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Abstract4

This paper explores dynamic mean-variance asset allocation over long horizons. This is5

equivalent to target-based investing with a quadratic loss penalty for deviations from the target6

level of terminal wealth. We provide a number of illustrative examples in a setting with a7

risky stock index and a risk-free asset. Our underlying model is very simple: the value of the8

risky index is assumed to follow a geometric Brownian motion diffusion process and the risk-free9

interest rate is specified to be constant. We impose realistic constraints on the leverage ratio and10

trading frequency. In many of our examples, the mean-variance optimal strategy has a standard11

deviation of terminal wealth less than half that of a constant proportion strategy which has the12

same expected value of terminal wealth, while the probability of shortfall is reduced by a factor13

of two to three. We investigate the robustness of the model through resampling experiments14

using historical data dating back to 1926. These experiments also show much lower standard15

deviation and shortfall probability for the mean-variance optimal strategy relative to a constant16

proportion strategy with approximately the same expected terminal wealth.17
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1 Introduction28

Savings for long-term objectives such as retirement or higher education are of paramount impor-29

tance to investors. The value of total assets held in U.S. retirement accounts at the end of 201430

was almost $25 trillion.1 The size of this sum implies that even modest improvements in the31

management of these assets can offer significant economic benefits.32

Target date funds implement an asset allocation strategy intended to help investors who want33

to have money available at a specified future date. As the target date is approached, “glide path”34

formulas are applied to automatically reduce allocations to riskier investments such as equities.35

Assets under management in target date funds (in the U.S.) have grown from $44 billion in 200436

to over $700 billion by the end of 2014.2 However, the efficacy of target date funds is questionable:37

from a mean-variance (MV) perspective, deterministic glide path strategies are dominated by a38

constant proportion strategy which continuously maintains fixed asset weights over time, at least39

in our modelling framework (Graf, 2016).40

We explore optimal long-term asset allocation for an investor who seeks to achieve a targeted41

level of terminal wealth where a quadratic loss function penalizes deviations from the target. This42

is equivalent to using a multi-period MV framework (Vigna, 2014); hence, in the following, we43

will refer to optimal long-term target-based strategies as MV optimal strategies. We consider the44

case where the investor makes a single lump sum initial investment, leaving accumulations and45

withdrawals for future work.46

We will demonstrate that our strategy outperforms the constant proportion benchmark. We47

emphasize that this benchmark dominates any deterministic approach such as a glide path strategy,48

for a lump sum investment (Graf, 2016). Tests conducted under the assumed modelling conditions49

indicate that MV optimal strategies that produce the same expected terminal wealth as a constant50

proportion benchmark have a standard deviation of terminal wealth that is less than half that of51

the corresponding constant proportion benchmark, and shortfall probability is reduced by a factor52

of between two and three. In addition, resampling experiments based on long-run historical data53

lead to very similar relative comparisons, so our results are not an artifact of the assumed modelling54

conditions.55

An alternative to the MV or target-based approach is to assume a particular utility function56

over terminal wealth, as in the classic approach pioneered by Merton (1969, 1971). Of course, since57

the MV approach can be justified on the basis of a quadratic utility function, we are implicitly58

assuming here that the alternative being considered is non-quadratic. Using such an alternative59

offers some advantages, but also has various disadvantages:60

• Alternative utility functions avoid perceived undesirable characteristics of quadratic utility.61

For example, quadratic utility implies that as wealth rises beyond a satiation point, investors62

prefer less of it. Under the target-based approach the target level of terminal wealth cor-63

responds to the satiation point for quadratic utility. However, in a model with continuous64

trading where the value of the risky asset follows geometric Brownian motion (GBM), Vigna65

(2014) shows that under an optimal policy the target will never be reached. More generally,66

Cui et al. (2012) argue that the target cannot be reached if markets are complete. In the67

incomplete market case, the investor can simply withdraw cash if the target level is exceeded,68

leaving enough in the risk-free asset to reach the target.69

• Utility-based models suffer in practice from difficulty in determining the form and parameters70

of the utility function. Of course, specific investment decisions in the MV framework require71

1Investment Company Institute (2015), Figure 7.5.
2Investment Company Institute (2015), Figure 7.26.
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some estimate of risk-aversion to balance risk and anticipated rewards. However, the target-72

based interpretation of the MV framework may offer some scope for estimating risk-aversion,73

as discussed in Vigna (2014).74

• In the context of asset allocation targeted towards a long-term objective, some popular utility75

specifications may imply unrealistic behavior. For example, with constant relative risk aver-76

sion (CRRA), the marginal utility of wealth at zero is infinite. Investors become extremely77

cautious if there is a chance that wealth could be near zero. In contrast, the quadratic loss78

function implicit in the MV criterion gives strong incentives to avoid insolvency, but not to79

the extreme extent that CRRA utility does.80

• Standard dynamic programming techniques are not applicable in the multi-period MV con-81

text. However, Li and Ng (2000) and Zhou and Li (2000) have shown that this problem82

can be circumvented using an embedding result. As noted by Basak and Chabakauri (2010),83

the dynamic MV approach is not time-consistent. In other words, dynamic MV analysis84

relies on pre-commitment, under which investors pick an initial policy and stick with it no85

matter what happens subsequently. Numerous experimental studies have found evidence of86

time-inconsistent preferences (see Frederick et al., 2002, for a review). If preferences are87

time-inconsistent there may be an expanded role for government intervention to help individ-88

uals to attain pre-commitment policies (Kocherlakota, 2001). In addition, a time-consistent89

strategy can be constructed from a pre-commitment policy by imposing a constraint (Wang90

and Forsyth, 2011). This implies that time-consistent strategies are sub-optimal relative to91

pre-commitment policies.92

Thus, the problem of long-term savings oriented towards specific objectives makes the dynamic93

MV approach a sensible choice.94

Recent research on multi-period MV strategies includes studies by Bielecki et al. (2005), Basak95

and Chabakauri (2010), Cui et al. (2012), Vigna (2014), and Shen et al. (2014). All of these96

papers are analytical in nature. However, analytic solutions generally do not exist when realistic97

restrictions are imposed. Such constraints can be significant. Bielecki et al. (2005) discuss the98

impact of a no-bankruptcy condition, noting that the risk-return tradeoff is clearly less favorable99

when this condition is imposed. However, the Bielecki et al. solution does not have any limits on100

leverage and assumes continuous trading.101

More realistic constraints can be imposed if numerical solution methods are used. Reliable102

and efficient numerical partial differential equation (PDE) techniques which can be applied in the103

continuous time dynamic MV context have been recently developed (Wang and Forsyth, 2011;104

Dang and Forsyth, 2014). Alternatively, Monte Carlo methods have also appeared recently (Cong105

and Oosterlee, 2016). Such procedures can be expected to be less efficient than numerical PDE106

techniques in the low-dimensional case, but they do offer the ability to handle cases involving many107

risky assets. In this paper, we use numerical PDE methods to investigate a number of properties108

regarding MV optimal portfolios over long horizons in a setting with a single risky asset. In109

particular, we make the following contributions:110

• We provide an extensive set of comparisons between MV optimal investment strategies and a111

constant proportion benchmark. The MV optimal strategies we consider incorporate realistic112

constraints on leverage and trading frequency. We show that these MV optimal strategies113

can offer dramatically reduced risk compared to constant proportion strategies with the same114

expected terminal wealth.115
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• We run additional tests which suggest that our MV optimal strategies are quite robust to116

parameter uncertainty and model mis-specification. This implies that extensions to cases117

such as stochastic volatility models are unlikely to matter very much over long horizons, at118

least if volatility is mean-reverting and the speed of reversion is not slow.119

• We provide backtesting results based on historical data which confirm that the MV optimal120

strategy significantly outperforms the constant proportion strategy in terms of risk reduc-121

tion, while maintaining approximately the same expected terminal wealth. Our backtesting122

results are actually quite similar to what would be expected under idealized GBM modelling123

conditions with a constant risk-free rate. In addition to demonstrating the robustness of our124

simple modelling strategy, this reinforces the implication that more complicated modelling125

approaches involving stochastic volatility or stochastic interest rates may not offer significant126

advantages over long-term investment horizons.127

In an Appendix, we also present a simple and intuitive geometric description of the embed-128

ding result (Li and Ng, 2000; Zhou and Li, 2000) which facilitates the use of standard dynamic129

programming methods to solve multi-period MV portfolio optimization problems.130

2 The Model131

We consider a model in which the investor chooses a strategy to allocate funds between a risky132

asset and a risk-free asset, with a terminal horizon date T . Denote by St the amount invested in133

the risky asset at time t. St is assumed to follow the GBM process134

dSt = µSt dt+ σSt dZ, (1)

where µ is the appreciation rate, σ is the volatility, and dZ is the increment of a Wiener process.135

Let Bt be the amount invested at time t in the risk-free asset. Assume that Bt follows the process136

dBt = rBt dt, (2)

where r is the risk-free interest rate. We make the standard assumption that µ > r, so that it is137

never optimal to short the risky asset, i.e. St ≥ 0, t ∈ [0, T ]. On the other hand, we do allow short138

positions in the risk-free asset (Bt < 0 is admissible).139

The wealth that the investor has invested in this portfolio is Wt = St + Bt. As elucidated by140

Benjamin Graham (Graham, 2003, p. 89), a classic investment strategy for the defensive investor is141

to choose a fraction of wealth to invest in the risky asset and to dynamically rebalance the portfolio142

to preserve this ratio.143

It is well-known that it is optimal for an investor with CRRA utility in this modelling framework144

to maintain constant fractions of the portfolio in the two assets. Note that if constant fractions p145

and 1−p are respectively allocated to the risky and risk-free assets and the portfolio is continuously146

rebalanced, then the process followed by wealth Wt is147

dWt = [(1− p)r + pµ]Wt dt+ pσWt dZ (3)

and a closed form expression for the probability density of Wt follows easily.148

The dynamic MV criterion can be viewed as having a target-based objective with a quadratic149

loss function where any penalties for exceeding the target can be avoided by withdrawing cash and150

leaving enough money in the risk-free asset to reach the target over the remaining horizon (Cui151

et al., 2012). To allow for this possibility, we have to be more specific about how wealth is defined.152
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Allocated wealth is the wealth available for allocation into the portfolio, and is denoted at time t153

by Wt = St + Bt. Non-allocated wealth, denoted by Wn
t , contains any cash withdrawals from the154

portfolio and accumulated interest.155

We only consider the case where the investor rebalances the portfolio at discrete points in time.156

Denote the set of rebalancing times by T = {t0 = 0 < t1 < · · · < tM = T}. Let t− and t+ respec-157

tively represent instants in time just before and just after time t, and let X(t) = (S(t), B(t)) be the158

underlying process. The rebalancing decision is captured by a control containing two components.159

We use c(·) ≡ (d(·), e(·)) to denote this control as a function of the current state at t− for rebal-160

ancing time t, i.e. c (X(t−), t−) ≡ (d(X(t−), t−), e(X(t−), t−)) ≡ (d(t), e(t)) for t ∈ T . The control161

component d(·) denotes the non-negative amount of cash withdrawn from the portfolio. Note that162

this cash withdrawal is considered to occur immediately before rebalancing occurs at time t. The163

control component e(·) is the amount of allocated wealth that is invested in the risk-free asset after164

rebalancing at time t ∈ T . If desired, restrictions such as leverage constraints can be imposed by165

specifying the set of admissible controls Z, and so we have c ∈ Z.166

Let x = (s, b) denote the state of the system at time t for t ∈ [0, T ]. Given the prevailing state167

x ≡ (s, b) = (S(t−), B(t−)) at time t−, t ∈ T , we denote by (S+, B+) ≡ (S+(s, b, c), B+(s, b, c)) the168

state of the system at time t immediately after the application of the control c ≡ (d, e). We then169

have170

S+ (s, b, c ≡ (d, e)) = (s+ b)− d− e,
B+ (s, b, c ≡ (d, e)) = e. (4)

Following Dang and Forsyth (2016), the investment strategies under consideration can be charac-171

terized by d(t). In particular, a self-financing strategy requires d(t) = 0 for all t ∈ T . A semi-self-172

financing strategy allows cash withdrawals, i.e. a control with d(t) > 0, t ∈ T , is admissible. In the173

case of a semi-self-financing strategy, let tα be the times where d(tα) > 0.174

We can now provide a precise definition of non-allocated wealth Wn
t . At time t ∈ [0, T ],175

Wn
t =

∑
tα≤t

d(tα)er(t−tα). (5)

In the following, we will refer to Wn
T as the free cash from the investment strategy. We can now also176

precisely specify solvency and leverage constraints. In particular, we enforce the solvency condition177

that the investor can continue trading only if178

W (s, b) = s+ b > 0. (6)

If insolvency occurs, the investor must immediately liquidate all investments in the risky asset and179

cease trading, i.e. if W (s, b) ≤ 0 then180

S+ = 0; B+ = W (s, b). (7)

The leverage constraint is enforced as a ratio, i.e. the investor has to choose an allocation such that181

S+

S+ +B+
≤ qmax, (8)

where qmax is a specified parameter.182

We respectively denote by Ex,tc(·)[WT ] and Varx,tc(·)[WT ] the expectation and the variance of the183

terminal allocated wealth conditional on the state (x, t) and the control c(·), t ∈ T . Let (x0, 0) ≡184

(X(t = 0), t = 0) denote the initial state. Then the achievable MV objective set is185

Y =
{

(V arx0,0c(·) [WT ], Ex0,0c(·) [WT ]) : c ∈ Z
}
. (9)
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For simplicity, assume that Y is a closed set and let Varx0,0c(·) [WT ] = V and Ex0,0c(·) [WT ] = E . For each186

point (V, E) ∈ Y and for an arbitrary scalar ρ > 0, we define the set of points YP (ρ) to be187

YP (ρ) =
{

(V∗, E∗) ∈ Y : ρV∗ − E∗ = min
(V, E) ∈ Y

(ρV − E)
}
. (10)

ρ can be viewed as a risk-aversion parameter governing how the investor trades off expected value188

and variance. For a given ρ, YP (ρ) represents an efficient point in that it offers the highest expected189

value given variance. The set of points on the efficient frontier YP is the collection of these efficient190

points for all values of ρ, i.e.191

YP =
⋃
ρ > 0

YP (ρ). (11)

As discussed in the Appendix, the presence of the variance term in (10) precludes determining192

YP (ρ) by solving for the associated value function using dynamic programming, but this can be193

circumvented with the embedding result (Li and Ng, 2000; Zhou and Li, 2000). We define the value194

function V (x, t) as195

V (x, t) = min
c ∈ Z

{
Ex,tc

[
(WT − γ/2)2

]}
, (12)

where the parameter γ ∈ (−∞,+∞). The embedding result implies that there exists a γ ≡ γ(x, t, ρ)196

such that for a given positive ρ, a control c∗ ≡ (d∗, e∗) which minimizes (10) also minimizes (12).197

The value function V (s, b, t) can be found by solving the associated Hamilton-Jacobi-Bellman (HJB)198

equation (described shortly below) backward in time with the terminal condition199

V (s, b, T ) = (W (s, b)− γ/2)2 . (13)

During this solution process, the optimal control c∗ can be determined. We then use this control200

to find the quantity U(s, b, t) = Ex,tc∗ [WT ] since this information is needed to determine the corre-201

sponding variance and expected value point
(

Varx0,t=0
c∗ [WT ] , Ex0,0c∗ [WT ]

)
on the efficient frontier.202

This step involves solving an associated linear PDE (Dang and Forsyth, 2014). Given the optimal203

control c∗, it is straightforward to determine other quantities of interest by using Monte Carlo204

simulation.205

We now describe the HJB PDE which is used to determine c∗. Define the solvency region as206

S = {(s, b) ∈ [0,∞) × (−∞,+∞) : W (s, b) > 0}, and the bankruptcy region as B = {(s, b) ∈207

[0,∞)× (−∞,+∞) : W (s, b) ≤ 0}. Also define the diffusion operator LV as208

LV ≡ σ2s2

2

∂2V

∂s2
+ µs

∂V

∂s
+ rb

∂V

∂b
, (14)

and the intervention operator M(c)V (s, b, t) as209

M(c)V (s, b, t) = V (S+(s, b, c), B+(s, b, c), t). (15)

At each portfolio rebalancing time t = ti ∈ T , we apply the following conditions:210

• If (s, b) ∈ B, we enforce the insolvency condition (i.e. the investor must liquidate all investment211

in the risky asset and cease trading)212

V (s, b, t−i ) = V (0,W (s, b), t+i ). (16)
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• If (s, b) ∈ S, we impose the rebalancing optimality condition213

V (s, b, t−i ) = min
c ∈ Z
M(c)V (s, b, t+i ). (17)

For the special case where t = tM = T , the terminal condition (13) holds. Within each time period214

[ti−1, t
−
i ), i = M, . . . , 1, the following considerations apply:215

• If (s, b) ∈ B, we enforce the insolvency condition216

V (s, b, t) = V (0,W (s, b), t). (18)

• If (s, b) ∈ S, then V (s, b, t) satisfies the PDE217

Vt + LV = 0, (19)

subject to the initial condition (17).218

For computational purposes, we localize the above problem and apply suitable asymptotic boundary219

conditions (Dang and Forsyth, 2014)220

Pre-commitment MV portfolio optimization is equivalent to maximizing the expectation of a221

quadratic utility function provided that WT ≤ γ/2. Hence, γ/2 can be viewed essentially as the222

terminal allocated wealth target for the portfolio. Define the discounted terminal allocated wealth223

target of the portfolio at time t ∈ [0, T ] as224

Ft =
γ

2
e−r(T−t). (20)

Dang and Forsyth (2016) note that for all t ∈ [0, T ], the state (s, b) = (0, Ft) is a time t globally225

optimal solution to the value function V (s, b, t), i.e. V (0, Ft, t) = 0 for all t ∈ [0, T ]. The value226

function is nonnegative, so the point where it is zero is clearly a global minimum. Therefore any227

admissible policy which allows moving to this point is an optimal one. Once this point is attained,228

it is optimal to remain at it.229

As previously mentioned, Vigna (2014) shows that under some conditions allocated wealth will230

never exceed this target, i.e. Wt ≤ Ft for all t ∈ [0, T ]. More specifically, Vigna considers the case231

of continuously rebalanced self-financing strategies (i.e. d(t) = 0 for all t ∈ [0, T ]) with no leverage232

constraints and trading continuing even under bankruptcy. With discrete rebalancing, we cannot233

be sure that Wt ≤ Ft. However, Dang and Forsyth (2016) show that if Wt ever exceeds Ft at a234

discrete rebalancing time t ∈ T , the MV optimal strategy is to withdraw a cash amount of Wt−Ft235

from the portfolio and to invest the remainder Ft in the risk-free asset. We refer to this as the236

optimal semi-self-financing strategy. With this in mind, if we follow this strategy, then the terminal237

condition (13) is replaced by238

V (s, b, T ) = (min(s+ b, γ/2)− γ/2)2 . (21)

239

3 Parameter Estimation240

Our subsequent analysis is based on parameters estimated from U.S. market history. For the risky241

asset we use the NYSE/AMEX/NASDAQ/ARCA value-weighted index with distributions from the242
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Figure 1: Stock index returns and risk-free interest rate. Monthly data, 1926-2014.

Center for Research in Security Prices (CRSP). The full sample period runs from January 1926243

through December 2014.34 Letting the level of this index as of month i be Si, the log return R244

for month i is Ri = ln (Si/Si−1), which is shown in Figure 1(a). We derive the risk-free interest245

rate from secondary market 3-month U.S. Treasury bill rates obtained from the Federal Reserve5246

(1934:1-2014:12) and the National Bureau of Economic Research (NBER) Macrohistory Database6247

(1926:1-1933:12). The parts of our analysis which cover the period prior to 1934 are then subject248

to the caveat that the risk-free rate measured over this period is somewhat different compared to249

other time periods. We convert the Treasury bill yields to continuously compounded annual rates250

and denote them by r. These are plotted in Figure 1(b).251

Table 1 provides descriptive statistics for monthly stock index log returns R and the annualized252

risk-free rate r over the full 1926-2014 sample and three sub-periods. The first sub-period runs253

from 1926 to 1954. The second sub-period contains the first, but is extended through 1984.7 The254

final sub-period (1955-2014) covers the most recent six decades and may perhaps be viewed as255

more representative of what to expect going forward. Average monthly stock index log returns256

are relatively stable at 0.7%-0.8% across the four periods considered in Table 1. In each case,257

median values are notably higher, reflecting negative skewness. Consistent with numerous prior258

studies, observed kurtosis levels far exceed that of the normal distribution. The risk-free interest259

rate averaged about 3.5% over the full sample. However, it varied significantly across time, ranging260

from just over 1% in the first sub-period to 4.7% in the last one. Median values of r lie somewhat261

below these means, consistent with observed positive skewness, and kurtosis is relatively high. Over262

all periods considered, R and r consistently display slightly negative correlations. Collectively,263

3See Chapter 4 of CRSP (2012) for a detailed description.
4The number of securities included in this index changes significantly over time. Only NYSE-listed securities

are included prior to July 1962, when AMEX-listed securities first become available. NASDAQ-listed securities are
added as of December 1972, followed by stocks listed on the ARCA exchange in March 2006. However, our parameter
estimates do not change appreciably if we restrict attention over the entire sample period to just NYSE listings, only
NYSE and AMEX listings, or NYSE/AMEX/NASDAQ listings.

5See www.federalreserve.gov/releases/h15/data.htm.
6See www.nber.org/databases/macrohistory/contents/chapter13.html In particular, we use the m13029a series

from January 1926 to December 1930 and the m13029b series from January 1931 to December 1933. Neither series
is strictly comparable to the Federal Reserve Treasury bill yield data which starts in 1934. The m13029a series is
based on U.S. Treasury 3-month and 6-month notes and certificates, except for the April-June 1928 period which
uses 6-month and 9-month certificates. We switch to the m13029b series when it starts in January 1931 since it is
based on 3-month maturities over the 1931-1933 period.

7The rationale for choosing these two sub-periods will become clear below in Section 5.
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1926:1 - 2014:12 1926:1 - 1954:12 1926:1 - 1984:12 1955:1 - 2014:12
(N = 1068) (N = 348) (N = 708) (N = 720)

R r̄ R r̄ R r̄ R r̄
Mean 0.0078 0.0354 0.0070 0.0113 0.0073 0.0346 0.0082 0.0470
Median 0.0130 0.0311 0.0130 0.0043 0.0114 0.0274 0.0130 0.0464
Std. dev. 0.0539 0.0312 0.0707 0.0124 0.0577 0.0337 0.0436 0.0309
Skewness -0.5651 1.0830 -0.3570 1.3806 -0.3718 1.3396 -0.8071 0.8388
Kurtosis 9.8982 4.3961 8.5445 3.9841 9.9557 4.6839 5.9129 4.2703
Correlation -0.0164 -0.0090 -0.0351 -0.0381

Drift µ̂ 0.1108 (0.0206) 0.1134 (0.0476) 0.1077 (0.0271) 0.1095 (0.0200)
Volatility σ̂ 0.1867 (0.0085) 0.2445 (0.0180) 0.1998 (0.0112) 0.1511 (0.0062)

Table 1: Descriptive statistics for stock index monthly log returns R and annualized risk-free interest
rate r̄. N is the number of monthly observations. µ̂ and σ̂ are the annualized maximum likelihood
estimates of the risky asset drift and volatility respectively, with robust standard errors in parentheses.
r̄ is the average continuously compounded risk-free interest rate over the indicated period.

these statistics indicate that our model which assumes simple GBM for risky asset returns and a264

constant risk-free rate is seriously mis-specified from an econometric standpoint. However, we will265

argue below that this is not a major concern in our context of MV optimality with a long-term266

horizon.267

Our model has three parameters: the risky asset drift µ, its volatility σ, and the risk-free268

interest rate r. Given the GBM specification, it is straightforward to calculate maximum likelihood269

estimates of µ and σ using the log returns R. For the risk-free rate, we simply use the average value270

of the continuously compounded annualized rate r. The estimated drift and volatility parameters271

given in Table 1 are expressed in annualized terms.272

4 Illustrative Examples273

We now present an extensive set of illustrative examples.8 The main benchmark to which we com-274

pare the MV optimal strategy is a constant proportion strategy in which the investor continuously275

maintains a fixed fraction of wealth in the risky asset, which can be regarded as a common default276

strategy. We remind the reader that for a lump sum investment, the fixed fraction strategy MV-277

dominates any continuously rebalanced strategy where the fraction invested in the risky asset is a278

deterministic function of time (Graf, 2016).279

We begin with a general comparison between a constant proportion strategy with an even split280

between the risky and risk-free assets and the MV optimal strategy derived by Bielecki et al. (2005).281

This latter strategy enforces the restriction that the investor’s wealth cannot ever be negative, but282

assumes continuous rebalancing and allows for infinite leverage.283

Given the parameters, we calculate the mean and standard deviation of terminal wealth for the284

constant proportion strategy. We next determine the standard deviation of terminal wealth for the285

MV optimal strategy subject to the restriction that the mean for this strategy be the same as that286

of the constant proportion strategy. We then calculate the ratio of the standard deviation of the287

8From this point on, we will use “expected value” and E[WT ] in place of the more cumbersome Ex0,0
c(·) [WT ].

Similarly, “standard deviation” will refer to the standard deviation of terminal wealth as of time 0 conditional on the
initial state and the investment strategy.
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Figure 2: Contour plots of the ratio of the standard deviation of terminal wealth for the MV optimal
strategy from Bielecki et al. (2005) to the corresponding standard deviation for the constant proportion
strategy (p = .5). Both strategies assume continuous rebalancing and have the same expected terminal
wealth. The MV optimal strategy allows for infinite leverage.

MV optimal strategy to that of the constant proportion strategy. Obviously, this ratio is at most288

unity.289

Figure 2(a) plots contours of the ratio defined above for values of the risk-free rate r ranging290

from .01 to .07 and for horizons of T = 1, 2, . . . , 30 years. The remaining parameters used are291

µ = .10 and σ = .15, broadly consistent with our empirical estimates over the past 60 years from292

Table 1. As a guide to interpretation, along the curve marked “0.5” the standard deviation of293

terminal wealth for the MV optimal strategy is 50% of the corresponding standard deviation for294

the constant proportion strategy, even though both strategies have the same expected value of295

terminal wealth. If the horizon T is close to 30 years the ratio is around 20% when r ' .02. This296

means that the MV optimal strategy offers the same expected level of terminal wealth but has only297

about one-fifth of the risk, as measured by the standard deviation of terminal wealth. As another298

example, with T = 10 years the MV optimal strategy has less than half of the risk of the constant299

proportion strategy with equivalent expected terminal wealth if r ' 2.5% or lower.300

Figure 2(b) provides a similar comparison for different levels of the risky asset drift rate µ,301

with σ = .15 and r = .04. This plot also shows some significant potential improvements over the302

constant proportion strategy, especially for long horizons and high values of µ. If µ ' .10, the MV303

optimal strategy has at most 50% of the risk of the constant proportion strategy for T ≥ 15 years.304

Figure 2(c) in turn shows contours for the ratio of standard deviations across a range of values for305

the volatility σ, given µ = .10 and r = .04. These results again show marked improvement over306
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Constant MV Optimal MV Optimal
Proportion (Analytic) (Numerical)

Investment horizon T (years) 30 30 30
Initial investment W0 100 100 100
Risky asset drift rate µ 0.10 0.10 0.10
Risky asset volatility σ 0.15 0.15 0.15
Risk-free rate r 0.04 0.04 0.04
Rebalancing frequency Continuous Continuous Annual
Insolvency condition n.a. Yes Yes
Maximum leverage ratio qmax n.a. ∞ 1.5

Table 2: Base case data. “MV Optimal (Analytic)” refers to the model of Bielecki et al. (2005)
which has a closed form solution. In this model the insolvency condition ensures that wealth can
never be negative. “MV Optimal (Numerical)” refers to the model in this paper which must be solved
numerically. In this model the insolvency condition is that if wealth becomes negative, the investor
must immediately liquidate the investment in the risky asset and stop trading. The maximum leverage
ratio qmax is defined in equation (8).

the constant proportion strategy, particularly for relatively low values of σ and over long horizons.307

With σ ' .15, the standard deviation ratio is at most .5 for T ≥ 15 years. A clear pattern displayed308

in all three of these contour plots is that the ratio of the standard deviations drops markedly as309

maturity rises, indicating that the superiority of the MV optimal strategy increases significantly310

with the investment horizon.311

Collectively, the plots in Figure 2 show that an MV optimal strategy can offer significant312

benefits over a constant proportion strategy, especially for longer horizons and for low values of313

r and σ. However, recall that this MV optimal strategy assumes continuous rebalancing (as does314

the constant proportion strategy) and it also allows for infinite leverage. This raises the possibility315

that imposing realistic constraints may significantly erode the advantages of the MV optimality316

criterion. Enforcing such restrictions requires the use of a numerical approach, as described above.317

The examples to follow are thus based on three different types of strategies: (i) constant pro-318

portion with continuous rebalancing (analytic solution available); (ii) the MV optimal strategy of319

Bielecki et al. (2005) which assumes continuous rebalancing and allows for infinite leverage while320

enforcing an insolvency condition which ensures that the investor’s wealth cannot become negative321

(analytic solution available); and (iii) our MV optimal strategy which imposes a different insolvency322

condition (i.e. if wealth becomes negative, the investor has to immediately liquidate the investment323

in the risky asset and stop trading) and in addition restricts the leverage ratio and the rebalancing324

frequency (numerical solution required). Base case input data for all three types are provided in325

Table 2. The market parameters µ, σ, and r are specified as .10, .15, and .04 respectively, reflect-326

ing the parameter estimates from Table 1 with particular focus on the most recent 60 years. We327

also designate an initial investment of 100 and an investment horizon of 30 years. The strategy328

based on the numerical solution has a base case maximum leverage ratio of qmax = 1.5 and annual329

rebalancing.330

As a benchmark base case, we show the results for the constant proportion strategy with contin-331

uous rebalancing in Table 3. Next, we consider MV optimal strategies under various assumptions:332

maximum leverage ratio of qmax = 1.5 with annual rebalancing, unrestricted leverage with annual333

rebalancing, and unconstrained leverage with continuous rebalancing. When required, the numer-334
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Constant Expected Standard Shortfall
Proportion Value Deviation Probability

p = 0.0 332.01 n.a. n.a.
p = 0.5 816.62 350.12 Prob(WT < 800) = 0.56
p = 1.0 2008.55 1972.10 Prob(WT < 2000) = 0.66

Table 3: Results for the constant proportion strategy using base case data from Table 2.

ical procedures used are described in Dang and Forsyth (2014). The semi-self-financing optimal335

withdrawal policy described in Section 2 is applied.336

We specify the target expected value to be 816.62, as reported in Table 3 for the p = 0.5 case.337

Convergence test results are given in Table 4. For a given grid refinement level, we calculate the338

γ which generates this target expected value by Newton iteration. The fourth column shows the339

total expected value, including the free cash from the withdrawal that occurs if the allocated wealth340

exceeds the discounted target. Even with annual rebalancing, the magnitude of the expected free341

cash is not large, and so we exclude it from subsequent reported expected values in this section.342

In the case with unrestricted leverage and annual rebalancing, extrapolating the results given in343

Table 4 gives an ultimate standard deviation of about 124.51. Comparing this figure to the exact344

closed form solution (also with unlimited leverage), we see that the effect of annual rebalancing345

over the 30-year horizon compared to continuous rebalancing is quite small.9 This is encouraging,346

as it suggests that transaction costs are unlikely to have a significant impact on our results since347

we do not need to trade frequently. All results provided subsequently use level 3 grid refinement.348

As a point of comparison, consider the case with annual rebalancing and qmax = 1.5. Table 4349

reports an expected value of 816.62 and a standard deviation of 142.85 (refinement level 3). Al-350

though not shown in the table, the probability of having terminal wealth below 800 for this case351

is 19%. From Table 3, a continuously rebalanced strategy with fixed weight p = 0.5 has the same352

expected value, a standard deviation of 350.12, and a 56% chance of terminal wealth below 800.353

The MV optimal strategy considered here that produces the same expected wealth as the constant354

proportion strategy reduces the standard deviation by a factor of about 2.5 and the shortfall prob-355

ability by a factor of almost 3. This is quite a dramatic improvement in terms of classical measures356

of portfolio efficiency.357

As an additional comparison, Table 3 shows that a constant proportion strategy with p = 1.0358

produces an expected value of 2008.55, a standard deviation of 1972.10, and a 66% probability359

of having final wealth lower than 2000. The MV optimal strategy for the same expected value360

of 2008.55 with annual rebalancing and qmax = 1.5 turns out to have a standard deviation of361

969.33 and a 40% probability of having terminal wealth below 2000. In other words, relative to the362

constant proportion case the standard deviation is halved and the shortfall probability reduced by363

a factor of about 1.65.364

Figure 3 compares the cumulative distribution functions of WT for the two cases considered365

above. Focusing on panel (a) where the constant proportion strategy has p = 0.5, we observe366

that the outcomes from the MV optimal strategy are much more clustered near the expected value367

of 816.62, with a very narrow range of possible outcomes above this amount. The MV optimal368

strategy produces a smaller probability that WT < W ∗ for 360 < W ∗ < 800. For W ∗ < 360, the369

9Dang and Forsyth (2014) have verified that the numerical method used here converges to the solution from
Bielecki et al. (2005) under the same assumptions.
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Expected Standard Expected Value
Refinement Value Deviation (Including Free Cash) γ

Maximum leverage qmax = 1.5, annual rebalancing
0 816.62 161.00 840.95 1804.03
1 816.62 151.09 832.32 1769.79
2 816.62 145.72 827.64 1756.83
3 816.62 142.85 824.92 1751.94

Infinite leverage, annual rebalancing
0 816.62 146.69 843.75 1746.73
1 816.62 136.47 833.38 1731.53
2 816.62 130.71 828.42 1723.94
3 816.62 127.61 825.37 1720.76

Exact solution: infinite leverage, continuous rebalancing
n.a. 816.62 118.84 n.a. n.a.

Table 4: Level 0 refinement used: s nodes: 65, b nodes: 129, timesteps: 60. Numbers of nodes,
timesteps doubled on each refinement. The localized domain uses smax = 20,000, with bmax = |bmin| =
smax. A nonuniform grid was used, with a fine mesh spacing near s = W0 and b = W0, and increasing
exponentially as s,|b| → smax. The base case input data used is provided in Table 2. The exact solution
is from Bielecki et al. (2005). The equivalent wealth target is γ/2.

fixed proportion strategy is better than the MV optimal one, but these are very low probability370

cases, i.e. Prob(WT < 360) ' .04.371

The results for the case with an expected value of 2008.55 (where the fixed weight strategy372

uses p = 1.0) shown in Figure 3(b) are qualitatively similar. At extremely low wealth levels, the373

constant proportion strategy outperforms the MV optimal allocation. Pre-committing to the MV374

optimal allocation reduces the chance of being significantly below the target over a wide range, but375

also sacrifices the upside with very high levels of wealth.376

To gain insight into the properties of the controls for the MV optimal strategy, we return to the377

base case example (Table 2) with expected terminal wealth of 816.62. We numerically solve for the378

optimal controls and store them in a table. Figure 4(a) presents this table in the form of a heat379

map representing the fraction of wealth that is optimally invested in the risky asset. The darkest380

region near the top corresponds to wealth levels that are high enough to make investing fully in381

the risk-free asset optimal. In the brightest area near the bottom it is optimal to invest as much as382

possible in the risky asset by using the maximum permissible degree of leverage.10 The dark strip383

along the bottom edge for non-positive wealth levels reflects the insolvency condition (7), which384

dictates that the investor must liquidate all investments in the risky asset if Wt ≤ 0.385

Figure 4(a) shows the optimal strategy across the range of wealth levels over time, but it is386

uninformative about probabilities. To address this, we run a Monte Carlo experiment. We begin387

with an initial investment of W0 = 100, as in the lower left corner of Figure 4(a). We then simulate388

the performance of the risky stock index over the 30-year horizon across 1 million paths. Along389

each path, we calculate the value of wealth given our portfolio weights and the performance of the390

index. At the end of each year the portfolio is rebalanced in accordance with our optimal control391

strategy. We then calculate the mean and standard deviation of the fraction of wealth p in the392

10The staircase pattern most visible near the edges of this area is due to the annual rebalancing frequency.
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Figure 3: Comparison of cumulative distribution functions for the constant proportion policy and
the MV optimal strategy. The base case data used are given in Table 2.
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Figure 4: Heat map and mean value of optimal MV strategy. Base case parameters (see Table 2).

risky asset over time along each path. Figure 4(b) shows that the MV optimal strategy starts out393

with a mean of p slightly over one, indicating a modestly levered strategy. The standard deviation394

of p is quite low initially. As time passes, the mean of p drops considerably.395

A deterministic linear glide path strategy can be defined as396

p(t) = pmax + (pmin − pmax)
t

T
, (22)

which would behave in a roughly similar way to the mean of p in Figure 4(b), with suitable choices397

for pmax and pmin. However, the MV optimal strategy improves on this by factoring in the target398

and prevailing levels of wealth, as well as time. A constant proportion strategy exploits long-run399

mean-reversion by selling assets following price increases and buying assets after their values decline.400

The MV optimal strategy also purchases assets following declines in their prices and selling assets401

after price increases, but in a more sophisticated way.402

We next explore the effect of altering some of the constraints on the admissible controls. Table 5403

shows the results obtained by perturbing some of the parameters for the base case MV optimal404
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MV Optimal Expected Standard Shortfall
Strategy Value Deviation Probability

Base case (qmax = 1.5) 816.62 142.85 Prob(WT < 800) = 0.19
No leverage (qmax = 1.0) 816.62 162.54 Prob(WT < 800) = 0.21
No withdrawal 816.62 144.49 Prob(WT < 800) = 0.20

Table 5: Perturbations of the MV optimal strategy. The base case data are given in Table 2. The base
case results are the same as in Table 4, and are reproduced here for convenience. The no withdrawal
case precludes using the optimal semi-self-financing strategy.
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Figure 5: Comparison of cumulative distribution functions for the base case optimal strategy and
the perturbations from Table 5. The base case data are given in Table 2.

strategy. The corresponding cumulative distribution functions are compared with the base case405

in Figure 5. The general effect of reducing the maximum leverage permitted from qmax = 1.5 to406

qmax = 1.0 (i.e. no borrowing) is fairly small in terms of standard deviation. The effect of not407

using the globally optimal strategy of withdrawing cash when Wt > Ft is negligible. An additional408

observation that is not apparent from Table 5 is that rebalancing more than once per year has409

little impact. In several numerical experiments we found that the difference between continuous410

and discrete rebalancing was very small if the number of rebalances exceeded 25, regardless of the411

time horizon.412

Table 6 investigates the impact of shortening the investment horizon T . We use the data in413

Table 2, except that we reduce T to 15 years and we rebalance semi-annually rather than annually.414

As with the longer horizon cases considered earlier, the MV optimal policy which has the same415

expected value of terminal allocated wealth as the fixed proportion policy has significantly smaller416

standard deviation compared to that strategy. The probability of shortfall at the points given in417

Table 6 is also reduced substantially. The improvements are not as dramatic as those seen above418

for the longer time horizon, reaffirming the implication from Figure 2 that the superiority of MV419

optimal strategies increases significantly with the investment horizon.420

We next consider the influence of the leverage ratio constraint. For long-term investments,421

Table 5 above indicates that the effect of allowing use of a maximum leverage ratio of qmax = 1.5 as422

compared to no leverage (qmax = 1.0) is not large. However, the impact of using leverage may be423
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Expected Standard Shortfall
Strategy Value Deviation Probability

Constant proportion p = 0.5 285.77 84.79 Prob(WT < 250) = 0.38
MV optimal 285.77 48.96 Prob(WT < 250) = 0.13
Constant proportion p = 1.0 448.17 283.95 Prob(WT < 400) = 0.54
MV optimal 448.17 180.44 Prob(WT < 400) = 0.35

Table 6: Results for a time horizon of 15 years with other input data from Table 2. The MV
optimal strategies use semi-annual rebalancing, while the constant proportion strategies are rebalanced
continuously.

Expected Standard
Strategy qmax Rebalancing Value Deviation

Constant proportion (p = 1.0) n.a. Continuous 271.83 88.15
MV optimal 1.0 Quarterly 271.83 88.09
MV optimal 1.5 Quarterly 271.83 34.90
MV optimal 10.0 Quarterly 271.83 12.67
MV optimal (exact) ∞ Continuous 271.83 11.59

Table 7: Effect of leverage with extreme parameter values of σ = .10 and r = 0. The initial
investment W0 = 100, the investment horizon T = 10 years, and the risky asset drift rate µ = .10.
The MV optimal (exact) case is the analytic solution from Bielecki et al. (2005) which assumes
continuous rebalancing and unrestricted leverage.

bigger for shorter-term horizons. To illustrate, we consider a case with a 10-year horizon, quarterly424

rebalancing, and an initial investment of W0 = 100. In addition, we keep µ at its base case value425

of .10 but we use extremely low values of σ = .10 and r = 0. The results shown in Table 7 indicate426

that allowing more leverage in this setting reduces risk dramatically.427

Finally, we explore some effects of parameter uncertainty. We consider ranges for the market428

parameters of r ∈ [.02, .06], µ ∈ [.06, .14], and σ ∈ [.10, .20]. We compute and store the optimal429

controls using the base case values for these parameters from Table 2, corresponding to the mean430

values of the ranges listed above if the parameters are uniformly distributed over the ranges. The431

remaining input data are as in Table 2, so these are actually the same controls used to produce432

the base case results reported earlier in Table 5. We then run 1 million Monte Carlo simulation433

paths. At every rebalancing time along each path, we randomly draw each of r, µ, and σ from its434

associated range, assuming uniform distributions, but we implement the control strategy based on435

the stored mean values. We find an average terminal wealth of 807, with a standard deviation of 145.436

There is a 19% probability that WT ≤ 800. These values are quite similar to the corresponding437

ones from Table 5, which were calculated assuming that the parameters were actually equal to438

the mean values. This indicates that parameter uncertainty does not have a large impact on the439

properties of the MV optimal strategy, at least under the conditions of this test. This suggests that440

modelling extensions such as mean-reverting stochastic interest rates and volatility may not be very441

important in this long-term setting, unless there is a significant chance of a large and persistent442

deviation from the long-run reversion level. Numerical tests which confirm that mean-reverting443

stochastic volatility effects are unimportant for a long term investor are given in Ma and Forsyth444
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Expected Standard Shortfall
Strategy Value Deviation Probability

Estimation Period: 1926:1 to 1954:12
Constant proportion (p = .5) 649 488 Prob(WT < 525) = .51
MV optimal 649 166 Prob(WT < 525) = .15

Estimation Period: 1926:1 to 1984:12
Constant proportion (p = .5) 845 499 Prob(WT < 725) = .50
MV optimal 845 223 Prob(WT < 725) = .16

Estimation Period: 1926:1 to 2014:12
Constant proportion (p = .5) 896 490 Prob(WT < 800) = .51
MV optimal 896 197 Prob(WT < 800) = .14

Table 8: Estimated results for a continuously rebalanced constant proportion strategy with p = .5
and the MV optimal strategy with yearly rebalancing and maximum leverage ratio qmax = 1.5. The
investment horizon is T = 30 years and the initial investment is W0 = 100. These results assume
that the risk-free rate is constant and the value of the risky asset follows a GBM process. See Table 1
for each set of parameter estimates.

(2016).445

5 Historical Backtests446

This section provides backtests of the MV optimal strategy using the same historical U.S. market447

data that was used above for parameter estimation. These tests will investigate the robustness of448

the strategy in the presence of an imperfectly known stochastic process for the risky asset and the449

risk-free rate.450

While our earlier examples were based on parameter estimates that roughly reflected the last451

six decades (i.e. the sample period from 1955 through 2014) from Table 1, the tests reported in452

this section are based on the parameter estimates from the sub-periods 1926 to 1954 and 1926453

to 1984, as well as the full 1926 to 2014 sample. Table 8 provides the results based on these454

estimation periods for a continuously rebalanced constant proportion (p = .5) strategy in terms of455

expected value, standard deviation, and shortfall probability. Also shown are the corresponding456

results for the MV optimal strategy that has the same expected value with annual rebalancing and457

a maximum leverage ratio qmax = 1.5. In each case, Table 8 shows that the MV optimal strategy458

can be expected to significantly outperform the constant proportion benchmark. Of course, this459

assumes GBM and a constant risk-free rate. The tests to follow are based on observed historical460

values for risky returns and the risk-free rate.461

5.1 Out of sample tests462

Our ability to conduct out-of-sample tests is severely restricted by our focus on a long-term horizon,463

a relatively short period of available historical data, and the need for a reasonably long period464

for parameter estimation. Nevertheless, we can gain some useful insights about the MV optimal465

strategy by conducting two out-of-sample experiments.466

First, consider an investor who uses the available data from 1926:1 to 1954:12 to estimate market467
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parameters assuming that the market index follows GBM and estimating r as the average 3-month468

risk-free rate during that time. Table 1 shows that the resulting estimates are µ̂ = .1134, σ̂ = .2445,469

and r̄ = .0113. From these values, the investor estimates the returns for a continuously rebalanced470

constant weight strategy (p = .5) over the next 30 years. Based on the estimated expected value471

of wealth for this strategy at the end of the horizon, the investor then determines the MV optimal472

strategy which generates this same expected wealth as well as the standard deviation and shortfall473

probability for this strategy. The results are shown in Table 8 under “Estimation Period: 1926:1474

to 1954:12”.475

We store the MV optimal controls used to generate the results in Table 8 and then apply476

them using the actual historical returns and risk-free rate observed over the 30-year period from477

1955:1 to 1984:12. This simulates the performance of an investor who (i) computes the MV optimal478

strategy assuming GBM for the risky asset and a constant risk-free interest rate estimated using479

known historical data as of 1954:12; and (ii) pre-commits to following this strategy for the period480

beginning in 1955:1 and ending in 1984:12. An initial investment of 100 at the start of 1955 is481

used for both the MV optimal strategy and the constant proportion strategy (p = .5). Since the482

risk-free rate is derived from 90-day Treasury bill yields, we assume that the rate prevailing at the483

start of each quarter holds throughout the quarter.11 Each strategy is rebalanced annually. We484

do not apply the semi-self financing version of the MV optimal strategy (i.e. we do not withdraw485

funds in excess of the minimum amount that the model indicates is required to meet the target486

wealth level, instead we invest this free cash in the risk-free asset).12 The results are plotted in487

Figure 6(a). Both strategies performed very well, exceeding the expected terminal wealth of 649488

from Table 8 by large margins. However, the MV optimal strategy was clearly superior, following a489

path that was not only higher but also much smoother, particularly towards the end of the period.490

The primary reason for this was that the general level of the risk-free rate was much higher than491

its estimated value of 1.13%. In fact, the average level of the risk-free rate over the investment492

horizon was about 5.7%. We can also compare the observed properties of the stock index return493

series over the investment horizon with the implied values from Table 1 under the GBM model.494

The annualized standard deviation of monthly log stock index returns was 14.4%, considerably495

lower than the value of σ̂ = .2445. The annualized mean of this series was 9.17%, a little higher496

than the implied value of µ̂− σ̂2/2 = .1134− .24452/2 = .0835.497

We repeat this experiment with the parameters estimated over the period from 1926:1 to498

1984:12. As indicated in Table 1, the resulting estimates are µ̂ = .1077, σ̂ = .1998, and r̄ = .0346.499

We use these values to project the results for both the constant proportion strategy and the MV500

optimal strategy for the 30-year period from 1985:1 through 2014:12. These results are provided501

under “Estimation Period: 1926:1 to 1984:12” in Table 8. The MV optimal controls are then ap-502

plied to historical market data over the period from 1985:1 through 2014:12, with results depicted503

in Figure 6(b). The constant proportion strategy ended up slightly outperforming the MV optimal504

one. The terminal wealth levels were 938 for the former strategy vs. 865 for the latter. Both505

exceeded the expected value of 845 (Table 8). Over most of the period, the MV optimal strategy506

had higher wealth, falling below that of the constant weight strategy in the last half of 2013.13507

The MV optimal strategy was more heavily invested in the risky asset early on, reflected in the508

11In other words, a long position in the bond component effectively amounts to buying a 3-month Treasury bill at
the beginning of a quarter and holding it until maturity.

12This can be seen as being conservative. The investor could choose to invest some or all of the free cash in the
risky asset instead. As long as the free cash investment is not levered, the investor would still be assured of reaching
the target wealth level at the horizon date under the assumed modelling conditions.

13This is not a surprise as under the MV optimal strategy the investor is content with reaching the target. Upside
potential above the target is sacrificed in exchange for downside protection below it.
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(a) Out-of-sample experiment, 1955-
1984. The MV optimal strategy relies
on parameter estimates using data from
1926:1 to 1954:12, as given in Table 1.
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(b) Out-of-sample experiment, 1985-
2014. The MV optimal strategy relies
on parameter estimates using data from
1926:1 to 1984:12, as given in Table 1.

Figure 6: Comparison of MV optimal and constant proportion (p = .5) strategies using observed
data.

larger drop (compared to that for the constant proportion strategy) seen in Figure 6(b) following509

the 1987 market crash. However, the de-risking approach of the MV optimal strategy pays off later510

on. The MV strategy moved smoothly through the the “tech bubble” in 2002, and the financial511

crisis in 2008, in marked contrast to the constant proportion strategy.512

5.2 Bootstrap resampling513

To provide more meaningful tests of the MV optimal strategy using historical data, we turn to514

a bootstrap resampling approach. This type of procedure has been applied in numerous prior515

studies to assess the performance of investment strategies; some relatively recent examples include516

Sanfilippo (2003), Ledoit and Wolf (2008), Annaert et al. (2009), Bertrand and Prigent (2011), and517

Cogneau and Zakamouline (2013).518

It is well-known that an important issue when applying bootstrap resampling to time series data519

is that the standard bootstrap assumes independent observations, so using it does not preserve tem-520

poral dependence. Our stock index return data exhibits some dependence. The autocorrelations521

are small in magnitude (largest absolute value of about 0.1), but enough of them are statistically522

significant that the Ljung-Box test clearly rejects the null hypothesis of no autocorrelation for 20523

monthly lags. More importantly, the level of the risk-free rate is quite persistent. The autocorre-524

lation function decays slowly, remaining above 0.6 even after five years (60 lags).525

To address this issue, we use a moving block approach. A single path is constructed as follows.526

The investment horizon of T years is divided into k blocks of size M years, so that T = kM . We527

then select k blocks at random (with replacement) from the historical data. Each block starts at528

a random quarter. We form a single path by concatenating these blocks. Since we sample with529

replacement, the blocks may overlap. To avoid end effects, the historical data is wrapped around.530

We then repeat this procedure for many paths.531

In this case, parameter estimates are based on the full sample period from 1926 to 2014. From532

Table 1, µ̂ = .1108, σ̂ = .1867, and r̄ = .0354. With an initial wealth of W0 = 100 and an533

investment horizon of T = 30 years, we calculate the expected level of terminal wealth and its534

standard deviation for a continuously rebalanced constant proportion strategy with a 50/50 split535

between the risky stock index and the risk-free asset. We then determine the MV optimal strategy536

18



which produces the same expected terminal wealth, subject to our usual base case constraints of537

annual rebalancing and qmax = 1.5, with results shown in Table 8 under “Estimation Period: 1926:1538

to 2014:12”.539

We store the MV optimal controls used to calculate the results in Table 8 but then apply them540

to historical data, using the resampling approach with 10,000 bootstrap samples. As discussed in541

Cogneau and Zakamouline (2013), the choice of block size is important. If the block size used is542

too small, then the serial dependence in the data is not captured adequately. As an example in our543

context, a small block size can result in many unrealistically large changes in the risk-free rate across544

concatenated blocks. On the other hand, if the block size is too large then the variance estimates545

will be unreliable. Excessive homogeneity across the bootstrap samples will lead to a standard546

deviation that is too low.14 Various techniques have been suggested to alleviate these effects,547

such as randomly selecting the block sizes within each sample (Politis and Romano, 1994) and the548

matched block size method (Sanfilippo, 2003). Cogneau and Zakamouline (2013) conclude that any549

improvements obtained using these methods could be achieved by selecting the correct block size.550

Unfortunately, this depends on the unknown stochastic process properties of the historical data.551

Recognizing that the choice of block size can strongly affect results, we report results for a552

range of block sizes in Table 9. For all block sizes, the MV optimal strategy outperforms the553

constant proportion strategy in terms of shortfall probability and standard deviation. Note that554

the sum of expected terminal wealth and expected free cash is comparable for the MV optimal555

and constant proportion strategies in all cases. The overall results are highly favorable for the MV556

optimal strategy. Interestingly, the results for block sizes of 5 and 10 years are fairly close to the557

theoretical results from Table 8 for both strategies. This again demonstrates the robustness of the558

MV optimal strategy. Although it is clearly mis-specified in econometric terms since it assumes a559

constant risk-free rate and GBM, the overall long-term results under these assumptions are quite560

comparable to those observed in this resampling test for these two block sizes.561

A noteworthy feature of Table 9 is the magnitude of the expected free cash for the MV optimal562

strategy. The values reported here are significantly higher than those reported above in Table 4.563

Table 9 is based on resampling with replacement, so there can be paths where the risk-free rate564

is significantly underestimated for a sizeable part of the 30-year horizon. This leads to some large565

outliers, and a high average value of free cash.15566

We present detailed plots for the case with a block size of 10 years. Figure 7 depicts the567

cumulative probabilities from the 10,000 simulations for the constant proportion, MV optimal (no568

free cash) and MV optimal (plus free cash) cases. The results are quite similar to those seen in569

Figure 3. The constant proportion strategy outperforms the MV optimal strategy (no free cash) in570

the extreme left tail of the distribution where terminal wealth is very low, and also in the right tail571

once the target wealth level for the MV strategy is reached. As usual, the MV optimal strategy572

(no free cash) essentially gives up the possibility of extremely high wealth in return for achieving573

outperformance across a wide range of moderate wealth levels. However, if we add in the free cash,574

then the MV optimal strategy offers considerably more potential upside for high wealth levels. In575

fact, the cumulative distribution function is fairly close to that of the constant proportion strategy576

for high values of terminal wealth, while of course being equivalent to the optimal allocation at577

lower levels (where there is no free cash).16578

14In the limit as block size and path size tend to the length of the time series, all samples are simply permutations
of the entire time series.

15Table 9 reports an average free cash of 126 for a block size of 10 years. In this case, the maximum observed free
cash across the 10,000 resamples was 1,761, but the median value was 21.

16Moreover, recall that we have simply invested any free cash in the risk-free asset. We could track the constant
proportion strategy even more closely by allocating some of the free cash to the risky asset.
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Expected Standard Expected
Strategy Value Deviation Prob(WT < 800) Free Cash

Block size: 1 year
Constant proportion (p = .5) 966 600 .48 0
MV optimal 870 213 .15 72

Block size: 5 years
Constant proportion (p = .5) 936 481 .46 0
MV optimal 888 191 .11 111

Block size: 10 years
Constant proportion (p = .5) 923 470 .49 0
MV optimal 911 148 .08 126

Block size: 20 years
Constant proportion (p = .5) 933 494 .48 0
MV optimal 929 104 .05 109

Block size: 30 years
Constant proportion (p = .5) 923 420 .41 0
MV optimal 942 74 .03 122

Table 9: Moving block bootstrap resampling results based on historical data for 1926:1 to 2014:12.
The investment horizon is T = 30 years, and the initial investment is W0 = 100. The MV optimal
strategy has maximum leverage ratio qmax = 1.5. Both strategies are rebalanced annually.

Figure 8 provides several scatter plots of the terminal wealth across the 10,000 resamples for579

the constant proportion strategy (horizontal axis) vs. the MV optimal strategy, with and without580

the free cash component (vertical axis). In each case, the solid line marks where the two strategies581

being compared have the same terminal wealth. The region above and left of this line contains582

points where the MV optimal strategy has higher terminal wealth than the constant proportion583

strategy. The opposite holds for points below and right of the solid line. In each plot the vertical584

dashed line is the median value for the constant proportion strategy, while the horizontal dashed585

line is the median for the MV optimal strategy. Panel (a) plots all observations for the MV optimal586

strategy (no free cash) vs. those for the constant proportion strategy. Obviously, the spread of587

outcomes is far wider for the constant proportion strategy. Since we discard any free cash in excess588

of the target here, terminal wealth for the MV optimal strategy is capped at the target. Note how589

close the median line is to this upper bound: the maximum terminal wealth here is 986 but the590

median is 954. This is to be expected for a target-based approach, as there will be a large number591

of paths with final wealth just below the target. The median value for the constant proportion592

strategy is considerably lower at 814. In panel (a), there are 5,950 observations above and left of593

the solid line, indicating that the MV optimal strategy resulted in higher terminal wealth for almost594

60% of the resamples. It is also worth observing that the MV optimal strategy resulted in very low595

terminal wealth for a number of resampled paths. The smallest values visible in Figure 8(a) for this596

strategy are noticeably lower than the smallest values for the constant proportion strategy. Since597

we resample with replacement, it is possible to have paths which repeat periods of very poor index598

returns. If the strategy happens to also be using leverage during such times, we can end up with599

very low terminal wealth. However, these are extreme outliers, as indicated by the lower bound600
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Figure 7: Cumulative probability distributions from 10,000 resamples for constant proportion (p =
.5), MV optimal (no free cash), and MV optimal (plus free cash) strategies with block size of 10 years.

of the vertical range plotted in Figure 8(a), which excludes the worst 2.5% of observations for the601

MV optimal (no free cash) strategy.602

Comparing panels (b) and (a), we can observe the significance of the free cash component. In603

Figure 8(b), many observations lie above and left of the solid line, indicating that the MV optimal604

strategy ended up with higher terminal wealth for a large number of the resampled paths. These605

plots clearly show a positive correlation between the performance of the constant proportion and606

MV optimal (plus free cash) strategies. Recall that we attribute a high free cash component to607

having a path with a high risk-free rate. As the constant proportion strategy also benefits from608

such an environment, this correlation is not surprising.609

6 Summary and Conclusions610

Compared to the constant proportion strategy, the MV optimal semi-self-financing strategy pro-611

duces a smaller standard deviation for the same expected terminal value. A common criticism of612

the use of standard deviation as a risk measure is that it penalizes gains as well as losses, relative613

to the expected value. With continuous rebalancing and assuming that the value of the risky asset614

follows a diffusion process without jumps, the total wealth of the portfolio can never exceed the615

discounted target. As wealth approaches the discounted target, the optimal strategy is to move616

more wealth into the risk-free asset. This minimizes both the expected quadratic loss relative to617

the target and the variance. Under discrete rebalancing, cash is withdrawn from the portfolio if618

the total wealth exceeds the discounted target. This is MV optimal, as well as possibly providing619

the investor with a free cash bonus during the investment period.620

Overall, the MV optimal strategy achieves excellent performance in our numerical simulations.621

The general intuition for this is as follows. Recall that we are dealing with pre-commitment strate-622

gies. Since MV optimality is equivalent to minimizing quadratic loss relative to a target, the623

investor effectively picks a target terminal wealth at the initial time. The investor pre-commits to624

being satisfied with this terminal wealth, in the sense that if the market has good returns and the625

target can be hit by switching to the risk-free asset, then that is the optimal policy. Again, this is626

optimal in terms of minimizing the probability of being below the target.627

The key qualitative aspects of the MV optimal strategy are illustrated by Figures 4(a) and628

4(b). The MV optimal strategy captures the advantages of both constant proportion and linear629
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Figure 8: Scatter plots of terminal wealth for MV optimal and constant proportion strategies across
10,000 resamples with a block size of 10 years. The solid line in each plot indicates where the two cases
considered have equal terminal wealth. The dashed vertical and horizontal lines in each plot are the
median values of terminal wealth for the constant proportion and MV optimal strategies respectively.
The plot range is restricted to the central 95% of observations for each strategy.

glide path strategies. A constant proportion strategy shifts wealth from assets which have risen630

in value to assets which have declined in value. The MV optimal strategy also buys low and sells631

high, but this strategy also takes into account the accumulated wealth and time-to-go.632

From the Appendix, we observe that the target γ/2 and the mean are related by γ/2 = 1/(2ρ)+633

E[WT ]. We can then immediately see that the target will be slightly larger than the expected634

value if the risk-aversion parameter ρ is large. In this case, we have a strategy which is MV635

efficient, quadratic loss efficient with respect to the target γ/2, and approximately mean-semi-636

variance efficient. This suggests that pre-commitment MV strategies are especially interesting in637

cases where the expected value is near the target.638

To summarize, the MV optimal strategy will be useful under the following conditions:639

• The investor commits to a long-term strategy. With typical market parameters, the MV640

optimal strategy can be expected to outperform a constant proportion strategy by a large641

margin for investment horizons of at least 10-15 years, though the degree of outperformance642

will depend on factors such as the maximum allowable leverage ratio.643

• The investor pre-commits to a target wealth at the end of the investment horizon. The644

reduced risk associated with the MV optimal strategy comes at the cost of eliminating some645

investment paths with gains which would substantially exceed the target.646

• The investor should be somewhat risk-averse, so that the target is relatively close to expected647

terminal wealth.648

• The investor must accept that for some low probability cases where the risky investment649

returns are very poor, the constant proportion strategy will turn out to be superior to the650

MV optimal strategy.651

These conditions could be applicable in scenarios such as individuals saving for retirement, pooled652

pension plans, or education savings plans.653

A possible extension for future work is to incorporate randomness over time in parameters such654

as volatility or the risk-free rate, but it would probably be better to do this through a regime-655

switching model which allows for long-term persistence, rather than a mean-reverting diffusion656
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model. However, the relatively simple specification used here which assumes GBM and a constant657

risk-free rate appears to be quite robust.658

Another potential avenue for future research would be to augment the GBM process for the659

risky asset with jumps. We can expect the MV optimal strategy to display more cautious behavior660

if jumps are added to the model.661

Observe that MV optimality can involve shifting wealth from assets which have risen in value662

to assets which have declined in value, and it can also entail sitting out bull markets entirely if663

the target wealth level can be achieved by investing fully in the risk-free asset. As such, it has664

distinctly contrarian characteristics. Of course, constant proportion strategies also require a high665

degree of commitment to “lean against the wind”, since they involve buying more of risky assets666

following declines in their prices. Slifka (2013) points out the pitfalls of institutional investors667

chasing performance and herding, but also notes the practical difficulties in being contrarian.668

In a quite different vein, Ko and Huang (2012) report results from an experiment in which669

subjects exhibited time-inconsistent risk preferences. In particular, participants took on more risk670

after losses than would be the case under time-consistency. Ko and Huang (2012) contend that671

their results “highlight the importance of pre-commitment to long-term financial planning” (p. 471).672

From our perspective the reasoning underlying this statement is suspect. Ko and Huang interpret673

risk-taking in response to poor initial returns as impulsive gambling behavior and advocate pre-674

commitment as a way to prevent it. The model described here leads to the same general conclusion675

regarding the importance of pre-commitment, but for entirely different reasons. MV optimality676

requires pre-committing to taking on risk in response to poor returns, as well as reducing risk677

and sacrificing upside potential after sufficiently high returns. As a final comment about pre-678

commitment, we note that it has been criticized in the literature since it is not time-consistent (e.g.679

Basak and Chabakauri, 2010). However, time-consistency can be viewed as just another constraint680

on the set of admissible investment strategies. As such, from the standpoint of long-term investment681

with a desired target, time-consistent policies cannot outperform pre-commitment strategies.682

Appendix: General Intuition for the Embedding Result683

Standard dynamic programming arguments cannot be applied to multi-period MV problems, but684

the work of Li and Ng (2000) and Zhou and Li (2000) shows that an embedding result can be applied685

to overcome this obstacle. This appendix provides a simple and intuitive geometric description of686

the embedding result. The notation used mimics that of Section 2, but we emphasize that we are687

considering a more general environment here. Readers interested in formal proofs are referred to688

Li and Ng (2000) and Zhou and Li (2000). In addition, a simple yet formal argument can be found689

in Appendix A of Dang and Forsyth (2016).690

Let the wealth of an investor at time t be Wt and consider a general MV context in which this691

investor desires a high expected level of terminal wealth at some horizon date T . The investor also692

wants to avoid risk, measured by the variance of terminal wealth. Both the expected level of wealth693

and its variance will depend on the investment strategy of the investor, denoted by c. At time t,694

the conditional expected value of terminal wealth given c is Etc[WT ] and the conditional variance of695

terminal wealth is Var tc[WT ]. For notational simplicity, let Et=0
c [WT ] = E and Var t=0

c [WT ] = V. The696

MV achievable set is Y = {(V, E) : c ∈ Z}, where Z is the set of admissible strategies. Y represents697

the possible combinations of expected terminal wealth and its variance given any restrictions on the698

investment strategy that are captured by Z. Since the investor seeks to both maximize expected699

wealth and to minimize its variance, we have a multi-objective optimization problem. As usual, we700
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Figure 9: Solutions of problems (P1) and (P2). The dashed lines are the investor’s indifference
curves. The shaded region is the MV achievable objective set Y.

convert this to the problem:701

min ρV − E , (P1)

where ρ is a risk-aversion parameter. In this setting, “indifference curves” are straight lines on702

a graph with V on the horizontal axis and E on the vertical axis. The slope of these indifference703

curves is determined by ρ. Given ρ, the optimal achievable combination (V∗, E∗) is a tangency point704

between an indifference curve and the set of attainable combinations Y.705

Figure 9(a) illustrates this idea. The MV achievable set Y is the shaded region. In general, the706

shape and location of Y will be determined by parameters such as expected returns, variances of707

returns, and covariances of returns for investable assets, as well as constraints on strategies reflected708

in Z. The investor wants a combination of risk and expected wealth that is as far to the upper left709

as possible, and so arrives at a point where an indifference curve is tangent to Y. The entire set710

of MV (Pareto) optimal points can be traced out by solving (P1) repeatedly for different values of711

ρ.17712

However, in a dynamic multi-period context, we cannot solve problem (P1) using standard713

dynamic programming techniques which rely on the Bellman principle of optimality (see, e.g. Basak714

and Chabakauri, 2010).715

The basic idea of Li and Ng (2000) and Zhou and Li (2000) is to consider an alternative problem716

which can be solved via dynamic programming. Every solution of the original problem is also a717

solution of this alternative problem, so the original problem is embedded in the alternative one.718

This is the basis for referring to this idea as the “embedding result”. Reconsidering problem (P1),719

imagine constructing the straight line in the (V, E) plane720

ρV − E = C1, (23)

where C1 is a constant chosen so that the intersection of (23) and Y contains at least one point.721

Then reduce C1 (i.e. move line (23) to the left) as much as possible, keeping at least one point in722

17If Y is not a convex set, then this approach may not produce all of the Pareto optimal points. However, any
points generated are certain to be valid Pareto points.
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the intersection of Y and line (23). Any remaining points on line (23) that are in Y will be Pareto723

optimal.18724

The difficulty with trying to minimize ρV − E directly arises because V = Et=0
c

[
W 2
T

]
−725 (

Et=0
c [WT ]

)2
, and the

(
Et=0
c [WT ]

)2
term cannot be handled with standard dynamic programming.726

However, consider an objective function of the form727

V + E2 − γE + constant (24)

where γ is a parameter to be specified. The advantage of this expression is that V+E2 = Et=0
c

[
W 2
T

]
,728

which can be dealt with using dynamic programming. The idea of using objective function (24) is729

similar to the strategy involved in using (23). Consider the parabola (viewed in the (E ,V) plane)730

V = −
(
E2 − γE

)
+ C2 = − (E − γ/2)2 + γ2/4 + C2 = − (E − γ/2)2 + C3, (25)

where C2 and C3 are constants. Informally, this is a leftward looking parabola in the (V, E) plane,731

as shown in Figure 9(a). Choose C3 so that the intersection of the parabola (25) and Y contains732

at least one point. Then reduce C3 as much as possible (i.e. shift the parabola to the left) while733

keeping at least one point in the intersection of the parabola and Y. Suppose ρV∗−E∗ = C1 where734

(V∗, E∗) is a Pareto optimal point. We can pick γ so that the parabola (25) intersects Y at the735

single point (V∗, E∗) by requiring that the parabola be tangent to the line (23) at (V∗, E∗). The736

slope of the parabola (25) is ∂E/∂V = −1/(2E − γ). Since the slope of line (23) is ρ, we have737

−1/(2E∗ − γ) = ρ at (V∗, E∗), implying that γ = 1/ρ+ 2E∗.738

To recap, we would like to determine Pareto optimal points by solving problem (P1) directly,739

but this is not possible using standard dynamic programming. However, any strategy that solves740

(P1) leading to the point (V∗, E∗) can be found by solving741

minV + E2 − γE (P2)

where γ = 1/ρ + 2E∗. Unlike (P1), problem (P2) can be solved via traditional dynamic program-742

ming. Figure 9(a) shows the outcome of this procedure, where the parabola solving (P2) is tangent743

to the line from problem (P1) at the optimal point.744

The entire efficient frontier can be traced out by solving (P2) repeatedly for different values of745

γ, but this raises another issue. Every strategy which solves (P1) also solves (P2), but the converse746

is not true: there can be solutions of (P2) which are not solutions of (P1). This can happen if the747

upper boundary of Y is not convex. Consider Figure 9(b). If we could solve (P1), we would have748

an efficient frontier with a gap in it, i.e. no solution to (P1) anywhere on the edge of Y between P749

and Q. But we could solve (P2) and reach a point such as R, which is clearly not Pareto optimal.750

However, a simple procedure can be used to eliminate any non-Pareto optimal points (i.e. points751

which cannot be found by solving (P1), if we could do so). We construct the upper left convex752

hull of the points produced by solving (P2) for all values of γ. The Pareto optimal points are the753

intersection of the points in the upper left convex hull and the points found by solving (P2).19754

Note that there is no requirement that the original MV formulation reduce to a convex opti-755

mization problem.756
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