̂n

2

]
Un

=

[
I +

M̂n+1

2

]−1 [
I − M̂n

2

][
I +

M̂n

2

]−1 [
I − M̂n−1

2

][
I +

M̂n−1

2

]−1

× . . .

[
I − M̂0

2

]
U0. (3.51)
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Figure 1: Sample payoff function for a butterfly spread. Parameters for equation (4.1) are taken
from Table 1.

Since M̂n is a diagonally dominant M -matrix (r > 0), all eigenvalues of M̂n have positive real
parts, and hence the eigenvalues of each term[

I − M̂k

2

][
I +

M̂k

2

]−1

are strictly less than one in magnitude. However, stability does not necessarily follow, since the
M̂ks are not normal matrices. In fact, as we shall see, Crank-Nicolson timestepping appears to be
unstable with discontinuous payoffs when condition (3.45) is violated.

4 Numerical Examples

4.1 Butterfly Spread

To illustrate the results of section 3, we begin by examining the uncertain volatility model on a
“butterfly spread”. This is a combination of options with three different strike prices. It can be
formed using either call options or put options. Our test problem uses call options, so the payoff
for can be written as

U(S, τ = 0) = max(S −K1, 0)− 2 max(S − (K1 +K2)/2, 0) + max(S −K2, 0). (4.1)

This corresponds to a long position in two calls at strikes K1,K2, and a short position in two calls
at strike (K1 +K2)/2. Recall that τ = T − t, so that the payoff is the value of the option at expiry
t = T , or the initial condition of the PDE at τ = 0. Figure 1 provides a diagram of a sample payoff
function. A complete specification of our test problem, including the PDE parameters, is given in
Table 1. Note that unless the problem has a non-convex payoff/solution, the sign of gamma (USS)
will not change during the solution process. In these cases the nonlinearity disappears, and σ will
always take on one of the extreme volatility values.

Solutions were computed on a sequence of uniformly refined grids, starting with 61 non-uniform
points. At each grid refinement, the timestep was halved. The convergence tolerance for nonlinear
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Type: Butterfly spread (using call options)
Scenario: Worst case long

Time to expiry: 0.25 years
r: 0.1

K1: 90
K2: 110

σmax : 0.25
σmin : 0.15

Table 1: Model parameters for the butterfly spread test problem.

Fully Implicit Crank-Nicolson
Nodes Value Difference Ratio Value Difference Ratio

61 2.3501 1.7246
121 2.3250 0.0251 1.5713 0.1533
241 2.3116 0.0134 1.87 1.4622 0.1091 1.41
481 2.3047 0.0069 1.95 1.3806 0.0816 1.34
961 2.3012 0.0035 1.97 1.3264 0.0542 1.51

Table 2: Convergence results for an at-the-money (S = 100) butterfly spread with uncertain
volatility. Parameters are provided in Table 1. The timestep is halved at each grid refinement.
“Difference” is the absolute value of the change in the solution as the grid is refined. “Ratio” is the
ratio of successive differences. Timestepping data are given in Table 3.

iteration (3.14) was 10−6. Convergence results using fully implicit and Crank-Nicolson timestepping
are given in Table 2. The timestep was selected so that condition (3.45) was violated. We can see
that a fully implicit method converges at a linear rate, as we would expect. From Theorem 2, we
know that this solution is the viscosity solution. However, the Crank-Nicolson method is either
converging to a non-viscosity solution, or has a slowly growing instability. Timestepping and
nonlinear iteration data are given in Table 3. Note that in the fully implicit case, the average
number of nonlinear iterations per step is close to two. For a linear problem, the number of
nonlinear iterations at each step would be exactly two (of course, iteration would be unnecessary
in this case).

To understand the difficulty with Crank-Nicolson timestepping, consider plots of the solution
values, deltas (US) and gammas (USS), as shown in Figure 2 for both fully implicit and Crank-

Fully Implicit Crank-Nicolson
No. of ∆τ No. of Average No. No. of Average No.

Timesteps Iterations of Iterations Iterations of Iterations
25 0.01 58 2.32 87 3.48
50 0.005 116 2.32 204 4.08
100 0.0025 236 2.36 432 4.32
200 0.00125 461 2.31 886 4.43
400 0.000625 868 2.17 1858 4.65

Table 3: Timestepping information for an at-the-money (S = 100) butterfly spread with uncertain
volatility. Parameters are provided in Table 1. “No. of Iterations” is the total number of nonlinear
iterations used during the solution process. “Average No. of Iterations” is the number of iterations
divided by the number of timesteps. The number of nodes is doubled each time the timestep is halved.
The convergence tolerance was 10−6 (equation (3.14)). Convergence data are given in Table 2.

15



Nicolson timestepping.2 We see that all implicit plots are smooth, as would be expected. However,
a small “kink” in the Crank-Nicolson solution at S = 100 leads to a discontinuity in the solution
delta (US), and to major oscillations in the solution gamma (USS) values. Since the uncertain
volatility model has a crucial dependence on the sign of gamma, we expect problems.

To further isolate the source of Crank-Nicolson timestepping difficulties, consider the solution
after one timestep. In Figure 3(a), we see that implicit timestepping leads to a smooth curve. On
the other hand, Figure 3(b) reveals that Crank-Nicolson timestepping has introduced a cusp at the
strike price of 100 (other problems at S = 90 and S = 110 are not shown). For linear problems,
such oscillations would eventually be damped out, since Crank-Nicolson is a stable method.

However, for the present problem, the oscillations have caused the computed values of gamma
at all nodes where the initial payoff has a discontinuity in delta to have the wrong sign. This
is shown in Figure 4. Consequently, different values of σ will be used at the second timestep at
the nodes where oscillations occurred. In this case, since we have the convergence results from a
monotone scheme, which is guaranteed to converge to the viscosity solution, we can see that the
Crank-Nicolson solution is incorrect.

The oscillations also have an effect on how strongly nonlinear the problem becomes. In Table 3,
we see that using implicit timestepping leads to just over 2 nonlinear Newton iterations per timestep,
indicating fairly mild nonlinearity. On the other hand, the average number of nonlinear iterations
per timestep for Crank-Nicolson timestepping starts at 3.48 for the the coarsest grid, and increases
as the grids are refined. Clearly, the non-monotone discretization amplifies the nonlinear properties
of the problem.

Unfortunately, we would like to use Crank-Nicolson timestepping for the potential of second
order convergence. Since the difficulty appears to be oscillations at the first timestep, it makes sense
to start with fully implicit timestepping, and then switch to Crank-Nicolson timestepping. Such a
method was discussed in Rannacher (1984), and will be called Rannacher timestepping below. Since
only a finite number of fully implicit steps are taken, the overall convergence rate can be shown
to be quadratic for linear problems (Rannacher, 1984). Results using this method with 2 and 4
initial implicit steps are given in Table 4. Both approaches give (nearly) quadratic convergence,
although taking 4 steps appears to converge at a slightly higher rate. More importantly, even
though Rannacher timestepping is not unconditionally monotone (strictly speaking), both methods
appear to converge to the correct solution, with no evidence of instability. Assuming a linear rate
of convergence, the extrapolated solution using fully implicit timestepping (Table 2) is 2.2977,
in excellent agreement with the results in Table 4. Further, as shown in Table 5, Rannacher
timestepping reduces the average number of nonlinear iterations per timestep to approximately the
same levels as for implicit timestepping.

It is interesting to observe that difficulties normally arise in nonlinear financial PDEs when the
PDE degenerates to a nonlinear hyperbolic problem. In our case, no degeneracy occurs. However,
the payoff has a discontinuous first derivative, which seems to be enough to cause difficulty. The
use of a few fully implicit steps at the start smooths the solution, curing the problem.

An obvious approach which avoids having to solve a set of nonlinear algebraic equations at each
step is to evaluate the uncertain volatility explicitly. More precisely, equation (3.13) becomes[

I + (1− θ)M̂n
]
Un+1 =

[
I − θM̂n

]
Un. (4.2)

Note that this is equivalent to forcing one nonlinear iteration per timestep. Since M̂n is a diagonally
2Note that risk hedging strategies typically involve delta and gamma, so it is important to accurately compute

not only the option value but also its first and second derivatives with respect to the price of the underlying asset.
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(a) Value, fully implicit timestepping.
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(b) Value, Crank-Nicolson timestepping.
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(c) Delta, fully implicit timestepping.
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(d) Delta, Crank-Nicolson timestepping.
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(e) Gamma, fully implicit timestepping.
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(f) Gamma, Crank-Nicolson timestepping.

Figure 2: Butterfly spread solution value (U), delta (US), and gamma (USS) for both fully implicit
and Crank-Nicolson timestepping. Parameters are provided in Table 1.
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(a) Fully implicit timestepping.
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(b) Crank-Nicolson timestepping.

Figure 3: Butterfly spread solution value (U) after the first timestep.
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(a) Fully implicit timestepping.
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(b) Crank-Nicolson timestepping.

Figure 4: Butterfly spread solution gamma (USS) after the first timestep. Note that the sign of
gamma is different at the strike prices of 90, 100, and 110 where the delta is discontinuous.

Rannacher (2 steps) Rannacher (4 steps)
Nodes Value Difference Ratio Value Difference Ratio

61 2.2985785 2.3040657
121 2.2980535 0.0005250 2.2996153 0.0044504
241 2.2977860 0.0002675 1.96 2.2981945 0.0014208 3.13
481 2.2977116 0.0000744 3.60 2.2978172 0.0003773 3.77
961 2.2976910 0.0000206 3.61 2.2977178 0.0000994 3.80

Table 4: Convergence results for an at-the-money (S = 100) butterfly spread with uncertain
volatility and Rannacher timestepping. Parameters are provided in Table 1. The timestep is halved
at each grid refinement. “Difference” is the absolute value of the change in the solution as the grid
is refined. “Ratio” is the ratio of successive differences. Timestepping data are given in Table 5.
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Rannacher (2 steps) Rannacher (4 steps)
No. of ∆τ No. of Average No. No. of Average No.

Timesteps Iterations of Iterations Iterations of Iterations
25 0.01 59 2.36 59 2.36
50 0.005 116 2.32 118 2.36
100 0.0025 235 2.35 235 2.35
200 0.00125 459 2.30 456 2.28
400 0.000625 847 2.12 847 2.12

Table 5: Timestepping information for an at-the-money (S = 100) butterfly spread with uncertain
volatility and Rannacher timestepping. Parameters are provided in Table 1. “No. of Iterations”
is the total number of nonlinear iterations used during the solution process. “Average No. of
Iterations” is the number of iterations divided by the number of timesteps. The number of nodes
is doubled as the timestep sized is halved. The convergence tolerance was 10−6 (equation (3.14)).
Convergence data are given in Table 4.

Algorithm (4.2) (θ = 0) Algorithm (4.2) (θ = 1/2) Algorithm (4.2) (θ = 1/2)
and Rannacher (4 steps)

Nodes Value Difference Ratio Value Difference Ratio Value Difference Ratio
61 2.4234699 3.2100384 2.3766897
121 2.3676732 0.05580 3.2593402 0.04930 2.3419918 0.03470
241 2.3347374 0.03294 1.69 3.3127764 0.05344 0.92 2.3212272 0.02076 1.67
481 2.3169350 0.01780 1.85 3.3176336 0.00486 11.0 2.3099994 0.01122 1.85
961 2.3075759 0.00936 1.90 3.3141664 -0.00346 -1.40 2.3040654 0.00593 1.89

Table 6: Convergence results for an at-the-money (S = 100) butterfly spread with uncertain
volatility, solved by forcing one nonlinear iteration per timestep (as per equation (4.2)). Parameters
are provided in Table 1. “Difference” is the change in the solution as the grid is refined. “Ratio”
is the ratio of successive differences. The timestep is halved as the grid is refined.

dominant M -matrix, algorithm (4.2) with θ = 0 is a positive coefficient discretization (Jameson,
1995). Consequently, algorithm (4.2) with θ = 0 is unconditionally stable, but not monotone. As
a result, convergence to the viscosity solution is not guaranteed.

Results using this approach are given in Table 6. Algorithm (4.2) with θ = 0 leads to linear
convergence, and apparently converges to the viscosity solution. Algorithm (4.2) with θ = 1/2
leads to values away from the correct solution, with perhaps some instability. Setting θ = 1/2 in
algorithm (4.2) and using Rannacher timestepping (with 4 initial steps using θ = 0) leads to linear
convergence. The potential for quadratic convergence is lost by only taking one nonlinear iteration
per timestep. However, if high accuracy is not required, the simplicity and speed of using fully
implicit timestepping with the linear approximation (explicit evaluation of the volatility) may be
advantageous.

4.2 Digital Call Options

We have seen how a non-smooth payoff condition can cause problems for non-monotone schemes.
This situation will be even more problematic for discontinuous payoffs. A digital call option has
the payoff

U(S, τ = 0) =

{
1 if S ≥ K
0 if S < K

. (4.3)

(Recall that τ = T − t, so that the payoff is the value of the option at expiry t = T .) Previous
research has shown that when solving PDEs with discontinuous initial conditions, it is beneficial
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Type: Digital call
Scenario: Worst case long

Time to expiry: 0.25 years
r: 0.1
K: 100

σmax: 0.25
σmin: 0.15

Table 7: Model parameters for the digital call option test problem.

Fully Implicit Crank-Nicolson Rannacher (4 steps)
Nodes Value Difference Ratio Value Difference Ratio Value Difference Ratio

61 0.4431338 -0.25573486 0.4432821
121 0.4425493 0.0005845 -1.2994648 1.044 0.4426167 0.0006654
241 0.4422251 0.0003242 1.80 -3.4379189 2.138 0.488 0.4422552 0.0003615 1.84
481 0.4420542 0.0001709 1.90 -7.7664872 4.329 0.494 0.4420673 0.0001878 1.92
961 0.4419641 0.0000901 1.90 -16.644796 8.878 0.488 0.4419698 0.0000975 1.93

Table 8: Convergence results for an at-the-money (S = 100) digital call option with uncertain
volatility. “Difference” is the absolute value of the change in the solution as the grid is refined.
“Ratio” is the ratio of successive differences. The timestep is halved at each grid refinement.
Timestepping data are given in Table 9.

to smooth the initial conditions (Pooley et al., 2001). The most theoretically sound method for
doing this is projecting the initial conditions onto the set of basis functions used to discretize the
equations (Wahlbin, 1980). We have used projection onto the space of linear basis functions in
the following digital option tests (note that such a projection would have no effect on the butterfly
payoff above, and strictly speaking, is not required for implicit timestepping).

The digital option problem is solved on the same set of grids as for the butterfly spread. At
each refinement stage, the number of nodes is doubled and the timestep is halved. The convergence
tolerance for the nonlinear iteration was 10−6 (equation (3.14)). The remaining parameters are
given in Table 7.

Results for fully implicit, Crank-Nicolson, and Rannacher timestepping (4 implicit steps) are
given in Table 8. Implicit timestepping leads to consistent linear convergence. The Crank-Nicolson
values appear to be unstable, having gone negative and approximately doubling in magnitude at
each refinement. This indicates that the timestep restriction (3.45) is of practical importance.
Using Rannacher timestepping with 4 implicit steps restores convergence, but only at a linear rate.
Similar observations apply to the average number of nonlinear iterations per timestep, as shown in
Table 9. Both fully implicit and Rannacher timestepping take an average of just over 2 nonlinear
iterations, while Crank-Nicolson requires over 4 iterations on average.

Given the lack of quadratic convergence (even for Rannacher timestepping), one may think that
the simplicity of linearizing the problem as per equation (4.2) is even more advantageous for digital
options. However, as shown by the values in Table 10, this is not necessarily true. The results
for algorithm (4.2) (θ = 0) and algorithm (4.2) (θ = 1/2) with Rannacher timestepping (first four
steps use θ = 0 in equation (4.2), and θ = 1/2 thereafter) appear to be convergent, but only at a
sub-linear rate. Values for algorithm (4.2) using θ = 1/2 at all steps are again unstable. Unless
very low accuracy is desired, solving the nonlinear equations with fully implicit timestepping may
be the best choice for digital options with uncertain volatility.
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Fully Implicit Crank-Nicolson Rannacher (4 steps)
No. of ∆τ No. of Average No. No. of Average No. No. of Average No.

Timesteps Iterations of Iterations Iterations of Iterations Iterations of Iterations
25 0.01 55 2.20 105 4.20 55 2.20
50 0.005 110 2.20 212 4.24 109 2.18
100 0.0025 212 2.12 442 4.42 208 2.08
200 0.00125 407 2.04 877 4.39 406 2.03
400 0.000625 805 2.01 1797 4.49 803 2.01

Table 9: Timestepping information for an at-the-money (S = 100) digital call option with un-
certain volatility. “No. of Iterations” is the total number of nonlinear iterations used during the
solution process. “Average No. of Iterations” is the number of iterations divided by the number of
timesteps. The number of nodes is doubled as the timestep is halved. The convergence tolerance
was 10−6 (equation (3.14)). Convergence data are given in Table 8.

Algorithm (4.2) (θ = 0) Algorithm (4.2) (θ = 1/2) Algorithm (4.2) (θ = 1/2)
and Rannacher (4 steps)

Nodes Value Difference Ratio Value Difference Ratio Value Difference Ratio
61 0.459603 0.933258 0.459550
121 0.456200 0.00340 1.374314 0.441 0.456176 0.00337
241 0.452571 0.00363 0.94 2.172795 0.798 0.552 0.452566 0.00361 0.93
481 0.449795 0.00278 1.31 3.746378 1.57 0.507 0.449796 0.00277 1.30
961 0.447641 0.00216 1.29 6.941466 3.20 0.493 0.447642 0.00215 1.29

Table 10: Convergence results for an at-the-money (S = 100) digital call option with uncertain
volatility, solved by forcing one nonlinear iteration per timestep (as per equation (4.2)). Parameters
are provided in Table 7. “Difference” is the absolute value of the change in the solution as the grid is
refined. “Ratio” is the ratio of successive differences. The timestep is halved at each grid refinement.

5 Conclusions

If an implicit method is used to discretize the nonlinear PDE for pricing options with uncertain
volatility, then we are faced with having to solve a set of nonlinear algebraic equations. Provided
that the discretization satisfies certain conditions, we have shown that a non-smooth Newton iter-
ation scheme is globally convergent, with quadratic convergence near the solution. For either the
fully implicit method or Crank-Nicolson with Rannacher timestepping, we observed convergence
occurring in just over 2 iterations per timestep, on average.

We have proven that a fully implicit discretization is monotone, and hence converges to the
viscosity solution of the PDE. On the other hand, Crank-Nicolson is only conditionally monotone.
Numerical examples show that Crank-Nicolson can generate incorrect (i.e. not viscosity) solutions
to the PDE, or even unstable results, if a timestep is used which results in a non-monotone dis-
cretization.

Numerical experiments further show that, for Crank-Nicolson timestepping, we can converge to
the viscosity solution if we take a small number (2-4) of fully implicit steps at the beginning, followed
by Crank-Nicolson thereafter. For continuous, but non-smooth payoffs, numerical experiments
indicate convergence at a quadratic rate, which is an improvement over the linear convergence of a
fully implicit method.

Unfortunately, quadratic convergence (using Rannacher timestepping) could not be achieved
for discontinuous payoffs (e.g. digital options). In this case, fully implicit timestepping should be
used, since convergence to the viscosity solution is guaranteed.

Evaluating the nonlinear term explicitly avoids the need to solve nonlinear equations at each
step, but this approach appears to converge at a slower rate than implicit methods. This method
is also not guaranteed to converge to the viscosity solution, although we have not seen this occur

21



in our numerical tests.

A Viscosity Solutions

The concept of a viscosity solution is closely related to the entropy condition (E-condition) of weak
solutions to conservation law problems (LeVeque, 1990). First introduced in Crandall and Lions
(1983), a full description of the theory is given in Crandall et al. (1992). We give here a brief
overview of the concept of a viscosity solution.

To understand the notion of a viscosity solution, consider the general form of a second order
parabolic PDE:

∂V

∂t
+ F (x, V, Vx, Vxx) = 0. (A.1)

We assume that F satisfies the ellipticity condition

F (x, V, Vx, Vxx + ε) ≤ F (x, V, Vx, Vxx) if ε ≥ 0. (A.2)

(Note the sign convention for F as given in equation (A.1), which is standard in the literature.)
This property is crucial for the definition of the viscosity solution. For discrete equations, the
concept of ellipticity is replaced by monotonicity. This is why a monotone discretization is required
(at least in theory) to guarantee convergence to the viscosity solution.

To motivate the definition, consider functions v(t, x) ∈ C2 and V (t, x) ∈ C2. Let (t0, x0) be
a local maximum of V − v. From basic calculus, we know that ∂V/∂t = ∂v/∂t, Vx = vx, and
vxx ≥ Vxx near (t0, x0). Using these relations and the ellipticity property (A.2) gives

∂V

∂t
(t0, x0) + F (x0, V (t0, x0), vx(t0, x0), vxx(t0, x0)) ≤ 0. (A.3)

If (A.3) holds for all v ∈ C2, then V is said to be a viscosity subsolution of equation (A.1). In
a sense, we have used the functions v to provide an upper bound to possible solutions. Similarly,
V (t, x) is a viscosity supersolution of equation (A.1) if ∀v ∈ C2, if (t0, x0) is a local minimum point
of V − v, then

∂V

∂t
(t0, x0) + F (x0, V (t0, x0), vx(t0, x0), vxx(t0, x0)) ≥ 0. (A.4)

A viscosity solution of (A.1) is a solution that is both a viscosity subsolution and a viscosity
supersolution. Note that a classical solution to equation (A.1) is also a viscosity solution (this can
be verified by letting v = V ).

However, we can still use the definitions (A.3)-(A.4) in the case that V is not smooth, since we
do not require the existence of the first and second derivatives of V . In this case, we can define non-
smooth solutions to (A.1). This definition essentially sandwiches the desired non-smooth viscosity
solution between smooth solutions that are “above the PDE” or “below the PDE”, in the sense of
definitions (A.3)-(A.4).

It is shown in Fleming and Sonar (1993) that the viscosity solution of a nonlinear parabolic
option pricing equation is the desirable solution in financial applications. Further, Barles (1997)
proves that a stable, consistent and monotone discretization of option pricing problems must con-
verge to the desired viscosity solution.
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