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Multiperiod Mean Conditional Value at Risk Asset Allocation: Is It
Advantageous to Be Time Consistent?\ast 
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Abstract. We formulate the multiperiod, time consistent mean-CVAR (conditional value at risk) asset alloca-
tion problem in a form amenable to numerical computation. Our numerical algorithm can impose
realistic constraints such as no shorting, no leverage, and discrete rebalancing. We focus on long
term (i.e., 30 year) strategies, which would be typical of an investor in a defined contribution pen-
sion plan. A comparison with precommitment mean-CVAR strategies shows that adding the time
consistent constraint compares unfavorably with the pure precommitment strategy. Since the pre-
commitment strategy computed at time zero is identical to a time consistent strategy based on an
alternative objective function, the time zero precommitment mean-CVAR strategy is implementable
in this case. Hence it would seem that there is little to be gained from enforcing time consistency.
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1. Introduction. Long term investors, such as those saving for retirement in a defined
contribution (DC) pension are motivated by asset allocation strategies which are optimal under
multi-period criteria. Initial work on multi-period strategies under mean variance criteria was
carried out in (Li and Ng, 2000; Zhou and Li, 2000). More recent issues are addressed in
(Basak and Chabakauri, 2010; Bjork and Murgoci, 2010; Wang and Forsyth, 2011; Bjork and
Murgoci, 2014; Bjork, Murgoci, and Zhou, 2014). It is important to distinguish between two
categories of multi-period optimal control strategies.

Precommitment strategies (Li and Ng, 2000; Zhou and Li, 2000) are globally optimal
when viewed from the initial time, but these strategies are not time consistent. Consider an
asset allocation problem with a fixed stopping time T . We compute the optimal strategy,
as a function of the state variables, at time zero. Now, suppose we recompute the strategy
at some later time t, 0 < t < T . For a given state of the system, the strategy we compute
at this later time may not agree with the strategy computed at time zero. This has led
many investigators to label precommitment mean-variance strategies as nonimplementable,
since the investor has an incentive to deviate from the precommitment strategy at t > 0.
However, in the mean-variance case, this objection is perhaps not well thought out. For any
precommitment mean-variance optimal strategy, there exists a parameter W \ast , such that this
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TIME CONSISTENT MEAN CVAR 359

strategy is also optimal for the strategy which minimizes quadratic shortfall (Cui et al., 2012;
Dang and Forsyth, 2016)

E
\bigl[ 
(min(WT  - W \ast ,0))2

\bigr] 
,(1.1)

where WT is the accumulated wealth at t = T , and E[\cdot ] is the expectation operator. For
a fixed W \ast , we can determine the optimal policy for objective function (1.1) using dynamic
programming. Hence, if we fix the target W \ast , the precommitment policy is the time consistent
strategy for objective function (1.1). In fact, as noted in Vigna (2017),

``The equivalence between [precommitment] mean-variance criterion and the
target-based approach is one of the characteristics that make the mean-variance
preferences appealing with respect to other types of preferences. . . . For the av-
erage pension fund member it is easier to select a wealth target rather than an
abstract index.""

This makes the objective function (1.1) with a fixed target W \ast very useful in practice. The
objective function (1.1), with a fixed W \ast , has been termed the mean-variance induced utility
maximization problem in Strub, Li, and Cui (2019), to emphasize that this objective function
does in fact generate a time consistent policy.

In an effort to force time consistency, while retaining the mean-variance objective func-
tion when viewed at times t > 0, several authors have developed techniques to ensure this
property (Basak and Chabakauri, 2010; Bjork and Murgoci, 2010; Wang and Forsyth, 2011;
Bjork and Murgoci, 2014; Bjork, Murgoci, and Zhou, 2014; Van Staden, Dang, and Forsyth,
2018; Landriault et al., 2018). Since we can view time consistent mean-variance strategies
as precommitment strategies with an additional constraint, it is immediately obvious that
time consistent strategies are not globally optimal as seen at time zero. In fact, as noted by
Cong and Oosterlee (2016a,b), the precommitment mean-variance strategy is consistent with a
fixed target, but not with a risk aversion attitude. Conversely, time consistent mean-variance
strategies are consistent with a fixed risk aversion, but not with a fixed target. Further dis-
cussion concerning the equivalence of precommitment mean variance and the time consistent
policy which minimizes the target based objective function (1.1) can be found in Vigna (2014);
Menoncin and Vigna (2017). The merits and demerits of time consistent and precommitment
policies are also discussed in Vigna (2017). Some other interesting problems with time consis-
tency are noted in Bensoussan, Wong, and Yam (2019), in the case of a wealth dependent risk
aversion parameter. Suffice to say, we cannot dismiss precommitment policies out of hand.

An interesting alternative for using variance to measure risk is conditional value at risk
(CVAR). CVAR at level \alpha is simply the average of the worst \alpha fraction of outcomes, hence,
is a measure of tail risk. Precommitment mean-CVAR strategies were developed in Miller
and Yang (2017); Gao et al. (2017). As we shall see, although precommitment mean-CVAR
strategies are formally time inconsistent, these strategies are identical at time zero to a linear
target shortfall policy with a fixed target. This alternative objective function generates a time
consistent policy. Hence these strategies are in fact implementable. Under this alternative
objective function, the investor has no incentive to deviate from the strategy computed at
time zero.

The objective of this article is to formulate the time-consistent mean-CVAR problem
into a form which is amenable to computation. We do this by expanding the state space toD
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360 PETER A. FORSYTH

include the local value at risk (VAR) as an independent variable. We develop a numerical
technique for solving this problem. Since we use numerical methods, we can consider realistic
constraints, such as no leverage, no shorting, and discrete rebalancing. We then compare
the time consistent and precommitment mean-CVAR solutions for a long term investment
problem. The stochastic process parameters are determined by fitting to 90 years of market
data.

We should mention that our approach differs from the method in Cui et al. (2019), where
the authors reduce the time consistent mean-CVAR problem to the solution of a convex
program based on a finite Monte Carlo sampling of return paths. In particular, Cui et al.
(2019) assumes a lump sum investment, where the control (in terms of amount in each asset)
is shown to be a piecewise linear function of wealth. The lump sum assumption does not hold
in general for DC plan investors, who typically make periodic contributions to an investment
portfolio.

Our main conclusion is that imposing a time consistent constraint on the solution of a
mean-CVAR problem appears to result in an investment strategy with undesirable properties.
On the other hand, based on the cumulative distribution function of the final wealth, the
time consistent linear target shortfall strategy (which coincides with precommitment mean-
CVAR at time zero) is superior in terms of tail risk reduction compared to the time consistent
mean-CVAR policy.

We note that there are many possible objective functions which can be used to determine
strategies for asset allocation. A nonexhaustive list includes time consistent multi-period
mean variance, minimizing quadratic shortfall, deterministic strategies, and various traditional
utility functions. A study of several strategies is carried out in Forsyth and Vetzal (2019). Our
objective in this paper is deliberately narrow. We focus on mean-CVAR policies, and argue
that forcing time consistency in this case is undesirable. This narrows down (somewhat) the
choice of possible objective functions which should be considered.

2. Formulation. For simplicity we assume that there are only two assets available in the
financial market, namely, a risky asset and a risk-free asset. In practice, the risky asset would
be a broad market index fund.

The investment horizon is T . St and Bt, respectively, denote the amounts invested in
the risky and risk-free assets at time t, t \in [0, T ]. In general, these amounts will depend on
the investor's strategy over time, as well as changes in the unit prices of the assets. In the
absence of an investor determined control (i.e., cash injections or rebalancing), all changes in
St and Bt result from changes in asset prices. In this case (absence of control), we assume
that St follows a jump diffusion process. Let St - = S(t - \epsilon ), \epsilon \rightarrow 0+, i.e., t - is the instant of
time before t, and let \xi be a random number representing a jump multiplier. When a jump
occurs, St = \xi St - . Allowing discontinuous jumps allows us to explore the effects of severe
market crashes on the risky asset holding. We assume that log(\xi ) follows a double exponential
distribution (Kou, 2002; Kou and Wang, 2004). If a jump occurs, pup is the probability of
an upward jump, while 1  - pup is the chance of a downward jump. The density function for
y = log(\xi ) is

(2.1) f(y) = pup\eta 1e
 - \eta 1y1y\geq 0 + (1 - pup)\eta 2e

\eta 2y1y<0 .D
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For future reference, note that

E[y = log \xi ] =
pup
\eta 1

 - (1 - pup)

\eta 2
, E[\xi ] =

pup\eta 1
\eta 1  - 1

+
(1 - pup)\eta 2

\eta 2 + 1
,

E[(\xi  - 1)2] =
pup\eta 1
\eta 1  - 2

+
(1 - pup)\eta 2

\eta 2 + 2
 - 2

\biggl( 
pup\eta 1
\eta 1  - 1

+
(1 - pup)\eta 2

\eta 2 + 1

\biggr) 
+ 1 .

(2.2)

In the absence of control, St evolves according to

dSt

St - 
= (\mu  - \lambda \xi \kappa \xi ) dt+ \sigma dZ + d

\Biggl( 
\pi t\sum 
i=1

(\xi i  - 1)

\Biggr) 
,

\kappa \xi = E[\xi  - 1] ,(2.3)

where \mu is the (uncompensated) drift rate, \sigma is the volatility, dZ is the increment of a Wiener
process, \pi t is a Poisson process with positive intensity parameter \lambda \xi , and \xi i are independent
and identically distributed positive random variables having distribution (2.1). Moreover, \xi i,
\pi t, and Z are assumed to all be mutually independent.

We focus on jump diffusion models for long term equity dynamics since sudden drops in
the equity index just before retirement can have a devastating impact on retirement portfolios.
Since we consider discrete rebalancing, the jump process models the cumulative effects of large
market drops between rebalancing times. Previous studies show that stochastic volatility
effects are small for the long term investor (Ma and Forsyth, 2016). This can be traced to the
fact that stochastic volatility models are mean reverting, with typical mean reversion times
of less than one year.

In the absence of control, we assume that the dynamics of the amount Bt invested in the
risk-free asset are

(2.4) dBt = rBt dt,

where r is the (constant) risk-free rate.

Remark 2.1 (parsimonious model). Equations (2.3) and (2.4) are very simplified models
of real stock and bond processes. However, tests of the controls determined using these
parsimonious model processes on bootstrapped historical market data gives good results for
a variety of objective functions (Forsyth, Vetzal, and Westmacott, 2019). This suggests that
the parsimonious model (2.3)--(2.4) seems sufficient for the purposes of generating an asset
allocation strategy for the long term investor.

We define the investor's total wealth at time t as

(2.5) Total wealth \equiv Wt = St +Bt.

We impose the constraints that shorting stock and using leverage (i.e., borrowing) are not
permitted, which would be typical of a DC plan retirement savings account.

Properties 2.1 (constant coefficients). In the following, we will assume that the stochastic
process parameters r, \mu , \sigma , \lambda \xi , pu, \eta 1, \eta 2 are constants, independent of (S,B,t). This also implies
that \kappa \xi is a constant as well.D
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3. Notational conventions. To avoid subscript clutter, in the following, we will occasion-
ally use the notation St \equiv S(t), Bt \equiv B(t), and Wt \equiv W (t). Let the inception time of the
investment be t0 = 0. We consider a set \scrT of pre-determined rebalancing times,

(3.1) \scrT \equiv \{ t0 = 0 < t1 < \cdot \cdot \cdot < tM = T\} .

For simplicity, we specify \scrT to be equidistant with ti  - ti - 1 = \Delta t = T/M , i = 1, . . . ,M . At
each rebalancing time ti, i = 0, 1, . . . ,M  - 1, the investor (i) injects an amount of cash qi into
the portfolio, and then (ii) rebalances the portfolio. At tM = T , the portfolio is liquidated.
In the following, given a time dependent function f(t), we will use the shorthand notation

f(t+i ) \equiv lim
\epsilon \rightarrow 0+

f(ti + \epsilon ), f(t - i ) \equiv lim
\epsilon \rightarrow 0+

f(ti  - \epsilon ) .(3.2)

We assume that there are no taxes or other transaction costs, so that the condition

W (t+i ) = W (t - i ) + qi(3.3)

holds. Typically, DC plan savings are held in a tax advantaged account, with no taxes triggered
by rebalancing. With infrequent (e.g., yearly) rebalancing, we also expect transaction costs
to be small.

We denote by X (t) = (S (t) , B (t)), t \in [0,T ], the multidimensional controlled underlying
process, and by x = (s, b) the state of the system. Let the rebalancing control pi(\cdot ) be the
fraction invested in the risky asset at the rebalancing date ti, i.e.,

pi
\bigl( 
X(t - i )

\bigr) 
= p

\bigl( 
X(t - i ), ti

\bigr) 
=

S(t+i )

S(t+i ) +B(t+i )
.(3.4)

Note that the controls depend on the state of the investment portfolio, before the rebalancing
occurs, i.e., pi(\cdot ) = p

\bigl( 
X(t - i ), ti)

\bigr) 
= p

\bigl( 
X - 

i , ti
\bigr) 
, ti \in \scrT , where \scrT is the set of rebalancing

times. More specifically, in our case, we find the optimal strategies amongst all strategies
with constant wealth (after injection of cash), so that

pi(\cdot ) = p(W (t+i ), ti),

W (t+i ) = S(t - i ) +B(t - i ) + qi,

S(t+i ) = S+
i = pi(W

+
i ) W+

i ; B(t+i ) = B+
i = (1 - pi(W

+
i )) W+

i .(3.5)

Let \scrZ represent the set of admissible values of the control pi(\cdot ). An admissible control
\scrP \in \scrA , where \scrA is the admissible control set, can be written as

\scrP = \{ pi(\cdot ) \in \scrZ : i = 0, . . . ,M  - 1\} .(3.6)

We also define \scrP n \equiv \scrP tn \subset \scrP as the tail of the set of controls in [tn, tn+1, . . . , tM - 1], i.e.,

\scrP n = \{ pn(\cdot ), . . . , pM - 1(\cdot )\} .(3.7)D
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4. Definition of CVAR. Let g(WT ) be the probability density function of wealth WT at
t = T . Let

(4.1)

\int W \ast 
\alpha 

 - \infty 
g(WT ) dWT = \alpha ,

i.e., Pr [WT > W \ast 
\alpha ] = 1 - \alpha . We can interpret W \ast 

\alpha as the VAR at level \alpha . The CVAR at level
\alpha is then

(4.2) CVAR\alpha =

\int W \ast 
\alpha 

 - \infty WT g(WT ) dWT

\alpha 
,

which is the mean of the worst \alpha fraction of outcomes. Typically \alpha \in \{ .01, .05\} . Note that
the definition of CVAR in (4.2) uses the probability density of the final wealth distribution,
not the density of loss. Hence, in our case, a larger value of CVAR (i.e., a larger value of
average worst case terminal wealth) is desired.

Given an expectation under control \scrP , E\scrP [\cdot ], as noted by Rockafellar and Uryasev (2000),
CVAR\alpha can be alternatively written as

CVAR\alpha = sup
W \ast 

E\scrP 

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - 

\biggr] 
,

(WT  - W \ast ) - \equiv min(WT  - W \ast , 0) .(4.3)

The admissible set for W \ast in (4.3) is over the set of possible values for WT . Using this
equivalent definition of CVAR\alpha , as noted by Miller and Yang (2017) and Strub et al. (2017),
the mean-CVAR problem can be expressed as (for a given scalarization parameter \kappa > 0)

sup
\scrP 

\biggl\{ 
sup
W \ast 

E\scrP 

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - + \kappa WT

\biggr] \biggr\} 
.(4.4)

In some cases, it is useful to interchange the sup sup(\cdot ) in (4.4), as suggested in Gao et al.
(2017); Miller and Yang (2017). This allows us to rewrite the objective function (4.4) as

(4.5) sup
W \ast 

\biggl\{ 
sup
\scrP 

E\scrP 

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - + \kappa WT

\biggr] \biggr\} 
,

and to solve the inner optimization problem using an HJB equation (Dang and Forsyth, 2014;
Forsyth and Labahn, 2019). Standard numerical methods can then be used to solve the outer
optimization problem.

5. Time consistent mean CVAR. With these notational conventions, for a given scalar-
ization parameter \kappa > 0 and an intervention time tn, we define the scalarized time consistentD
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mean-CVAR problem (TCMCtn (\kappa )) in terms of the value function J(s,b, t) as follows:

(TCMCtn (\kappa )) : J
\bigl( 
s,b, t - n

\bigr) 
= max

\scrP n\in \scrA 
sup
W \ast 

\biggl\{ 
EX+

n ,t+n
\scrP n

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - + \kappa WT\bigm| \bigm| \bigm| \bigm| X(t - n ) = (s,b)

\biggr] \biggr\} 
(5.1)

s.t. \scrP n =
\bigl\{ 
pn(\cdot ),\scrP \ast 

n+1

\bigr\} 
=
\bigl\{ 
pn(\cdot ),p\ast n+1(\cdot ), . . . ,p\ast M - 1(\cdot )

\bigr\} 
,(5.2)

where \scrP \ast 
n+1 is optimal for problem

\bigl( 
TCMC tn+1 (\kappa )

\bigr) 

subject to

\left\{           
(St, Bt) follow processes (2.3)--(2.4), t /\in \scrT ,

W+
n = s+ b+ qn , X+

n = (S+
n , B

+
n ),

S+
n = pn(\cdot )W+

n , B+
n = (1 - pn(\cdot ))W+

n ,

pn(\cdot ) \in \scrZ = [0,1].

(5.3)

Remark 5.1 (replacement of sup by max). Note that we have replaced sup\scrP by max\scrP in
(5.1). Since the admissible value set \scrZ is compact, this amounts to assuming continuity of the
value function with respect to the controls. We can avoid this assumption by taking the max
over the upper semicontinuous envelope of the value function, but this would add unpleasant
heavy notation.

Remark 5.2 (time consistent constraint). Time consistency is enforced via the constraint
(5.2). This approach, which explicitly enforces the time consistent constraint, is similar in
spirit to the methods used in Wang and Forsyth (2011); Van Staden, Dang, and Forsyth
(2018); Landriault et al. (2018) for the mean-variance case, and in the mean-CVAR case in
Cui and Shi (2015).

Remark 5.3 (constraints). Note that we enforce no leverage, no shorting by requiring that
pn \in \scrZ = [0,1] in (5.3). Due to the leverage constraint imposed in (5.3), this optimization
problem is well-posed without adding an additional constraint on the terminal wealth (Gao
et al., 2017).

Remark 5.4 (admissible set for W \ast ). For all the examples in this work, we have that the
initial wealth is nonnegative, qi \geq 0, and the constraints (5.3) are imposed. This implies that
WT ,W

\ast \in [0,\infty ).

5.1. Expanded state space formulation. In order to develop a numerical algorithm for
problem (TCMC tn (\kappa )), we follow the usual strategy of embedding the original problem in a
higher dimensional space. We lift the state space to \^X = (s,b,W \ast ), and define an auxiliary
function V (s,b,W \ast ,t), which is given by

V
\bigl( 
s,b,W \ast , t - n

\bigr) 
= E

\^X+
n ,t+n

\scrP n

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - + \kappa WT

\bigm| \bigm| \bigm| \bigm| \^X(t - n ) = (s,b,W \ast )

\biggr] 
(5.4)

subject to

\left\{     
(St, Bt) follow processes (2.3)--(2.4), t /\in \scrT ,

W+
n = s+ b+ qn , \^X+

n = (S+
n , B

+
n ,W

\ast ),

S+
n = pn(\cdot )W+

n , B+
n = (1 - pn(\cdot ))W+

n .

(5.5)
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The optimal control pn(w) at time tn is then determined from

pn(w) = argmax
p\prime \in \scrZ 

\biggl\{ 
sup
W \ast 

V (w p\prime , w (1 - p\prime ),W \ast , t+n )

\biggr\} 
.(5.6)

The solution is advanced (backwards) across time tn by

V (s,b,W \ast , t - n ) = V
\bigl( 
w+ pn(w

+), w+ (1 - pn(w
+) ),W \ast , t+n

\bigr) 
,

w+ = s+ b+ qn .(5.7)

At t = T , we have

V (s,b,W \ast , T+) = W \ast +
1

\alpha 

\bigl( 
(s+ b) - W \ast \bigr)  - + \kappa (s+ b) .(5.8)

For t \in (tn - 1, tn), there are no external cash flows, discounting, or controls applied, hence,
the tower property gives for h < (tn  - tn - 1)

V (s,b,W \ast , t) = E
\Bigl[ 
V (S(t+ h), B(t+ h),W \ast , t+ h)

\bigm| \bigm| \bigm| S(t) = s,B(t) = b
\Bigr] 
, t \in (tn - 1, tn  - h) .

(5.9)

Applying Ito's lemma for jump processes (2.3)--(2.4), and letting h \rightarrow 0 gives the partial
integro-differential equation (PIDE) for V (s,b,W \ast ,t) for t \in (tn - 1, tn) (Tankov and Cont,
2009):

Vt +
\sigma 2s2

2
Vss + (\mu  - \lambda \xi \kappa \xi )sVs  - \lambda \xi V + rbVb + \lambda \xi 

\int +\infty 

 - \infty 
V (eys, b,t)f(y) dy = 0 .(5.10)

Remark 5.5 (form of PIDE). Between rebalancing dates, W \ast can be regarded as a constant
parameter, i.e., as in (5.9). Interdependence of the solution on W \ast comes about indirectly
due to the control equation (5.6).

Proposition 5.1 (equivalence of formulation (5.4)--(5.10)). Define

J
\bigl( 
s,b, t - n

\bigr) 
= sup

W \ast 
V (s,b,W \ast , t - n ) ,(5.11)

then formulation (5.5)--(5.10) is equivalent to problem (TCMCtn (\kappa )).

Proof. Replace V (s,b,W \ast , t - n ) in (5.11) by the expressions in (5.4)--(5.10), and apply these
expressions recursively backwards in time, using condition (5.8) at t = T . We then obtain
(5.1)--(5.3).

5.2. Computation of \bfitE [\bfitW \bfitT ]. Given an initial wealth (s,b) = (0,W0), and the optimal
controls \scrP \ast , then the above method can be used to determine

J0 = J
\bigl( 
0,W0, t0

 - \bigr) = sup
W \ast 

\biggl\{ 
E

X+
0 ,t+0

\scrP \ast 

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - + \kappa WT

\biggr] 
\bigm| \bigm| \bigm| \bigm| X(t - 0 ) = (0,W0)

\biggr\} 
.(5.12)
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We can determine CVAR\alpha from

CVAR\alpha = J0  - \kappa E
X+

0 ,t+0
\scrP \ast [WT ] ,(5.13)

which means we need to compute E
X+

0 ,t+0
\scrP \ast [WT ] separately. This is easily done. Define the

function

U(s,b,T+) = (s+ b),(5.14)

where at tn \in \scrT 

U(s,b, t - n ) = U
\bigl( 
w+ pn(w

+), w+ (1 - pn(w
+) ), t+n

\bigr) 
,

w+ = s+ b+ qn(5.15)

with pn(w) being the optimal control from (5.6). For t \in (tn - 1, tn), U satisfies the PIDE

Ut +
\sigma 2s2

2
Uss + (\mu  - \lambda \xi \kappa \xi )sUs  - \lambda \xi U + rbUb + \lambda \xi 

\int +\infty 

 - \infty 
U(eys, b,q,t)f(y) dy = 0 ,(5.16)

so that

E
X+

0 ,t+0
\scrP \ast [WT ] = U(0,W0, t

 - 
0 ) .(5.17)

6. Precommitment mean-CVAR. For a given scalarization parameter \kappa and intervention
times tn, the precommitment mean-CVAR problem (PCMCt0(\lambda )) is given in terms of the
value function \^J(s,b,t - 0 ):

(PCMCt0 (\kappa )) :
\^J
\bigl( 
s,b, t - 0

\bigr) 
= max

\scrP 0\in \scrA 
sup
W \ast 

\biggl\{ 
E

X+
0 ,t+0

\scrP 0

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - + \kappa WT\bigm| \bigm| \bigm| \bigm| X(t - 0 ) = (s,b)

\biggr] \biggr\} 
(6.1)

subject to

\left\{           
(St, Bt) follow processes (2.3)--(2.4), t /\in \scrT ,

W+
\ell = s+ b+ q\ell , X+

\ell = (S+
\ell , B

+
\ell ) ,

S+
\ell = p\ell (\cdot )W+

\ell , B+
\ell = (1 - p\ell (\cdot ))W+

\ell ,

p\ell (\cdot ) \in \scrZ = [0,1] , \ell = 0, . . . ,M  - 1 .

(6.2)

Remark 6.1 (relation to (TCMC(\kappa ))). Note that compared to (5.1)--(5.3) we have dropped
the time consistent constraint in (6.1)--(6.2), and specified that the optimal allocation is de-
termined at time t0.

Remark 6.2 (interchangemax\scrP n\in \scrA supW \ast \{ \cdot \} ). Observe that we can interchange the max sup
in (6.1), as in (4.5), to obtain

\^J
\bigl( 
s,b, t - 0

\bigr) 
= max

\scrP 0\in \scrA 
sup
W \ast 

\biggl\{ 
E

X+
0 ,t+0

\scrP 0

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - + \kappa WT

\bigm| \bigm| \bigm| \bigm| X(t - 0 ) = (s,b)

\biggr] \biggr\} 
(6.3)

= sup
W \ast 

max
\scrP 0\in \scrA 

\biggl\{ 
E

X+
0 ,t+0

\scrP 0

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - + \kappa WT

\bigm| \bigm| \bigm| \bigm| X(t - 0 ) = (s,b)

\biggr] \biggr\} 
.(6.4)
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6.1. Expanded state space formulation. In order to develop a numerical algorithm for
problem (PCMC tn (\kappa )), we again embed the original problem in a higher dimensional space.
This method is essentially the method in (Miller and Yang, 2017). We will also use the form
of the value function as defined in (6.4). We lift the state space to \^X = (s,b,W \ast ), and define
an auxiliary function \^V (s,b,W \ast ,t), which is given by

\^V
\bigl( 
s,b,W \ast , t - n

\bigr) 
= E

\^X+
n ,t+n

\scrP n

\biggl[ 
W \ast +

1

\alpha 
(WT  - W \ast ) - + \kappa WT

\bigm| \bigm| \bigm| \bigm| \^X(t - n ) = (s,b,W \ast )

\biggr] 
(6.5)

subject to

\left\{     
(St, Bt) follow processes (2.3)--(2.4), t /\in \scrT ,

W+
n = s+ b+ qn , \^X+

n = (S+
n , B

+
n ,W

\ast ),

S+
n = pn(\cdot )W+

n , B+
n = (1 - pn(\cdot ))W+

n .

(6.6)

The optimal control pn(w,W
\ast ) at time tn is then determined from

pn(w,W
\ast ) = argmax

p\prime \in \scrZ 

\biggl\{ 
\^V (w p\prime , w (1 - p\prime ),W \ast , t+i )

\biggr\} 
.(6.7)

The solution is advanced (backwards) across time tn by

\^V (s,b,W \ast , t - n ) =
\^V
\bigl( 
w+ pn(w

+,W \ast ), w+ (1 - pn(w
+,W \ast ) ),W \ast , t+n

\bigr) 
,

w+ = s+ b+ qn .(6.8)

Remark 6.3 (dependence on W \ast ). Since we do not impose a time consistent constraint in
(6.1)--(6.2), this has the effect of decoupling the solution as a function of W \ast . This can be
seen by examining (6.7) in contrast to (5.6).

At t = T , we have

\^V (s,b,W \ast , T+) = W \ast +
1

\alpha 

\bigl( 
(s+ b) - W \ast \bigr)  - + \kappa (s+ b) .(6.9)

The usual argument gives the PIDE for \^V (s,b,W \ast ,t) for t \in (tn - 1, tn) as

\^Vt +
\sigma 2s2

2
\^Vss + (\mu  - \lambda \xi \kappa \xi )s \^Vs  - \lambda \xi 

\^V + rb \^Vb + \lambda \xi 

\int +\infty 

 - \infty 
\^V (eys, b,q,t)f(y) dy = 0 .(6.10)

Proposition 6.1 (equivalence of formulation (6.5--6.10)). Define

\^J
\bigl( 
s,b, t - 0

\bigr) 
= sup

W \prime 
\^V (s,b,W \prime , t - 0 ) ,(6.11)

then formulation (6.5)--(6.10)) is equivalent to problem (PCMCt0 (\kappa )).

Proof. Replace \^V (s,b,W \prime , t - n ) in (6.11) by the expressions in (6.5)--(6.10), use (6.9), and
recursively work backwards in time; then we obtain (6.1)--(6.2), by interchanging the supmax
in the final step.D
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Remark 6.4 (time inconsistency). Define

W \ast (s,b, tn) = argmax
W \prime 

\biggl( 
\^V (s,b,W \prime , t - n )

\biggr) u\ast 

,(6.12)

where (\cdot )u\ast 
refers to the upper semicontinuous envelope of the argument, as a function of W \prime 

with fixed (s,b). Define

\^J
\bigl( 
s,b, t - n

\bigr) 
= sup

W \prime 
\^V (s,b,W \prime , t - n ) ,(6.13)

which is the precommitment problem started at time tn. Then (6.12) shows that W \ast (s,b, tn)
depends on tn and the current state (s,b). This is the source of the time inconsistency.

Note that in Strub et al. (2017), the authors show that the precommitment policy is
time consistent if we allow \kappa and \alpha in (6.1) to depend on time in a specified manner, when
reoptimizing at tn > 0.

In the following, we will use the notation W \ast (t0) \equiv W (0,W0, t0), where it is understood
that W \ast (t0) is evaluated at the initial wealth level W0.

Proposition 6.2 (precommitment strategy equivalence to time consistent policy for an alterna-
tive objective function). The precommitment mean-CVAR strategy \scrP \ast determined by solving
\^J(0,W0, t

 - 
0 ) (with W \ast (t0) from (6.12)) is the time consistent strategy for the equivalent prob-

lem TCEQ (with fixed W \ast (t0)), with value function \~J(s,b,t) defined by

(TCEQtn (\kappa \alpha )) : \~J
\bigl( 
s,b, t - n

\bigr) 
= sup

\scrP n\in \scrA 

\biggl\{ 
EX+

n ,t+n
\scrP n

\biggl[ 
(WT  - W \ast (t0))

 - + (\kappa \alpha )WT

\bigm| \bigm| \bigm| \bigm| X(t - n ) = (s,b)

\biggr] \biggr\} 
.

(6.14)

Proof. This follows since we can regard W \ast (t0) as a constant in objective function (6.5),
and \alpha > 0, which is then equivalent to (6.14). With a fixed value of W \ast (t0), the objective
function (6.14) is a simple expectation, hence, we can determine \scrP \ast by dynamic programming,
which is clearly time consistent.

To be precise, we define an implementable strategy in terms of the controls relevant to this
paper:

Definition 6.3 (implementable strategy). A strategy is implementable if there is no incentive
to deviate from the strategy computed at the initial time. More precisely, let pt\ell (w, tm) be the
optimal control at time tm, computed at time t\ell , tm \geq t\ell , tm, t\ell \in \scrT . An implementable
strategy is such that

ptq(w, tn) = pt\ell (w,tn) \forall tn, \forall w , tn \geq tq \geq t\ell .(6.15)

Corollary 6.4 (alternative objective function TCEQ: An implementable strategy). The fol-
lowing linear target shortfall strategy (TCEQ), based on precommitment mean CVAR, is im-
plementable:

\bullet At t = t0, solve for the precommitment control from (6.1)--(6.2). As a by-product, we
obtain W \ast (t0).

\bullet Using this fixed value of W \ast (t0), we solve problem (6.14) for all t > t0.
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Remark 6.5 (time consistent problem TCEQ). We can alternatively regard problem
TCEQtn (\kappa \alpha ) in (6.14) as the fundamental objective function. In order to determine an ap-
propriate value for W \ast (t0),we solve the precommitment problem at time zero. This generates
W \ast (t0) from (6.12). Since the precommitment solution is only used at time zero to determine
W \ast (t0), the time inconsistency of PCMC is irrelevant for problem TCEQtn (\kappa \alpha ).

Remark 6.6 (intuitive appeal of TCEQ). Problem (TCEQtn (\kappa \alpha )) is a target based objective
function, which should have great intuitive appeal to DC plan investors (Vigna, 2017). W \ast (t0)
can be interpreted as a disaster level of terminal real wealth.

We learn from Bjork and Murgoci (2010) that for any time inconsistent problem having
a particular form, where we force time consistency, there is a different unconstrained utility
function which produces a time consistent problem having the same controls. In other words,
enforcing time consistency means that the investor is not preferences consistent to his original
preferences (Vigna, 2017). It is not clear that the general results in Bjork and Murgoci (2010)
can be directly applied to the mean-CVAR case. However, in our case, it is easy to see that
the time inconsistent precommitment mean-CVAR problem has the same controls as the time
consistent problem TCEQtn (\kappa \alpha ).

To summarize, problem TCEQtn (\kappa \alpha ) with fixed W \ast (t0) is an implementable strategy,
whose controls coincide with the precommitment mean-CVAR strategy at time zero. However,
this strategy is not mean-CVAR efficient for later periods. We emphasize that requiring time
consistency effectively changes the objective function, either from forcing the time consistent
constraint, or from fixing W \ast (t0). However, as we shall see from our numerical examples,
problem TCEQtn (\kappa \alpha ) generates a strategy which has some intuitively reasonable properties
in terms of tail risk, and so is worthy of serious consideration.

6.2. Computation of \bfitE [\bfitW \bfitT ]. As for problem (TCMC), we need to determine E[WT ] in
order to recover CVAR from the value function. Define the function

\^U(s,b,W \ast , T+) = (s+ b),(6.16)

where, at tn \in \scrT ,

\^U(s,b,W \ast , t - n ) =
\^U
\bigl( 
w+ pn(w

+,W \ast ), w+ (1 - pn(w
+,W \ast ) ), t+n

\bigr) 
,

w+ = s+ b+ qn(6.17)

with pn(w,W
\ast ) being the optimal control from (6.7). For t \in (t+n - 1, t

 - 
n ), U satisfies the PIDE

\^Ut +
\sigma 2s2

2
\^Uss + (\mu  - \lambda \xi \kappa \xi )s \^Us  - \lambda \xi 

\^U + rb \^Ub + \lambda \xi 

\int +\infty 

 - \infty 
\^U(eys, b,q,t)f(y) dy = 0 ,(6.18)

so that

E
X+

0 ,t+0
\scrP \ast [WT ] = \^U(0,W0,W

\ast (t0), t
 - 
0 ) .(6.19)
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7. Limit as rebalancing interval \Delta \bfitt \rightarrow 0. Recall that \Delta t = ti+1 - ti, i.e., the rebalancing
time interval. It is, of course, possible in our numerical algorithm to let qi = \^q\Delta t, where \^q is
a rate of cash injection, and then take the limit as \Delta t \rightarrow 0, i.e., the time between rebalancing
tends to zero. Intuitively, we expect that this would converge to the continuously rebalanced
portfolio.

In the precommitment case, we can regard W \ast as fixed in (6.5)--(6.10), hence, this PIDE
falls under the scope of viscosity solution theory (Crandall, Ishii, and Lions, 1992). We can use
the results in Barles and Souganidis (1991) to prove that our numerical algorithm converges to
the viscosity solution of problem (6.5)--(6.10). The final precommitment solution is obtained
by maximizing over W \ast in (6.11) at t - 0 . We conjecture that by discretizing W \ast with parameter
h, using an exhaustive search to find the global maximum, taking the limit as h \rightarrow 0, and
using the stability properties of viscosity solutions, we can prove that the entire numerical
algorithm converges to the solution of problem (6.1) in the limit as the rebalancing interval
\Delta t \rightarrow 0. However, this is a lengthy procedure, which is beyond the scope of this work.

Assume for the moment that we restrict attention to a situation where there are no jumps
in process (2.3). Then, in the time consistent case, if we take the limit of continuous rebalanc-
ing, as noted in He and Jiang (2019), it is not obvious that in this limit we obtain the system
of PDEs as described in Bjork and Murgoci (2010), which are based on an equilibrium game
theoretic concept. In addition, this system of PDEs falls outside the scope of viscosity solu-
tion theory, hence, we cannot use standard techniques to prove convergence of the numerical
algorithm as \Delta t \rightarrow 0.

Nevertheless, it is arguably more realistic to consider discrete rebalancing, i.e., \Delta t is
finite and fixed. In this case, the PIDEs between rebalancing dates are linear, and standard
methods can be used to prove convergence of the numerical PIDE solution technique. The
entire problem is then a sequence of linear PIDE solutions. At each rebalancing time, new
initial conditions are determined by solving an optimization problem. Hence, in the discrete
rebalancing case, it is straightforward (although lengthy) to show convergence of the numerical
methods for both precommitment and time consistent strategies.

Note as well that in the discrete rebalancing case, there are no difficulties in defining the
appropriate equilibrium strategy (i.e., forcing the time consistent constraint) (He and Jiang,
2019). As a result, we focus on the discrete rebalancing case in this work.

8. Scaling property of the time consistent mean CVAR control. We consider the de-
generate case where a lump sum investment is made, and no cash is injected at rebalancing
times. In other words, at t = 0, (s,b) = (0,W0) with W0 being the initial lump sum, and
qi = 0 \forall i. For ease of analysis, we will use the formulation of problem (TCMCtn(\kappa )) as given
in section 5.1. Before stating our main result, the following lemmas will be useful.

Lemma 8.1 (properties of solution of (5.10)). If Property 2.1 holds, then, given a scalar
\lambda > 0, if

V (\lambda s, \lambda b, \lambda W \ast , t - i ) = \lambda V (s, b,W \ast , t - i ) ,(8.1)

then

V (\lambda s, \lambda b, \lambda W \ast , t+i - 1) = \lambda V (s, b,W \ast , t+i - 1) .(8.2)D
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Proof. Changing variables in PIDE (5.10) to x = log s, and noting that the transformed
PIDE now has constant coefficients (from Property 2.1), then we can write the solution of
PIDE (5.10) as

V (s, b,W \ast , t+i - 1) =

\int \infty 

 - \infty 
\scrG 
\bigl( 
log s - x\prime ,\Delta t

\bigr) 
V (ex

\prime 
, ber\Delta t,W \ast , t - i ) dx

\prime ,

\Delta t = ti  - ti - 1 ,(8.3)

where \scrG (x  - x\prime ,\Delta t) is the Green's function of the PIDE (5.10), excluding the rbVb term
(Garroni and Menaldi, 1992; Forsyth and Labahn, 2019), after transforming to x = log s
coordinates. Let x\prime = log s\prime in (8.3) to give

V (s, b,W \ast , t+i - 1) =

\int \infty 

0
\scrG 
\bigl( 
log(s/s\prime ),\Delta t

\bigr) 
V (s\prime , ber\Delta t,W \ast , t - i )

ds\prime 

s\prime 
.(8.4)

For \lambda > 0 we have

V (\lambda s, \lambda b, \lambda W \ast , t+i - 1) =

\int \infty 

0
\scrG 
\bigl( 
log(\lambda s/s\prime ),\Delta t

\bigr) 
V (s\prime , \lambda ber\Delta t, \lambda W \ast , t - i )

ds\prime 

s\prime 

=

\int \infty 

0
\scrG 
\bigl( 
log(s/s\prime \prime ),\Delta t

\bigr) 
V (\lambda s\prime \prime , \lambda ber\Delta t, \lambda W \ast , t - i )

ds\prime \prime 

s\prime \prime 
(s\prime = \lambda s\prime \prime )

= \lambda 

\int \infty 

0
\scrG 
\bigl( 
log(s/s\prime ),\Delta t

\bigr) 
V (s\prime , ber\Delta t,W \ast , t - i )

ds\prime 

s\prime 
(from (8.1))

= \lambda V (s, b,W \ast , t+i - 1) .(8.5)

Across rebalancing dates t+n \rightarrow t - n , we have the following result.

Lemma 8.2. Suppose the time consistent solution satisfies (5.7), where pn(w) is given by
(5.6). If qn = 0, and, for any \lambda > 0

V (\lambda s, \lambda b, \lambda W \ast , t+n ) = \lambda V (s, b,W \ast , t+n ) ,(8.6)

then

pn(w) = pn(\lambda w) ,(8.7)

V (\lambda s, \lambda b, \lambda W \ast , t - n ) = \lambda V (s, b,W \ast , t - n ) .(8.8)

Proof. From (5.6)

pn(w) = argmax
p\prime \in \scrZ 

\biggl\{ 
sup
W \ast 

V (w p\prime , w (1 - p\prime ),W \ast , t+i )

\biggr\} 
= argmax

p\prime \in \scrZ 

\biggl\{ 
sup
W \ast 

\lambda V (w p\prime , w (1 - p\prime ),W \ast , t+i )

\biggr\} 
(\lambda > 0)

= argmax
p\prime \in \scrZ 

\biggl\{ 
sup
W \ast 

V (\lambda w p\prime , \lambda w (1 - p\prime ), \lambda W \ast , t+i )

\biggr\} 
(from 8.6)

= argmax
p\prime \in \scrZ 

\biggl\{ 
sup
W \prime 

V (\lambda w p\prime , \lambda w (1 - p\prime ),W \prime , t+i )

\biggr\} 
(W \prime = \lambda W \ast ; W \ast \in [0,\infty ))

= pn(\lambda w) .(8.9)D
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Next, we have, from (5.7), noting that w = s+ b,

V (\lambda s, \lambda b, \lambda W \ast , t - n ) = V
\bigl( 
\lambda w pn(\lambda w), \lambda w (1 - pn(\lambda w) ), \lambda W

\ast , t+n
\bigr) 

= V
\bigl( 
\lambda w pn(w), \lambda w (1 - pn(w) ), \lambda W

\ast , t+n
\bigr) 

(from 8.9)

= \lambda V
\bigl( 
w pn(w), w (1 - pn(w) ),W

\ast , t+n
\bigr) 

(from 8.6)

= \lambda V (s, b,W \ast , t - n ) .(8.10)

We now have our final result.

Theorem 8.3. If a lump sum investment is made (i.e., qn = 0 \forall n), Property 2.1 holds,
and the time consistent mean-CVAR strategy is determined by (5.5)--(5.11), then the optimal
control for problem (TCMCtn(\kappa )) at each time tn is independent of wealth w, that is,

pn(w) = p(tn) , n = 0, . . . ,M  - 1,(8.11)

which also implies that V (\lambda s, \lambda b, \lambda W \ast , t) = \lambda V (s,b,W \ast ,t).

Proof. From (5.8) we have, for constant \lambda > 0,

V (\lambda s, \lambda b, \lambda W \ast , T+) = \lambda V (s, b,W \ast , T+) .(8.12)

Apply Lemmas 8.2 and 8.1 recursively. Then we have that (8.9) holds for all n. Hence, for
any \lambda > 0

pn(\lambda w) = pn(w) = p(tn) ,(8.13)

and V (\lambda s, \lambda b, \lambda W \ast , t) = \lambda V (s,b,W \ast ,t).

Remark 8.1 (significance of Theorem 8.3). In our numerical examples, we will consider only
the practical case where the initial investment is zero, and the investor adds a fixed amount
(real) to the portfolio at each rebalancing date, which is at odds with the assumptions of
Theorem 8.3. However, suppose at time tn \in \scrT ,

w = (s+ b) \gg 
i=M - 1\sum 
i=n

e - r(T - ti)qi .(8.14)

In other words, we examine points in the state space where the future discounted value of
the cash injections is small compared to the current wealth. In this case, we can expect that
pn(w) is only weakly dependent on wealth.

If we are, in fact, interested in a pure lump sum investment, then Theorem 8.3 can be
used to reduce the dimensionality of the problem, with resulting computational efficiency.

Remark 8.2 (result in Cui et al. (2019)). For the lump sum investment case, Cui et al. (2019)
show that the amount of wealth invested in the risky asset is a piecewise linear function of the
current wealth. The problem in Cui et al. (2019) is posed in terms of specifying a minimum
value of E[WT ] which introduces a nonscaled variable into the problem. In contrast, we use
the scalarization method in (5.1), which does not introduce any nonscaled variables. In any
case, from the analysis above, we can see that a simple form for the control is unlikely to
exist for the case of periodic contributions to the portfolio, which we verify in our numerical
computations.D
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Remark 8.3 (generality of Theorem 8.3). Suppose we have a portfolio of M risky assets
with si being the amount in asset i. Let xi = log si. A multiasset analogue of Theorem
8.3 will hold if the multidimensional Green's function for the expected value PIDE has the
property that

\scrG (x,x\prime ,\Delta t) = \scrG (x - x\prime ,\Delta t) .(8.15)

A relevant example of where this would hold is a scenario where all assets follow correlated
jump diffusion processes with constant coefficients. Note that it is commonplace for practition-
ers to model the returns of a constant maturity bond index directly, i.e., without postulating
an interest rate process. In fact, it is usual to model the return of a constant maturity bond
index by a geometric Brownian motion (Lin, MacMinn, and Tian, 2015). Hence the standard
practitioner modeling approach, where the assets are stock and bond indices, falls under this
case.

In this multiasset scenario, we would then conclude that in the case of a lump sum in-
vestment, the optimal policy for the time consistent mean-CVAR objective is deterministic.
Due to this property, we conjecture that the behavior of the mean-CVAR policy under these
assumptions will be similar to that reported in our numerical results section.

9. Numerical methods.

9.1. Time consistent mean CVAR. For problem (TCMCtn (\kappa )), our starting point is the
formulation in section 5.1. We discretize the state space using nx equally spaced nodes in the
x = log s direction on a finite localized computational domain [x\mathrm{m}\mathrm{i}\mathrm{n}, x\mathrm{m}\mathrm{a}\mathrm{x}]. We discretize the
domain [0, b\mathrm{m}\mathrm{a}\mathrm{x}] using an unequally spaced grid with nb nodes and, similarly, we discretize the
domain [0,W \ast 

\mathrm{m}\mathrm{a}\mathrm{x}] using nw nodes (unequally spaced). We use the Fourier methods discussed
in Forsyth and Labahn (2019) to solve PIDE (5.10) between rebalancing times. To minimize
localization effects and wraparound errors, we extend the computational domain for x < x\mathrm{m}\mathrm{i}\mathrm{n}

and x > x\mathrm{m}\mathrm{a}\mathrm{x} and assume a constant value for the solution in the extended domain as
described in Forsyth and Labahn (2019). This effectively adds artificial boundary conditions
on the localized domain boundary. This localization error can be made small by selecting
| x\mathrm{m}\mathrm{i}\mathrm{n}| , x\mathrm{m}\mathrm{a}\mathrm{x} sufficiently large. In the b and W \ast directions, we localize the problem (i.e., add
artificial boundary conditions) by capping the solution values at the (b\mathrm{m}\mathrm{a}\mathrm{x},W

\ast 
\mathrm{m}\mathrm{a}\mathrm{x}) values.

The error in regions of interest can be made small by selecting sufficiently large values of
(b\mathrm{m}\mathrm{a}\mathrm{x},W

\ast 
\mathrm{m}\mathrm{a}\mathrm{x}). In contrast to the precommitment case, we can determine the optimal strategy

by solving only a single, three dimensional PIDE. Of course this solution is not exact; errors
can be made small by refining the grid.

At rebalancing times tn \in \scrT , we discretize p \in [0,1] using nb equally spaced nodes,
and then evaluate the right-hand side of (5.6) using linear interpolation. We then solve the
optimization problem (5.6) using an exhaustive search over the discretized p values and the
discretized W \ast grid.

Once the optimal control is determined, we then use this control to determine the solution
for E[WT ] in section 5.2. Similarly, we use a Fourier method to advance the solution between
rebalancing times.

9.2. Precommitment mean CVAR. For problem (PCMCtn (\kappa )), we start with the for-
mulation in section 6.1. We will use the approach described in Miller and Yang (2017). ThisD
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method is based on (6.4). We solve the outer optimization problem, maximization with re-
spect to W \ast , by solving a sequence of inner optimization problems, which require optimizing
with respect to the rebalancing controls \scrP .

For the inner optimization problems (i.e., we regardW \ast as fixed) we proceed as follows. We
discretize in the x = log s direction using nx equally spaced nodes on the domain [x\mathrm{m}\mathrm{i}\mathrm{n}, x\mathrm{m}\mathrm{a}\mathrm{x}],
and nb nodes in the b direction on the domain [0, b\mathrm{m}\mathrm{a}\mathrm{x}]. We use the same Fourier methods as
described in section 9.1 to advance the solution between rebalancing times. We use the same
localization methods (i.e., add artificial boundary conditions) as used in the time-consistent
case (see Forsyth and Labahn (2019) for details).

At rebalancing times tn \in \scrT , we discretize p \in [0,1] using nb equally spaced nodes, and
then evaluate the right-hand side of (6.17) using linear interpolation. We then solve the
optimization problem (6.17) using an exhaustive search over the discretized p values (recall
that W \ast is fixed in this case).

The outer optimization problem in (6.4) can be written in terms of \^V (s,b,W \ast , t) as

\^J(0,W0, t
 - 
0 ) = sup

W \prime 
\^V (0,W0,W

\prime , t - 0 ),(9.1)

where each evaluation of \^V (\cdot ) requires solution of problem (6.5).
We carry out the maximization in (9.1) by using a sequence of grids nx\times nb to solve problem

(6.5). On the coarsest grid, we discretize W \ast and solve problem (6.5) for each discrete value
of W \ast . We then determine the maxW \ast by exhaustive search. We use this value of W \ast as
a starting point for a one dimensional optimization algorithm on a sequence of finer grids.
The solution on the coarse grid is inexpensive, and the fine grid optimization solutions do not
require many iterations since we have a good starting estimate.

Note that there is no guarantee that we have found the global maximum since the problem
is not guaranteed to be convex.1 However, we have made a few tests by carrying a grid search
on the finest grid, which suggests that we do indeed have the globally optimal solution.

10. Numerical example.

10.1. Market parameters. The data and the method used to fit the parameters for process
(2.3) are described in (Dang and Forsyth, 2016; Forsyth and Vetzal, 2017; Forsyth, Vetzal,
and Westmacott, 2019). Briefly, we fit the parameters for process (2.3) from monthly market
data for the sample period of 1926:1 to 2017:12. We use the Center for Research in Security
Prices (CRSP) deciles (1--10) index. This is a total return value-weighted index of US stocks.
We also use one month Treasury bill (T-bill) returns, over the period 1926:1 to 2017:12, for the
risk-free asset. We adjust the returns for inflation by using the US CPI index, so all returns
are real.

Table 1 provides the resulting annualized parameter estimates for the double exponential
jump diffusion given in (2.1). The average real one-month T-bill rate for the period 1926:1-
2017:12 was r = .00464.

1In Miller and Yang (2017), the precommitment mean-CVAR problem is posed in terms of logWT , which
is then shown to result in a convex outer optimization over W \ast . However, we have posed the problem in terms
of WT , which seems more natural, since ``\ity \ito \itu \itc \ita \itn \ito \itn \itl \ity \its \itp \ite \itn \itd \itw \ite \ita \itl \itt \ith \itd \ito \itl \itl \ita \itr \its , \itn \ito \itt \itr \ite \itt \itu \itr \itn \its .""D
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Table 1
\itE \its \itt \iti \itm \ita \itt \ite \itd \ita \itn \itn \itu \ita \itl \iti \itz \ite \itd \itp \ita \itr \ita \itm \ite \itt \ite \itr \its \itf \ito \itr \itt \ith \ite \itd \ito \itu \itb \itl \ite \ite \itx \itp \ito \itn \ite \itn \itt \iti \ita \itl \itj \itu \itm \itp \itd \iti ff\itu \its \iti \ito \itn \itm \ito \itd \ite \itl \itg \iti \itv \ite \itn \iti \itn (2.1) \ita \itp \itp \itl \iti \ite \itd \itt \ito 

\itt \ith \ite \itv \ita \itl \itu \ite -\itw \ite \iti \itg \ith \itt \ite \itd \itC \itR \itS \itP \itd \ite \itc \iti \itl \ite \its (1--10) \iti \itn \itd \ite \itx , \itd \ite fl\ita \itt \ite \itd \itb \ity \itt \ith \ite \itC \itP \itI . \itS \ita \itm \itp \itl \ite \itp \ite \itr \iti \ito \itd 1926:1 \itt \ito 2017:12.

\mu \sigma \lambda pup \eta 1 \eta 2

.0884 .1451 .3370 .2581 4.681 5.600

Table 2
\itI \itn \itv \ite \its \itt \itm \ite \itn \itt \its \itc \ite \itn \ita \itr \iti \ito \ita \itn \itd \itm \ito \itd \ite \itl \itp \ita \itr \ita \itm \ite \itt \ite \itr \its .

Investment parameters

Expiry time T 30 years
Initial wealth 0
Rebalancing frequency yearly
Cash injection \{ qi\} i=0,...,29 20,000

Model parameters

Real interest rate r .00464
Equity process parameters Table 1

Numerical parameters

x\mathrm{m}\mathrm{a}\mathrm{x} log(105) + 8
x\mathrm{m}\mathrm{i}\mathrm{n} log(105) - 8
b\mathrm{m}\mathrm{a}\mathrm{x} = W \ast 

\mathrm{m}\mathrm{a}\mathrm{x} 5\times 108

10.2. Investment scenario. Studies have shown that earnings for a typical employee in-
crease rapidly until the age of 35, then increase slowly thereafter, until a few years before
retirement, and then decreasing as fewer hours are worked in the transition to retirement
(Cocco, Goems, and Maenhout, 2005; Ruppert and Zanella, 2015).

As a motivating example, we consider a 35 year old investor saving for retirement in a DC
pension plan. We assume that the investor has a constant (real) salary of \$100,000 per year,
and the total employee-employer contribution to a tax advantaged DC plan account is 20\%
of (real) salary per year. The investor plans to retire at age 65.

To be more precise, in our modeling context, we assume that the investor has zero initial
wealth, and injects \$20,000 per year (real) into the portfolio at times t = 0, 1, . . . , 29 years.
The investment horizon is T = 30 years with annual rebalancing. Further details are given in
Table 2.

11. Tests of convergence. In Table 3 we show the results for the scenario in Table 2,
but using a default strategy of rebalancing to a constant weight of p = 0.4 in equities at each
rebalancing date. In the following, we will use the results based on Nsim = 2.56\times 106. From
Table 3, the numerical results indicate that at least three digits are correct.

A typical glide path strategy for DC plan investors might have an allocation to equities of
p = 0.8 at the initial time, declining to p = 0.0 at retirement, for a time averaged allocation
to equities of about p = 0.4. The logic behind this is that an investor can take on more riskD
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Table 3
\itC \ito \itn \itv \ite \itr \itg \ite \itn \itc \ite \itt \ite \its \itt , \itr \ite \itb \ita \itl \ita \itn \itc \ite \itt \ito \itc \ito \itn \its \itt \ita \itn \itt \itw \ite \iti \itg \ith \itt p = .4 \iti \itn \its \itt \ito \itc \itk \its . \itP \ita \itr \ita \itm \ite \itt \ite \itr \its \iti \itn \itT \ita \itb \itl \ite 2. Nsim \iti \its \itt \ith \ite 

\itn \itu \itm \itb \ite \itr \ito \itf \itM \ito \itn \itt \ite \itC \ita \itr \itl \ito \its \iti \itm \itu \itl \ita \itt \iti \ito \itn \its . \itT \ith \ite \itn \itu \itm \itb \ite \itr \its \iti \itn \itb \itr \ita \itc \itk \ite \itt \its \ita \itr \ite \itt \ith \ite \its \itt \ita \itn \itd \ita \itr \itd \ite \itr \itr \ito \itr \its \ita \itt \itt \ith \ite 99\% \itc \ito \itn fi\itd \ite \itn \itc \ite 
\itl \ite \itv \ite \itl . \itU \itn \iti \itt \its : \itt \ith \ito \itu \its \ita \itn \itd \its \ito \itf \itd \ito \itl \itl \ita \itr \its (\itr \ite \ita \itl ).

Nsim E[WT ] CVAR (5\%) Median[WT ]

1.6\times 105 1160 (2.7) 577 1083

6.4\times 105 1162 (1.3) 598 1084

2.56\times 106 1162 (.7) 598 1084

Table 4
\itC \ito \itn \itv \ite \itr \itg \ite \itn \itc \ite \itt \ite \its \itt , \itp \itr \ite \itc \ito \itm \itm \iti \itt \itm \ite \itn \itt \itm \ite \ita \itn \itC \itV \itA \itR . \itP \ita \itr \ita \itm \ite \itt \ite \itr \its \iti \itn \itT \ita \itb \itl \ite 2. \itT \ith \ite \itM \ito \itn \itt \ite \itC \ita \itr \itl \ito \itm \ite \itt \ith \ito \itd \itu \its \ite \itd 

2.56 \times 106 \its \iti \itm \itu \itl \ita \itt \iti \ito \itn \its . \itT \ith \ite \itn \itu \itm \itb \ite \itr \its \iti \itn \itb \itr \ita \itc \itk \ite \itt \its \ita \itr \ite \itt \ith \ite \its \itt \ita \itn \itd \ita \itr \itd \ite \itr \itr \ito \itr \its \ita \itt \itt \ith \ite 99\% \itc \ito \itn fi\itd \ite \itn \itc \ite \itl \ite \itv \ite \itl . \kappa =
0.1, \alpha = .05. \itG \itr \iti \itd \itr \ite \itf \ite \itr \its \itt \ito \itt \ith \ite \itg \itr \iti \itd \itu \its \ite \itd \itt \ito \its \ito \itl \itv \ite \itt \ith \ite \itH \itJ \itB \itP \itD \itE : nx \times nb, \itw \ith \ite \itr \ite nx \iti \its \itt \ith \ite \itn \itu \itm \itb \ite \itr \ito \itf \itn \ito \itd \ite \its \iti \itn 
\itt \ith \ite logS \itd \iti \itr \ite \itc \itt \iti \ito \itn , \ita \itn \itd nb \iti \its \itt \ith \ite \itn \itu \itm \itb \ite \itr \ito \itf \itn \ito \itd \ite \its \iti \itn \itt \ith \ite B \itd \iti \itr \ite \itc \itt \iti \ito \itn . \itU \itn \iti \itt \its : \itt \ith \ito \itu \its \ita \itn \itd \its \ito \itf \itd \ito \itl \itl \ita \itr \its (\itr \ite \ita \itl ).

HJB equation Monte Carlo

Grid E[WT ] CVAR (5\%) W \ast E[WT ] CVAR (5\%) Median[WT ]

512\times 333 2503 674.6 785.5 2485 (6.2) 679.2 1143

1024\times 665 2452 680.8 801.4 2447 (6.2) 682.0 1080

2048\times 1329 2434 682.3 806.8 2433 (6.2) 682.6 1067

when she is younger, and less risk when older. However, in Forsyth and Vetzal (2019), it is
shown that the final wealth distribution of a glide path strategy is virtually indistinguishable
from a constant weight strategy having the same time average equity allocation. Hence we
use a default strategy of a constant weight p = 0.4 as representative of commonly suggested
allocations.

Table 4 shows a convergence test for solution of the precommitment mean-CVAR problem
(PCMCtn (\kappa )), (6.1)--(6.2). Examining the difference between the results on the two finest
grids, suggests that the solution is accurate to within about one percent. The optimal
controls are computed and stored, and then used as input to Monte Carlo simulations. The
Monte Carlo results are also shown in Table 4. We choose the parameter \kappa in (6.1) so that
Median[WT ] is approximately the same as for the constant weight p = 0.4 strategy (\kappa = 0.1).
In addition, we set \alpha = .05. The outer minimization iteration requires 15 HJB equation solves
on the coarse grid, 12 HJB solves on the medium grid, and 11 HJB solves on the finest grid.
The coarse grid estimates for W \ast were used as starting values for the finer grid iterations.
The total cumulative CPU time for all the coarse, medium, and fine grid solutions was 548
sec on a desktop.

Table 5 shows a convergence test for solution of the time consistent mean-CVAR problem
(TCMCtn (\kappa )), (5.2)--(5.3). The optimal controls are computed and stored, and then used as
input to Monte Carlo simulations. The Monte Carlo results are also shown in Table 5. We
choose the parameter \kappa in (5.2) so that Median[WT ] is approximately the same as for theD
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Table 5
\itC \ito \itn \itv \ite \itr \itg \ite \itn \itc \ite \itt \ite \its \itt , \itt \iti \itm \ite \itc \ito \itn \its \iti \its \itt \ite \itn \itt \itm \ite \ita \itn \itC \itV \itA \itR . \itP \ita \itr \ita \itm \ite \itt \ite \itr \its \iti \itn \itT \ita \itb \itl \ite 2. \itT \ith \ite \itM \ito \itn \itt \ite \itC \ita \itr \itl \ito \itm \ite \itt \ith \ito \itd \itu \its \ite \itd 

2.56 \times 106 \its \iti \itm \itu \itl \ita \itt \iti \ito \itn \its . \kappa = 2.5, \alpha = .05. \itG \itr \iti \itd \itr \ite \itf \ite \itr \its \itt \ito \itt \ith \ite \itg \itr \iti \itd \itu \its \ite \itd \itt \ito \its \ito \itl \itv \ite \itt \ith \ite \itH \itJ \itB \itP \itD \itE : nx \times nb \times nw,
\itw \ith \ite \itr \ite nx \iti \its \itt \ith \ite \itn \itu \itm \itb \ite \itr \ito \itf \itn \ito \itd \ite \its \iti \itn \itt \ith \ite logS \itd \iti \itr \ite \itc \itt \iti \ito \itn , nb \iti \its \itt \ith \ite \itn \itu \itm \itb \ite \itr \ito \itf \itn \ito \itd \ite \its \iti \itn \itt \ith \ite B \itd \iti \itr \ite \itc \itt \iti \ito \itn , \ita \itn \itd 
nw \iti \its \itt \ith \ite \itn \itu \itm \itb \ite \itr \ito \itf \itn \ito \itd \ite \its \iti \itn \itt \ith \ite W \ast \itd \iti \itr \ite \itc \itt \iti \ito \itn . \itT \ith \ite \itn \itu \itm \itb \ite \itr \its \iti \itn \itb \itr \ita \itc \itk \ite \itt \its \ita \itr \ite \itt \ith \ite \its \itt \ita \itn \itd \ita \itr \itd \ite \itr \itr \ito \itr \its \ita \itt \itt \ith \ite 99\%
\itc \ito \itn fi\itd \ite \itn \itc \ite \itl \ite \itv \ite \itl . \itU \itn \iti \itt \its : \itt \ith \ito \itu \its \ita \itn \itd \its \ito \itf \itd \ito \itl \itl \ita \itr \its (\itr \ite \ita \itl ).

HJB equation Monte Carlo

Grid E[WT ] CVAR (5\%) E[WT ] CVAR (5\%) Median[WT ]

256\times 309\times 309 1746 495.7 1728 (1.9) 502.6 1381

512\times 617\times 617 1455 519.6 1450 (1.9) 520.4 1168

1024\times 1233\times 1233 1343 529.8 1341 (1.9) 530.0 1079

constant weight p = 0.4 strategy (\kappa = 2.5). Again, we set \alpha = .05. Note that in contrast to
the precommitment results, convergence is considerably slower here, as the mesh is refined.
In this case, since W \ast is an independent variable in the grid, only one HJB equation solve is
required at each grid refinement. The CPU time on the finest grid was 7152 sec on a desktop.
Note that the finest grid has \simeq 109 nodes, so storage becomes an issue for finer grids.

We verified that the artificial boundary conditions did not affect the computed solution in
any meaningful way by carrying out the following tests. For both precommitment and time
consistent cases, we carried out tests replacing [x\mathrm{m}\mathrm{i}\mathrm{n}, x\mathrm{m}\mathrm{a}\mathrm{x}] by [x\mathrm{m}\mathrm{i}\mathrm{n}  - 2, x\mathrm{m}\mathrm{a}\mathrm{x} + 2], bmax by
b\mathrm{m}\mathrm{a}\mathrm{x}\times 10, and for the time consistent case, we replaced W \ast 

\mathrm{m}\mathrm{a}\mathrm{x} by W \ast 
\mathrm{m}\mathrm{a}\mathrm{x}\times 10. In all cases, this

resulted in changes to the solution in at most the fifth digit.

Remark 11.1 (slower convergence: time consistent case). In the precommitment case, we
can rewrite (6.7)--(6.8) as

V (s,b,W \ast , t - n ) = max
p\prime \in \scrZ 

V
\bigl( 
w+ p\prime , w+ (1 - p\prime ),W \ast , t+n

\bigr) 
,

w+ = s+ b+ qn ,(11.1)

which means that the value function V (s,b,W \ast , t - n ) is maximized at each point in (s,b,W \ast )
space. Intuitively, this means that even if the control is comparatively inaccurate, the value
function solution is still reasonably accurate, since the control is an extreme point of the
right-hand side of (11.1). In contrast, for the time consistent case, we can see from (5.6)--(5.7)
that, in general, the value function V (s,b,W \ast , t - n ) does not maximize the right-hand side of
(5.7) at all points in (s,b,W \ast ) space. Hence the extreme point property is lost, and we can
expect slower convergence as the mesh is refined.

Remark 11.2 (effect of errors in the time consistent case). Table 5 indicates that the dif-
ference between the two finest grids suggests errors on the order of 9 per cent. However,
storage limitations precluded using a finer grid. Assuming first order convergence, then the
extrapolated exact solution from Table 5 would give (CVAR, Median) = (540, 990). This sug-
gests that the exact solution for, say, Median = 1067 will have CVAR, Median \leq 540, whichD
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is significantly worse than (CVAR, Median) = (683, 1067) for the precommitment case (i.e.,
the Median-CVAR frontier is shifted significantly to the left for the time consistent strategy
compared to the precommitment policy). Note as well that (CVAR, Median)= (598, 1084)
for the constant weight p = 0.4 strategy. In other words, the numerical solution errors in
the summary statistics for the time consistent case are significantly less than the differences
between the summary statistics for the time consistent policy and the other two strategies.

12. Numerical results.

12.1. Basis of comparison. As a reminder to the reader, we reiterate the following facts.
Time consistent mean-CVAR strategies are constrained mean-CVAR efficient at all times,
but not efficient in terms of objective function TCEQ (6.14) at any time. Nor is the time
consistent mean-CVAR policy efficient in the unconstrained mean-CVAR sense at the initial
time. Conversely, the precommitment mean-CVAR strategy is efficient in terms of objective
(6.14) at all times, unconstrained mean-CVAR efficient only at the initial time, and is never
constrained mean-CVAR efficient.

It is then difficult to identify a comparison criterion based on efficiency. Both the precom-
mitted policy and the time consistent policy are efficient in terms of some criteria and not in
others. Both strategies are time consistent in terms of their specific objective functions.

It is common in the actuarial literature to regard the application of different objective
functions simply as a means of generating different investment strategies. This leads to the
idea of comparing different investment objective functions in terms of the statistical evolution
of portfolio wealth (Blake, Wright, and Zhang, 2013; Vigna, 2014; Donnelly et al., 2015;
Graf, 2017). This is quite natural from an actuarial viewpoint, since a major concern is the
probabilistic time evolution of assets and liabilities. Our numerical examples are motivated
by long term strategies for holders of DC pension plans. It is therefore relevant to consider
an actuarial viewpoint when comparing strategies.

To this end, we will focus on the statistical properties of the evolution of the investor's
wealth, under both strategies. We are making the assumption that the investor is essentially
agnostic as to the philosophy behind the objective function, and is only concerned with the
probabilistic evolution of the total portfolio wealth. Of course, alternative views are possible,
but we consider this approach to have intuitive appeal.

12.2. Results. In the following, for the time consistent and precommitment policies, we
compute the controls using the finest grids in Tables 4 and 5. All Monte Carlo computations
used 2.56\times 106 simulations.

Figures 1 and 2 compare the precommitment and time consistent mean-CVAR strategies
in terms of (a) percentiles of accumulated wealth, (b) percentiles fraction in equities, and (c)
control heat maps. The heat maps show the optimal control as a function of realized wealth
and time. The optimal fraction in the risky asset can be determined by comparing the color
code at point (Wt, t) on the map with the legend on the right-hand side.

Contrast Figure 1(c) with Figure 2(c). We can see that the time consistent heat map is
somewhat poorly defined (contours not sharply delineated), which is expected from Remark
11.1. In particular, from Remark 8.1, we expect that for large values of W , then the time
consistent heat map contours should become straight vertical lines (i.e., control independentD
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Figure 1. \itP \itr \ite \itc \ito \itm \itm \iti \itt \itm \ite \itn \itt \itm \ite \ita \itn -\itC \itV \itA \itR , \itp \ita \itr \ita \itm \ite \itt \ite \itr \its \iti \itn \itT \ita \itb \itl \ite 2. \itO \itp \itt \iti \itm \ita \itl \itc \ito \itn \itt \itr \ito \itl \itc \ito \itm \itp \itu \itt \ite \itd \its \ito \itl \itv \iti \itn \itg \itp \itr \ito \itb \itl \ite \itm 
(6.1)--(6.2). \itP \ite \itr \itc \ite \itn \itt \iti \itl \ite \its \ita \itr \ite \ito \itf \itr \ite \ita \itl \itw \ite \ita \itl \itt \ith \ita \itn \itd \itt \ith \ite \ito \itp \itt \iti \itm \ita \itl \itf \itr \ita \itc \itt \iti \ito \itn \iti \itn \itv \ite \its \itt \ite \itd \iti \itn \ite \itq \itu \iti \itt \iti \ite \its . \itS \itt \ita \itt \iti \its \itt \iti \itc \its \itb \ita \its \ite \itd \ito \itn 
2.56\times 106 \itM \ito \itn \itt \ite \itC \ita \itr \itl \ito \its \iti \itm \itu \itl \ita \itt \iti \ito \itn \itr \itu \itn \its .
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Figure 2. \itP \itr \ite \itc \ito \itm \itm \iti \itt \itm \ite \itn \itt \itm \ite \ita \itn -\itC \itV \itA \itR , \itp \ita \itr \ita \itm \ite \itt \ite \itr \its \iti \itn \itT \ita \itb \itl \ite 2. \itO \itp \itt \iti \itm \ita \itl \itc \ito \itn \itt \itr \ito \itl \itc \ito \itm \itp \itu \itt \ite \itd \its \ito \itl \itv \iti \itn \itg \itp \itr \ito \itb \itl \ite \itm 
(5.1)--(5.3). \itP \ite \itr \itc \ite \itn \itt \iti \itl \ite \its \ita \itr \ite \ito \itf \itr \ite \ita \itl \itw \ite \ita \itl \itt \ith \ita \itn \itd \itt \ith \ite \ito \itp \itt \iti \itm \ita \itl \itf \itr \ita \itc \itt \iti \ito \itn \iti \itn \itv \ite \its \itt \ite \itd \iti \itn \ite \itq \itu \iti \itt \iti \ite \its . \itS \itt \ita \itt \iti \its \itt \iti \itc \its \itb \ita \its \ite \itd \ito \itn 
2.56\times 106 \itM \ito \itn \itt \ite \itC \ita \itr \itl \ito \its \iti \itm \itu \itl \ita \itt \iti \ito \itn \itr \itu \itn \its .

of W ). Due to storage limitations, it was not possible to compute the time consistent solution
with a finer grid (the finest grid in Table 5 had \simeq 109 nodes).

As a point of comparison, we show the percentiles of accumulated wealth for the constant
weight p = 0.4 case in Figure 3.

A more precise comparison of all three strategies is shown in Figure 4, which shows the
cumulative distribution functions for the cumulative wealthWT . By design, all three strategies
have approximately the same Median[WT ], which can be verified by noting that all curves
intersect at Prob(WT < W ) = 0.5. The investor has contributed a total of \$600,000 (real) over
the thirty years. Therefore, any values of W < 600,000 should be regarded as a poor result.

The time consistent strategy is dominated by the constant weight strategy for W below
the median, which is a poor result given that (TCMC) is attempting to minimize tail risk.
The precommitment strategy has a sharp decrease in the cumulative distribution function forD
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W < 800, which is reflected in the fact that the CVAR for the precommitment strategy is the
largest of all three strategies (recall that with definition (4.2) for CVAR, a larger CVAR value
has less risk). In terms of reduction of tail risk, as observed at t = 0, the precommitment
mean-CVAR strategy is clearly superior to the other strategies. Rather surprisingly, the time
consistent mean-CVAR strategy appears to be the least effective of all the three strategies
(smallest CVAR of all strategies). The precommitment strategy dominates the other strategies
for wealth levels W < 800,000 and W > 1,100,000.D
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12.3. Summary of numerical results. Perhaps the key result for explaining the poor
performance of time consistent mean-CVAR strategies is Theorem 8.3 and Remark 8.1. From
Remark 8.1, and Figures 2(b)--2(c), we can see that the time consistent control is only weakly
dependent on the current wealth (over a wide range of wealth values). This is simply a
consequence of forcing time consistency. Essentially, all strategies computed at t > 0, compute
the tail risk always with respect to current wealth, which may be very large or very small
compared with wealth at previous times.

In contrast, the induced time consistent strategy TCEQtn (\kappa \alpha ) is always based on W \ast (t0).
In any realistic situation, W \ast (t0) is based on the initial wealth targets, hence, this strategy
responds to how well the current wealth is on track to meet the target.

We would expect that the time consistent strategy behaves similarly to a deterministic
strategy (i.e., nonresponsive to realized wealth). This is consistent with the results in Figure
4. The poor performance of deterministic strategies was also observed in Forsyth and Vetzal
(2019), where, under mean-variance criteria, it is shown that deterministic strategies offer
virtually no improvement over constant weight strategies (for fixed E[WT ]).

From a practical point of view, it would appear that applying a time consistent constraint
to multi-period mean-CVAR policies results in a strategy which is counterintuitive. At time
zero, we have some idea of what we desire as a minimum final wealth. Fixing this shortfall
target for all t > 0 makes intuitive sense. If we have a billion dollars, we are probably only
concerned with the probability of a final wealth being less than, say, 50 million dollars. On
the other hand, if we have one million dollars, then we are probably concerned about ending
up with less than 500,000. In other words, our intuitive shortfall target is not a constant
proportion of current wealth. This intuition contrasts with time consistent strategies, which
adjust the effective shortfall target in response to current wealth. This does not appear to
generate a reasonable strategy. On the other hand, precommitment mean-CVAR strategies
at time zero are equivalent to a time consistent strategy which fixes the shortfall target at the
initial time. This equivalent objective function (linear target shortfall) appears to produce an
intuitively reasonable strategy.

12.4. Extension to multiple risky assets. As usual, numerical solution of an HJB PIDE
is restricted to problems with three or fewer dimensions, due to computational complexity
considerations. This means that it is practical to determine the optimal strategy for two risky
assets and one risk-free asset in the precommitment case. On the other hand, we can solve
the time consistent mean-CVAR problem for only a single risky asset and one risk-free asset.
However, it is possible to use a machine learning approach to determine optimal strategies for
portfolios with large numbers of risky assets (Li and Forsyth, 2019).

This assumes that we rebalance at discrete times. However, if we take the limit and
assume continuous rebalancing, the PIDE problem for the precommitment case has dimension
one, hence, is computationally feasible. We conjecture that a similar reduction to a system
of one dimensional PIDEs is also possible for the time consistent case as well. Continuous
rebalancing, of course, is not realistic in practice.

13. Conclusions. Precommitment strategies have been widely criticized for being ``non-
implementable."" However, in the mean-CVAR case, we know from Corollary 6.4, that since
precommitment mean-CVAR is equivalent to a linear target shortfall strategy with a fixedD
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shortfall target W \ast , then this strategy is time consistent in terms of this alternative objective
function, hence, is implementable.

Since all strategies in this study can be considered to be time consistent (when viewed in
terms of the appropriate objective function), we can then rank the various strategies in terms
of the cumulative distribution functions of the terminal wealth. Forcing a time consistent
constraint on a mean-CVAR strategy produces a final distribution function which has a larger
left tail risk than a simple constant weight strategy (with the same median value of final
wealth).

Note that forcing a time consistent constraint for the mean-variance problem has been
shown to have undesirable consequences in some cases (Bensoussan, Wong, and Yam, 2019).
Hence, it is perhaps not surprising to see a similar effect for the mean-CVAR objective function.

Time consistent mean-CVAR policies behave in a manner very similar to deterministic
(i.e., only a function of time) strategies. This offers little (if any) improvement compared to
the standard constant weight strategy.

In contrast, the precommitment mean-CVAR strategy (which coincides with the time con-
sistent linear target shortfall strategy at time zero) does minimize the left tail risk, compared
to the other strategies.

Finally, in agreement with (Vigna, 2017; Bensoussan, Wong, and Yam, 2019), our results
indicate that simply forcing a time consistent constraint onto a precommitment policy, without
considering the economic ramifications, may lead to strategies with undesirable characteristics.
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