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Abstract5

We present efficient partial differential equation (PDE) methods for continuous time mean-6

variance portfolio allocation problems when the underlying risky asset follows a jump-diffusion.7

The standard formulation of mean-variance optimal portfolio allocation problems, where the8

total wealth is the underlying stochastic process, gives rise to a one-dimensional (1-D) non-linear9

Hamilton-Jacobi- Bellman (HJB) partial integro-differential equation (PIDE) with the control10

present in the integrand of the jump term, and thus is difficult to solve efficiently. In order to11

preserve the efficient handling of the jump term, we formulate the asset allocation problem as a12

2-D impulse control problem, one dimension for each asset in the portfolio, namely the bond13

and the stock. We then develop a numerical scheme based on a semi-Lagrangian timestepping14

method, which we show to be monotone, consistent, and stable. Hence, assuming a strong15

comparison property holds, the numerical solution is guaranteed to converge to the unique16

viscosity solution of the corresponding HJB PIDE. The correctness of the proposed numerical17

framework is verified by numerical examples. We also discuss the effects on the efficient frontier18

of realistic financial modeling, such as different borrowing and lending interest rates, transaction19

costs and constraints on the portfolio, such as maximum limits on borrowing and solvency.20
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1 Introduction23

In an asset allocation problem, an investor (i) can choose to invest in a risk-free asset, e.g. a bond, or24

a risky asset, e.g. a stock, and (ii) can dynamically transfer wealth between the two assets, to achieve25

a pre-determined criteria for the portfolio over a long time horizon, typically 10 years or more. In26

the mean-variance approach, risk is quantified by variance, so that investors aim to maximize the27

expected return of their portfolios, given a risk level. Alternatively, they aim to minimize the risk28

level, given an expected return. As a result, mean-variance strategies are appealing due to their29
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intuitive nature, since the results can be easily interpreted in terms of the trade-off between the30

risk and the expected return.31

In the case where the asset follows a pure diffusion process, such as Geometric Brownian Motion32

(GBM) without jumps, there is considerable literature on the topic. See, for example, [1, 2, 3, 4, 5,33

6]. In particular, we note that the optimal strategy adopted in these papers is of the pre-commitment34

type, which is not time-consistent, as noted in [7, 8]. A comparison between time-consistent and35

pre-commitment strategies is given in [9].36

Although there is some controversy surrounding pre-commitment strategies, e.g. see [7, 8, 10],37

it has been shown in [6] that pre-commitment strategies can also be viewed as a target-based38

optimization which involves minimizing a quadratic loss function. It is suggested in [6] that this is39

intuitive, adaptable to investor preferences, and is also mean-variance efficient. This view of pre-40

commitment mean-variance strategies perhaps explains why this criteria has found its way in many41

insurance applications, where it is natural to consider that the aim of an insurance company is to42

minimize the risk of a terminal reserve, given an expected terminal reserve constraint [11, 12, 13, 14].43

Virtually all the previous work on pre-commitment mean-variance optimal asset allocation44

has been based on analytic (closed-form) techniques. See, for example, [1, 2, 4, 15]. However,45

in general, if realistic constraints on portfolio selection are imposed (e.g. no trading if insolvent,46

maximum borrowing limits), then a fully numerical approach is required. It is important to note47

that, as shown in [5], in the case where the risky asset follows a GBM without jumps, the inclusion48

of realistic portfolio constraints has a profound effect on the efficient frontier.49

Another modeling deficiency in the previous work on pre-commitment mean-variance optimal50

asset allocation is the common assumption that the risky asset follows a Geometric Brownian51

Motion (GBM) without jumps. However, there is increasing empirical evidence that stocks often52

exhibit jumps. As a result, it is highly desirable to augment the usual GBM with discontinuous53

jump processes. In this case, the standard formulation of mean-variance optimal asset allocation54

problems, where the total wealth is the underlying stochastic process (e.g. see [5]), gives rise to55

a one-dimensional (1-D) non-linear Hamilton-Jacobi- Bellman (HJB) partial integro-differential56

equation (PIDE) with the control present in the integrand of the jump term. Solving this HJB57

PIDE is very computationally challenging, since, at each timestep, the presence of the control in58

the integrand requires the repeated computation of the integral when searching for the control in59

the control space. In addition, it is not obvious how a fast computational method, such as the FFT,60

can be utilized for the evaluation of the integral in this case. These shortcomings and challenges61

motivated our work.62

The objective of this article is to develop a fully numerical partial differential equation (PDE)63

method for solution of the pre-commitment mean-variance portfolio selection problem when the64

underlying risky asset follows a jump diffusion process. The major contribution of the paper are:65

• We formulate the investment problem as the solution to a 2-D impulse control problem, in66

the form of a non-linear HJB PIDE.67

• We include (i) realistic constraints on the portfolio (e.g. maximum limits on borrowing), and68

(ii) more realistic financial modeling (different interest rates for borrowing and lending, and69

transaction costs) than previous work.70

• We develop a numerical scheme based on a semi-Lagrangian type method, which decouples71

each PIDE for each discrete value of the riskless asset in the portfolio, and hence, results72

in solving a a sequence of 1-D non-controlled PIDEs at each timestep. We show that our73
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numerical scheme is monotone, consistent and l∞-stable. Assuming a strong comparison74

property holds, then from [16] and [17], we can be assured that the numerical scheme will75

converge to the unique viscosity solution of the HJB PIDE.76

• Semi-Lagrangian timestepping requires an interpolation at the foot of the characteristic at77

each timestep. Use of a monotone (linear) interpolation results in poor accuracy for small78

values of the standard deviation. Use of the exact solution value at a single point dramatically79

increases accuracy.80

• We include several numerical examples, illustrating the convergence of the numerical scheme,81

as well as the effect of modeling parameters on the efficient frontier.82

It is straightforward to incorporate into the numerical scheme developed in this paper additional83

modeling features, such as non-linear price impact for large transactions. However, we leave this84

extension to future work.85

The remainder of this paper is organized as follows. Section 2 describes the underlying processes86

and the impulse control framework, and gives a formulation of an associated HJB equation and a87

linear PIDE . In Section 3, we introduce the concepts of viscosity solution for the HJB equation.88

Discretization of the relevant equations is given in Section 4. In Section 5, we discuss the conver-89

gence of the discrete solutions of the HJB equations to the unique viscosity solution of the HJB90

PIDE. In Section 6, we highlight some important implementation details of the numerical methods.91

Numerical results are presented and discussed in Section 7. Section 8 concludes the paper and92

outlines possible future work.93

2 Formulation94

2.1 Underlying Processes95

We consider the investor’s portfolio to consist of two assets, namely a risky asset and a risk-free96

asset. We denote by S and B the amounts invested in the risky and the risk-free assets, respectively.97

In general, S would be the amount invested in a broad stock index. For brevity, let S(t) = St and98

B(t) = Bt. For use later in the paper, define99

t− = t− ε, t+ = t+ ε, where ε→ 0+,

i.e. t− and t+ respectively are instants of time just before and after the (forward) time t.100

We denote by ξ the random number representing the jump amplitude. We assume that ξ follows101

a log-normal distribution p(ξ) given by [18]102

p(ξ) =
1√

2πζξ
exp
(
−(log(ξ)− ν)2

2ζ2

)
, (2.1)

with parameters ζ and ν. We have E[ξ] = exp(ν + ζ2/2), where E[·] denotes the expectation103

operator. Let κ = E[ξ]− 1. Under the objective measure, assume that S follows the process104

dSt
St−

= (µ− λκ)dt+ σdZ + d

( πt∑
i=1

(ξi − 1)

)
, (2.2)
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where dZ is the increment of a Wiener process, µ is the real world drift rate, and σ is the volatility.105

In addition, πt is a Poisson process with positive intensity parameter λ, and ξi are independent and106

identically distributed positive random variables having distribution (2.1). When a jump occurs,107

we have St+ = ξiSt− . To be precise , we consider the process (2.2) to be right continuous with left108

limits, so that St+ = St. However, we will frequently use the notation St+ and St− in the following.109

This will be especially convenient when considering impulse controls, which can be considered to110

be left continuous [19].111

We assume that the dynamics of the risk-free asset B follow [20]112

dBt = R(Bt)Bt

R(Bt) =

(
r` + (rb − r`)H(Bt)

)
, (2.3)

where H(x) denotes the Heaviside function113

H(x) =

{
0 x ≥ 0

1 x < 0
. (2.4)

That is, the investor can be viewed as (i) earning the rate r` for the cash deposit, and (ii) being114

charged at a rate rb > r` for borrowing.115

In this paper, we assume that µ > r`, hence, it is never optimal (in a mean-variance setting) to116

short stock. As a result, the amount invested in the risky asset is always nonnegative, i.e. St ≥ 0.117

However, we allow short positions in the risk-free asset, i.e. it is possible that Bt < 0.118

2.2 Impulse Control119

We follow along the lines of [15] and give a brief description of an impulse control problem for120

dynamic portfolio selection. For more rigor and generality, we refer the reader to [15].121

We suppose that, at any time t, and any state (St, Bt) of the system, the investor can give the122

system an impulse η ∈ Z, where Z is the set of admissible impulses. The set of impulse controls123

for this problem is then the set124

C = {{t0, η0}, {t1, η1}, . . . , {tj , ηj}, . . .}j≤M , (2.5)

where M can be finite or infinite, and t0 < t1 < . . .. Here, the time tj , j = 0, . . . ,M , is referred to as125

an intervention time, with ηj being the corresponding impulse. Our definitions for the intervention126

times and impulses for the asset allocation problem are given in Section 2.4. In general, C ∈ A,127

where A denotes the set of admissible controls.128

Given the control C, we denote by x = (SCt , B
C
t ) a controlled state of the system. Between the129

intervention times t+j−1 and t−j , j = 1, . . . ,M , the controlled system follows the processes (2.2) and130

(2.3), i.e.131

dSCt
SC
t−

= (µ− λκ)dt+ σdZ + d

(π[t+j−1
,t−
j

]∑
i=1

(ξi − 1)

)
, (2.6)

dBCt = R(BCt )BCt dt ; t+j−1 ≤ t ≤ t−j . (2.7)
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As a result of applying a control η = ηj ∈ Z, the state of the system moves instantaneously as132

follows:133

x = (SCt− , B
C
t−) → (SCt+ , B

C
t+) = (SCt+(x, η), BCt+(x, η)). , (2.8)

In (2.8), we use (SCt+(x, η), BCt+(x, η)) to emphasize the change in the state of the system after the134

impulse η = ηj has been applied.135

From now on, to avoid notational clutter, we will generally drop the subscript t and superscript136

C from (S,B), with these sub and superscripts understood. We also denote by x = (s, b) =137

(S(t−), B(t−)) the state of the system at time t−, and by (S+(x, η), B+(x, η)) the state of the138

system after the impulse η has been applied.139

2.3 Pareto Optimal Points and Efficient Frontier140

We denote by Wliq(t) ≡Wliq(S(t), B(t)), t ≤ T , the total liquidation value at time t of the investor’s141

portfolio, where T is the time horizon of the investment. Note that Wliq(t) may include liquidation142

costs (see (2.20)). We respectively denote by Ex,tC [Wliq(T )] and V arx,tC [Wliq(T )] the expectation143

and the variance of the terminal liquidation value conditional on the state (x, t) and the impulse144

control C.145

Definition 2.1. We denote by146

Y = {(V arx,tC [Wliq(T )], Ex,tC [Wliq(T )]) : C ∈ A} (2.9)

the achievable mean-variance objective set, and by Ȳ its closure.147

Definition 2.2. A point (V arx,tC [Wliq(T )], Ex,tC [Wliq(T )]) = (V, E) ∈ Ȳ is a Pareto mean-variance148

optimal point if there exists no admissible impulse control set C∗ ∈ A such that149

V arx,tC∗ [Wliq(T )] ≤ V ,
Ex,tC∗ [Wliq(T )] ≥ E , (2.10)

where at least one of the inequalities in equation (2.10) is strict. We denote by P the set of Pareto150

mean-variance optimal points. Note that P ⊆ Ȳ.151

Although the above definitions are intuitive, determining the points in P requires solution of a152

difficult multi-objective optimization problem, which involves two conflicting criteria. A standard153

scalarization method can be used to combine the two criteria into an optimization problem with a154

single objective, from which a point on the efficient frontier can be derived. More specifically, for155

each point (V, E) ∈ Ȳ, and for an arbitrary scaler ρ > 0, we first define the set of points YP (ρ) to156

be157

YP (ρ) = {(V, E) ∈ Ȳ : (V, E) = sup
(V∗,E∗)∈Y

(E∗ − ρV∗)} , (2.11)

which involves solving a single-objective optimization problem. We then define the set of points on158

the efficient frontier, denoted by YP , as follows.159

Definition 2.3 (Efficient Frontier). The set of points on the efficient frontier are defined as160

YP =
⋃
ρ>0

YP (ρ). (2.12)
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Remark 2.1 (Relationship between P and YP .). We emphasize the difference between the set of161

all Pareto mean-variance optimal points P and the efficient frontier YP defined in equation (2.12).162

In general, YP ⊆ P. However, the converse may not hold, if the achievable mean-variance objective163

set Y is not convex. In this paper, we restrict our attention to determining YP .164

As noted in [1, 2], the presence of the variance term in equation (2.11) causes difficulty, if we165

attempt to determine YP (ρ) by solving for the associated value function using dynamic program-166

ming. To overcome this difficulty, we make use of the main result in [1, 2, 21] which essentially167

involves the embedding technique. This main result is summarized in Theorem 2.1.168

Theorem 2.1 (Embedding Result). Let Y be a bounded nonempty subset of the set169

{(V, E) ∈ R2 : V ≥ 0, E ≤ C1},

where C1 is some positive constant. We define170

YQ(γ) = {(V, E) ∈ Ȳ : V + E2 − γE = inf
(V∗,E∗)∈Y

(V∗ + E2
∗ − γE∗)} , (2.13)

YQ =
⋃

−∞≤γ≤+∞
YQ(γ) . (2.14)

Then YP ⊆ YQ.171

Note that, in Theorem 2.1, the mean and variance (V, E) of Wliq(T ) are embedded in a scalar-172

ization optimization problem with the objective being V + E2 − γE [21]. Define the value function173

V̄ (x, t) as174

V̄ (x, t) = inf
C∈A

{
Ex,tC [(Wliq(T )− γ/2)2]

}
. (2.15)

Theorem 2.1 implies that there exists a γ ≡ γ(x, t, ρ), such that, for a given positive ρ, a control175

C∗ which maximizes equation (2.11) also minimizes equation (2.15). The benefit of the formulation176

(2.15) is that dynamic programming can be applied to equation (2.15) to determine the optimal177

control C∗.178

Remark 2.2 (Construction of efficient frontier). Our algorithm for determining the points on the179

efficient frontier is as follows. For a given value of γ, the optimal strategy C∗ is determined by180

solving for the value function (2.15). Once this optimal policy C∗ is known, it is then straightfor-181

ward to determine (V arx,tC∗ [Wliq(T )], Ex,tC∗ [Wliq(T )]) and hence, a point on the efficient frontier (see182

discussions in Subsection 6.2). Repeating this for many values of γ traces out a curve in the (V, E)183

plane. Consequently, the numerical challenge is to solve for the value function (2.15).184

Essentially, the above procedure for constructing the efficient frontier generates points that are185

in the set YQ. As noted in [21], the set YQ may contain spurious points, i.e. points which are not186

in YP . For example, when the controls are not unique, spurious points can be generated. In this187

case, the set of points in YQ with the spurious points removed generates all the points in YP . This188

is important in the context of a numerical algorithm. An algorithm for removing spurious points189

is discussed in [21].190
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Remark 2.3 (Generality of Theorem 2.1). Note that it is not guaranteed that problem (2.11)191

together with (i) the SDEs (2.6-2.7), which can be non-linear, (ii) the impulse (2.8), and (iii) the192

set of admissible controls C is a convex optimization problem. See [21] for more discussion of this193

issue.194

Remark 2.4 (Time inconsistency of the control). Although we will use dynamic programming to195

solve for the optimal control C∗, this control is time inconsistent, as noted in [7, 8], since γ(x, t, ρ)196

depends on the initial state (x, t).197

Remark 2.5 (Interpretation of 2.15 as a target based optimization). Equation (2.15) has the198

obvious interpretation as a target based strategy [6], where the target wealth is γ/2. This target199

value can be shown to be [1, 2, 21]200

γ

2
= Ex,tC∗ [Wliq(T )] +

1

2ρ∗
, (2.16)

where C∗ is control which maximizes equation (2.11) for given ρ∗. In the case of a pure diffusion201

(no transaction costs), for some special cases where analytic solutions are known, it can be shown202

that the optimal strategy always has Wliq(t) less than the discounted value of γ/2 [6]. As pointed203

out in [6], we can thus interpret the precommitment mean-variance optimal strategy as a strategy204

which minimizes the quadratic loss measured relative to the wealth target γ/2. As long as Wliq(t)205

is less than the discounted target, then equation (2.15) can be interpreted as a quadratic utility.206

In the case of jumps, again for the special case where analytic solutions are known, the optimal207

strategy also has Wliq(t) less than the discounted target, unless a jump occurs (see Appendix A).208

This situation is similar to the pure diffusion case if reallocation can only occur at discrete times209

[10]. In this case, [10] advocates taking money off the table to produce a superior efficient frontier.210

In our tests, we use a jump process where the mean jump size is negative, hence the probability that211

a jump will exceed the discounted target is extremely small. Alternatively, it is possible to consider212

an objective function of the form213

inf
C∈A

{
Ex,tC [g(Wliq(T ))]− ρV arx,tC [g(Wliq(T ))]

}
(2.17)

where g(u) = min(u− L, 0), i.e. a measure of shortfall for u < L. We leave this for future work.214

2.4 Intervention Operator215

We now give a precise definition the optimal impulse control. The intervention times ti correspond216

to the rebalancing times of the portfolio, and the impulse ηi corresponds to readjusting the amounts217

of the stock and bond in the investor’s portfolio at time ti. Let (s, b) = (S(t−i ), B(t−i )) denote the218

state of the system at t−i , and (S+(s, b, η), B+(s, b, η)) denote the state after an impulse η is applied.219

More specifically, we assume that fixed and proportional transaction costs, respectively denoted by220

c1 > 0 and c2, where c2 ∈ [0, 1), may be imposed on each rebalancing of the portfolio. We then221

have that222

S+(s, b, η) = (s+ b)− η − c1 − c2|S+ − s| ,
B+(s, b, η) = η . (2.18)

We now define the intervention operator, denoted by M(η) V̄ (s, b, t), as223

M(η) V̄ (s, b, t) = V̄ (S+(s, b, η), B+(s, b, η), t) . (2.19)
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2.5 Allowable Portfolios224

In general, we assume that trading must cease if the investor is insolvent. To include transaction225

costs, we define the liquidation value Wliq(s, b) to be226

Wliq(s, b) = b+ max
[
s(1− c2)− c1, 0

]
. (2.20)

As in [22], we assume that shares will be discarded if sale of these shares results in a negative cash227

flow. We define the solvency region, denoted by S, as228

S = {(s, b) ∈ [0,∞)× (−∞,+∞) : Wliq(s, b) > 0} . (2.21)

The bankruptcy (insolvency) region, denoted by B, is defined as229

B = {(s, b) ∈ [0,∞)× (−∞,+∞) : Wliq(s, b) ≤ 0} . (2.22)

In the case of a pure diffusion without transaction costs, it is possible to enforce the condition230

that the stochastic process for the asset value remains in the solvency regions by applying certain231

boundary conditions to the HJB PDE [5]. However, in the case of a jump process, the asset value232

may change discontinuously, and move into the insolvency region. This possible movement cannot233

be prevented by continuous trading, even if the transaction costs are zero. Hence, we must specify234

the action to be taken in case the process ends up in the bankruptcy region. In the event that235

insolvency (bankruptcy) occurs, we require that the investor immediately liquidate all investments236

in the risky asset, and cease trading. That is,237

S+ = 0 ; B+ = Wliq(s, b) ; if (s, b) ∈ B . (2.23)

The investors net debt then accumulates at the borrowing rate.238

We will also assume that there is a maximum leverage condition, i.e. the investor must select239

an asset allocation satisfying240

S+

S+ +B+
< qmax , (2.24)

where qmax is a known positive constant with typical value in [1.5, 2.0]. In the event that the241

asset allocation violates the maximum leverage condition (2.24), we require that the investor choose242

a different allocation in a region in which (2.24) is satisfied.243

2.6 Value Function Problem244

2.6.1 HJB equation formulation245

Define τ = T − t, V (s, b, τ) = V̄ (s, b, t), and246

LV ≡ σ2s2

2
Vss + (µ− λκ)sVs +R(b)bVb − λV

J V ≡
∫ ∞

0
p(ξ)V (ξs, b, τ) dξ . (2.25)
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Following standard arguments (see [15, 23]), the value function is the viscosity solution of the247

HJB equation248

max

[
Vτ − LV − J V, V − inf

η∈Z
(M(η) V )

]
= 0 ; if (s, b) ∈ S (2.26)

max

[
Vτ = R(b) bVb, V − inf

η∈Z
(M(η) V )

]
= 0 ; if s = 0 (2.27)

V (s, b, τ) = V (0,Wliq(s, b), τ) ; if (s, b) ∈ B , (2.28)

V (s, b, 0) = (Wliq(s, b)− γ/2)2 ; if τ = 0 , (2.29)

defined on the domain (s, b, τ) ∈ Ω∞ ≡ [0,∞) × (−∞,+∞) × [0, T ]. Equation (2.26) follows249

from standard arguments. Equation (2.28) is a result of the enforced liquidation if the investor is250

insolvent. Equation (2.28) can be replaced by a Dirichlet condition251

V (s, b, τ) = V (0,Wliq(s, b)e
R(s+b)τ , 0) ; if (s, b) ∈ B . (2.30)

Equation (2.29) follows from equation (2.15). We can also write equation (2.26) as252

max
φ∈{0,1}

[
(1− φ)(Vτ − LV − J V ) + φ(V − inf

η∈Z
(M(η) V )) = 0

]
. (2.31)

Thus, the optimal impulse control C∗ for the value function can be represented by the pair253

(φ∗(s, b, τ), η∗(s, b, τ)). For consistency of notation, in the insolvent region, i.e. (s, b) ∈ B, we have254

that φ∗(s, b, τ) ≡ 1 and η∗(s, b, τ) ≡Wliq(s, b).255

2.6.2 Localization256

The domain for the value function (2.26-2.29) is Ω∞. For computational purposes, we localize this257

domain to the set of points258

(s, b, τ) ∈ Ω = [0, smax)× [−bmax, bmax]× [0, T ] , (2.32)

where smax and bmax are positive and sufficiently large. Let s∗ < smax. Define the following domains259

Ωτ0 = [0, smax]× [−bmax, bmax]× {0}
Ωs∗ = (s∗, smax]× [−bmax, bmax]× (0, T ]

Ωs0 = {0} × [−bmax, bmax]× (0, T ]

ΩB = {(s, b, τ) ∈ Ω\Ωτ0\Ωs∗\Ωs0 : Wliq(s, b) ≤ 0}
Ωin = Ω\Ωτ0\Ωs∗\Ωs0\ΩB . (2.33)

We also define the region260

Ωbmax = (0, s∗]× [−bmaxe
rmaxT ,−bmax) ∪ (bmax, bmaxe

rmaxT ]× (0, T ] ,

rmax = max(rb, r`) . (2.34)

An illustration of the spatial computational domain is given in Figure 2.1. We emphasize that we261

do not actually solve the HJB equation in Ωbmax . However, we may use an approximate value to the262
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Ωbmax

π
4

Figure 2.1: Spatial computational domain at each timestep. For ease of exposition, we have
illustrated the domain for the case where the transaction cost parameters in equation (2.18) are
c1 = c2 = 0.

solution in Ωbmax , obtained by means of extrapolation of the computed solution in Ωin, to provide263

any information required by the HJB PDE in Ω.264

We now describe the equation for the localized domains defined in (2.33) and (2.34). From265

equation (2.29), we have that, for fixed b, V (s→∞, b, 0) ' (1− c2)2s2. Now, given the PIDE266

V̂τ − LV̂ − J V̂ = 0 , (2.35)

with L,J defined in equation (2.25), making the assumption that V̂ (s, b, τ) ' A(τ)s2, when267

s→∞, for some unknown function A(τ), and substituting this asymptotic form into the PIDE268

(2.35) gives269

V̂τ = (σ2 + 2µ+ λκ2)V̂ ; s→∞
κ2 = E[(J − 1)2] . (2.36)

We assume that s∗ is selected sufficiently large so that V (s, b, τ) ' A(τ)s2 in Ωs∗ . Using equation270

(2.36), we can approximate the solution in the domain Ωs∗ by271

max

[
Vτ − (σ2 + 2µ+ λκ2)V, V −

{
inf
η∈Z

(S+,B+)∈Ω

(
M(η)V (s, b, τ)

)}]
= 0 . (2.37)

In view of the finite range of s, we replace J in equation (2.26) by the localized operator J`272

J`V =

∫ smax/s

0
p(ξ)V (ξs, b, τ) dξ . (2.38)
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Some guidelines for choosing s∗, smax which minimize the effect of the localization error for the273

jump terms can be found in [24].274

Given the initial condition (2.29), we assume that, for fixed s, V (s, b, τ) ' C(s, τ)b2, when275

|b| → ∞. Alternatively, we can write this assumption as276

V (s, |b| > |bmax|, τ) =

(
b

bmax

)2

V (s, sgn(b)bmax, τ) ; (s, b, τ) ∈ Ωbmax . (2.39)

With this assumption, we could replace the term bVb in LV by 2V at b = ±bmax. However, we find277

it conceptually clearer to define the solution as in equation (2.39) for (s, b, τ) ∈ Ωbmax . Putting this278

all together gives us the following complete localized problem :279

max

[
Vτ − LV − J`V, V − inf

η∈Z
(S+,B+)∈Ω

(M(η) V )

]
= 0 ; (s, b, τ) ∈ Ωin

max

[
Vτ − (σ2 + 2µ+ λκ2)V, V − inf

η∈Z
(S+,B+)∈Ω

(
M(η)V

)]
= 0 ; (s, b, τ) ∈ Ωs∗

max

[
Vτ −R(b) bVb, V − inf

η∈Z
(S+,B+)∈Ω

(M(η) V )

]
= 0 ; (s, b, τ) ∈ Ωs0

V (s, b, τ)− V (0,Wliq(s, b), τ) = 0 ; (s, b, τ) ∈ ΩB
V (s, b, 0)− (Wliq(s, b)− γ/2)2 = 0 ; (s, b, τ) ∈ Ωτ0

V −
(

b
bmax

)2

V (s, sgn(b)bmax, τ) = 0 ; (s, b, τ) ∈ Ωbmax

. (2.40)

The localized equations in the domains Ωbmax ,Ωs∗ are clearly approximations. However, the errors280

in regions of interest are expected be small, if smax, (smax− s∗), and bmax are sufficiently large. We281

verify this in some numerical experiments in Section 7.282

2.7 Expected Value Problem283

2.7.1 PDE Formulation284

Given the solution for the value function (2.15), with the optimal control C∗ = (φ∗(s, b, τ), η∗(s, b, τ)),285

it is also desirable to determine the quantity Ū(x, t) defined as286

Ū(x, t) = Ex,tC∗ [Wliq(T )] , (2.41)

since this information is required in order to determine the corresponding point on the efficient287

frontier.288

Let τ = T − t, U(s, b, τ) = Ū(s, b, T − τ). Using standard arguments in [15, 23], the linear289

PDE satisfied by U(s, b, τ) in the domain (s, b, τ) ∈ [0,∞) × (−∞,+∞) × [0, T ] can be described290
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by291

(1− φ∗)(Uτ − LU − JU) + φ∗(U − (M(η∗) U)) = 0 ; if (s, b) ∈ S , (2.42)

(1− φ∗)(Uτ −R(b) bUb) + φ∗(U − (M(η∗) U)) = 0 ; if s = 0 , (2.43)

U(s, b, τ) = U(0,Wliq(s, b), τ) ; if (s, b) ∈ B , (2.44)

U(s, b, 0) = Wliq(s, b) ; if τ = 0 , (2.45)

where (φ∗, η∗) given from the solution to equation (2.31).292

2.7.2 Localization293

From the initial condition (2.45), we make the assumptions that U(s, b, τ) ' A′(τ)s in Ωs∗ , and294

that295

U(s, |b| > |bmax|, τ) =

(
b

bmax

)
U(s, sgn(b)bmax, τ) ; (s, b, τ) ∈ Ωbmax . (2.46)

Following similar reasoning used to derive equation (2.40), we obtain296

(1− φ∗)(Uτ − LU − J`U) + φ∗(V −M(η∗) V ) = 0 ; (s, b, τ) ∈ Ωin ,
(1− φ∗)(Uτ − µU) + φ∗(U −M(η)U) ; (s, b, τ) ∈ Ωs∗ ,
(1− φ∗)(Uτ −R(b) bUb) + φ∗(V −M(η∗) V ) = 0 ; (s, b, τ) ∈ Ωs0 ,
U(s, b, τ)− U(0,Wliq(s, b), τ) = 0 ; (s, b, τ) ∈ ΩB ,
U −Wliq(s, b) = 0 ; (s, b, τ) ∈ Ωτ0 ,

U −
(

b
bmax

)
U(s, sgn(b)bmax, τ) ; (s, b, τ) ∈ Ωbmax .

(2.47)

Again, we remind the reader that we only solve the PDE in Ω. The values in Ωbmax , obtained by297

means of extrapolation of the computed solution in Ωin, are only used if required by the PDE in Ω.298

3 Value Function: Compact Representation and Viscosity Solu-299

tion300

3.1 Compact Presentation301

In general, we cannot expect solutions to HJB equations of the form (2.40) to be sufficiently smooth.302

Hence, we seek the viscosity solution of equations (2.40). To make the statement of the problem303

more precise in the context of viscosity solutions, we now write the localized problem for the304

value function, i.e. equations (2.40), in a compact form, which includes the terminal and boundary305

equations in a single equation. To this end, define x = (s, b, τ), and let DV (x) = (Vs, Vb, Vτ ) and306

D2V (x) = Vss. In addition, let x+ = (S+(s, b), B+(s, b), τ), and307

MV (x) = inf
η∈Z
x+∈Ω

(M(η) V (x)) . (3.1)

We then write equations (2.40) as308

FV ≡ F (x, V (x), DV (x), D2V (x),MV (x),J`V (x)) = 0 , (3.2)
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where the operator FV is defined by309

FV =



FinV ≡ Fin(x, V (x), DV (x), D2V (x),MV (x),J`V (x)), x ∈ Ωin,

Fs∗V ≡ Fs∗(x, V (x), DV (x),MV (x)), x ∈ Ωs∗ ,

Fs0V ≡ Fs0(x, V (x), DV (x),MV (x)), x ∈ Ωs0 ,

FB ≡ FB(x, V (x)), x ∈ ΩB,

Fτ0V ≡ Fτ0(x, V (x)), x ∈ Ωτ0 ,

FbmaxV ≡ Fbmax(x, V (x), DV (x), D2V (x),MV (x),J`V (x)), x ∈ Ωbmax .

(3.3)

Here,310

FinV = max

[
Vτ − LV − J`V, V −MV

]
, (3.4)

Fs∗V = max

[
Vτ − (σ2 + 2µ+ λκ2)V, V −MV

]
, (3.5)

Fs0V = max

[
Vτ −R(b) bVb, V −MV

]
, (3.6)

FBV = V − V (0,Wliq(s, b), τ), (3.7)

Fτ0V = V − (Wliq(s, b)− γ/2)2 , (3.8)

FbmaxV = V −
(

b

bmax

)2

V (s, sgn(b)bmax, τ) . (3.9)

Definition 3.1 (Value Function Problem). The HJB equation for the value function (2.15) on the311

localized domain Ω ∪ Ωbmax is given by312

F (x, V (x), DV (x), D2V (x),MV (x),J`V (x)) = 0 . (3.10)

Equation (3.10) includes the HJB PDE in the interior and all the boundary conditions in equation313

(2.40).314

3.2 Viscosity Solution315

Before defining the viscosity solution of equation (3.10), we first recall the definitions of upper and316

lower semi-continuous envelopes. Given a function f : Ω̄→ R, Ω̄ ⊆ Rn, the upper semi-continuous317

envelope of f , denoted by f∗, is defined as318

f∗(x̄) = lim
r̄→0+

sup
{
f(y)

∣∣ y ∈ B̄(x̄, r̄) ∩ Ω̄
}

(3.11)

where B̄(x̄, r̄) = {y ∈ Rn
∣∣ |x̄ − y| < r̄}. We also have the obvious definition for a lower319

semi-continuous envelope f∗(x̄).320

We also define321

lim sup
y→x̄

f(x̄) = lim
r̄→0+

sup
{
f(y)

∣∣ y ∈ B̄(x̄, r̄) ∩ Ω̄− {x̄}
}
, (3.12)

with the corresponding definition of lim inf.322
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Definition 3.2 (Viscosity solution of equation (3.10)). A locally bounded function V : Ω∪Ωbmax →323

R is a viscosity sub-solution (resp. super-solution) of PDE (3.10) if, for all test functions φ(x) ∈324

C∞(Ω ∪ Ωbmax), and all x, such that V − φ has a strict global maximum (resp. minimum) with325

φ(x) = V ∗(x) (resp. V∗(x)), we have326

F∗(x, φ(x), Dφ(x), D2φ(x),Mφ(x),J`φ(x)) ≤ 0 , (3.13)

(resp.327

F ∗(x, φ(x), Dφ(x), D2φ(x),Mφ(x),J`φ(x)) ≥ 0
)
. (3.14)

V is a viscosity solution if it is both a viscosity sub-solution and a viscosity super-solution.328

Remark 3.1 (Equivalent definitions: viscosity solutions). There are many equivalent definitions329

of viscosity solutions. For example, one can replace φ(x) ∈ C∞(Ω∪Ωbmax) by φ(x) ∈ C2(Ω∪Ωbmax)330

[25]. It is also possible to replace φ(x) by V ∗(x) (resp. V∗(x)) in the non-local terms J`φ(x) and331

Mφ(x) [26]. This is possible, since these terms contain no derivatives. However, for the purposes332

of verifying consistency of a numerical scheme, it is convenient to use Definition 3.2. Note that333

F (·) is proper and degenerate elliptic [27].334

We make the following assumption.335

Assumption 3.1 (Strong Comparison). The value function as given in Definition 3.1 satisfies a336

strong comparison result in Ωin∪Γ, where Γ ⊆ ∂Ωin. Hence, a unique continuous viscosity solution337

exists in Ωin ∪ Γ.338

Remark 3.2. Strong comparison has been proven for similar impulse control problems in [17].339

However, some of the assumptions in [17] do not appear to hold for our particular problem. In340

general, the viscosity solution can be discontinuous on parts of the boundary Γ. Note that the341

precise specification of Γ has virtually no impact on a computational algorithm. The boundary data342

is either used or is irrelevant. In all cases, we consider the computed solution as the limiting value343

approaching ∂Ωin from the interior.344

4 Discretization345

4.1 Computational grid346

We discretize our problem on the localized domain Ω. Define a set of nodes in the s-direction by347

{s1, s2, . . . , simax}, and in the b-direction {b1, . . . , bjmax}. Denote the nth discrete timestep by τn.348

For ease of notation, in the following, we assume constant timestep sizes, i.e. ∆τ = τn+1 − τn349

is constant. However, the actual implementation could make use of variable timestep sizes. The350

nodes in the s- and b-directions are not necessarily equally spaced.351

Let ∆smax = maxi(si+1 − si), ∆bmax = maxj(bj+1 − bj), ∆τmax = maxn(τn+1 − τn). In352

addition, we suppose that the control η in equation (2.18) is discretized so that ηj = bj , with353

∆ηmax = maxj(ηj+1 − ηj) = ∆bmax. We assume that there is a positive discretization parameter h354

such that355

∆smax = C1h ; ∆bmax = C2h ; ∆τmax = C3h ; ∆ηmax = C4h , (4.1)
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where Cp, p = 1, . . . , 4, are positive and independent of h.356

We denote by V (si, bj , τ
n) the exact solution to the non-linear value equation (3.10) evaluated357

at the reference node (si, bj , τ
n), and by Vh(s, b, τ) the approximate solution at the point (s, b, τ)358

obtained using the discretization parameter h. We refer to the approximate solution at the reference359

node (si, bj , τ
n) as V n

i,j ≡ Vh(si, bj , τ
n). In the event that we need to evaluate Vh at a point other than360

nodal values, linear interpolation is used. Similarly, Uh(si, bj , τ
n) = Uni,j is the approximation to361

U(si, bj , τ
n), which is the solution to the linear expected value equation (2.47). Let N = imax×jmax362

be the number of nodes in the computational grid, and let V n be the N length vector at time τn,363

i.e.364

V n = [V n
1,1, . . . , V

n
imax,1, . . . , V

n
1,jmax

, . . . , V n
imax,jmax

]′ , (4.2)

with a similar definition of Un.365

We denote by Zh the discrete set of admissible controls366

Zh = {b1, . . . , bjmax} ∩ Z . (4.3)

We determine the infimum of the intervention operator by a linear search over the discrete set367

of controls (4.3). Using this approach, we can guarantee convergence to the viscosity solution368

as h → 0. The obvious alternative is the use of a 1-D optimization algorithm. However, this369

alternative cannot guarantee convergence to the global minimum. More specifically, in numerical370

experiments with this alternative approach, we have seen convergence to local minima, and hence,371

non-convergence to the viscosity solution.372

4.2 Discretization373

As example, we give the details of the discretization for Fin in Ωin as given in equation (3.4). The374

derivation of the discretizations of F in the remaining sub-domains of Ω, as well as the discretization375

of the expected value equation for U defined in (2.47), is similar, and hence, is omitted.376

Let377

PV =
σ2s2

2
Vss + (µ− λκ)sVs − λV , (4.4)

and recall that378

LV = PV +R(b)bVb . (4.5)

We denote by Ph the discrete approximation to P. For Ph, we use the standard three point379

approximations to the derivatives in equation (2.25), with central, forward and backward differenc-380

ing. Central differencing is used as much as possible, but we require that the scheme be a positive381

coefficient method [28]:382

PhV n
i,j = αi,jVi−1,j + βi,jV

n
i+1,j − (αi,j + βi,j + λ)V n

i,j

αi,j ≥ 0 ; βi,j ≥ 0 . (4.6)

Define (J`)h to be the discrete form of the localized jump operator (2.38). We use a midpoint rule383

to approximate this integral, followed by a linear interpolation onto an equally spaced grid. This384
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facilitates use of an FFT to evaluate the integral [24]. This results in a discretization of the form385

(J`)hV n
i,j =

∑
k

qi,jk V
n
k,j (4.7)

0 ≤ qi,jk ≤ 1 ;
∑
k

qi,jk ≤ 1 . (4.8)

Equations (4.8) hold since p(ξ) defined in (2.1) is a probability density. For details regarding the386

discretization of the jump term, we refer the reader to [24].387

The termR(b)Vb in equation (4.5) is handled by a semi-Lagrangian timestepping scheme, details388

of which can be found in Appendix B. Using the implicit timestepping method, our discretization389

for equation (3.4) at reference point xn+1
i,j = (si, bj , τ

n+1) ∈ Ωin, is given by390

V n+1
i,j

∆τ
− PhV n+1

i,j − (J`)hV n+1
i,j =

Ṽ n
i,j

∆τ

Ṽ n
i,j =

(
min

[
Vh(si, bje

R(bj)∆τ , τn), min
B+∈Zh

(S+,B+)∈Ω

Vh(S+(si, bje
R(bj)∆τ , B+), B+, τn)

])
. (4.9)

It is important to note that the semi-Lagrangian timestepping decouples the PIDE Vτ = LV +J`V391

for each bj value, j = 1, . . . , jmax. More specifically, for a fixed j, once the quantity Ṽ n
i,j , i =392

1, . . . , imax, is computed, the discretized equations for the PIDE corresponding to bj can then be393

obtained from (4.9), and can be solved independently from those of other non-controlled PIDEs.394

Note that, equation (4.9) is the form actually used in the computation, and has a simple intuitive395

interpretation. An intuitive derivation of (4.9) is presented in Appendix B. In Section 5.1, we prove396

that discretization (4.9) is a consistent approximation to equation (3.4).397

Remark 4.1 (Solution of the discretized equations). Note that the semi-Lagrangian discretization398

(4.9) requires only the solution of local non-linear optimization problems and solution of linear399

equations at each step. In order to avoid a dense matrix solve (due to the presence of the jump400

term) we use a fixed-point iteration to solve the discrete equations, details of which can be found in401

[24]. Regarding the the convergence of the fixed-point iteration, since402

1. αi,j ≥ 0 and βi,j ≥ 0 (see 4.6),403

2. 0 ≤ qi,jk ≤ 1, and
∑

k q
i,j
k ≤ 1, (see 4.8)404

3. the weights for linear interpolation are in [0, 1],405

4. µ > 0 and λ > 0,406

the fixed point iteration is guaranteed to converge. For proof details, see [24].407

The dense matrix-vector product (arising from the jump term) is computed in O(1/h2| log h|)408

operations using an FFT [24].409

5 Value Function: Convergence to the Viscosity Solution410

5.1 Consistency411

While equation (4.9) is convenient for computation, it is not in a form amenable for analysis. For412

purposes of proving consistency, it is more convenient to rewrite equation (4.9) in an equivalent413
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form. Let G(·) be the discrete approximation to Fin for x ∈ Ωin. Let xn+1
i,j = (si, bj , τ

n+1). We414

rearrange equation (4.9) so that our formal discretization of Fin is415

G
(
h,xn+1

i,j , V n+1
i,j ,

{
V n+1
a,b

}
a6=i

or b6=j
,
{
V n
k,`

})

= max

[
V n+1
i,j − Vh(si, bje

R(bj)∆τ , τn)

∆τ
− PhV n+1

i,j − (J`)hV n+1
i,j ,

V n+1
i,j − min

B+∈Zh

(S+,B+)∈Ω

Vh(S+(si, bje
R(bj)∆τ , B+), B+, τn)−∆τPhV

n+1
i,j −∆τ(J`)hV n+1

i,j

]
= 0 ; xn+1

i,j ∈ Ωin . (5.1)

It is easily seen that a solution of equation (5.1) is a solution of equation (4.9). For x ∈ Ωs∗ , our416

formal discretization of Fs∗ is given by417

G
(
h,xn+1

i,j , V n+1
i,j ,

{
V n+1
a,b

}
a6=i

or b 6=j
,
{
V n
k,`

})

= max

[
V n+1
i,j − Vh(si, bj), τ

n)

∆τ
− (σ2 + 2µ+ λκ2)V n+1

i,j ,

V n+1
i,j − min

B+∈Zh

(S+,B+)∈Ω

Vh(S+(si, bj , B
+), B+, τn)−∆τ(σ2 + 2µ+ λκ2)V n+1

i,j

]
= 0 ; xn+1

i,j ∈ Ωs∗ . (5.2)

For x ∈ Ωs0 , we approximate Fs0 by418

G
(
h,xn+1

i,j , V n+1
i,j ,

{
V n+1
a,b

}
a6=i

or b 6=j
,
{
V n
k,`

})

= max

[
V n+1
i,j − Vh(si, bje

R(bj)∆τ , τn)

∆τ
, V n+1

i,j − min
B+∈Zh

(S+,B+)∈Ω

Vh(S+(si, bje
R(bj)∆τ , B+), B+, τn)

]
= 0 ; xn+1

i,j ∈ Ωs0 . (5.3)

Finally, we have419

G(·) = 0 =


V (si, bj , τ

n+1)− V (0,Wliq(si, bj), τ
n+1) , xn+1

i,j ∈ ΩB ,

V (si, bj , 0)− (Wliq(si, bj)− γ/w)2 , xn+1
i,j ∈ Ωτ0 ,

V (si, b, τ
n+1)−

(
b

bmax

)2
V (si, sgn(b)bmax, τ

n+1) , xn+1
i,j ∈ Ωbmax .

(5.4)

Remark 5.1 (Size of Ωbmax). From the above discretization, we can see that Ωbmax needs only be420

the region421

Ωbmax = (0, s∗]× [−bmaxe
rb∆τ ,−bmax) ∪ (bmax, bmaxe

r`∆τ ]× (0, T ] , (5.5)

in order to provide all the information necessary. If we define Ωbmax as in equation (5.5), then the422

measure of Ωbmax tends to zero as h→ 0.423
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Lemma 5.1 (Local consistency). Suppose the mesh, timestep parameter, and control discretiza-424

tion satisfy equations (4.1-4.3), then for any C∞ function φ(s, b, τ) in Ω ∪ Ωbmax, with φn+1
i,j =425

φ(si, bj , τ
n+1) = φ(xn+1

i,j ), and for h, ψ sufficiently small, ψ a constant, we have that426

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,` + ψ

})

=



Finφ
n+1
i,j +O(h) +O(ψ), (si, bj , τ

n+1) ∈ Ωin ,

Fs∗φ
n+1
i,j +O(h) +O(ψ), (si, bj , τ

n+1) ∈ Ωs∗ ,

Fs0φ
n+1
i,j +O(h) +O(ψ), (si, bj , τ

n+1) ∈ Ωs0 ,

FBφ
n+1
i,j +O(ψ), (si, bj , τ

n+1) ∈ ΩB ,

Fτ0φ
n+1
i,j +O(ψ), (si, bj , τ

n+1) ∈ Ωτ0 ,

Fbmaxφ
n+1
i,j +O(ψ), (si, bj , τ

n+1) ∈ Ωbmax .

(5.6)

Proof. To be precise, define the following notation.427

Pφn+1
i,j ≡ Pφ(si, bj , τ

n+1) : ; (φb)
n+1
i,j ≡ φb(si, bj , τn+1)

(φτ )n+1
i,j ≡ φτ (si, bj , τ

n+1) ; J`φn+1
i,j ≡ J`φ(si, bj , τ

n+1) . (5.7)

We will also use the notation φh(s, b, τn) and (φ(·) + ψ)h to denote the linearly interpolated value428

of φ and φ(·) + ψ on the grid with parameter h, at timestep τn. Note that429

(φ(si, bje
R(bj)∆τ , τn) + ψ)h = φh(si, bje

R(bj)∆τ , τn) + ψ,

Ph(φn+1
i,j + ψ) = Phφn+1

i,j − λψ ,

(J`)h(φn+1
i,j + ψ) = (J`)hφn+1

i,j +O(ψ) , (5.8)

and consider the case where xn+1
i,j = (si, bj , τ

n+1) ∈ Ωin, so that, from equation (5.1)430

G
(
h,xn+1

i,j φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,` + ψ

})

= max

[
φn+1
i,j − φh(si, bje

R(bj)∆τ , τn)

∆τ
− Phφn+1

i,j − (J`)hφn+1
i,j +O(ψ),

φn+1
i,j − min

B+∈Zh

(S+,B+)∈Ω

φh(S+(si, bje
R(bj)∆τ , B+), B+, τn)−∆τPhφn+1

i,j −∆τ(J`)hφn+1
i,j +O(ψ)

]
= 0 . (5.9)

Noting that431

φh(si, bje
R(bj)∆τ , τn) = φni,j +R(bj) bj(φb)

n
i,j∆τ +O(h2) ;

φn+1
i,j − φni,j

∆τ
= (φτ )n+1

i,j +O(h) ; Phφn+1
i,j = Pφn+1

i,j +O(h) ;

(J`)hφn+1
i,j = J`φn+1

i,j +O(h) ; S+(si, bje
R∆τ , B+) = S+(si, bj , B

+) +O(h) , (5.10)
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then equation (5.9) becomes432

G
(
h,xn+1

i,j φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b6=j
,
{
φnk,` + ψ

})
= max

[
(φτ )n+1

i,j −R(bj) bj(φb)
n
i,j − Pφn+1

i,j − J`φn+1
i,j +O(ψ) +O(h),

φn+1
i,j − min

B+∈Zh

(S+,B+)∈Ω

φh(S+(si, bje
R(bj)∆τ , B+), B+, τn)−∆τPφn+1

i,j −∆τJ`φn+1
i,j +O(ψ) +O(h)

]

= max

[
(φτ )n+1

i,j −R(bj) bj(φb)
n+1
i,j − Pφn+1

i,j − J`φn+1
i,j +O(ψ) +O(h),

φn+1
i,j − min

B+∈Zh

(S+,B+)∈Ω

φh(S+(si, bje
R(bj)∆τ , B+), B+, τn) +O(ψ) +O(h)

]

= max

[
(φτ )n+1

i,j − Lφn+1
i,j − J`φn+1

i,j ,

φn+1
i,j − min

B+∈Zh

(S+,B+)∈Ω

(φh(S+(si, bj , B
+), B+, τn) +O(h))

]
+O(h) +O(ψ)

= 0 . (5.11)

Noting that since η = B+, φ is smooth, and Z is compact, we have that433

min
B+∈Zh

(S+,B+)∈Ω

φh(S+(si, bj , B
+), B+, τn) =

(
inf

B+∈Z
(S+,B+)∈Ω

φ(S+(si, bj , B
+), B+, τn+1)

)
+O(h)

= Mφn+1
i,j +O(h) . (5.12)

Using equation (5.12) in equation (5.11) gives us the final result434

G
(
h,xn+1

i,j φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b6=j
,
{
φnk,` + ψ

})
= max

[
(φτ )n+1

i,j − Lφn+1
i,j − J`φn+1

i,j , φn+1
i,j −Mφn+1

i,j

]
+O(h) +O(ψ)

= Finφ
n+1
i,j +O(h) +O(ψ) . (5.13)

Following similar steps, we can easily prove the remaining results in equation (5.6).435

Definition 5.1 (Consistency: viscosity sense). Suppose the mesh, timestep parameter, and control436

discretization satisfy equations (4.1-4.3). For any C∞ function φ(s, b, τ) in Ω∪Ωbmax, with φn+1
i,j =437

φ(si, bj , τ
n+1) = φ(xn+1

i,j ), the numerical scheme G(·) (equations (5.1-5.4)) is consistent in the438

viscosity sense, if, ∀x̂ = (ŝ, b̂, τ̂) with xn+1
i,j = (si, bj , τ

n+1), the following holds439

lim sup
h→0
ψ→0

xn+1
i,j →x̂

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b6=j
,
{
φnk,` + ψ

})

≤ F ∗(x̂, φ(x̂), Dφ(x̂), D2φ(x̂),Mφ(x̂),J`φ(x̂)),

(5.14)
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and440

lim inf
h→0
ψ→0

xn+1
i,j →x̂

G
(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b6=j
,
{
φnk,` + ψ

})

≥ F∗(x̂, φ(x̂), Dφ(x̂), D2φ(x̂),Mφ(x̂),J`φ(x̂)) .

(5.15)

Lemma 5.2 (Consistency of Scheme (5.1-5.4)). Provided all the conditions for Lemma 5.1 are441

satisfied then scheme (5.1-5.4) is consistent according to definition 5.1.442

Proof. This follows in straightforward fashion from Lemma 5.1, using the same steps as in, for443

example [29].444

5.2 Monotonicity and Stability445

Monotonicity is defined as follows446

Definition 5.2 (Monotonicity). The numerical scheme (5.1-5.4) is monotone if for all Y n
i,j ≥447

Xn
i,j , ∀i, j, n448

G
(
h,xn+1

i,j , V n+1
i,j ,

{
Y n+1
a,b

}
a6=i

or b6=j
,
{
Y n
k,`

})
≤ G

(
h,xn+1

i,j , V n+1
i,j ,

{
Xn+1
a,b

}
a6=i

or b 6=j
,
{
Xn
k,`

})
.(5.16)

Lemma 5.3 (Monotonicity). If the scheme (5.1-5.4) has the properties449

• The positive coefficient condition is satisfied (equation (4.6)).450

• The discretization of J` has quadrature weights satisfying (4.8).451

• Linear interpolation is used, if necessary, to compute Vh(·),452

then the discretization is monotone, according to Definition 5.2.453

Proof. This is easily done using the same steps as in [30].454

Finally, the discretization (5.1-5.4) is `∞-stable, which is a consequence of the following Lemma.455

Lemma 5.4 (Stability). If the conditions for Lemma 5.3 are satisfied, then the discretization456

(5.1-5.4) satisfies457

0 ≤ V n
i,j ≤ ‖V 0‖∞ermaxT

rmax = max(r`, rb)

(si, bj , τ
n) ∈ Ω , (5.17)

for 0 ≤ n ≤ N , T = N∆τ , as ∆τ → 0, h→ 0.458

Proof. This follows from a straightforward maximum analysis (e.g. the same steps as in [30]),459

since Ω is a bounded domain. The term ermaxT in equation (5.17) is a result of the evaluation of460

Vh(si, bje
R(bj)∆τ , τn) using equation (5.4) at points near ±bmax.461
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5.3 Convergence462

Theorem 5.1 (Convergence). Assume that discretization (5.1-5.4) satisfies all the conditions re-463

quired for Lemmas 5.2, 5.3 and 5.4 and that Assumption 3.1 holds, then scheme (5.1-5.4) converges464

to the unique continuous viscosity solution of Problem 3.1 in Ωin ∪ Γ.465

Proof. Since the scheme is monotone, consistent and `∞-stable, this follows from the results in466

[16].467

Remark 5.2. Since we have assumed strong comparison holds only in Ωin∪Γ, then we can guarantee468

uniqueness and continuity only in Ωin ∪ Γ.469

6 Implementation Details470

6.1 Complexity471

Examination of equation (4.9) reveals that each timestep requires472

• Solution of a local optimization problem at each node (evaluation of Ṽ n
i,j).473

• A linear time advance step. At each time step, each fixed point iteration for the solution474

of the discretized equations requires 2jmax FFT evaluations and solution of jmax tridiagonal475

systems. This is a result of implicit treatment of the jump term [24].476

In order to solve the local optimization problems, we use simple linear search to find the minimum477

for B+ ∈ Zh. We have found that using a continuous 1-D optimization method is unreliable,478

and often converges to a local, not global, minimum. The complexity of the time advance is479

thus dominated by the solution of the local optimization problems. Each optimization problem is480

resolved by evaluating the objective function O(1/h) times. There are O(1/h2) nodes, and O(1/h)481

timesteps giving a total complexity of O(1/h4).482

6.2 Construction of the Efficient Frontier483

At each timestep, we solve a discrete approximation to equation (2.31). The optimal controls484

(φ∗, η∗) at each node are then used to solve a discrete approximation to the expected value equation485

(2.47) for this same timestep. We continue to alternate solution of equations (2.31) and equation486

(2.47) at each timestep until the stopping time is reached.487

For fixed γ, let488

V0(Winit) = Vh(s = 0, b = Winit, τ = T )

U0(Winit) = Uh(s = 0, b = Winit, τ = T )

Winit = initial wealth . (6.1)

From489

V0(Winit) =

(
Et=0
C∗ [(Wliq(T )− γ/2)2]

)
h

U0(Winit) =

(
Et=0
C∗ [Wliq(T )]

)
h

, (6.2)
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where (·)h refers to a discrete approximation to the expression in the brackets, we have that490 (
V art=0

C∗ [Wliq(T )]

)
h

= V0(Winit) + γU0(Winit)−
γ2

4
− U0(Winit)

2(
Et=0
C∗ [Wliq(T )]

)
h

= U0(Winit) , (6.3)

which gives us a single point YQ(γ). Repeating this for many values of γ gives us an approximation491

to YQ (see Theorem 2.1). Finally, the efficient frontier is constructed from the upper left convex492

hull of YQ [21] to remove spurious points. In our case, it turns out that all the points in YQ are493

Pareto points (i.e. there are no spurious points).494

Note that the smallest possible value of γ is495

γmin = 2Winite
r`T , (6.4)

which corresponds to an infinitely risk averse investor (ρ∗ → ∞, see equation (2.16)), who invests496

only in the risk-free asset. In practice, the interesting part of the efficient frontier is in the range497

γ ∈ [γmin, 10γmin].498

Remark 6.1 (Computational grid). For ease of exposition, we have outlined the discretization499

method for a rectangular (s, b) grid. However, since the semi-Lagrangian timestepping decouples500

each PIDE for each bj value, there is no need to use the same s grid for every bj value. Our actual501

implementation makes use of this to concentrate nodes near the liquidation boundary. Consequently,502

it is a simple matter to handle cases where the liquidation boundary Wliq(s, b) = 0 is an arbitrary503

curve.504

6.3 An Improved Linear Interpolation Scheme505

Recall that, when solving the value function problem (2.15) or the expected value problem (2.41) on506

a computational grid, it is usually required to evaluate Vh(·) or Uh(·), respectively, at points other507

than a node of the computational grid. Hence, interpolation must be employed. As mentioned508

earlier, to preserve the monotonicity of the numerical schemes, linear interpolation on nodal values509

is used in our implementation. In this subsection, we discuss a special linear interpolation scheme510

applied along the b-direction at s = 0 which, as illustrated by numerical results in Subsection 7.1,511

can significantly improve the accuracy of the interpolation.512

6.3.1 Value Function513

Recall that the value function is the viscosity solution of the HJB PDE equation (2.40). Recall the514

initial condition515

V (s, b, 0) = (Wliq(s, b)− γ/2)2 ; if τ = 0 .

Following from this equation, we have516

Vh(0, γ/2, τ0) = 0 , (6.5)

even in the presence of transaction costs. Note that the optimal rebalancing at time τ0 does not517

reallocate the point (s, b) = (0, γ/2), since the minimum value of the objective function is attained518

at this point.519
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Next, we draw the reader’s attention to the fact that, at s = 0, the PIDE degenerates to520

the first-order hyperbolic equation Vτ = R(b) bVb. Note that this hyperbolic equation is part of521

Equation (2.27). The exact solution of this first-order hyperbolic equation must satisfy522

V (0, be−R(b)τ , τ) = V (0, b, 0) . (6.6)

Combining (6.5) and (6.6), we obtain523

Vh(0, (γ/2) e−R(γ/2)τn , τn) = Vh(0, γ/2, τ0) = 0 . (6.7)

That is, for any timestep τn, the exact solution for the value function problem at the special point524

(s, b) = (0, (γ/2) e−R(γ/2)τn) is zero. Since the value function can never be less than zero, no525

reallocation takes place at this node. Figure 6.1 (a) illustrates how this special point moves along526

the b-direction from the time τ0 to τn. Below, we discuss how the result (6.7) could be incorporated527

into the (linear) interpolation scheme.528

Assume that we want to proceed from timestep τn to τn+1, and that we want to compute529

Vh(0, b̄, τn), where b̄ is neither a grid point in the b-direction nor the special value (γ/2) e−R(γ/2)τn .530

This situation could happen when solving Equation (2.27) or the local optimization problem on531

the right-side of (4.9). Furthermore, assume that bj < b̄ < bj+1 for some grid points bj and bj+1532

in the b-direction. For presentation purposes, let bspecial = (γ/2) e−R(γ/2)τn and Vspecial = 0. A533

linear interpolation scheme for computing Vh(0, b̄, τn) is presented in Algorithm 6.1. Figure 6.1 (b)534

provides a pictorial illustration of this interpolation scheme.535

Algorithm 6.1 Improved linear interpolation scheme along the b-direction at s = 0 for the
function value problem (2.15).

1: if bspecial < bj or bspecial > bj+1 then
2: set bleft = bj , Vleft = Vh(0, bj , τ

n), bright = bj+1, and Vright = Vh(0, bj+1, τ
n);

3: else
4: if bspecial ≤ b̄ then
5: set bleft = bspecial, Vleft = Vspecial, bright = bj+1, and Vright = Vh(0, bj+1, τ

n);
6: else
7: set bleft = bj , Vleft = Vh(0, bj+1, τ

n), bright = bspecial, and Vright = Vspecial;
8: end if
9: end if

10: apply linear interpolation to (bleft, Vleft) and (bright, Vright) to compute Vh(0, b̄, τn);

6.3.2 Expected Value Problem (2.41)536

Following the same lines of reasoning used for the function value problem (2.15), we have that537

Uh(0, γ/2, τ0) = γ/2 , (6.8)

and538

Uh(0, (γ/2) e−R(γ/2)τn , τn) = Uh(0, γ/2, τ0) = γ/2 . (6.9)

even in the presence of transaction costs. (Note Equation (2.43) and the first first-order hyperbolic539

equation Uτ = R(b) bUb.) Algorithm 6.1 with bspecial = (γ/2) e−R(γ/2)τn and Vspecial = γ/2 can be540

used to compute Uh(0, b̄, τn), where b̄ is neither a grid point in the b-direction nor the special value541

(γ/2) e−R(γ/2)τn .542
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Figure 6.1: (a) Special interpolation point movements in backward time; (b) Pictorial illustration
of the (linear) interpolation scheme described in Algorithm 6.1

7 Numerical Examples543

In this section, we present selected numerical results of our PDE approach applied to the continuous544

time mean-variance portfolio allocation problem. For all the experiments, unless otherwise noted,545

the details of grid and timestep refinement levels used are given in Table 7.1.

Refinement Timesteps S Nodes B Nodes

0 50 58 115
1 100 115 229
2 200 229 457
3 400 457 913

Table 7.1: Grid and timestep refinement levels used during numerical tests. On each refinement,
a new grid point is placed halfway between all old grid points and the number of timesteps is doubled.
A constant timestep size is used. smax = 20000, bmax = 10000, s∗ = 10000.

546

7.1 Effects of the improved interpolation scheme547

In this subsection, we discuss the effects on the numerical results of the linear interpolation scheme548

described in Subsection 6.3, where, at each time τn, exact boundary conditions are used for the549

special point (s, b) = (0, (γ/2) e−R(γ/2)τn). As an illustrating example, we consider the no-jump550

case with data in Table 7.2, with the exception that trading continues even if insolvent. This allows551
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us to compare with the exact closed form solution [1, 2].552

Remark 7.1 (Unbounded expected value). For this example, the expected value becomes un-553

bounded, violating one of the conditions needed to apply Theorem 2.1. However, in this case,554

we have a closed form solution available, which confirms that there are no spurious points on the555

computed efficient frontier.556

Figure 7.1 (a) presents the numerical efficient frontiers obtained using standard linear interpo-557

lation. The exact efficient frontier is constructed using the expression in [1, 2]. It is clear that,558

while the numerical efficient frontiers agree well with the exact efficient frontier for relatively large559

standard deviations, they are very inaccurate for small standard deviations. More specifically, it560

appears that, in this case, the numerical methods were not able to construct, to within the accuracy561

of methods, the special point on the exact efficient frontier562

(V arx,tC∗ [Wliq(T )], Ex,tC∗ [Wliq(T )]) = (0, 100e10×0.0445) ≈ (0, 156.049). (7.1)

This trivial point corresponds to the case where the investor invests only in the bond, and not in563

the risky asset (hence, there is no risk).564

Figure 7.1 (b) presents the numerical efficient frontiers obtained with the improved linear in-565

terpolation scheme. More specifically, at each timestep τn, for interpolation along the b-direction566

at s = 0, Algorithm 6.1 is utilized, and, otherwise, standard linear interpolation is used. It is ob-567

vious that the numerical efficient frontiers obtained with the improved linear interpolation scheme568

agree very well with the exact efficient frontier, even for small standard deviations. In particular,569

the special point on the exact efficient frontier (7.1) is now approximated accurately. This result570

highlights the importance of using exact boundary conditions (where available) for linear interpo-571

lation in constructing accurate numerical efficient frontiers. In all our numerical experiments in572

this section, unless otherwise stated, the improved linear interpolation scheme is used.573

7.2 Validation Examples574

In this subsection, we provide select examples to validate our proposed numerical approach. For575

comparison purposes, we only consider several special cases of the continuous time mean-variance576

portfolio allocation problem where exact efficient frontiers can be constructed.577

7.2.1 No jumps, insolvency not allowed, no maximum leverage, no transaction costs578

We consider the example where (i) the underlying asset follows a GBM without jumps, (ii) insol-579

vency is not allowed, (iii) qmax = ∞, and (iv) no transaction costs. Input parameters and data580

for this test is given in Table 7.3. In this case, exact efficient frontiers can be constructed using581

algorithms in [4]. That is, given a value for the mean, the exact standard deviation of the point582

on the efficient frontier having that mean can be found. Alternatively, one could fix the standard583

deviation and compute the exact mean.584

Table 7.4 presents computed means and standard deviations for different refinement levels when585

γ = 800. To provide an estimate of the convergence rate of the algorithm, we compute the “change”586

as the difference in values from the coarser grid and the “ratio” as the ratio of changes between587

successive grids. The numerical results indicate first-order convergence is achieved for the algorithm.588

589
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Jumps No Jumps

Investment Horizon T 10 10
Lending rate r` .0445 .0445
Borrowing rate rb .0445 .0445
Trading ceases if insolvent (2.23) yes yes
Volatility σ 0.1765 .281751
Drift µ .0795487 .0795487
Initial Wealth 100 100
Maximum (Risky Asset)/Wealth Ratio qmax ∞ ∞
ν -.788325 N/A
λ .0585046 N/A
ζ .450500 N/A
Fixed Transaction Cost c1 0.0 0.0
Proportional Transaction Cost c2 0.0 0.0

Table 7.2: Input parameters and data for comparison of the jump and no jump cases. Effective
volatility for the no jump case based on jump parameters and computed as in [31]. For the no-jumps
case, insolvency is not allowed. For the jump case, immediate liquidation is enforced in the case of
insolvency.

Investment Horizon 10
Lending rate rl .04
Borrowing rate rb .04
Trading ceases if insolvent (2.23) yes
Volatility σ 0.15
Drift µ 0.15
Initial Wealth 100
Maximum (Risky Asset)/Wealth Ratio qmax ∞
ν N/A
λ 0.0
ζ 0.0
Fixed Transaction Cost c1 0.0
Proportional Transaction Cost c2 0.0

Table 7.3: No-jump test case. Input parameters and data for the validation test in Subsubsec-
tion 7.2.1.

Of course, we would like to verify that the numerical solution converges to the known exact590

solution in this case. However, Table 7.4 shows convergence for a fixed γ. The exact solution in591

[4] gives points on the efficient frontier, i.e. given a value of the mean, then the standard deviation592

is determined. One way around this problem would be to use a very fine grid to construct a593

numerical solution for fixed γ, and then verify that the standard deviation is consistent with the594

exact standard deviation. However, we were not able to compute benchmark means (or standard595

deviations) on a grid finer than the finest grid in Table 7.1, due to the high computational cost.596
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Figure 7.1: Efficient frontier, no-jump cases, data in Table 7.2, with the exception that trading
continues if insolvent. The exact from [1, 2] is used. Close-up of efficient frontier for small standard
deviations. (a) standard linear interpolation. (b) improved interpolation method, using the exact
boundary condition at one point along the s = 0 boundary (see Subsection 6.3), otherwise standard
linear interpolation.

Refine Mean Change Ratio Standard Change Ratio
Deviation

0 377.714323 62.069472
1 381.379938 3.665615 56.292507 -5.776965
2 383.104304 1.724366 2.1 53.503351 -2.789156 2.1
3 383.966487 0.862182 2.0 52.108774 -1.394578 2.0

Table 7.4: Validation test (data in Table 7.3), γ = 800. No jumps, insolvency not allowed, no
maximum leverage, no transaction costs

In order to reconcile these two different forms of the solution, we proceed as follows.597

1. Step 1: apply extrapolation to the numerical means in Table 7.4, assuming first-order con-598

vergence (which is what we observe), to obtain a benchmark mean.599

2. Step 2: compute the corresponding benchmark standard deviation using algorithms in [4] and600

the mean obtained in Step 1.601

3. Step 3: check whether the numerical standard deviations in Table 7.4 exhibit first-order602

convergence to the benchmark standard deviation obtained in Step 2.603

From Table 7.4, the benchmark mean is 384.828663. Using algorithms in [4], the corresponding604
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benchmark standard deviation is 50.686326. Table 7.5 presents the results of the above-described605

convergence check. Here, we compute the “error” as the difference in values between computed606

standard deviations and the benchmark value. Clearly, the numerical standard deviations exhibit607

first-order convergence to the benchmark value.

Refine Standard Deviation Error Ratio

0 62.069472 11.383145
1 56.292507 5.606181 2.0
2 53.503351 2.817025 2.0
3 52.108774 1.422447 2.0

Table 7.5: Validation test (data in Table 7.3). No jumps, insolvency not allowed, no maximum
leverage condition, no transaction costs. Exact standard deviation 50.686326 computed using [4].

608

7.2.2 Jumps, insolvency allowed, no maximum leverage, no transaction costs609

As the second validation example, we consider the example where (i) the underlying asset follows610

a GBM with jumps described in (2.2), (ii) insolvency is allowed, (iii) qmax = ∞, and (iv) no611

transaction costs. For this special case, the exact efficient frontier can be constructed using results612

in Appendix A. Input parameters and data for this test are given in Table 7.2, except that, in this613

test, insolvency is allowed.614

Table 7.6 presents computed means and standard deviations for different refinement levels. The615

results indicate that first-order convergence for computed means is attained, while, for computed616

standard deviations, we observe slightly less than first-order convergence.617

Next, we illustrate the convergence of computed means and standard deviations to the exact618

mean and standard deviation of a point on the efficient frontier. We proceed in the same fashion619

as in Section 7.2.1. In this case, the benchmark mean is 163.156862. Using Appendix A, the620

benchmark standard deviation is 13.304860. Table 7.7 presents the results of this convergence621

check. We observe that the numerical standard deviations exhibit convergence to the benchmark622

at roughly the same convergence rate as observed in Table 7.6, i.e. slightly less than first-order.623

Refine Expected Change Ratio Standard Change Ratio
Value Deviation

0 166.538872 30.402662
1 164.889882 -1.648989 23.403936 -6.998726
2 164.023370 -0.866512 1.9 19.288471 -4.115465 1.7
3 163.590115 -0.433256 2.0 16.867609 -2.4208617 1.7

Table 7.6: Validation example, jump case, γ = 380. Insolvency allowed, i.e. B = ∅, otherwise
data in Table 7.2.
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Refine Standard Deviation Error Ratio

0 30.402662 -17.097802
1 23.403936 -10.099076 1.7
2 19.288471 -5.9836114 1.7
3 16.867609 -3.5627494 1.7

Table 7.7: Validation test (data in Table 7.2). Jumps, insolvency allowed, no maximum leverage,
no transaction costs. Exact standard deviation is 13.304860 computed using Appendix A.

7.3 Comparison between jump and no-jump cases624

In this section, we compare the jump and no-jump cases in terms of mean-variance efficiency for the625

continuous time portfolio allocation problem. As an illustrative example, we consider the example626

where (i) lending and borrowing rates are the same, (ii) insolvency not allowed, (iii) no maximum627

leverage, and (iv) no transactions costs. Input parameters and data for this test are given in628

Table 7.2. For the no-jump case, the exact efficient frontier can be constructed using algorithms in629

[4].630

Figure 7.2 presents efficient frontiers for the jump and no-jump cases for various refinement631

levels. Observe that, for each case, the difference between various refinement levels (i.e. the632

discretization errors) is small. In addition, for the no-jump case, it is clear that the numerical633

efficient frontiers for all refinement levels agrees well with the exact solution. Recall that the634

no-jump parameters are computed by determining an effective volatility which approximates the635

behaviour of a jump diffusion by a diffusion process [31]. Figure 7.2 illustrates the fact that the636

efficient frontiers computed using a jump diffusion are considerably different from the efficient637

frontier computed using a diffusion approximation to a jump diffusion, even for relatively long638

investment horizons (e.g. 10 years).639

7.4 Sensitivity of Efficient Frontiers640

In this section, we illustrate the effects on the efficient frontiers when realistic financial modeling, as641

well as realistic constraints on the portfolio, are included. In particular, we consider the presence642

of (i) different borrowing and lending interest rates, (ii) transaction costs, and (iii) a maximum643

leverage condition.644

We consider four examples with details listed in Table 7.8. Note that the example with c2 =645

0.005 can be viewed as a relatively extreme case, since this value of c2 is equivalent to a proportional646

cost of about 50 bps per transaction.

rates leverage cond. trans. costs. Other
Experiment r` rb qmax c1 c2 data

Example (a) r r 1.5 0.0 0.0 Table 7.2
Example (b) r − 1% r + 1% 1.5 0.0 0.0 —”—
Example (c) r r 1.5 0.001 0.001 (0.005) —”—
Example (d) r − 1% r + 1% 1.5 0.001 0.001 (0.005) —”—

Table 7.8: Details of experiments with realistic modeling and constraints. Here, r = 0.0445.
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Figure 7.2: Efficient frontier, jump and no-jump cases, data in Table 7.2. For the no-jump case,
the exact efficient frontier from [4] is used. Large scale plot, improved interpolation using the exact
boundary condition at one point along the S = 0 boundary (see Section 6.3) used.

Figure 7.3 presents numerical efficient frontiers obtained with refinement level 2 for Examples (a)647

and (b). For comparison purposes, in this figure, we also include the exact efficient frontier for the648

corresponding jump case where trading is allowed even if insolvent. In this case, the exact efficient649

frontier is a straight line. (See Appendix A for exact solution.)650

Figure 7.4 (a) and (b) present numerical efficient frontiers obtained with refinement level 2 for651

Examples (c) and (d). Note that, for comparison purposes, the numerical efficient frontier with652

c1 = c2 = 0 from Figure 7.3 are repeated in these figures.653

A common observation is that, when more (realistic) constraints or modeling features are in-654

cluded, the expected means (for fixed standard deviation) become significantly smaller. The curves655

also flatten out quickly. From the perspective of the investor, this observation is important, since,656

in these cases, accepting substantially more risk does not necessarily result in considerably higher657

rate of return of the portfolio.658

We conclude this section by emphasizing that, all PDE results presented in this section have also659

been verified by Monte-Carlo (MC) simulation. More specifically, we carried out MC simulations660

using the optimal strategies obtained from the PDE methods. In all case, we observed convergence661

of the MC simulations means and standard deviations to the respective PDE values, as the numbers662

of simulations and timesteps increase.663
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Figure 7.3: Efficient frontiers for Examples (a) and (b) in Table 7.8. For the case trading is
allowed even if bankruptcy in (a), the efficient frontier in Appendix A is used..

7.5 Localization Error664

All the previous computations used smax = 20000, s∗ = 10000, bmax = 10000. Increasing these665

values by an order of magnitude resulted in no change to the points on the efficient frontier to eight666

digits.667

8 Conclusion668

In this paper, we develop an efficient fully numerical PDE approach for the pre-commitment con-669

tinuous time mean-variance asset allocation problem when the underlying asset follows a jump670

diffusion process. A standard formulation of this problem gives rise to a 1-D non-linear HJB PIDE671

with the control present in the integrand of the jump term, which is very challenging to solve672

efficiently numerically. Using the impulse control framework, we formulate the asset allocation673

problem as the solution to a 2-D impulse control problem in the form of a non-linear HJB PIDE,674

with one dimension for each asset in the portfolio. We then develop a numerical scheme based on675

a semi-Lagrangian type method, which decouples each PIDE for each discrete value of the riskless676

asset, i.e. the bond. More specifically, our numerical approach involves solving, at each timestep,677

a sequence of 1-D non-controlled PIDEs. The optimal controls are then obtained from solving the678

optimization problem originated from an optimal rebalancing of the portfolio. We show that our679

numerical scheme is monotone, consistent, and `∞-stable. Hence, the numerical solution is guaran-680

teed to converge to the unique viscosity solutions of the corresponding HJB PIDE, assuming that681

the HJB PIDE satisfies a strong comparison property.682

31



Std Dev

E
xp

 V
al

0 100 200 300 400 500 600

150

200

250

300

350

Jump, q    = 1.5,
r   = r   = r,

Refine = 2

max

l b
c = c = 0,

c = c
   = 0.001

c = 0.001
c = 0.005

1 2

1 2

1

2

Std Dev

E
xp

 V
al

0 100 200 300 400 500 600

150

200

250

300

350

Jump, q     = 1.5,
r  = r  - 1%,
r  = r + 1%,

Refine = 2

max

l 

b
c = c = 0,

c = c
   = 0.001

c = 0.001
c = 0.005

1 2

1
2
12

(a) (b)

Figure 7.4: Efficient frontiers for Examples (c) and (d) in Table 7.8.

Use of monotone (linear) interpolation at each semi-Lagrangian timestep results in an inaccurate683

efficient frontier at small values of the standard deviation. This problem is eliminated by using the684

exact value function solution at a single point along the s = 0 boundary.685

Another focus of this paper is the inclusion of realistic financial modeling, such as different686

borrowing and lending interest rates and transaction costs, as well as realistic constraints on the687

portfolio, such as maximum limits on borrowing and solvency of the portfolio. Our numerical688

results indicate that these realistic features have considerable effect on the efficient frontier.689

Due to the long time horizon of the investment, the assumption that the interest rate is con-690

stant/deterministic is questionable. One approach for taking into account stochastic interest rates,691

in an economically appropriate way for long term contracts, is by means of a regime switching692

process [32]. This approach will be computationally efficient compared to a multi-factor stochastic693

interest rate model. We intend to investigate this approach in the future.694

Appendix695

A Exact Efficient Frontier: Jump Diffusion, Trading Continues if696

Insolvent697

Based on [33] and [34], the exact efficient frontier for the investment problem can be determined. It698

is assumed that trading continues even if the investor is insolvent, infinite borrowing is permitted,699

and there are no transaction costs.700

Assuming processes (2.2) and (2.3) then in this case, the efficient frontier is a straight line, given701
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by702

Var[WT ] =

(
E[WT ]−W0e

rT

)2

(eAT − 1)
, (A.1)

where703

A =
(µ− r)2

σ2 + λE[(ν − 1)2]
, (A.2)

and704

σ = Volatility ; µ = real world drift ;

r = risk-free rate ; λ = intensity of Poisson jump process ;

ν = jump size ; S → νS when a jump occurs ;

T = Investment Horizon ; WT = Wealth at time T ;

W0 = Wealth at initial time ; St = amount invested in risky asset . (A.3)

Note that E[ξ] = eξ+ζ
2/2 and E[ξ2] = e2ξ+2ζ2 . It is also interesting to note that the optimal strategy705

in this case is [33]706

St =
µ− r

σ2 + λE[(ν − 1)2]

(
γe−r(T−t)

2
−Wt

)
Wt = Wealth at time t

W0 <
γe−r(T )

2
(A.4)

from which we can see that St cannot exceed the discounted target unless a jump occurs.707

B Intuitive Derivation of the Discretization (4.9)708

In this Appendix, we provide an intuitive derivation of the discretization (4.9). Below, we first dis-709

cuss the evolution in forward time of the value function (2.15), then provide an intuitive derivation710

of (4.9).711

B.1 Evolution of the value function in forward time712

Consider a set of discrete rebalancing times {t1, t2, . . .} where ti+1 − ti = ∆t. We also define713

t+i = ti + ε ; t−i = ti + ε (B.1)

where ε� 1 but finite. Assume that the portfolio consists of s = S(t) and b = B(t) amount of the714

stock and bond at time t = t+i , respectively, i.e. after the rebalancing at time ti. Let ti+1 = ti+ ∆t.715

Over the time period [t+i , t
+
i+1], the evolution of the portfolio can be viewed as consisting of the716

following three steps.717
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1. Over the time period [t+i , t
−
i+1], the stock amount evolves randomly from S to S + dS, where718

dS follows (2.6); however, the bond amount remains unchanged, since no interest is paid.719

2. Over the time period [t−i+1, ti+1], the stock amount remains unchanged, but the bond amount720

changes from B to BeR(B)∆t, due to the interest payment.721

3. Over the time period [ti+1, t
+
i+1], the rebalancing of the portfolio occurs.722

We now investigate how the value function V̄ (s = S(t), b = B(t), t) changes over the above-723

mentioned three time periods.724

1. Over the time period [t+i , t
−
i+1], the value function V̄ (s, b, t) evolves according to the PIDE725

V̄t + PV̄ + J V̄ = 0, (B.2)

where the differential operator P is defined in (4.5). Note that the term R(b)bV̄b does not726

appear in PV̄ , since the bond amount remains constant over this time period. Denote by727

V̄ (s, b, t−i+1) the resulting value function at time t−i+1.728

2. Over the time period [t−i+1, ti+1], where the interest payment occurs, by no-arbitrage argu-729

ments, we have730

V̄ (s, b, t−i+1) = V̄ (s, beR(b)∆t, ti+1) (B.3)

3. Over the time period [ti+1, t
+
i+1], an optimal rebalancing of the portfolio stipulates that731

V̄ (s, b, ti+1) = min

[
V̄ (s, b, t+i+1),min

B+
V̄ (S+(s, b, B+), B+, t+i+1)

]
(B.4)

Remark B.1. Combining (B.3) and (B.4) gives732

V̄ (s, b, t−i+1) = min

[
V̄ (s, beR(b)∆t, t+i+1),min

B+
V̄ (S+(s, beR(b)∆t, B+), B+, t+i+1)

]
(B.5)

Equation (B.5) can essentially be viewed as the optimization problem originating from an optimal733

rebalancing which occurs at time ti+1.734

B.2 A derivation of (4.9)735

Let736

τn− = T − t+i+1 ; τn+ = T − t−i+1 ; τn+1
− = T − t+i ; τn+1

+ = T − t−i . (B.6)

Assume that we want to proceed from the discrete time τn− to τn+1
− . This can essentially be split737

into two steps. In the first step, we proceed from τn− to τn+, and this step involves solving an738

optimization problem originated from an optimal rebalancing of the portfolio occurring at time739

τn. The second step involves solving the model PDE from τn+ to τn+1
− with the initial condition740

obtained from the first step.741
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For the first step, we make use of Remark B.1. More specifically, with the discretization notation742

described in Section 4, the optimization problem in (B.5) essentially becomes743

Vh(si, bj , τ
n
+) = min

[
Vh(si, bje

R(bj)∆τ , τn−), min
B+∈Zh

Vh(S+(si, bje
R(bj)∆τ , B+), B+, τn−)

]
.

In the second step, taking into account (B.2), we need to solve the PIDE744

Vτ − PV − J V = 0,

from τn+ to τn+1
− with Vh(si, bj , τ

n
+) as the initial condition. Using fully implicit timestepping, we745

have746

Vh(si, bj , τ
n+1
− )−∆τPhVh(si, bj , τ

n+1
− )−∆τ(J`)hVh(si, bj , τ

n+1
− ) = Vh(si, bj , τ

n
+) ,

which is equivalent to (4.9).747
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