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Abstract1

We present efficient partial differential equation (PDE) methods for continuous time mean-2

variance portfolio allocation problems when the underlying risky asset follows a stochastic3

volatility process. The standard formulation for mean variance optimal portfolio allocation4

problems gives rise to a two-dimensional non-linear Hamilton-Jacobi-Bellman (HJB) PDE. We5

use a wide stencil method based on a local coordinate rotation (Ma and Forsyth, 2014) to con-6

struct a monotone scheme. Furthermore, by using a semi-Lagrangian timestepping method to7

discretize the drift term and an improved linear interpolation method, accurate efficient frontiers8

are constructed. This scheme can be shown to be convergent to the viscosity solution of the9

HJB equation, and the correctness of the proposed numerical framework is verified by numerical10

examples. We also discuss the effects on the efficient frontier of the stochastic volatility model11

parameters.12

Keywords: mean-variance, embedding, Pareto optimal, Hamilton-Jacobi-Bellman (HJB) equa-13

tion, monotone scheme, wide stencil14
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1 Introduction16

Consider the following prototypical asset allocation problem: an investor can choose to invest in17

a risk free bond, or a risky asset, and can dynamically allocate wealth between the two assets,18

to achieve a pre-determined criteria for the portfolio over a long time horizon. In the continuous19

time mean variance approach, risk is quantified by variance, so that investors aim to maximize the20

expected return of their portfolios, given a risk level. Alternatively, they aim to minimize the risk21

level, given an expected return. As a result, mean variance strategies are appealing due to their22

intuitive nature, since the results can be easily interpreted in terms of the trade-off between the23

risk and the expected return.24
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In the case where the asset follows a Geometric Brownian Motion (GBM), there is considerable25

literature on the topic (Li and Ng, 2000; Bielecki et al., 2005; Zhou and Li, 2000; Wang and26

Forsyth, 2010). The multi-period optimal strategy adopted in these papers is of pre-commitment27

type, which is not time-consistent as noted in Bjork and Murgoci (2010); Basak and Chabakauri28

(2010). A comparison between time-consistent and pre-commitment strategies is given in Wang29

and Forsyth (2012), for continuous time mean variance optimization. We note that since a time30

consistent strategy can be constructed from a pre-commitment policy by adding a constraint (Wang31

and Forsyth, 2012), the time consistent strategy is sub-optimal compared to the pre-commitment32

policy, i.e., it is costly to enforce time consistency. In addition, it has been shown in Vigna (2014)33

that pre-commitment strategies can also be viewed as a target-based optimization which involves34

minimizing a quadratic loss function. It is suggested in Vigna (2014) that this is intuitive, adaptable35

to investor preferences, and is also mean variance efficient.36

Most previous literature on pre-commitment mean variance optimal asset allocation has been37

based on analytic techniques (Li and Ng, 2000; Zhou and Li, 2000; Bielecki et al., 2005; Zhao38

and Ziemba, 2000; Nguyen and Portait, 2002). These papers have primarily employed martingale39

methods (Bielecki et al., 2005; Zhao and Ziemba, 2000; Nguyen and Portait, 2002) or tractable40

auxiliary problems (Li and Ng, 2000; Zhou and Li, 2000). However, in general, if realistic constraints41

on portfolio selection are imposed, e.g., no trading if insolvent and a maximum leverage constraint,42

then a fully numerical approach is required. As shown in Wang and Forsyth (2008), in the case43

where the risky asset follows a GBM, realistic portfolio constraints have a significant effect on the44

efficient frontier.45

Another modeling deficiency in previous work on pre-commitment mean variance optimal asset46

allocation is the common assumption that the risky asset follows a GBM. However, there is strong47

empirical evidence that asset return volatility is serially correlated, shocks to volatility are nega-48

tively correlated with asset returns, and the conditional variance of asset returns is not constant49

over time. As a result, it is highly desirable to describe the risky asset with a stochastic volatility50

model. In this case, the standard formulation of mean variance optimal asset allocation problems51

gives rise to a two-dimensional non-linear HJB PDE. The objective of this article is to develop52

a numerical method for the pre-commitment mean variance portfolio selection problem when the53

underlying risky asset follows a stochastic volatility model.54

The major contributions of the paper are:55

• A fully implicit, consistent, unconditionally monotone numerical scheme is developed for the56

HJB equation, which arises in the embedding formulation (Zhou and Li, 2000; Li and Ng,57

2000) of the pre-commitment mean variance problem under our model set-up. The main58

difficulty in designing a discretization scheme is development of a monotone approximation59

of the cross derivative term in the PDE. We use the wide stencil method (Debrabant and60

Jakobsen, 2013; Ma and Forsyth, 2014) to deal with this difficulty.61

• Accurate efficient frontiers are constructed by using a semi-Lagrangian timestepping method62

to handle the drift term, and an improved method of linear interpolation at the foot of the63

characteristic in the semi-Lagrangian discretization. In particular, the improved interpolation64

method uses the exact solution value at a single point, dramatically increasing the accuracy65

of the numerical results. Any type of constraint can be applied to the investment policy.66

• We prove that the scheme developed in this paper converges to the viscosity solution of the67

nonlinear HJB value equation.68
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• In order to trace out the efficient frontier solution of our problem we use two techniques:69

the PDE method and the Hybrid (PDE - Monte Carlo) method (Tse et al., 2013). We also70

demonstrate that the Hybrid method is superior to the PDE method.71

• We carry out several numerical experiments, and illustrate the convergence of the numerical72

scheme, as well as the effect of modeling parameters on efficient frontiers.73

The remainder of this paper is organized as follows: Section 2 describes the underlying processes74

and the embedding framework, and gives a formulation of an associated HJB equation and a linear75

PDE. In Section 3, we present the discretization of the HJB equation. In Section 4, we highlight76

some important implementation details of the numerical method. Numerical results are presented77

and discussed in Section 5.78

2 Mathematical formulation79

Suppose there are two assets in the market: one is a risk free bond and the other is a risky equity80

index. The dynamics of the risk free bond B follows81

dB(t) = rB(t)dt, (2.1)

and an equity index S follows Heston’s model (Heston, 1993) under the real probability measure82

dS(t)

S(t)
= (r + ξV (t))dt+

√
V (t)dZ1, (2.2)

where the variance of the index, V (t), follows a mean-reverting square-root process (Cox et al.,83

1985):84

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dZ2, (2.3)

with dZ1, dZ2 being increments of Wiener processes. The instantaneous correlation between Z1 and85

Z2 is dZ1dZ2 = ρdt. The market price of volatility risk is ξV (t), which generates a risk premium86

proportional to V (t). This assumption for the risk premium is based on Breedens’s consumption-87

based model (Breeden, 1979), and originates from Heston (1993). Therefore, under this setup, the88

market is incomplete as trading in the risky asset and the bond cannot perfectly hedge the changes89

in the stochastic investment opportunity set.90

An investor in this market is endowed at time zero with an initial wealth of w0, and she can91

continuously and dynamically alter the proportion of wealth invested in each asset. In addition,92

let W (t) = S(t) + B(t) denote the wealth at time t, let p denote the proportion of this wealth93

invested in the risky asset S(t), consequently (1 − p) then denotes the fraction of wealth invested94

in the risk free bond B(t). The allocation strategy is a function of the current state, i.e., p(·) :95

(W (t), V (t), t) → p = p(W (t), V (t), t). Note that in using the shorthand notations p(·) for the96

mapping, p for the value p = p(W (t), V (t), t), and the dependence on the current state is implicit.97

From (2.1) and (2.2), we see that the investor’s wealth process follows:98

dW (t) = (r + pξV (t))W (t)dt+ p
√
VW (t)dZ1. (2.4)
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2.1 Efficient frontiers and embedding methods99

We assume here that the investor is guided by a pre-commitment mean variance objective based100

on the final wealth W (T ). The pre-commitment mean variance problem and its variations have101

been intensively studied in the literature (Li and Ng, 2000; Zhou and Li, 2000; Bielecki et al., 2005;102

Zhao and Ziemba, 2000; Nguyen and Portait, 2002). To best of our knowledge, there is no explicit103

closed-form solution for the pre-commitment mean variance problem when the risky asset follows104

a stochastic volatility process along with leverage constraints.105

To simplify notations, we define x = (w, v) = (W (t), V (t)) for a state space. Let Ex,tp(·)[W (T )]106

and V arx,tp(·)[W (T )] denote the expectation and variance of the terminal wealth conditional on the107

state (x, t) and the control p(·). Given a risk level V arx,tp(·)[W (T )], an investor desires her expected108

terminal wealth Ex,tp(·)[W (T )] to be as large as possible. Equivalently, given an expected terminal109

wealth Ex,tp(·)[W (T )], she wishes the risk V arx,tp(·)[W (T )] to be as small as possible. That is, she110

desires to find controls p(·) which generate Pareto optimal points. For notational simplicity, let111

Ex,tp(·)[W (T )] = E and V arx,tp(·)[W (T )] = V. The problem is rigorously formulated as follows.112

Define the achievable mean variance objective set as113

Y = {(V, E) : p ∈ Z} , (2.5)

where Z is the set of admissible strategies, and denote the closure of Y by Ȳ.114

Definition 2.1. A point (V, E) ∈ Y is Pareto mean variance optimal if there exists no admissible115

strategy p̄ ∈ Z such that116

V arx,tp̄ {W (T )} ≤ V,
Ex,tp̄ {W (T )} ≥ E ,

(2.6)

where at least one of the inequalities in equation is strict. We denote by P the set of Pareto mean117

variance optimal points. Note that P ⊆ Ȳ.118

Although the above definition is intuitive, determining the points in P requires solution of a119

multi-objective optimization problem, involving two conflicting criteria. A standard scalarization120

method can be used to combine the two criteria into an optimization problem with a single objective.121

In particular, for each point (V, E) ∈ Ȳ, and for an arbitrary scaler λ > 0, we define the set of122

points YP (λ) to be123

YP (λ) =

{
(V, E) ∈ Ȳ : inf

(V∗,E∗)∈Y
(λV∗ − E∗)

}
, (2.7)

from which a point on the efficient frontier can be derived. The set of points on the efficient frontier124

are then defined as125

YP =
⋃
λ>0

YP (λ). (2.8)

Note that there is a difference between the set of all Pareto mean variance optimal points P (see
Definition 2.1) and the efficient frontier YP (2.8) (Tse et al., 2014). In general,

P ⊆ YP ,
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but the converse may not hold if the achievable mean variance objective set Y (2.5) is not convex.126

In this paper, we restrict our attention to constructing YP (2.8).127

Due to the presence of the variance term V arx,tp(·)[W (T )] in (2.7), a dynamic programming128

principle cannot be directly applied to solve this problem. To overcome this difficulty, we make129

use of the main result in (Li and Ng, 2000; Zhou and Li, 2000; Tse et al., 2014) which essentially130

involves the embedding technique. This result is summarized in the following Theorem.131

Assumption 2.1. We assume that Y is a non-empty subset of {(V, E) ∈ R2 : V > 0)} and that132

there exists a positive scalarization parameter λE > 0 such that YP (λE) 6= ∅.133

Theorem 2.1. The embedded mean variance objective set YQ is defined by134

YQ =
⋃

−∞<γ<∞
YQ(γ), (2.9)

where135

YQ(γ) =

{
(V∗, E∗) ∈ Ȳ : V∗ + E2

∗ − γE∗ = inf
(V,E)∈Y

(V + E2 − γE)

}
. (2.10)

If Assumption 2.1 holds and λ > λE, then YP (λ) 6= ∅. Assume (V0, E0) ∈ YP (λ). Then if136

λV0 − E0 = inf
(V,E)∈Y

(λV − E), (2.11)

then137

V0 + E2
0 − γE0 = inf

(V,E)∈Y
(V + E2 − γE), i.e. (V0, E0) ∈ YQ(γ), (2.12)

where γ = 1
λ + 2E0. Consequently, YP ⊆ YQ.138

Proof. See details in (Li and Ng, 2000; Zhou and Li, 2000; Dang et al., 2015).139

Theorem 2.1 states that the mean and variance (V, E) of W (T ) are embedded in a scalarization140

optimization problem with the objective function being V + E2 − γE . Noting that141

V + E2 − γE = Ex,tp(·)[W
2(T )]− (Ex,tp(·)[W (T )])2 + (Ex,tp(·)[W (T )])2 − γEx,tp(·)[W (T )]

= Ex,tp(·)[W
2(T )− γW (T )]

= Ex,tp(·)[(W (T )− γ

2
)2] +

γ2

4
,

(2.13)

and that we can ignore the constant γ2

4 term for the purposes of minimization, we then define the142

value function143

U(x, t) = inf
p(·)∈Z

Ex,tp(·)[(W (T )− γ

2
)2]. (2.14)

Theorem 2.1 implies that there exists a γ, such that, for a given positive λ, a control p∗ which144

maximizes (2.7) also minimizes equation (2.14). Dynamic programming can then be directly applied145

to equation (2.14) to determine the optimal control p∗(·).146

The procedure for determining the points on the efficient frontier is as follows. For a given147

value of γ, the optimal strategy p∗ is determined by solving for the value function problem148

(2.14). Once this optimal policy p∗(·) is known, it is then straightforward to determine a point149
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(V arx,tp∗(·)[W (T )], Ex,tp∗(·)[W (T )]) on the frontier. Varying γ traces out a curve in the (V, E) plane150

(see details in Section 4.2). Consequently, the numerical challenge is to solve for the value function151

(2.14). More precisely, the above procedure for constructing the efficient frontier generates points152

that are in the set YQ. As pointed out in Tse et al. (2014), the set YQ may contain spurious153

points, i.e., points which are not in YP . For example, when the original problem is nonconvex,154

spurious points can be generated. An algorithm for removing spurious points is discussed in Tse155

et al. (2014). The set of points in YQ with the spurious points removed generates all points in YP .156

Reference (Dang et al., 2015) also discusses the convergence of finitely sampled γ to the efficient157

frontier.158

2.2 The value function problem159

Following standard arguments, the value function U(w, v, τ), τ = T − t (2.14) is the viscosity160

solution of the HJB equation161

Uτ = inf
p∈Z

{
(r + pξv)wUw + κ(θ − v)Uv +

1

2
(p
√
vw)2Uww + pρσ

√
vwUwv +

1

2
σ2vUvv

}
, (2.15)

on the domain (w, v, τ) ∈ [0,+∞]× [0,+×]× [0, T ], and with the terminal condition162

U(w, v, 0) =

(
w − γ

2

)2

. (2.16)

Remark 2.1. In one of our numerical tests, we allow p to become unbounded, which may occur163

when w → 0 (Wang and Forsyth, 2010). However, although p → ∞ as w → 0, we must have164

(pw)→ 0 as w → 0, i.e., the amount invested in the risky asset converges to zero as w → 0. This165

is required in order to ensure that the no-bankruptcy boundary condition is satisfied (Wang and166

Forsyth, 2010). As a result, we can then formally eliminate the problem with unbounded control by167

using q = pw as the control, and assume q remains bounded. See details in (Wang and Forsyth,168

2010).169

2.3 The expected wealth problem170

2.3.1 The PDE formulation171

Given the solution for the value function (2.14), with the optimal control p∗(·). We then need to172

determine the expected value Ex,tp∗(·)[W (T )], denoted as173

E(w, v, t) = Ex,tp∗(·)[W (T )], (2.17)

Then, E(w, v, τ), τ = T − t is given from the solution to the following linear PDE174

Eτ = (r + p∗ξv)wEw + κ(θ − v)Ev +
1

2
(p∗
√
vw)2Eww + p∗ρσ

√
vwEwv +

1

2
σ2vEvv (2.18)

with the initial condition E(w, v, 0) = w, where p∗ is obtained from the solution of the HJB equation175

(2.15).176
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2.3.2 The Hybrid (PDE - Monte Carlo) method177

Alternatively, given the stored control p∗(·) determined from the solution of equation (2.15), we178

can directly estimate (V arx,tp∗(·)[W (T )], Ex,tp∗(·)[W (T )]) by using a Monte Carlo method, based on179

solving the SDEs (2.4-2.3). The details of the SDE discretization are given in Section 4.2. This180

hybrid(PDE - Monte Carlo) method was originally proposed in (Tse et al., 2013).181

2.4 Allowable portfolios182

In order to obtain analytical solutions, many previous papers typically make assumptions which
allow for the possibility of unbounded borrowing and bankruptcy. Moreover, these models assume
a bankrupt investor can still keep on trading. The ability to continue trading even though the value
of an investor’s wealth is negative is highly unrealistic. In this paper, we enforce the condition that
the wealth value remains in the solvency regions by applying certain boundary conditions to the
HJB equation (Wang and Forsyth, 2008). Thus, bankruptcy is prohibited, i.e.,

w ∈ [0,+∞).

We will also assume that there is a leverage constraint, i.e., the investor must select an asset
allocation satisfying

p =
The risky asset value

The total wealth
=
pW (t)

W (t)
< pmax,

which can be interpreted as the maximum leverage condition, and pmax is a known positive constant
with typical value in [1.0, 2.0]. Thus, the control set

p ∈ Z = [0, pmax].

Note that when the risk premium ξ (2.2) is positive, it is not optimal to short the risky asset, since183

we have only a single risky asset in our portfolio.184

3 Numerical Discretization of the HJB equation185

3.1 Localization186

We will assume that the discretization is posed on a bounded domain for computational purposes.187

The discretization is applied to the localized finite region (w, v) ∈ [0, wmax]× [0, vmax]. Asymptotic188

boundary conditions will be imposed at w = wmax and v = vmax which are compatible with a189

monotone numerical scheme.190

3.1.1 The localization of V191

The proper boundary on v = 0 needs to be specified to be compatible with the corresponding192

SDE (2.3), which has a unique solution (Feller, 1951). If 2κθ ≥ σ2, the so-called Feller condition193

holds, and v = 0 is unattainable. If the Feller condition is violated, 2κθ < σ2, then v = 0 is an194

attainable boundary but is strongly reflecting (Feller, 1951). The appropriate boundary condition195

can be obtained by setting v = 0 into the equation (Ekström and Tysk, 2010). That is,196

Uτ = rwUw + κθUv, (3.1)
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and the equation degenerates to a linear PDE. On the lower boundary v = 0, the variance and197

the risk premium vanishes, according to (2.4), so that the wealth return is always the risk free198

rate r. The control value p vanishes in the degenerate equation (3.1), and we can simply define199

p∗(w, v = 0, t) ≡ 0 which we need in the estimation of (V arx,tp∗(·)[W (T )], Ex,tp∗(·)[W (T )]) using the200

Monte Carlo simulation. In this case, since the risky asset is riskless, the distinction between risky201

and risk free asset is meaningless.202

The validity of this boundary condition is intuitively justified by the fact that the solution203

to the SDE for v is unique, such that the behavior of v at the boundary v = 0 is determined204

by the SDE itself, and hence the boundary condition is determined by setting v = 0 in equation205

(2.15). A formal proof that this boundary condition is correct is given in (Ekström and Tysk,206

2010). If the boundary at v = 0 is attainable, then this boundary behaviour serves as a boundary207

condition and guarantees uniqueness in the appropriate function spaces. On the other hand, if the208

boundary is non-attainable, then the boundary behaviour is not needed to guarantee uniqueness,209

but is nevertheless very useful in a numerical scheme.210

On the upper boundary v = vmax, Uv is set to zero. Thus, the boundary condition on vmax is211

set to212

Uτ = inf
p∈Z

{
(r + pξv)wUw +

1

2
(p
√
vw)2Uww

}
. (3.2)

The optimal control p∗ at v = vmax is determined by solving the equation (3.2). This boundary
condition can be justified by noting that as v → ∞, then the diffusion term in the w direction in
equation (2.15) becomes large. As well, the initial condition (2.16) is independent of v. As a result,
we expect that

U ≈ C ′w + C ′′, v →∞,

where C ′ and C ′′ are constants, and hence Uv ≈ 0 at v = vmax.213

3.1.2 The localization for W214

We prohibit the possibility of bankruptcy (W (t) < 0) by requiring that limw→0(pw) = 0 (Wang215

and Forsyth, 2010), so, on w = 0, the equation (2.15) reduces to216

Uτ = κ(θ − v)Uv + σ2vUvv. (3.3)

When w → +∞, we assume that asymptotic form of the exact solution is217

U(w → +∞, v, τ) = Ū(w) = H2(τ)w2 +H1(τ)w +H0(τ), (3.4)

and make the assumption that p∗(wmax, v, 0) at w = wmax is set to zero. That is, once the investor’s218

wealth is very large, she prefers the risk free asset. This can be justified from the arguments in219

(Cui et al., 2012; Dang and Forsyth, 2014a).220

3.1.3 Alternative localization for w221

U(w, v, τ) is the viscosity solution of the HJB equation (2.15). Recall that the initial condition for
problem (2.14) is

U(w, v, 0) =

(
W (T )− γ

2

)2

.
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For a fixed gamma, we define the optimal embedded terminal wealth at time t, denoted by Wopt(t),222

as223

Wopt(t) =
γ

2
e−r(T−t). (3.5)

It is easy to verify that Wopt(t) is a globally minimum state of the value function U(w, v, t). Consider224

the state (Wopt(t), v), t ∈ [0, T ], and the optimal strategy p∗(·) such that p∗(w, v, T ) ≡ 0, T > t.225

Under p∗(·), the wealth is all invested in the risk free bond without further re-balancing from time226

t. As a result, the wealth will accumulate to W (T ) = γ
2 with certainty, i.e., the optimal embedded227

terminal wealth γ
2 is achievable. By definition (2.14), we have,228

U(Wopt(t), v, t) = inf
p(·)∈Z

{
Ex,tp(·)[(W (T )− γ

2
)2]
}

= Ex,tp∗(·)[(W (T )− γ

2
)2] = 0. (3.6)

Since the value function is the expectation of a non-negative quantity, it can never be less than229

zero. Then, the exact solution for the value function problem at the special point Wopt(t) must230

be zero. This result holds for both the discrete and continuous re-balancing case. For the formal231

proof, we refer the reader to (Dang and Forsyth, 2014a).232

Consequently, the point w = γ
2e
−rτ is a Dirichlet boundary U(γ2e

−rτ , v, τ) = 0, and information233

for w > γ
2e
−rτ is not needed. We can then restrict the size the computational domain to be234

0 ≤ w ≤ γ
2 . Note that the optimal control will ensure that U(γ2e

−rτ , v, τ) = 0 without any need235

to enforce this boundary condition. This will occur since we assume continuous rebalancing. This236

effect that W (t) ≤Wopt(t) is also discussed in Vigna (2014). It is interesting to note that in the case237

of discrete rebalancing that it is optimal to withdraw cash from the portfolio if it is ever observed238

that W (t) > Wopt(t). This is discussed in Cui et al. (2012); Dang and Forsyth (2014a).239

We have verified, experimentally, that restricting the computational domain to w ∈ [0, γ/2] gives240

the same results as the domain w ∈ [0, wmax], wmax � γ
2 , with asymptotic boundary condition (3.4).241

Remark 3.1 (Significance of W (t) ≤ Wopt(t)). If we assume that initially W (0) < Wopt(0) (oth-242

erwise the problem is trivial if we allow cash withdrawals), then the optimal control will ensure243

that W (t) ≤ Wopt(t),∀t. Hence continuous time mean variance optimization is time consistent in244

efficiency (Cui et al., 2012). Another interpretation is that continuous time mean variance optimiza-245

tion is equivalent to minimizing the quadratic loss with respect to the wealth target Wopt(T )(Vigna,246

2014).247

Remark 3.2 (Significance of W (T ) ≤ γ/2). From Remark 3.1 we have trivially that W (T ) ≤ γ/2,248

hence from equation (2.14), the investor is never penalized for large gains, i.e. the quadratic utility249

function (2.14) is always well behaved. Consequently, continuous time mean variance optimization250

is fundamentally different from the single period counterpart.251

3.2 Discretization252

In the following section, we discretize equation (2.15) over a finite grid N = N1 ×N2 in the space253

(w, v). Define a set of nodes {w1, w2, . . . , wN1} in w direction and {v1, v2, . . . , vN2} in the v direction.254

Denote the nth time step by τn = n∆τ, n = 0, . . . , Nτ , with Nτ = T
∆τ . Let Uni,j be the approximate255

solution of the equation (2.15) at (wi, vj , τ
n).256

It will be convenient to define257

∆wmax = max
i

(wi+1 − wi) , ∆wmin = min
i

(wi+1 − wi) ,

∆vmax = max
i

(vi+1 − vi) , ∆vmin = min
i

(vi+1 − vi) .
(3.7)
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We assume that there is a mesh discretization parameter h such that258

∆wmax = C1h, ∆wmin = C2h, ∆vmax = C
′
1h, ∆vmin = C

′
2h, ∆τ = C3h, (3.8)

where C1, C2, C
′
1, C

′
2, C3 are constants independent of h.259

In the following sections, we will give the details of the discretization for a reference node260

(wi, vj), 1 < i < N1, 1 < j < N2.261

3.2.1 The wide stencil262

We need a monotone discretization scheme in order to guarantee convergence to the desired viscosity263

solution (Barles and Souganidis, 1991). We remind the reader that seemingly reasonable non-264

monotone discretizations can converge to the incorrect solution (Pooley et al., 2003). Due to the265

cross derivative term in (2.15), however, a classic finite difference method can not produce such a266

monotone scheme. Since the control appears in the cross derivative term, it will not be possible267

(in general) to determine a grid spacing or global coordinate transformation which eliminates this268

term. We will adopt the wide stencil method developed in Ma and Forsyth (2014) to discretize269

the second derivative terms. Suppose we discretize equation (2.15) at grid node (i, j) for a fixed270

control. For a fixed p, consider a virtual rotation of the local coordinate system clockwise by the271

angle ηi,j272

ηi,j =
1

2
tan−1

(
2ρpσwivj

(p
√
vjwi)2 − (σ

√
vj)2

)
. (3.9)

That is, (y1, y2) in the transformed coordinate system is obtained by using the following matrix273

multiplication274 (
w
v

)
=

(
cos ηi,j − sin ηi,j
sin ηi,j cos ηi,j

)(
y1

y2

)
. (3.10)

We denote the rotation matrix in (3.10) as Ri,j . This rotation operation will result in a zero275

correlation in the diffusion tensor of the rotated system. Under this grid rotation, the second order276

terms in equation (2.18) are, in the transformed coordinate system (y1, y2),277

ai,j
∂2W
∂y2

1

+ bi,j
∂2W
∂y2

2

, (3.11)

where W is the value function W(y1, y2, τ) in the transformed coordinate system, and278

ai,j =

(
1

2
(p
√
vjwi)

2 cos(ηi,j)
2 + ρpσwivj sin(ηi,j) cos(ηi,j) +

1

2
(σ
√
vj)

2 sin(ηi,j)
2

)
,

bi,j =

(
1

2
(p
√
vjwi)

2 sin(ηi,j)
2 − ρpσwivj sin(ηi,j) cos(ηi,j) +

1

2
(σ
√
vj)

2 cos(ηi,j)
2

)
.

(3.12)

The diffusion tensor in (3.11) is diagonally dominant with no off-diagonal terms, and conse-279

quently a standard finite difference discretization for the second partial derivatives results in a280

monotone scheme. The rotation angle ηi,j depends on the grid node and the control, therefore it281

is impossible to rotate the global coordinate system by a constant angle and build a grid over the282

entire space (y1, y2). The local coordinate system rotation is only used to construct a virtual grid283
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which overlays the original mesh. We have to approximate the values of W on our virtual local284

grid using an interpolant JhU on the original mesh. To keep the numerical scheme monotone, Jh285

must be a linear interpolation operator. Moreover, to keep the numerical scheme consistent, we286

need to use the points on our virtual grid whose Euclidean distances are O(
√
h) from the central287

node, where h is the mesh discretization parameter (3.8). This results in a wide stencil method288

since the relative stencil length increases as the grid is refined (
√
h
h → +∞ as h → 0). For more289

details, we refer the reader to Ma and Forsyth (2014).290

Let us rewrite the HJB equation (2.15) as291

sup
p∈Z
{Uτ − (r + pξv)wUw − LpU} = 0, (3.13)

where the linear operator Lp is defined as292

LpU = κ(θ − v)Uv +
1

2
(p
√
vw)2Uww + pρσ

√
vwUwv +

1

2
σ2vUvv. (3.14)

The drift term κ(θ − v)Uv in equation (3.14) is discretized by a standard backward or forward293

finite differencing discretization, depending on the sign of κ(θ − v). Overall, the discretized form294

of the linear operator Lp is then denoted by Lph295

LphU
n+1
i,j = 1κ(θ−vj)≥0

κ(θ − vj)
h

Un+1
i,j+1 − 1κ(θ−vj)<0

κ(θ − vj)
h

Un+1
i,j−1

+
ai,j
h
JhUn+1

(
xi,j +

√
h(Ri,j)1

)
+
ai,j
h
JhUn+1

(
xi,j −

√
h(Ri,j)1

)
+
bi,j
h
JhUn+1

(
xi,j +

√
h(Ri,j)2

)
+
bi,j
h
JhUn+1

(
xi,j −

√
h(Ri,j)2

)
−
(

1κ(θ−vj)≥0
κ(θ − vj)

h
− 1κ(θ−vj)<0

κ(θ − vj)
h

+
2ai,j
h

+
2bi,j
h

)
Un+1
i,j ,

(3.15)

where h is the discretization parameter, and the superscript p in Lph indicates that the discretization296

depends on the control p. xi,j =

(
wi
vj

)
, ai,j and bi,j are given in (3.12), and the presence of297

JhUn+1
(
xi,j ±

√
h(Ri,j)k

)
, k = 1, 2 is due to the discretization of the second derivative terms.298

(Ri,j)k is k-th column of the rotation matrix.299

3.2.2 Semi-Lagrangian timestepping scheme300

When p → 0, equation (2.15) degenerates, with no diffusion in the w direction. As a result, we301

will discretize the drift term (r + pξv)wUw in equation (2.15) by a semi-Lagrangian timestepping302

scheme in this section. Initially introduced by Douglas and Russell (1982); Pironneau (1982) for303

atmospheric and weather numerical prediction problems, semi-Lagrangian schemes can effectively304

reduce the numerical problems arising from convection dominated equations.305

Firstly, we define the Lagrangian derivative DU
Dτ (p) by306

DU
Dτ

(p) = Uτ − (r + pξv)wUw, (3.16)
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which is the rate of change of U along the characteristic w = w(τ) defined by the risky asset fraction307

p through308

dw

dτ
= −(r + pξv)w. (3.17)

We can then rewrite equation (3.13) as309

sup
p∈Z

{
DU
Dτ
− LpU

}
= 0. (3.18)

Solving equation (3.17) backwards in time from τn+1 and τn, for a fixed Un+1
i,j gives the point310

at the foot of the characteristic311

(wi∗ , vj) = (wie
(r+pξvj)∆τn , vj), (3.19)

which in general is not on the PDE grid. We use the notation Uni∗,j to denote an approximation312

of the value U(wi∗ , vj , τ
n), which is obtained by linear interpolation to preserve monotonicity. The313

Lagrangian derivative at a reference node (i, j) is then approximated by314

DU
Dτ

(p) ≈
Uni,j − Uni∗,j(p)

∆τn
, (3.20)

where Uni∗,j(p) denotes that wi∗ depends on the control p through equation (3.19). For the details315

of the semi-Lagrangian timestepping scheme, we refer the reader to (Chen and Forsyth, 2007).316

Finally, by using the implicit timestepping method, combining the expressions (3.15) and (3.20),317

the HJB equation (3.18) at a reference point (wi, vj , τ
n+1) is then discretized as318

sup
p∈Zh

{
Un+1
i,j

∆τn
−
Uni∗,j(p)

∆τn
− LphU

n
i,j

}
= 0, (3.21)

where Zh is the discrete control set. Since there is no simple analytic expression which can be used319

to minimize the discrete equations (3.21), and we need to discretize the admissible control set Z and320

perform linear search. This guarantees that we find the global maximum of equation (3.21), since321

the objective function has no known convexity properties. If the discretization step for the controls322

is also O(h), where h is the discretization parameter, then this is a consistent approximation (Wang323

and Forsyth, 2008).324

3.3 Matrix form of the discrete equation325

Our discretization is summarized as follows. The domains are defined in Table 3.1. For the case326

(wi, vj) ∈ Ωin, we need to use a wide stencil based on a local coordinate rotation to discretize327

the second derivative terms, and use the semi-Lagrangian timestepping scheme to handle the drift328

term (r + pξv)wUw. The HJB equation is discretized as (3.21), and the optimal p∗ in this case is329

determined by solving (3.21). For the case Ωvmax , the HJB equation degenerates to (3.2). In this330

case, the drift term is also handled by the semi-Lagrangian timestepping scheme. With vanishing331

cross-derivative term, the degenerate linear operator Lp can be discretized by a standard finite332

difference method. The corresponding discretized form Dp
h is given in Appendix A. The value for333

case Ωwmax is obtained by the asymptotic solution (3.4), and the optimal p∗ is set to zero. At334

the lower boundaries Ωwmin and Ωvmin , the HJB equation degenerates to a linear equation. The335
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wide stencil and the semi-Lagrangian timestepping scheme may require the value of the solution336

at a point outside the computational domain, denoted as Ωout. Details on how to handle this337

case are given in Section 4.3. From the discretization (3.21), we can see that the measure of Ωout338

convergences to zero as h→ 0. Lastly, fully implicit time-stepping is used to ensure unconditional339

monotonicity of our numerical scheme. Fully implicit timestepping requires solution of highly340

nonlinear algebraic equations at each timestep. For the applications addressed in (Forsyth and341

Labahn, 2007) an efficient method for solving the associated nonlinear algebraic systems makes use342

of a policy iteration scheme. We refer the reader to (Huang et al., 2012; Forsyth and Labahn, 2007)343

for the details of the policy iteration algorithm.

Notation The domain

Ω [0, wmax]× [0, vmax]
Ωin (0, wmax)× (0, vmax)
Ωwmax The upper boundary w = wmax

Ωvmax The upper boundary v = vmax

Ωwmin The lower boundary w = 0
Ωvmin The lower boundary v = 0
Ωout (wmax,+∞)× (0,+∞) ∪ (0,+∞)× (vmax,+∞)

Table 3.1: The domain definitions.

344

It is convenient to use a matrix form to represent the discretized equations for computational345

purposes. Let Uni,j be the approximate solution of the equation (2.15) at (wi, vj , τ
n), 1 ≤ i ≤ N1,346

1 ≤ j ≤ N2 and 0 ≤ τn ≤ Nτ , and form the solution vector347

Un =
(
Un1,1,Un2,1, . . . ,UnN1,1, . . . ,U

n
1,N2

, . . . ,UnN1,N2

)
. (3.22)

It will sometimes be convenient to use a single index when referring to an entry of the solution
vector

Un` = Uni,j , ` = i+ (j − 1)N1.

Let N = N1 ×N2, and we define the N ×N matrix Ln+1(P), where348

P = {p1, . . . , pN} (3.23)

is an indexed set of N controls, and each p` is in the set of admissible controls. Ln+1
`,k (P) is the349

entry on the `-th row and k-th column of the discretized matrix Ln+1(P). We also define a vector350

of boundary conditions Fn+1(P).351

For the case (wi, vj) ∈ Ωwmax where the Dirichlet boundary condition (3.4) is imposed, we then352

have353

Fn+1
` (P) = Ū(wmax), (3.24)

and354

Ln+1
`,k (P) = 0, k = 1, . . . , N. (3.25)

For the case (wi, vj) ∈ Ωvmin ∪ Ωwmin ∪ Ωvmax , the differential operator degenerates, and the355

entries Ln+1
`,k (P) are constructed from the discrete linear operator Dp

h (see the Appendix, equation356

(A.1) ). That is,357

[Ln+1(P)Un+1]` = Dp
hU

n+1
i,j . (3.26)
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For the case (wi, vj) ∈ Ωin, we need to use the values at the following four off-grid points358

xi,j ±
√
h(Ri,j)k, k = 1, 2 in (3.15), and we denote those values by Ψm

i,j , m = 1, 2, 3, 4, respectively.359

When Ψm
i,j ∈ Ω, using linear interpolation, values at these four points are approximated as follows360

JhUn+1(Ψm
i,j) =


∑

d=0,1
e=0,1

ωfm+d,gm+e
i,j Un+1

fm+d,gm+e, Ψm
i,j ∈ Ω

0, otherwise
. (3.27)

For linear interpolation, we have that ωfm+d,gm+e
i,j ≥ 0 and

∑
d=0,1
e=0,1

ωfm+d,gm+e
i,j = 1. Then, inserting361

(3.27) in (3.15), the entries Ln+1
`,k (P) on `-th row are specified. When we use Ψm

i,j ∈ Ωout, we directly362

use its asymptotic solution Ū(Ψm
i,j) (3.4). Thus, we need to define the vector Gn+1(P) to facilitate363

the construction of the matrix form in this situation when we use a point in the domain Ωout.364

Gn+1
` (P) =


1Ψ1

i,j∈Ωout

ai,j
h Ū(Ψ1

i,j) + 1P 2
i,j∈Ωout

ai,j
h Ū(Ψ2

i,j)

+ 1Ψ3
i,j∈Ωout

bi,j
h Ū(Ψ3

i,j) + 1Ψ4
i,j∈Ωout

bi,j
h Ū(Ψ4

i,j), (wi, vj) ∈ Ωin,

0, otherwise

(3.28)

where ai,j and bi,j are defined in equation (3.12). As a result, for the case (wi, vj) ∈ Ωin,365

[Ln+1(P)Un+1]` + Gn+1
` (P) = LphU

n+1
i,j , (3.29)

where Lph is defined in equation (3.15).366

Let Φn+1(P) be a linear Lagrange interpolation operator such that367

[Φn+1(P)U]l =

{
JhUni∗,j , (wi∗ , vj) ∈ Ω

Ū(wi∗) (3.4), (wi∗ , vj) ∈ Ωout

, (3.30)

where Uni∗,j is defined in (3.19).368

The final matrix form of the discretized equations is then369 [
I−∆τnLn+1(P̂)

]
Un+1 = Φn+1(P)Un + ∆τnGn+1(P) + Fn+1 − Fn,

p̂` ∈ arg min
p∈Zh

[
Φn+1(P)Un + ∆τn

(
Ln+1(P)Un+1 + Gn+1(P)

)]
`
,

` = i+ (j − 1)N1, i = 2, . . . , N1 − 1, j = 2, . . . , N2,

(3.31)

where Zh is the discretized control set Z.370

Remark 3.3. Note that
[
I−∆τnLn+1(P)

]
`,k

,
[
Φn+1(P)

]
`

and
[
Gn+1(P)

]
`

depend only on p`.371

3.4 Convergence to the viscosity solution372

Assumption 3.1. If the control p is bounded, Equation (2.15) satisfies the strong comparison373

property, hence a unique continuous viscosity solution to equation (2.15) exists (Debrabant and374

Jakobsen, 2013).375
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Provided that the original HJB satisfies Assumption 3.1, we can show that the numerical scheme376

(3.31) is `∞ stable, consistent and monotone, and then the scheme converges to the unique and377

continuous viscosity solution (Barles and Souganidis, 1991). We give a brief overview of the proof378

as follows.379

• Stability: From the formation of matrix L in (3.25), (3.26) and (3.29), it is easily seen that380

[I − ∆τLn+1(P)] (3.31) has positive diagonals, non-positive offdiagonals, and the `-th row381

sum for the matrix is382 ∑
k

[
I−∆τLn+1(P)

]
`,k
> 0, i = 1, . . . , N1, j = 1, . . . , N2, (3.32)

where ` = i+ (j − 1)N1, hence the matrix [I−∆τLn+1(P)] is diagonally dominant, and thus383

it is an M -matrix (Varga, 2009). We can then easily show that the numerical scheme is l∞384

stable by a straightforward maximum analysis as in (d’Halluin et al., 2004).385

• Monotonicity: To guarantee monotonicity, we use a wide stencil to discretize the second386

derivative terms in the discrete linear operator Lph (3.15) (see proof in (Ma and Forsyth,387

2014)). Note that using linear interpolation to compute Uni∗,j (3.20) in the semi-Lagrangian388

timestepping scheme also ensures monotonicity.389

• Consistency: A simple Taylor series verifies consistency. As noted in Section 4.3, we may390

shrink the wide stencil length to avoid using points below the lower boundaries. We can use391

the same proof in Ma and Forsyth (2014) to show this treatment retains local consistency.392

Since we have either simple Dirichlet boundary conditions, or the PDE at the boundary393

is the limit from the interior, the we need only use the classical definition of consistency394

here (See proof in Ma and Forsyth (2014)). The only case where the point Uni∗,j (3.20) in395

the semi-Lagrangian timestepping scheme is outside computational domain is through the396

upper boundary w = wmax, where the asymptotic solution (3.4) is used. Thus, unlike the397

semi-Lagrangian timestepping scheme in Chen and Forsyth (2007), we do not need the more398

general definition of consistency (Barles and Souganidis, 1991) to handle the boundary data.399

3.5 Policy iteration400

Our numerical scheme requires the solution of highly nonlinear algebraic equations (3.31) at each401

timestep. We use the policy iteration algorithm (Forsyth and Labahn, 2007) to solve the associated402

algebraic systems. For the details of the algorithm we refer the reader to Forsyth and Labahn403

(2007); Huang et al. (2012). Regarding the convergence of the policy iteration, since the matrix404

[I−∆τLn+1(P)] (3.31) is an M -matrix and the control set Zh is a finite set, it is easy to show that405

the policy iteration is guaranteed to converge (Forsyth and Labahn, 2007).406

4 Implementation Details407

4.1 Complexity408

Examination of the algorithm for solving discrete equations (3.31) reveals that each timestep re-409

quires410
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• In order to solve the local optimization problems at each node, we perform a linear search411

to find the minimum for p ∈ Zh. Thus, with total O(1/h2) nodes, this gives a complexity412

O(1/h3) for solving the local optimization problems at each time step.413

• We use a preconditioned Bi-CGSTAB iterative method for solving the sparse matrix at each414

policy iteration. The time complexity of solving the sparse M -matrix is O((1/h2)
5
4 ) (Saad,415

2003). Note that in general, we need to reconstruct the data structure of the sparse matrix416

for each iteration.417

Assuming that the number of policy iterations is bounded, as the mesh size tends to zero, which418

is in fact observed in our experiments, the complexity of the time advance is thus dominated by419

the solution of the local optimization problems. Finally, the total complexity is O(1/h4).420

4.2 The efficient frontier421

In order to trace out the efficient frontier solution of problem (2.7), we proceed in the following way.422

Pick an arbitrary value of γ and solve problem (2.14), which determines the optimal control p∗(·).423

There are then two methods to determine the quantities of interest (V arx0,0p∗ [W (T )], Ex0,0p∗ [W (T )]),424

namely the PDE method and the Hybrid (PDE - Monte Carlo) method. We will compare the425

performance of these methods in the numerical experiments.426

4.2.1 The PDE Method427

For a fixed γ, given U(w0, v0, 0) and E(w0, v0, 0) obtained solving the corresponding equations (2.15)428

and (2.18) at the initial time with W0 = w0 and V0 = v0, we can then compute the corresponding429

pair (V arx0,0p∗(·)[W (T )], Ex0,0p∗(·)[W (T )]), where x0 = (w0, v0). That is,430

Ex0,0p∗(·)[W (T )] = E(w0, x0, 0),

V arx0,0p∗(·)[W (T )] = U(w0, v0, 0)− γE(w0, x0, 0)− γ2

4
− E(w0, v0, 0)2,

(4.1)

which gives us a single candidate point YQ(γ). Repeating this for many values of γ gives us a set of431

candidate points. Finally, the efficient frontier is constructed from the upper left convex hull of YQ432

(Tse et al., 2014) to remove spurious points. In our case, however, it turns out that all the points433

are on the efficient frontier, and there are no spurious points.434

We are effectively using the parameter γ to trace out the efficient frontier. From Theorem 2.1,435

we have that γ = 1
λ + 2E0. If λ→∞, the investor is infinitely risk averse, and invests only the risk436

free bond, hence in this case, we must have smallest possible value of γ437

γmin = 2w0 exp(rT ). (4.2)

In practice, the interesting part of the efficient frontier is in the range γ ∈ [γmin, 10γmin].438

4.2.2 The Hybrid (PDE - Monte Carlo) discretization439

In the hybrid method, given the stored optimal control p∗(·) from solving the HJB PDE (2.15),440

(V arx0,0p∗(·)[W (T )], V arx0,0p∗(·)[W (T )]) are then estimated by Monte Carlo simulations. We use the Euler441

scheme to generate the Monte Carlo simulation paths of the wealth (2.4), and an implicit Milstein442
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scheme to generate the Monte Carlo simulation paths of the variance process (2.3). Starting with443

W0 = w0 and V0 = v0, the Euler scheme for the wealth process (2.4) is444

Wt+∆t = Wt exp
((
r + p∗ξVt − 0.5(p∗

√
Vt)

2
)

∆t+ p∗
√
Vt∆tφ1

)
, (4.3)

and the implicit Milstein scheme of the variance process (2.3) (Kahl and Jäckel, 2006) is445

Vt+∆t =
Vt + κθ∆t+ σ

√
Vt∆tφ2 + σ2∆t(φ2

2 − 1)/4

1 + κ∆t
, (4.4)

where φ1 and φ2 are standard normal variables with correlation ρ. Note that this discretization446

scheme will result in strictly positive paths for the variance process if 4κθ > σ2 (Kahl and Jäckel,447

2006). For the cases where this bound does not hold, it will be necessary to modify (4.4) to prevent448

problems with the computation of
√
Vt. For instance, whenever Vt drops below zero, we could use449

the Euler discretization450

Vt+∆t = Vt + κ(θ − V +
t )∆t+ σ

√
V +
t

√
∆tφ2, (4.5)

where V +
t = max(0, Vt). (Lord et al., 2010) reviews a number of similar remedies to get around the451

problem when Vt becomes negative and concludes that the simple fix (4.5) works best.452

4.3 Outside the computational domain453

To make the numerical scheme consistent in a wide stencil method (Section 3.2.1), the stencil length454

needs to be increased to use the points beyond the nearest neighbors of the original grid. Therefore,455

when solving the PDE in a bounded region, the numerical discretization may require points outside456

the computational domain. When a candidate point we use is outside the computational region at457

the upper boundaries, we can directly use its asymptotic solution (3.4). For a point outside the458

upper boundary w = wmax, the asymptotic solution is specified by the equation (3.4). For a point459

outside the upper boundary v = vmax, by the implication of the boundary condition Uv = 0 on460

v = vmax, we have,461

U(w, v, τ) = U(w, vmax, τ), v > vmax. (4.6)

However, we have to take special care when we may use a point below the lower boundaries
w = 0 or v = 0, because the equation (2.15) is defined over [0,∞]× [0,∞]. The possibility of using
points below the lower boundaries only occurs when the node (i, j) falls in a possible region close
to the lower boundaries

[h,
√
h]× (0, wmax] ∪ (0, vmax]× [h,

√
h],

as discussed in Ma and Forsyth (2014). We can use the algorithm proposed in Ma and Forsyth462

(2014) to avoid this problem, and which retains consistency. That is, when one of the four can-463

didate points xi,j ±
√
h(Ri,j)k, k = 1, 2 (3.15) is below the lower boundaries, we then shrink its464

corresponding distance (from the reference node (i, j)) to h, instead of the original distance
√
h.465

This simple treatment ensures that all data required is within the domain of the HJB equation. It466

is straightforward to show that this discretization is consistent (Ma and Forsyth, 2014).467

In addition, due to the semi-Lagrangian timestepping (Section 3.2.2) , we may need to evaluate468

the value of an off-grid point (wi∗ = wie
(r−pξvj)∆τn , vj) (3.19). This point maybe outside computa-469

tional domain through the upper boundary w = wmax (the only possibility). When this situation470

occurs, the asymptotic solution (3.4) is used.471

17



4.4 An improved linear interpolation scheme472

When solving the value function problem (2.15) or the expected value problem (2.18) on a com-473

putational grid, it is required to evaluate U(·) and E(·), respectively, at points other than a node474

of the computational grid. This is especially important when using semi-Lagrangian timestepping.475

Hence, interpolation must be used. As mentioned earlier, to preserve the monotonicity of the476

numerical schemes, linear interpolation for an off-grid node is used in our implementation. Dang477

and Forsyth (2014b) introduces a special linear interpolation scheme applied along the w-direction478

to significantly improve the accuracy of the interpolation in a 2-D impulse control problem. We479

modify this algorithm in our problem set-up.480

We then take advantage of the results in Section 3.1.3 to improve the accuracy of the linear481

interpolation. Assume that we want to proceed from timestep τn to τn+1, and that we want482

to compute U(w̄, vj , τ
n) where w̄ is neither a grid point in the w-direction nor the special value483

Wopt(T − τn), where Wopt is defined in equation (3.5). Furthermore, assume that wk < w̄ <484

wk+1 for some grid points wk and wk+1. For presentation purposes, let wspecial = Wopt(T − τn)485

and Uspecial = 0. An improved linear interpolation scheme along the w-direction for computing486

U(w̄, vj , τ
n) is shown in Algorithm 4.1. Note that the interpolation along v-direction is a plain487

linear interpolation, thus we only illustrate the interpolation algorithm in w-direction.

Algorithm 4.1 Improved linear interpolation scheme along the w-direction for the function value
problem

1: if wspecial < wk or wspecial > wk+1 then
2: set wleft = wk, Uleft = Unk,j , wright = wk+1, and Unright = Unk+1,j

3: else
4: if wspecial < w̄ then
5: set wleft = wspecial, Uleft = Uspecial, wright = wk+1, and Unright = Unk+1,j

6: else
7: set wleft = wk, Uleft = Unk,j , wright = wspecial, and Unright = Uspecial
8: end if
9: end if

10: Apply linear interpolation to (wleft,Uleft) and (wright,Uright) to compute U(w̄, vj , τ
n)

488

Following the same line of reasoning used for the function value problem, we have that

E(v,Wopt(t), t) =
γ

2
.

By using this result, a similar method as Algorithm 4.1 can be used to improve the accuracy of489

linear interpolation when computing the expected value E(w̄, vj , τ
n).490

Remark 4.1. For the discretization of the expected value problem (2.18), we still use the semi-491

Lagrangian timestepping to handle the drift term (r + p∗ξv)wEw. Since it may be necessary to492

evaluate Eni∗,j at points other than a node of the computational grid, we need to use linear interpo-493

lation.494
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5 Numerical Experiments495

In this section, we present numerical results of solution of equation (2.15) applied to the continuous496

time mean variance portfolio allocation problem. In our problem, the risky asset (2.2) follows the497

Heston model. The parameter values of the Heston model used in our numerical experiments are498

taken from (Aıt-Sahalia and Kimmel, 2007) based on empirical calibration from S&P 500 index499

and VIX index dataset during 1990 to 2004 (under the real probability measure). Table 5.1 lists500

the Heston model parameters, and Table 5.2 lists the parameters of the mean variance portfolio501

allocation problem.502

κ θ σ ρ ξ

5.07 0.0457 0.48 −0.767 1.605

Table 5.1: Parameter values in the Heston model

Investment Horizon T 10
The risk free rate r 0.03
Leverage constraint pmax 2
Initial wealth w0 100
Initial variance v0 0.0457

Table 5.2: Input parameters for the mean variance portfolio allocation problem.

For all the experiments, unless otherwise noted, the details of the grid, the control set, and503

timestep refinement levels used are given in Table 5.3.

Refinement Timesteps W Nodes V Nodes Zh Nodes

0 160 112 57 8
1 320 223 113 16
2 640 445 225 32
3 1280 889 449 64

Table 5.3: Grid and timestep refinement levels used during numerical tests. On each refinement, a
new grid point is placed halfway between all old grid points and the number of timesteps is doubled.
A constant timestep size is used. wmax = 6× 106 and vmax = 3.0. The number of finite sampled γ
is 50. Note that increasing wmax by an order of magnitude and doubling vmax results in no change
to the points on the efficient frontier to five digits. Increasing the number of γ points did not result
in any appreciable change to efficient frontier (no spurious points in this case).

504

5.1 Effects of the improved interpolation scheme for the PDE method505

In this subsection, we discuss the effects on numerical results of the linear interpolation scheme
described in Section 4.4. We plot expected values against standard deviation, since both variables
have the same units. Figure 5.1a illustrates the numerical efficient frontiers obtained using standard
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linear interpolation. It is clear that the results are very inaccurate for small standard deviations.
It appears that the numerical methods were not able to construct the known point on the exact
efficient frontier

(V arx,tp∗(·)[W (T )], Ex,tp∗(·)[W (T )]) = (0, w0e
rT ) ≈ (0, 134.9859).

This trivial case corresponds to the case where γ = γmin (4.2), and the investor invests only in the506

risk free bond and not in the risky asset. However, as shown in Figure 5.1a, in this special case,507

the standard deviation obtained by the numerical scheme using standard linear interpolation is far508

from the exact solution.509

Figure 5.1b shows the numerical efficient frontiers obtained with the improved linear interpo-510

lation scheme, where Algorithm 4.1 is utilized. It is obvious that the numerical efficient frontiers511

obtained with the improved linear interpolation scheme are more reasonable, especially for the512

small standard deviation region. In particular, the special point where the variance is zero is now513

approximated accurately. This result illustrates the importance of using the optimal embedded514

terminal wealth Wopt(t) and its function value for linear interpolation in constructing accurate nu-515

merical efficient frontiers. In all our numerical experiments in the following, the improved linear516

interpolation scheme is used.
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Figure 5.1: Close-up of efficient frontier for small standard deviations. (a) No Special Interpolation.
(b) Special interpolation.

517

5.2 Convergence analysis518

In this section, we illustrate the convergence of our numerical scheme, and compare the performance519

of two methods, namely the PDE method (Section 4.2.1) and the Hybrid method (4.2.2), for520

constructing the mean variance frontier under our model set-up.521

Figure 5.2 shows that the mean standard deviation efficient frontiers computed by both the522

PDE method and the Hybrid method converge to the same frontier as the computational grid is523
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refined. Our numerical results demonstrate that the Hybrid frontiers in general converge faster to524

the limit results than the pure PDE solutions. This same phenomenon was observed in (Tse et al.,525

2013). As shown in Figure 5.2, the frontiers obtained by the Hybrid method are almost identical526

for refinement level 1 and 2. Note that for both methods, the optimal control is always computed527

by solving the HJB PDEs.528

The same timesteps are used in both PDE method and Monte Carlo simulations, for each529

refinement level. For example, the frontiers labeled with “Refine = 1” for both methods in Figure530

5.2 use the time steps as specified as Refinement level 1 in Table 5.3. To achieve small sampling531

error in Monte Carlo simulations, 106 simulations are performed for the numerical experiments.532

The standard error in Figure 5.2 can then be estimated. For example, consider a point on the533

frontier with the large standard deviation value which is about 350. For the expected value of534

W (T ), the sample error is approximately 350/
√

106 ≈ 0.35, which could be negligible in Figure 5.2.535

We will verify our conclusion by examining several specific points on these efficient frontiers in536

Figure 5.2. Table 5.4 and Table 5.5 show computed means and standard deviations for different537

refinement levels when γ = 540. The numerical results indicate first order convergence is achieved538

for both the PDE method and the Hybrid method. In this case, our numerical results demonstrate539

that the Hybrid frontiers converge faster to the limit results than the PDE solutions. Table 5.6540

and Table 5.7 show computed means and standard deviations for different refinement levels when541

γ = 1350. The numerical results indicate first order convergence is achieved for the PDE method.542

In this case, our numerical results also demonstrate that the Hybrid frontiers converge faster to543

the limit results than the PDE solutions. However, the convergence ratio for the Hybrid method544

is erratic. As we noted before, in this case, the sample error for the estimate of the mean value545

is about 0.2 (200/
√

106). The sample error may cause the phenomenon of the erratic convergence546

ratio in the Hybrid method results. To decrease the sample error to, for example, 0.01, the number547

of simulation paths would have to increase to 100 × 106, which is unaffordable in terms of the548

computational cost. Note that in the case γ = 540, with the small standard deviation, the sample549

error decreases to about 0.01.550

Remark 5.1 (Efficiency of the Hybrid method.). We remind that reader that for both the Hybrid551

and PDE methods, the same (computed) control used. The more rapid convergence of the Hybrid552

method is simply due to a more accurate estimate of the expected quantities (with a known control).553

This result is somewhat counter-intuitive, since it suggests that a low accuracy control can be used554

to generate high accuracy expected values. We also observe this from the fact that a fairly coarse555

discretization of the admissible set Zh generates fairly accurate solutions.556

Refine Mean Change Ratio Standard Deviation Change Ratio

0 207.1434 71.3924
1 210.4694 3.3260 65.5090 −5.88336
2 212.1957 1.7263 1.92 62.0862 −3.42288 1.72
3 213.1481 0.95238 1.81 60.4738 −1.61237 2.12

Table 5.4: The convergence table for the PDE method. Small standard deviation case with γ = 540.
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Figure 5.2: convergence of frontiers in the PDE method and the Hybrid method. The frontiers
labeled with “PDE” are obtained from the PDE method (Section 4.2.1). The frontiers labeled
with “Hybrid” (Section 4.2.2) are obtained from a Monte Carlo simulation which uses the optimal
controls determined by solving the HJB equation (2.15).

Refine Mean Change Ratio Standard Deviation Change Ratio

0 212.2993 56.6128
1 213.2077 0.908 57.7652 1.152
2 213.7573 0.550 1.65 58.2987 0.534 2.16
3 213.9903 0.233 2.36 58.5253 0.227 2.35

Table 5.5: The convergence table for the Hybrid method. Small standard deviation case with
γ = 540.

Refine Mean Change Ratio Standard Deviation Change Ratio

0 320.5139 217.0009
1 325.5443 5.030 212.1886 −4.812
2 328.2670 2.723 1.85 209.8434 −2.345 2.05
3 329.8172 1.550 1.76 208.9045 −0.939 2.50

Table 5.6: The convergence table for the PDE method. Large standard deviation case with γ =
1350.

22



Refine Mean Change Ratio Standard Deviation Change Ratio

0 329.4411 206.0875
1 330.5172 1.076 206.8351 0.748
2 330.7066 0.189 5.68 207.1958 0.361 2.07
3 331.2820 0.575 0.33 207.3707 0.175 2.06

Table 5.7: The convergence table for the Hybrid method. Large standard deviation case with
γ = 1350.

5.3 Sensitivity of Efficient Frontiers557

In this subsection, we show some numerical sensitivity analysis for the major market parameters,558

namely the leverage constraints pmax, the market risk ξ, the mean reversion level for the variance559

θ, the volatility of the variance σ, the correlation ρ between the risky asset and the variance, and560

the mean reversion speed κ. In our numerical tests, the corresponding frontiers are generated as561

the market parameter of interest changes, and the values of the remaining parameters are fixed and562

are listed in Table 5.1 and Table 5.2. We use the Hybrid method with the discretization level 2.563

As observed in Figure 5.3, with pmax = {1, 1.5, 2,+∞}, larger values of the leverage constraints564

pmax result in much more dominant efficient frontiers. From Figure 5.4, with ξ = {0.5, 1.605, 2.5},565

we can see that larger values of ξ result in much more dominant efficient frontiers. The maximal566

standard deviation point (γ = +∞) on the efficient frontier with ξ = 0.5 is only about 191, which567

is much smaller than those with larger ξ values. From Figure 5.5, θ = {0.01, 0.0457, 0.36}, we can568

see that larger values of the mean reversion level θ for the variance, result in much more dominant569

efficient frontiers. The maximal standard deviation point (γ = +∞) on the efficient frontier with570

θ = 0.01 is only about 108, which is much smaller than those with larger θ values. From Figure571

5.6, σ = {0.7, 0.0457, 0.2}, we can see that larger values of the volatility of the variance σ result572

in a slightly more dominant efficient frontiers in general. In particular, these efficient frontiers in573

large standard deviation region with different σ values values are almost identical.574

On the other hand, from Figure 5.7, with ρ = {−0.767,−0.3, 0}, we can see that an increase575

in the correlation ρ produces frontiers with a sightly smaller expected value for a given standard576

deviation. These efficient frontiers in the large standard deviation region with different ρ values are577

almost identical. The effect of the κ values on the efficient frontier is more complex. From Figure578

5.8, κ = {1, 5.07, 20}, in the small standard deviation region, an increase in κ produces frontiers579

with a smaller expected value for a given standard deviation. However, when the standard deviation580

increases to about 230, the larger values of κ gradually result in more significant dominant efficient581

frontiers.582

5.4 Comparison between constant volatility and stochastic volatility cases583

In this paper, the risky asset follows the stochastic volatility model (2.2-2.3). In this Section, we will584

compare the constant volatility and stochastic volatility cases in terms of mean variance efficiency585

for the continuous time pre-commitment mean variance problem. With a constant volatility, the586

risky asset is the governed by the following geometric Brownian Motion (GBM) process:587

dS

S
= (r + µ)dt+ σSdZs. (5.1)
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Figure 5.3: Sensitivity analysis of the efficient frontiers with respect to different leverage constraints
pmax. The Heston parameters and the remaining model parameters are given in Table 5.1 and Table
5.2. The Hybrid method with discretization level 2 is used.
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Figure 5.4: Sensitivity analysis of the efficient frontiers with respect to different risk premium factor
ξ values. The remaining Heston parameters and the model parameters are given in Table 5.1 and
Table 5.2. The Hybrid method with discretization level 2 is used.
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Figure 5.5: Sensitivity analysis of the efficient frontiers with respect to different mean reversion
level θ values. The remaining Heston parameters and the model parameters are given in Table 5.1
and Table 5.2. The Hybrid method with discretization level 2 is used.
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Figure 5.6: Sensitivity analysis of the efficient frontiers with respect to different σ values. The
remaining Heston parameters and the model parameters are given in Table 5.1 and Table 5.2. The
Hybrid method with discretization level 2 is used.
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Figure 5.7: Sensitivity analysis of the efficient frontiers with respect to different ρ values. The
remaining Heston parameters and the model parameters are given in Table 5.1 and Table 5.2. The
Hybrid method with discretization level 2 is used.
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Figure 5.8: Sensitivity analysis of the efficient frontiers with respect to different κ values. The
Heston parameters and the remaining model parameters are given in Table 5.1 and Table 5.2. The
Hybrid method with discretization level 2 is used.
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γ = 540 γ = 1350
Control Process Price Process Mean Stnd Dev Mean Stnd Dev

GBM GBM 209.50 59.68 330.09 213.01

GBM Stoch. Vol. 212.68 58.42 329.13 207.23

Stoch. Vol. Stoch. Vol 213.99 58.53 331.28 207.37

Table 5.8: Given a γ, the optimal portfolio allocation strategy is computed and stored assuming
a control process, which is either GBM or stochastic volatility. The mean variance pairs are then
estimated by Monte Carlo Simulation, using the stored controls, assuming that the actual price
process follows either GBM or stochastic volatility. For the stochastic volatility case, the parameters
are given in Table 5.1. For the GBM case, the variance is fixed to the mean value of the stochastic
volatility case.

To compare with the stochastic volatility case in Table 5.1, the constant volatility σS is set to588 √
θ ≈ 0.2138, and the risky return over the risk free rate µ is set to ξσ2

S = 0.0733485, which has589

the same mean premium of the volatility risk as the stochastic volatility model (2.2). This then590

corresponds to the case where the variance V (t) in (2.2) is fixed to the mean reversion level θ. The591

remaining mean variance problem parameters are the same as listed in Table 5.2.592

Figure 5.9 illustrates the fact that the efficient frontiers produced by using the stochastic volatil-593

ity sightly dominates the curve produced by the constant volatility model. With the Heston model’s594

parameters in Table 5.1, we may conclude that the efficient frontier produced by the constant volatil-595

ity is a good approximation of the frontier generated by the stochastic volatility model. From Figure596

5.9, however, we see that if the mean reversion speed κ is set to a small value, e.g. one, in the597

stochastic volatility case, the efficient frontiers computed using a constant volatility model will be598

considerably different from those computed using the stochastic volatility model. The quantity 1/κ599

is measured in years and is related to the time over which a volatility shock dissipates. Specially,600

the half-life of a volatility shock is ln 2
κ .601

Finally, using the portfolio allocation strategy that is precomputed and stored from the constant602

volatility case, we then carry out a Monte Carlo simulation where the risky asset follows the603

stochastic volatility model. We then compare the results using this approximate control, with the604

optimal control computed using the full stochastic volatility model. From Table 5.8, we can see605

that the mean variance pairs computed using the optimal strategy are very close to the strategy606

computed using the GBM approximation. Based on several tests, a good heuristic guideline is that607

if κT > 40, then the GBM control is a good approximation to the true (optimal control).608

6 Conclusion609

In this paper, we develop an efficient fully numerical PDE approach for the pre-commitment con-610

tinuous time mean variance asset allocation problem when the risky asset follows a stochastic611

volatility model. We use the wide stencil method (Ma and Forsyth, 2014) to overcome the main612

difficulty in designing a monotone approximation. We show that our numerical scheme is mono-613

tone, consistent, and `∞-stable. Hence, the numerical solution is guaranteed to converge to the614

unique viscosity solution of the corresponding HJB PDE, assuming that the HJB PDE satisfies615

a strong comparison property. Furthermore, using semi-Lagrangian timestepping to handle the616

drift term and an improved method of linear interpolation, allows us to compute accurate efficient617
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Figure 5.9: Efficient Frontier Comparison between constant volatility and stochastic volatility cases.
For the stochastic volatility cases, κ = 1, 5.07, and the remaining stochastic volatility parameters
are given in Table 5.1. The GBM parameters are given in Section 5.4.

frontiers. When tracing out the efficient frontier solution of our problem, we demonstrate that618

the Hybrid (PDE - Monte Carlo) method (Tse et al., 2013) converges faster than the pure PDE619

method. Similar results are observed in Tse et al. (2013). Finally, if the mean reversion time 1
κ is620

small compared to the investment horizon T , then a constant volatility GBM approximation to the621

stochastic volatility process gives a very good approximation to the optimal strategy.622

Appendix623

A The discrete linear operator Dp
h624

With vanishing cross-derivative term, the degenerate linear operator Lp (3.14) can be discretized625

by a standard finite difference method. The degenerate linear operators Lp in (3.1), (3.2), and (3.3)626

are approximated as the discrete form627

Dp
hU

n
i,j = αwi,jUni−1,j + βwi,jUni+1,j + αvi,jUni,j−1 + βvi,jUni,j+1 − (αwi,j + βwi,j + αvi,j + βvi,j)Ui,j , (A.1)
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where αwi,j , β
w
i,j , α

v
i,j and βvi,j are defined as follows628

αwi,j =
(
√
vpwi)

2

(wi − wi−1)(wi+1 − wi−1)
,

βwi,j =
(
√
vpwi)

2

(wi+1 − wi)(wi+1 − wi−1)
,

αvi,j =

[
(σ
√
vj)

2

vj − vj−1)(vj+1 − vj−1)
+ max

(
0,−κ(θ − vj)

vj − vj−1

)]
,

βvi,j =

[
(σ
√
vj)

2

(vj+1 − vj)(vj+1 − vj−1)
+ max

(
0,
κ(θ − vj)
vj+1 − vj

)]
.

(A.2)

The coefficients αwi,j , β
w
i,j , α

v
i,j and βvi,j are all non-negative, and is compatible with a monotone629

scheme. On the upper boundary v = vmax, the coefficients αvi,N2
and βvi,N2

= 0 degenerate to zero,630

and On the lower boundary w = 0, αw1,j and βw1,j are set to 0. On the lower boundary v = 0,631

αwi,1 = 0, βwi,1 = 0, αvi,1 = 0, and βwi,1 = κθ
vj+1−vj , j = 1.632
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