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Abstract5

The no arbitrage pricing of Guaranteed Minimum Withdrawal Benefits (GMWB) contracts6

results in a singular stochastic control problem which can be formulated as a Hamilton Jacobi7

Bellman (HJB) Variational Inequality (VI). Recently, a penalty method has been suggested for8

solution of this HJB variational inequality (Dai et al., 2008). This method is very simple to9

implement. In this article, we present a rigorous proof of convergence of the penalty method10

to the viscosity solution of the HJB VI. Numerical tests of the penalty method are presented11

which show the experimental rates of convergence, and a discussion of the choice of the penalty12

parameter is also included.13
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1 Introduction16

Stochastic control problems arise in many financial applications. For a survey of the literature17

on this topic, we refer to Pham (2005). When the set of possible admissible controls becomes18

unbounded, the control problem is said to be singular. A classical singular control problem in finance19

concerns optimal investment, where an infinite control corresponds to an instantaneous reallocation20

between a risky and risk-free asset (Tourin and Zariphopoulou, 1997). A survey of numerical21

methods for stochastic control is given in Kushner (2001) and Pham (2009). In this article, we22

focus on a singular stochastic control problem arising in the insurance industry, the Guaranteed23

Minimum Withdrawal Benefit (GMWB). Although we specifically consider the GMWB pricing24

problem, the methods we analyze here can be easily applied to many other singular stochastic25

control problems in finance.26

In general, the solutions of singular stochastic control problems in finance are not smooth27

(Pham, 2005). Hence, we seek the viscosity solution of such problems (Barles, 1997).28
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The pricing problem for the GMWB guarantee was originally formulated as a singular stochastic29

control problem in Milevsky and Salisbury (2006), which results in a Hamilton Jacobi Bellman30

(HJB) Variational Inequality (VI). Chen and Forsyth (2008) develop a method to solve an impulse31

control formulation of this problem. Methods for cases where withdrawals are only allowed at32

discrete times are given in Bauer et al. (2008) and Chen et al. (2008). Recently, Dai et al. (2008)33

have suggested a penalty method for solution of the HJB variational inequality for this problem,34

which is a generalization of the penalty method used for American options (Forsyth and Vetzal,35

2002). The penalty method has also been applied to a singular stochastic control formulation36

of the continuous time portfolio selection problem (Dai and Zhong, 2010). In (Dai et al., 2008;37

Dai and Zhong, 2010), numerical examples were given by the authors to show the convergence of38

the proposed penalty method. However no formal proof of convergence was given. The penalty39

method is extremely simple to implement, and hence merits further analysis. For a discussion of40

the advantages of the penalty method compared with other numerical methods for singular control41

problems, we refer the reader to Dai et al. (2008) and Dai and Zhong (2010).42

The main contributions of this article are43

• We carry out a rigorous analysis of the penalty method in the context of the GMWB HJB44

variational inequality. Assuming that the GMWB problem satisfies a strong comparison45

principle, we verify that the penalty method is consistent, stable and monotone. Hence46

from the results in (Barles and Souganidis, 1991; Barles, 1997) we deduce convergence to the47

viscosity solution of the GMWB HJB variational inequality.48

• We use the method described in Wang and Forsyth (2008), where central differencing is used49

as much as possible, yet still results in a monotone scheme. This results in noticeably faster50

convergence (as the mesh is refined) compared to use of pure upwinding schemes.51

• Based on financial reasoning, we suggest an estimate for the size of the constant in the penalty52

term. Numerical tests show that the solution is insensitive to the value of this constant over53

several orders of magnitude.54

• We discuss the advantages and disadvantages, from a computational point of view, of the55

singular control formulation compared to the impulse control formulation of this problem.56

2 The GMWB Pricing Problem57

2.1 Motivation58

It is conventional wisdom that the long term investor is better off investing in equities as opposed59

to risk free bonds, hence the advice to retirees to invest a significant portion of their savings in60

equities. However, as discussed in Milevsky and Salisbury (2006), investing in equities can be61

very risky, once retirees begin to draw down their savings. This is because the order of random62

returns in this case becomes significant. Losses during the early years of retirement, coupled with63

withdrawals, will have a very different end result compared with losses which occur during the later64

years of retirement.65

In order to mitigate this risk, insurance companies have developed guaranteed minimum with-66

drawal benefit (GMWB) guarantees. This contract consists of a lump sum payment to an insurance67

company. This initial sum is invested in risky assets. The holder can withdraw a specified amount68
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each year of the contract, regardless of the performance of the risky asset. The holder can also69

withdraw more than the contract amount, subject to a penalty. At expiry of the contract, the70

holder is entitled to the value of the investment amount remaining. This contract allows the holder71

to participate in market gains, while providing a certain minimum cash flow. In return for providing72

this guarantee, the insurance company receives a proportional fee.73

2.2 Formulation74

This section briefly reviews the singular control model formulated in Dai et al. (2008) and introduces75

the notation to be used in this article. Let W ≡W (t) be the amount in the variable annuity account76

and A ≡ A(t) be the guarantee account balance. We assume that the risky asset S which underlies77

the variable annuity account (before the deduction of any proportional fees) follows a standard78

Brownian Motion under the risk neutral measure. To be more precise, S satisfies the following79

stochastic differential equation80

dS = rSdt+ σSdZ, (2.1)

where dZ is an increment of the standard Gauss-Wiener process, σ is the volatility, and r is the81

risk free rate.82

The major feature of the GMWB is the guarantee on the return of the entire premium via83

withdrawal. The insurance company charges the policy holder a proportional annual insurance fee84

η, in return for providing this guarantee. Consequently, we have the following stochastic differential85

equation for W :86

dW =

{
(r − η)Wdt+ σWdZ + dA if W > 0,
0 if W = 0.

(2.2)

Let γ ≡ γ(t) denote the withdrawal rate at time t and assume γ ∈ [0,∞). An infinite withdrawal87

rate corresponds to an instantaneous withdrawal of a finite amount. The policy guarantees that88

the sum of withdrawals throughout the policy’s life is equal to the premium paid up front, which89

is denoted by ω0. As a result, we have A(0) = ω0, and90

A(t) = ω0 −
∫ t

0
γ(u)du, A(t) ≥ 0 . (2.3)

In addition, almost all policies with a GMWB have a cap on the maximum allowed withdrawal91

rate without penalty. Let G be such a contractual withdrawal rate, and κ < 1 be the proportional92

penalty charge applied on the portion of the withdrawal exceeding G. The net withdrawal rate93

f(γ) received by the policy holder is then94

f(γ) =

{
γ 0 ≤ γ ≤ G,
G+ (1− κ)(γ −G) γ > G.

(2.4)

The no arbitrage value V (W,A, t) of the variable annuity with GMWB is therefore given by (Dai95

et al., 2008)96

V (W,A, t) = max
γ∈[0,∞)

Et

[
e−r(T−t) max((1− κ)A(T ),W (T )) +

∫ T

t
e−r(u−t)f(γ(u))du

]
, (2.5)

where T is the policy maturity time and the expectation Et is taken under the risk neutral measure.97

The withdrawal rate γ is the control variable chosen to maximize the value of V (W,A, t). Equation98
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(2.5) represents the expected, discounted risk neutral cash flows from the guarantee, as discussed99

in Dai et al. (2008).100

With an abuse of notation, we now (and in the rest of this article) let V = V (W,A, τ = T − t).101

It is shown in Dai et al. (2008) that the variable annuity value V (W,A, τ) is given by the following102

Hamilton-Jacobi-Bellman (HJB) Variational Inequality (VI)103

min
[
Vτ − LV −Gmax(FV, 0), κ−FV

]
= 0 , (2.6)

where the operators L,F are defined as104

LV =
σ2

2
W 2VWW + (r − η)WVW − rV

FV = 1− VW − VA . (2.7)

Equation (2.6) or the equivalent form (2.5) are commonly used by insurance firms to determine105

the no-arbitrage value of the GMWB contract. The solution is also used to determine a hedging106

strategy for the contract (Milevsky and Salisbury, 2006; Bauer et al., 2008; Chen et al., 2008; Gilbert107

et al., 2007; Fenton and Czernicki, 2010). Historically, it has also been argued that equation (2.6)108

assumes optimal behaviour of consumers, which is unlikely in practice. However, it is now considered109

prudent to price these contracts assuming optimal behaviour, so that a worst case hedge can be110

constructed (Cramer et al., 2007). For an extension of these models to cases involving sub-optimal111

consumer behaviour, see Chen et al. (2008).112

2.3 Informal Derivation of the HJB VI113

We repeat here the informal derivation of equation (2.6) given in Dai et al. (2008). We will use this114

to give some intuition for our numerical scheme. Suppose that we restrict the maximum withdrawal115

range to be in γ ∈ [0, λ] with λ > G finite. Let λ = 1/ε. Then it is shown in Dai et al. (2008) that116

the variable annuity value parameterized by ε, denoted by V ε(W,A, τ) is given from the solution117

to the following Hamilton-Jacobi-Bellman (HJB) equation118

V ε
τ = LV ε + max

γ∈[0,λ]
h(γ), (2.8)

where h(γ) is given by119

h(γ) = f(γ)− γV ε
W − γV ε

A

=

{
(1− V ε

W − V ε
A)γ if 0 ≤ γ ≤ G,

(1− V ε
W − V ε

A − κ)γ + κG if γ > G.
(2.9)

An informal derivation of equation (2.8) using a hedging argument is given in Appendix A. The120

function h(γ) is piecewise linear, so its maximum value is achieved when γ is 0, G, or λ. Assuming121

λ > G, we then have122

max
γ∈[0,λ]

h(γ) =


0 if FV ε ≤ 0,
GFV ε if 0 < FV ε < κ,

λ(FV ε − κ) + κG if FV ε ≥ κ.
(2.10)
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The first two cases for max
γ∈[0,λ]

h(γ) in (2.10) are identical to Gmax(0,FV ε). Substituting (2.10) into123

(2.8), we obtain (with λ = 1/ε)124

−V ε
τ + LV ε + max

[
Gmax(0,FV ε),

(FV ε − κ)
ε

+ κG

]
= 0 . (2.11)

The value function V ε(W,A, τ) is then the solution of125

min
[
V ε
τ − LV ε −Gmax(0,FV ε), V ε

τ − LV ε − κG+
(κ−FV ε)

ε

]
= 0 . (2.12)

We can rewrite (2.12) (since ε > 0) equivalently126

min
[
V ε
τ − LV ε −Gmax(0,FV ε), κ−FV ε + ε (V ε

τ − LV ε − κG)
]

= 0 . (2.13)

Taking the limit ε → 0 (which corresponds to an instantaneous withdrawal of a finite amount)127

gives the following HJB variational inequality128

min
[
Vτ − LV −Gmax(FV, 0), κ−FV

]
= 0 . (2.14)

Consequently, we can see, at least intuitively, that129

lim
ε→0

{
V ε
τ − LV ε −max

[
Gmax(0,FV ε),

(FV ε − κ)
ε

+ κG

]}
= 0 (2.15)

is equivalent to equation (2.6). Keeping ε finite, we can rewrite equation (2.15) in control form130

V ε
τ = LV ε + max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
ϕGFV ε + ψ

(
(FV ε − κ)

ε
+ κG

)]
. (2.16)

The basic idea of the penalty method is to discretize equation (2.16), and let ε → 0 as the131

mesh and timesteps tend to zero. In a subsequent section, we will give a rigorous proof that this132

algorithm converges to the viscosity solution of equation (2.6), provided that equation (2.6) satisfies133

a strong comparison principle.134

3 Boundary Conditions135

The original GMWB problem is posed on the domain Ω∞136

(W,A, τ) ∈ [0,∞)× [0, ω0]× [0, T ] . (3.1)

For computational purposes, we define the GMWB problem on a finite computational domain, as137

in Dai et al. (2008),138

ΩL = [0,Wmax]× [0, ω0]× [0, T ] . (3.2)

We will analyse the convergence of the numerical scheme to the problem defined on ΩL. Later, we139

will show that by solving the GMWB problem on successively larger domains, we converge to a140

unique limiting solution as Wmax →∞. We will also confirm this from some numerical experiments.141
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3.1 The terminal and boundary conditions142

Define the following sets of points (W,A, τ) ∈ ΩL
143

Ωτ0 = [0,Wmax]× [0, ω0]× {0} ,
ΩW0 = {0} × (0, ω0]× (0, T ]

ΩWmax = {Wmax} × [0, ω0]× (0, T ]
ΩA0 = [0,Wmax)× {0} × (0, T ]
Ωin = ΩL\Ωτ0\ΩW0\ΩWmax\ΩA0 (3.3)
∂Ωin = Ωτ0 ∪ ΩW0 ∪ ΩWmax ∪ ΩA0 . (3.4)

For (W,A, τ) ∈ Ωin, we solve144

min
[
Vτ − LV −Gmax(FV, 0), κ−FV

]
= 0

(W,A, τ) ∈ Ωin . (3.5)

As discussed in Dai et al. (2008), at maturity, the policy holder takes the remaining guarantee145

withdrawal net of penalty charge or the remaining balance of the personal account, whichever is146

greater. Therefore at τ = 0, the terminal condition is147

V (W,A, τ = 0) = max
[
W, (1− κ)A

]
(W,A, τ) ∈ Ωτ0 . (3.6)

As W → 0, VW → 0 (Dai et al., 2008) (since W must be nonnegative). Thus, at W = 0, equation148

(2.16) becomes149

min
[
Vτ − rV −Gmax(1− VA, 0), κ− (1− VA)

]
= 0

(W,A, τ) ∈ ΩW0 . (3.7)

As W → ∞, according to Dai et al. (2008), the withdrawal guarantee becomes insignificant for150

W sufficiently large. More precisely, a straightforward financial argument shows that the exact151

boundary condition at Wmax is152

V (Wmax, A, τ) = e−ητWmax

(
1 +O

(
ω0

Wmax

))
. (3.8)

Therefore as in Dai et al. (2008), we impose the following condition at Wmax153

V (Wmax, A, τ) = e−ητWmax ,

(W,A, τ) ∈ ΩWmax . (3.9)

As A→ 0, no withdrawal is possible, so the PDE becomes the following linear PDE (Chen and154

Forsyth, 2008)155

Vτ = LV
(W,A, τ) ∈ ΩA0 . (3.10)

Note that as discussed in (Dai et al., 2008), no boundary condition is required at A = ω0 due156

to hyperbolic nature of the variable A. Since equations (3.7), (3.10) can be solved without any157

knowledge of the solution in the interior of ΩL, they are essentially Dirichlet conditions.158
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3.2 Compact Representation159

We now write the GMWB problem in a compact form, which includes the terminal and boundary160

conditions as a single equation. Define vector x = (W,A, τ), and let DV (x) = (VW , VA, Vτ ) and161

D2V (x) = VWW , and the equation162

FΩLV ≡ F (D2V (x), DV (x), V (x),x) = 0,x ∈ ΩL, (3.11)

where operator FΩLV is defined by163

FΩLV =



FinV ≡ Fin(D2V (x), DV (x), V (x),x), x ∈ Ωin,

FA0V ≡ FA0(D2V (x), DV (x), V (x),x), x ∈ ΩA0 ,

FW0V ≡ FW0(DV (x), V (x),x), x ∈ ΩW0 ,

FWmaxV ≡ FWmax(V (x),x), x ∈ ΩWmax ,

Fτ0V ≡ Fτ0(V (x),x), x ∈ Ωτ0 ,

(3.12)

with operators164

FinV = min [Vτ − LV −Gmax(FV, 0), κ−FV ] , (3.13)
FA0V = Vτ − LV, (3.14)
FW0V = min [Vτ + rV −Gmax(1− VA, 0), κ− 1 + VA] , (3.15)

FWmaxV = V − e−ητW, (3.16)
Fτ0V = V −max [W, (1− κ)A] . (3.17)

Definition 3.1 (Singular Control GMWB Pricing Problem). The pricing problem for the GMWB165

guarantee using a singular control formulation is defined as166

FΩL(D2V (x), DV (x), V (x),x) = 0 . (3.18)

FΩL is proper and degenerate elliptic (Jakobsen, 2010)167

FΩL(D2V (x) + δ,DV (x), V (x) + ρ,x) ≤ FΩL(D2V (x), DV (x), V (x),x) ; ∀δ ≥ 0, ρ ≤ 0
(3.19)

since the coefficient of D2V (x) in FΩL is non-positive, and the coefficient of V (x) is non-negative.168

Note that FΩL is discontinuous (Barles and Souganidis, 1991; Barles, 1997), since we include the169

boundary equations in FΩL , which are in general not the limit of the equations from the interior.170

In the following, let u∗ (u∗) denote the upper (lower) semi-continuous envelope of the function171

u : X → R, where X is a closed subset of RN , such that172

u∗(x̂) = lim sup
x→x̂
x̂,x∈X

u(x), u∗(x̂) = lim inf
x→x̂
x̂,x∈X

u(x). (3.20)

In general, the solution to singular stochastic control problems are non-smooth, and we seek the173

viscosity solution.174
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Definition 3.2 (Viscosity Solution). A locally bounded function V : ΩL → R is a viscosity subso-175

lution (respectively supersolution) of (3.18) if and only if for all smooth test functions φ(x) ∈ C2,176

and for all maximum (respectively minimum) points x of V ∗ − φ (respectively V∗ − φ), one has177

(FΩL)∗(D2φ(x), Dφ(x), V ∗(x),x) ≤ 0(
respectively (FΩL)∗(D2φ(x), Dφ(x), V∗(x),x) ≥ 0

)
. (3.21)

A locally bounded function V is a viscosity solution if it is both a viscosity subsolution and a viscosity178

supersolution.179

In Seydel (2009), it is shown that an impulse control formulation of the GMWB pricing problem180

satisfies a strong comparison principle. However, there does not seem to be a proof of this result181

for the singular control formulation of this problem. Dai et al. (2008) state but do not prove the182

comparison principle for equation (3.18). Let Γ ⊂ ∂Ωin, which is unspecified for the moment. We183

make the following assumption.184

Assumption 3.1 (Strong Comparison). The GMWB singular control problem as given in Defi-185

nition 3.1 satisfies a strong comparison result in the domain Ωin ∪ Γ, Γ ⊂ ∂Ωin. Hence a unique186

continuous viscosity solution exists in Ωin ∪ Γ.187

Remark 3.1. We cannot in general hope for a continuous solution over the whole of ΩL. It is188

possible that loss of boundary data can occur over parts of ∂Ωin. For example, for points near ΩWmax,189

if it is optimal to withdraw a finite amount instantaneously, then the HJB equation degenerates to190

a first order equation, with outgoing characteristices. Hence the the boundary condition at some191

points in ΩWmax may be irrelevant, in the sense that the boundary condition at these points does192

not influence the interior solution.193

Pham (2005) discusses another case where singular control problems cannot be continuous over194

the entire closed solution domain. It may be the case that the terminal condition at Ωτ0 is not195

compatible with the control problem in the sense that it may be optimal to immediately make a196

transaction the instant after τ = 0. This would result in a discontinuity in the solution as τ → 0,197

from points in ΩL\Ωτ0. However, this does not occur in our case, since it is never optimal to make198

an instantaneous withdrawal at τ = 0+, with the particular initial condition (3.6).199

All these issues need to be addressed in proving a strong comparison property, in order to define200

precisely those regions in Γ we can expect a continuous, unique viscosity solution.201

However, the location of Γ has little impact on the computational algorithm. The boundary data202

is either used or irrelevant. In all cases we can consider the computed solution as the limiting value203

approaching ∂Ωin from the interior.204

Remark 3.2. Note that in the case that an asymptotic form of the solution as Wmax → ∞ is205

not available, it is possible to impose an arbitrary boundary condition (satisfying certain growth206

conditions) and take the limit as Wmax → ∞. This will converge to the viscosity solution in the207

unbounded domain, as shown in Barles et al. (1995).208

4 Discretized Equations209

4.1 Penalty Form210

We will discretize the penalty form of the equations (2.16) and show that the discrete equations211

converge to the viscosity solution of the problem in Definition 3.2. Using the notation DWWV =212
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VWW , DWV = VW and DAV = VA, in (W,A, τ) ∈ Ωin ∪ ΩA0 we will discretize213

V ε
τ = LV ε + max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
ϕGFV ε + ψ

(
(FV ε − κ)

ε
+ κG

)]
(W,A, τ) ∈ Ωin ∪ ΩA0 . (4.1)

where214

LV ε =
σ2

2
W 2DWWV

ε + (r − η)WDWV ε − rV ε , (4.2)

FV ε = 1−DWV ε −DAV ε , (4.3)

and we understand that φ = ψ = 0 in ΩA0 . At W = 0, we discretize215

V ε
τ = −rV ε + max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
ϕG(1−DAV ε) + ψ

(
(1−DAV ε − κ)

ε
+ κG

)]
(W,A, τ) ∈ ΩW0 . (4.4)

4.2 Discretization of the Penalized Equations216

We will discretize equation (4.1) and equation (4.4) in the domain Ωin ∪ ΩA0 ∪ ΩW0 . We use an217

unequally spaced grid in the W direction, given by {W0, . . . ,Wi, . . . ,Wimax}. The nodes in the218

A direction are denoted by {A0, . . . , Aj , . . . , Ajmax}, where W0 = A0 = 0, Wimax = Wmax and219

Ajmax = ω0. We denote the nth time-step by τn = n∆τ , with N = T/∆τ . We will always assume220

that Wimax � Ajmax .221

Denote the approximate solution at (Wi, Aj , τ
n) by V n

i,j . We use a standard three point finite222

difference method to approximate the DWWV derivative. This approximation is second order for223

smoothly varying grid spacing. The DAV derivative is approximated by a first order backward224

differencing method. The DWV derivative is approximated by second order central differencing225

or first order forward/backward differencing. Let DhA, DhW and DhWW (defined in Appendix B)226

denote the discretized first and second order partial differential operators. The discretized L and227

F operators can then be written as228

LhV n
i,j =

{
σ2

2 W
2
i DhWWV

n
i,j + (r − η)WiDhWV n

i,j − rV n
i,j , (Wi, Aj , τ

n) ∈ Ωin ∪ ΩA0

−rV n
i,j , (Wi, Aj , τ

n) ∈ ΩW0

, (4.5)

FhV n
i,j =


1−DhWV n

i,j −DhAV n
i,j , (Wi, Aj , τ

n) ∈ Ωin

1−DhAV n
i,j , (Wi, Aj , τ

n) ∈ ΩW0

0, (Wi, Aj , τ
n) ∈ ΩA0

. (4.6)

Using fully implicit time-stepping, equation (4.1) has the following discretized form229

V n+1
i,j − V n

i,j

∆τ
= LhV n+1

i,j + max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
ϕGFhV n+1

i,j + ψ

(
(FhV n+1

i,j − κ)
ε

+ κG

)]
i = 0, 1, 2, . . . , imax − 1, j = 0, 1, 2, . . . , jmax, n = 1, 2, . . . , N , (4.7)
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or equivalently230

V n+1
i,j − V n

i,j

∆τ
= max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
LhV n+1

i,j + ϕGFhV n+1
i,j + ψ

(
(FhV n+1

i,j − κ)
ε

+ κG

)]
i = 0, 1, 2, . . . , imax − 1, j = 0, 1, 2, . . . , jmax, n = 1, 2, . . . , N , (4.8)

and finally (by expanding Lh, Fh and DhA operators)231

V n+1
i,j − V n

i,j

∆τ
= max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
Ahϕ,ψV n+1

i,j + pn+1
i,j (ϕ,ψ)Vi,j−1 + qn+1

i,j (ϕ,ψ)

]
,

i = 1, 2, . . . , imax − 1, j = 1, 2, . . . , jmax, n = 1, 2, . . . , N , (4.9)

where232

Ahϕ,ψV n
i,j ≡ ani,j(ϕ,ψ)DhWWV

n
i,j + bni,j(ϕ,ψ)DhWV n

i,j − cni,j(ϕ,ψ)V n
i,j (4.10)

and233

ani,j(ϕ,ψ) = σ2

2 W
2
i , pni,j(ϕ,ψ) = (ϕG+ψ

ε
)

∆A−j
,

bni,j(ϕ,ψ) = (r − η)Wi − (ϕG+ ψ
ε ) , qni,j(ϕ,ψ) = ϕG+ ψ(1−κ

ε + κG) ,

cni,j(ϕ,ψ) = r + (ϕG+ψ
ε

)

∆A−j
, ∆A−j = Aj −Aj−1 .

(4.11)

Let234

{ϕni,j , ψni,j} = arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
Ahϕ,ψV n

i,j + pni,j(ϕ,ψ)V n
i,j−1 + qni,j(ϕ,ψ)

]
. (4.12)

Equation (4.9) becomes235

V n+1
i,j − V n

i,j

∆τ
= Ah

ϕn+1
i,j ,ψn+1

i,j
V n+1
i,j + pn+1

i,j (ϕn+1
i,j , ψn+1

i,j )V n+1
i,j−1 + qn+1

i,j (ϕn+1
i,j , ψn+1

i,j ) ,

i = 1, 2, . . . , imax − 1, j = 1, 2, . . . , jmax, n = 1, 2, . . . , N . (4.13)

The discretized DhWV n
i,j term in Ahϕ,ψV n

i,j can be obtained by applying central, forward, or236

backward differencing to the DWV ε term. A few steps of algebra show that the Ahϕ,ψ operator can237

also be written equivalently as238

Ahϕni,j ,ψni,jV
n
i,j = αni,jV

n
i−1,j − (αni,j + βni,j + cni,j)V

n
i,j + βni,jV

n
i+1,j ,

i = 1, 2, . . . , imax − 1, j = 1, 2, . . . , jmax, n = 1, 2, . . . , N . (4.14)

The αni,j and βni,j in (4.14) are determined by the differencing method used in W direction, αni,j ∈239

{αni,j,cent, αni,j,for/back}, β
n
i,j ∈ {βni,j,cent, βni,j,for/back}, which are defined in Appendix C. We use240

central differencing as much as possible in the W direction to ensure that the positive coefficient241

condition is satisfied (see Pooley et al. (2003))242

αni,j ≥ 0 ; βni,j ≥ 0 . (4.15)
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Because cni,j ≥ 0 always holds, condition (4.15) is a sufficient condition to ensure a positive coefficient243

discretization scheme. Note that different nodes may use different differencing schemes.244

By applying forward or backward differencing to DWV ε in the equation (4.1), the positive245

coefficient condition is guaranteed. In Dai et al. (2008), central differencing is used on VW term in246

LV and backward differencing is used on VW term in FV . This requires a grid spacing condition247

in order to satisfy the positive coefficient condition. Because backward differencing in FV gives a248

first order truncation error in the W direction, whereas central differencing is second order correct249

(for smooth functions), we would like to use central differencing as much as possible on the VW250

term both in LV and FV . However, we must ensure that the positive coefficient condition (4.15)251

is satisfied. To use central differencing on the DWV ε term and maintain a positive coefficient252

condition at the same time, we require253

1
Wi −Wi−1

≥
(ri − η)− (ϕn+1

i,j G+
ψn+1
i,j
ε

)

Wi

σ2Wi
; (4.16)

1
Wi+1 −Wi

≥ −
(ri − η)− (ϕn+1

i,j G+
ψn+1
i,j
ε

)

Wi

σ2Wi
. (4.17)

In Wang and Forsyth (2008), the authors discussed maximal use of central differencing for HJB254

PDEs. Note that the differencing method to be used at a given node depends on the value of255

control parameters. At a given node, for a given control parameter value, we first try to discretize256

the DWV ε term by using central differencing. If this gives positive coefficients as described in (4.15),257

central differencing will be used for the node for this given control parameter value. Otherwise,258

either forward or backward differencing will be used for the node given this control parameter value.259

In our case, since we have three possible control parameter values, at each node, we determine the260

differencing method for each one of the three control parameter values. The local optimization261

criterion in (4.12) subsequently determines which control parameter value is the optimal value.262

The differencing method corresponding to this optimal control parameter value is then chosen to263

discretize the equation for the given node. Note that it is shown in Appendix C that at least one264

of central, forward or backward differencing must result in a positive coefficient scheme.265

Equation (4.13) holds for (Wi, Aj , τ
n+1) ∈ Ωin. The discrete forms of equations (3.6), (3.9),266

(3.10) and (4.4) are as follows. For (Wi, Aj , τ
n+1) ∈ Ωτ0 , (τn = 0) we have simply267

V 0
i,j = max[Wi, (1− κ)Aj ] . (4.18)

In the region (Wi, Aj , τ
n+1) ∈ ΩW0 condition (4.4) is imposed by using equation (4.13) with268

αn+1
0,j = βn+1

0,j = 0, j = 1, . . . , jmax. (4.19)

For (Wi, Aj , τ
n+1) ∈ ΩA0 , condition (3.10) is imposed by using equation (4.13) with269

ϕn+1
i,0 = ψn+1

i,0 = 0 ; i = 0, 1, . . . , imax − 1.

αn+1
i,0 = βn+1

i,0 = 0 ; i = 0 . (4.20)

At W = Wimax , or (Wi, Aj , τ
n+1) ∈ ΩWmax , we have (from equation (3.9))270

V n+1
imax,j

eη∆τ = V n
imax,j , (4.21)
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assuming V 0
imax,j

= Wmax. By setting271

cn+1
imax,j

= η ; αn+1
imax,j

= βn+1
imax,j

= ϕnimax,j = ψnimax,j = 0; (4.22)
j = 0, 1, . . . , jmax,

in equation (4.13) we obtain272

V n+1
imax,j

(1 + η∆τ) = V n
imax,j (4.23)

which is a second order approximation to equation (4.21). Consequently, at all points (Wi, Aj , τ
n+1) ∈273

ΩL\Ωτ0 , an equation of the form (4.13) holds, if we define V−1,j = Vimax+1,j = Vi,−1 = 0.274

It will also prove useful to write equation (4.13) in the form275

(1−∆τAh
ϕn+1
i,j ,ψn+1

i,j
)V n+1
i,j −∆τ pn+1

i,j (ϕn+1
i,j , ψn+1

i,j )V n+1
i,j−1 = V n

i,j + ∆τqn+1
i,j (ϕn+1

i,j , ψn+1
i,j ) , (4.24)

where, for future reference, we note from equation (4.11) that276

pn+1
i,j (ϕn+1

i,j , ψn+1
i,j ) ≥ 0 ; qn+1

i,j ((ϕn+1
i,j , ψn+1

i,j ) ≥ 0 . (4.25)

4.3 The matrix form of the discrete equations277

It is convenient to use a matrix form to represent the discretized equations. In this section we278

define a number of matrices and vectors to represent the discretized PDE in (4.13). Define vectors279

vnj =
(
V n

0,j , V
n

1,j , . . . , V
n
imax,j

)
vn =

(
vn0 ,v

n
1 , . . . ,v

n
jmax

)
. (4.26)

Define the (imax + 1)× (imax + 1) tridiagonal matrix An
j so that the element on the ith row and kth280

column is defined as281

[An
j ]i,k =


αni,j if k = i− 1, i = 1, . . . , imax

βni,j if k = i+ 1, i = 0, . . . , imax − 1
−(αni,j + βni,j + cni,j) if k = i, i = 0, . . . , imax

0 otherwise .

(4.27)

Define a diagonal (imax + 1)× (imax + 1) matrix Pn
j so that elements on the diagonal are defined as282

[Pn
j ]i,i =

{
pni,j if i ≤ imax − 1,
0 if i = imax.

(4.28)

Let vectors qnj and qn be defined by283

qnj =
(
qn0,j , q

n
1,j , . . . , q

n
imax−1,j , 0

)
;

qn =
(
qn0 ,q

n
1 , . . . ,q

n
jmax

)
. (4.29)

We can write equation (4.13) as284 [
I−∆τAn+1

j

]
vn+1
j = vnj + ∆τPn+1

j vn+1
j−1 + ∆τqn+1

j , (4.30)
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285

where {ϕn+1
i,j , ψn+1

i,j } =

arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
An+1
j (ϕ,ψ)vn+1

j + Pn+1
j (ϕ,ψ)vn+1

j−1 + qn+1
j (ϕ,ψ)

]
i

. (4.31)

For notational completeness, we adopt the convention that vn+1
−1 = 0. Note that An+1

j = An+1
j (ϕ,ψ),286

Pn+1
j = Pn+1

j (ϕ,ψ), qn+1
j = qn+1

j (ϕ,ψ), through the local optimization problem (4.31). An excep-287

tion occurs at j = 0, where Pn
0 is a zero matrix and qn0 is a zero vector. A0 no longer depends on288

the value of the control variables {ϕ,ψ} or time n∆τ due to the boundary condition at A = 0. The289

matrix form of the degenerate equations becomes290

[I−∆τA0] vn+1
0 = vn0 (4.32)

on the boundary j = 0 (i.e. A = 0).291

4.4 The algorithm292

We use a policy iteration (Forsyth and Labahn, 2008) to solve the discretized PDE in (4.30). Let293

(vn+1
j )m be the mth estimate for vn+1

j and the initial value of (vn+1
j )0 = vnj . Algorithm 1 gives the294

details of the iterative technique. It is worthy to elaborate here that when j 6= 0, An+1
j , Pn+1

j and295

qn+1
j are dependent on the values of control variables {ϕn+1

i,j , ψn+1
i,j }. The approach we take is that296

when computing the values of (vn+1
i,j )m+1 at the mth iteration, we construct (An+1

j )m, (Pn+1
j )m297

and (qn+1
j )m by using {(ϕn+1

i,j )m, (ψn+1
i,j )m} , the mth estimate of {ϕn+1

i,j , ψn+1
i,j }, which is computed298

by using the value of (vn+1
j )m.299

Note that in order to compute {(ϕn+1
i,j )m, (ψn+1

i,j )m} in line 5 of Algorithm 1, We need to evaluate300

the local optimization objective function with all possible control parameter values. In our case,301

we only have three possible values because ϕ,ψ ∈ {0, 1} and ϕψ = 0.302

The scale factor scale in Algorithm 1 should be of the same magnitude as the value of the303

annuity to be priced to avoid unrealistic levels of accuracy. If the annuity is to be priced in dollars,304

scale = 1 is a reasonable choice.305

Theorem 4.1 (Convergence of the Policy Iteration). If the positive coefficient condition is satisfied,306

then the policy iteration in Algorithm 1 converges to the unique solution of (4.30) for any initial307

estimate (vn+1
j )0.308

Proof. This follows using similar steps as in Forsyth and Labahn (2008) and Wang and Forsyth309

(2008). Since we will refer to some of the properties of this proof in the numerical results section,310

we give a brief sketch here. Let311

dmj = (Pn+1
j )mvn+1

j−1 + (qn+1
j )m , (4.33)

then we can write the basic iteration in Algorithm 1 as312 [
I−∆τ(An+1

j )m
]

(vn+1
j )m+1 = vnj + ∆τdmj . (4.34)
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Algorithm 1 Policy Iteration: compute vn+1
j given vnj

Require: vnj as defined in (4.26)
1: Solve vn+1

0 from [I−∆τA0] vn+1
0 = vn0

2: for j = 1, 2, . . . , jmax do
3: Initialize (vn+1

j )m with vnj for m = 0
4: for m = 0, 1, . . . until converge do
5:

{(ϕn+1
i,j )m, (ψn+1

i,j )m} ⇐

arg max
{ϕ,ψ}∈{{0,0},{0,1},{1,0}}

[
An+1
j (ϕ,ψ)(vn+1

j )m + Pn+1
j (ϕ,ψ)vn+1

j−1 + qn+1
j (ϕ,ψ)

]
i

6: Construct (An+1
j )m, (Pn+1

j )m and (qn+1
j )m by using {(ϕn+1

i,j )m, (ψn+1
i,j )m}

7: Solve (vn+1
j )m+1 from[

I−∆τ(An+1
j )m

]
(vn+1
j )m+1 = vnj + ∆τ(Pn+1

j )mvn+1
j−1 + ∆τ(qn+1

j )m

8: if max
i

|(V n+1
i,j )m+1 − (V n+1

i,j )m|

max
[
scale, (V n+1

i,j )m+1
] < tolerance then

9: break from the iteration
10: end if
11: end for
12: end for
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Manipulation of equation (4.34) gives313 [
I−∆τ(An+1

j )m
](

(vn+1
j )m+1 − (vn+1

j )m
)

= ∆τ
(

dmj + (An+1
j )m(vn+1

j )m
)
−∆τ

(
dm−1
j + (An+1

j )m−1(vn+1
j )m

)
. (4.35)

The proof proceeds by noting that the right hand side of equation (4.35) is always nonnegative314

(Wang and Forsyth, 2008), and since
[
I−∆τ(An+1

j )m
]

is an M-matrix, then the iterates form a315

bounded non-decreasing sequence.316

For some recent work on policy iteration and the relation to Newton iteration, we refer the317

reader to Santos and Rust (2004) and Bokanowski et al. (2009).318

5 Convergence of the penalty discretization319

From (Barles and Souganidis, 1991; Barles, 1997) we find that any scheme which is monotone,320

consistent (in the viscosity sense) and l∞ stable converges to the viscosity solution. In the following321

sections, we will verify each of these properties in turn for the penalty scheme.322

It will be convenient at this point to introduce the following definitions323

∆Wmax = max
i

(Wi+1 −Wi) ∆Wmin = min
i

(Wi+1 −Wi)

∆Amax = max
j

(Aj+1 −Aj) ∆Amin = min
j

(Aj+1 −Aj).

5.1 Stability324

The stability of scheme (4.13), (4.18)-(4.23), is a direct result of the following Lemma:325

Lemma 5.1 (Stability). If the discretized equation (4.13) satisfies the positive coefficient condition326

(4.15), then scheme (4.13), (4.18)-(4.23), satisfies327

e−ητ
n
Wi ≤ V n

i,j ≤Wi +Aj (5.1)

for 0 ≤ n ≤ N as ∆τ → 0, ∆Wmin → 0, ∆Amin → 0.328

Proof. Define a discrete bounding function Bn
i,j such that329

Bn
i,j = Wi +Aj . (5.2)

Consider the matrix330

[Zn+1(vn+1)vn+1]i,j = −αn+1
i,j V n+1

i−1,j + (
1

∆τ
+ αn+1

i,j + βn+1
i,j + cn+1

i,j )V n+1
i,j

−βn+1
i,j V n+1

i+1,j − p
n+1
i,j V n+1

i,j−1 . (5.3)

Define vectors331

bnj =
[
Bn

0,j , B
n
1,j , . . . , Bimax,j

]
; bn =

[
(bn0 ), (bn1 ), . . . , (bnjmax

)
]′

. (5.4)
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Then, some straightforward (but lengthy) algebra shows that332

Zn+1(vn+1)(bn+1 − vn+1) =
1

∆τ
[bn − vn] + hn+1(vn+1) , (5.5)

where333

[hn+1]i,j =

{
ηWi + rAj + (ϕn+1

i,j G+
ψn+1
i,j

ε )(1− δi,0) + ψn+1
i,j κ(1/ε−G) i < imax, j > 0 ,

η(Wi +Aj) otherwise ,

(5.6)

where δi,j is the Kronecker delta. Since 1/ε > G, then hn+1 ≥ 0. Assume bn − vn ≥ 0, then,334

since Zn+1 is an M−matrix, bn+1 − vn+1 ≥ 0. Note from the initial condition (4.18), we have335

b0 − v0 ≥ 0. Hence336

V n
i,j ≤ Wi +Aj , ∀n . (5.7)

For the lower bound, define the lower bounding grid function337

Lni,j =
Wi

(1 + η∆τ)n
. (5.8)

Following a similar approach as used for the upper bound, we find that338

V n
i,j ≥

Wi

(1 + η∆τ)n
> e−ητ

n
Wi . (5.9)

339

Remark 5.1. For a given finite domain ΩL, bound (5.1) clearly implies that ‖V n‖∞ is bounded.340

However, note that for fixed (W,A, τ), bound (5.1) is independent of Wmax, which is an important341

property if we solve the problem in Definition (3.1) on a sequence of larger domains.342

5.2 Consistency343

This section shows that the discretization scheme (4.13), (4.18)-(4.21) is consistent with the singular344

control GMWB pricing problem as defined in Definition 3.2.345

Consider the discretized equation (4.13), and the associated discretized boundary conditions346

(4.18)-(4.23). We make the following assumption regarding the mesh/time-step size.347

Assumption 5.1. There exists a mesh/time-step size parameter h such that348

h =
∆Wmax

C1
=

∆Amax

C2
=

∆τ
C3

=
ε

C4
, (5.10)

where Ci (i = 1, 2, 3, 4) are positive constants independent of h.349

Equation (4.13) is equivalent to equation (4.7), which can be re-written as350

V n+1
i,j − V n

i,j

∆τ
− LhV n+1

i,j −max
(
Gmax(FhV n+1

i,j , 0),
(FhV n+1

i,j − κ)
ε

+ κG

)
= 0 , (5.11)
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or equivalently351

min

[
V n+1
i,j − V n

i,j

∆τ
− LhV n+1

i,j − κG− 1
ε

(FhV n+1
i,j − κ),

V n+1
i,j − V n

i,j

∆τ
− LhV n+1

i,j −Gmax(FhV n+1
i,j , 0)

]
= 0 . (5.12)

Equation (5.12) implies that one of the following holds with equality:352

V n+1
i,j − V n

i,j

∆τ
− LhV n+1

i,j − κG− 1
ε

(FhV n+1
i,j − κ) ≥ 0, (5.13)

V n+1
i,j − V n

i,j

∆τ
− LhV n+1

i,j −Gmax(FhV n+1
i,j , 0) ≥ 0. (5.14)

Since ε > 0, equation (5.13) is equivalent to353

ε

(
V n+1
i,j − V n

i,j

∆τ
− LhV n+1

i,j − κG
)

+ (κ−FhV n+1
i,j ) ≥ 0. (5.15)

As a result, equations (5.14) and (5.15) can be combined to give354

Hn+1
i,j ≡H

n+1
i,j

(
h, V n+1

i,j ,
{
V n+1
a,b

}
a6=i

or b6=j
, V n

i,j

)

= min

[
V n+1
i,j − V n

i,j

∆τ
− LhV n+1

i,j −Gmax(FhV n+1
i,j , 0),

ε

(
V n+1
i,j − V n

i,j

∆τ
− LhV n+1

i,j − κG

)
+ (κ−FhV n+1

i,j )

]
= 0,

(5.16)

where
{
V n+1
a,b

}
a6=i

or b6=j
is the set of values V n+1

a,b , a = 0, 1, . . . , imax and b = 0, 1, . . . , jmax, (a, b) 6= (i, j).355

We can re-formulate the discretization scheme (4.13), (4.18)-(4.23) at node (Wi, Aj , τ
n+1) into one356

equation:357

Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
a,b

}
a6=i

or b6=j
, V n

i,j

)

=


Hn+1
i,j , (Wi, Aj , τ

n+1) ∈ Ωin ∪ ΩW0 ∪ ΩA0 ,

V n+1
i,j (1 + η∆τ)− V n

i,j , (Wi, Aj , τ
n+1) ∈ ΩWmax

V n+1
i,j −max [Wi, (1− κ)Aj ] , (Wi, Aj , τ

n+1) ∈ Ωτ0 .

=0. (5.17)

We follow here the definition of consistency in the viscosity sense (Barles, 1997). For an excellent358

overview of this topic, we refer the reader to (Jakobsen, 2010).359
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Definition 5.1 (Consistency). For any smooth test function φ(W,A, τ) with φn+1
i,j = φ(Wi, Aj , τ

n+1),360

having bounded derivatives of all orders with respect to W , A, and τ , assuming the mesh/time-step361

size parameter h satisfies Assumption 5.1, the numerical scheme Gn+1
i,j

(
h, φn+1

i,j ,
{
φn+1
a,b

}
a6=i

or b 6=j
,
{
φni,j

})
362

is consistent if ∀x̂ = (Ŵ , Â, τ̂) ∈ ΩL, ∀xn+1
i,j = (Wi, Aj , τ

n+1) ∈ ΩL, the following two inequalities363

hold.364

lim sup
xn+1
i,j →x̂

h→0
ξ→0

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
a,b + ξ

}
a6=i

or b6=j
,
{
φni,j + ξ

})
≤(FΩL)∗(φ(x̂)), (5.18)

lim inf
xn+1
i,j →x̂

h→0
ξ→0

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
a,b + ξ

}
a6=i

or b6=j
,
{
φni,j + ξ

})
≥(FΩL)∗(φ(x̂)). (5.19)

where (FΩL)∗ and (FΩL)∗ are the upper and lower semicontinuous envelopes of FΩL . Before proving365

consistency, we shall need an intermediate result, which is given in the following Lemma.366

Lemma 5.2 (Local consistency). Suppose the mesh size and the time-step parameter satisfy As-367

sumption 5.1, then for any smooth function φ(W,A, τ) having bounded derivatives of all orders in368

(W,A, τ) ∈ ΩL, with φn+1
i,j = φ(Wi, Aj , τ

n+1), and for h, ξ sufficiently small, we have that369

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
a,b + ξ

}
a6=i

ior b 6=j
,
{
φni,j + ξ

})

=



Finφ
n+1
i,j +O(h) +O(ξ), (Wi, Aj , τ

n+1) ∈ Ωin,

FW0φ
n+1
i,j +O(h) +O(ξ, ) (Wi, Aj , τ

n+1) ∈ ΩW0 ,

FA0φ
n+1
i,j +O(h) +O(ξ), (Wi, Aj , τ

n+1) ∈ ΩA0 ,

FWmaxφ
n+1
i,j +O(h) +O(ξ), (Wi, Aj , τ

n+1) ∈ ΩWmax

Fτ0φn+1
i,j +O(ξ), (Wi, Aj , τ

n+1) ∈ Ωτ0 ,

(5.20)

where ξ is a constant independent of xn+1
i,j .370

Proof. Before proving the Lemma, we first define the following notations for the operators applied371

to test functions, evaluated at node (Wi, Aj , τ
n+1).372

Lφn+1
i,j ≡ Lφ(Wi, Aj , τ

n+1), Fφn+1
i,j ≡ Fφ(Wi, Aj , τ

n+1),

(φW )n+1
i,j ≡ φW (Wi, Aj , τ

n+1), (φA)n+1
i,j ≡ φA(Wi, Aj , τ

n+1),

(φτ )n+1
i,j ≡ φτ (Wi, Aj , τ

n+1).

By definitions of discrete operators Lh and Fh in (4.6), it can be easily verified that373

Lh(φn+1
i,j + ξ) = Lhφn+1

i,j − rξ (5.21)

Fh(φn+1
i,j + ξ) = Fhφn+1

i,j . (5.22)
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From Taylor series expansions and the last two equations above, we have that374

Lh(φn+1
i,j + ξ) = Lφn+1

i,j − rξ +O(∆Wmax), (5.23)

Fh(φn+1
i,j + ξ) = Fφn+1

i,j +O(∆Wmax) +O(∆Amax), (5.24)

φn+1
i,j − φni,j

∆τ
= (φτ )n+1

i,j +O(∆τ). (5.25)

By using equation (5.16) together with the discretization error estimation in the last three375

equations above, and the inequality |min(x, y) −min(a, b)| ≤ max(|x − a|, |y − b|), we can see for376

nodes (Wi, Aj , τ
n+1) ∈ Ωin:377 ∣∣∣∣∣Gn+1

i,j

(
h, φn+1

i,j + ξ,
{
φn+1
a,b + ξ

}
a6=i

or b6=j
,
{
φni,j + ξ

})
− Finφ

n+1
i,j

∣∣∣∣∣
≤ max

[∣∣∣∣∣φ
n+1
i,j − φni,j

∆τ
− Lh(φn+1

i,j + ξ)−Gmax
[
Fh(φn+1

i,j + ξ), 0
]

−
(

(φτ )n+1
i,j − Lφ

n+1
i,j −Gmax

[
Fφn+1

i,j , 0
]) ∣∣∣∣∣,∣∣∣∣∣ε

(
φn+1
i,j − φni,j

∆τ
− Lh(φn+1

i,j + ξ)− κG
)

+
(
Fφn+1

i,j −F
h(φn+1

i,j + ξ)
)∣∣∣∣∣
]

≤ max

[∣∣∣∣∣O(∆τ) +O(∆Wmax) + rξ +G
∣∣∣Fh(φn+1

i,j + ξ)−Fφn+1
i,j

∣∣∣∣∣∣∣∣,∣∣∣∣∣O(∆Wmax) +O(∆Amax)

+ ε

(
φn+1
i,j − φni,j

∆τ
− Lh(φn+1

i,j + ξ)− κG

)∣∣∣∣∣
]

= max

[∣∣∣∣∣O(∆τ) +O(∆Wmax) +O(∆Wmax + ∆Amax) + rξ

∣∣∣∣∣,∣∣∣∣∣O(∆Wmax) +O(∆Amax)

+ ε
(

(φτ )n+1
i,j − Lφ

n+1
i,j + rξ − κG+O(∆τ)) +O(∆Wmax)

) ∣∣∣∣∣
]

(5.26)

By Assumption 5.1 and the inequality (5.26), we obtain378

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
a,b + ξ

}
a6=i

or b 6=j
,
{
φni,j + ξ

})
= Finφ

n+1
i,j +O(h) +O(ξ). (5.27)
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This proves the first equation in (5.20). The rest of the equations in (5.20) are proved by following379

similar arguments.380

Lemma 5.3 (Consistency). Assume that all conditions in Lemma 5.2 are satisfied, then scheme381

(5.17) is consistent according to Definition 5.1.382

Remark 5.2 (Consistency in the viscosity sense). Given the local consistency result in Lemma 5.2,383

it is straightforward to show that scheme (5.17) is consistent in the sense of Definition 5.1. We will384

include these steps here for the convenience of the reader, although this is mainly an exercise in no-385

tational manipulation. In general, however, we may not be able to get local consistency everywhere.386

As an example, in Chen and Forsyth (2008), there are nodes in strips near the domain boundaries387

where local consistency is not achieved. In this case, the more relaxed definition of consistency388

in the viscosity sense is particularly useful, and the final steps required to prove consistency are389

non-trivial.390

Proof. First we prove that the inequality (5.18) holds. From the definition of lim sup, there exists391

sequences ik, jk, nk, ξk and hk such that392

as k →∞, xnk+1
ik,jk

→ x̂, ξk → 0, hk → 0, (5.28)

and393

lim sup
k→∞

Gn+1
i,j

(
hk, φ

nk+1
ik,jk

+ ξk,
{
φnk+1
ak,bk

+ ξk

}
ak 6=ik

or bk 6=jk
,
{
φnkik,jk + ξk

})
= lim sup

xn+1
i,j →x̂

h→0
ξ→0

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
a,b + ξ

}
a6=i

or b6=j
,
{
φni,j + ξ

})
(5.29)

From Lemma 5.2, we have for k sufficiently large, there exist positive constants C1, C2 independent394

of k such that395 ∣∣∣∣∣Gn+1
i,j

(
hk, φ

nk+1
ik,jk

+ ξk,
{
φnk+1
ak,bk

+ ξk

}
ak 6=ik

or bk 6=jk
,
{
φnkik,jk + ξk

})
− FΩLφ

nk+1
ik,jk

∣∣∣∣∣
≤ C1hk + C2ξk ; (Wik , Ajk , τ

nk+1) ∈ ΩL . (5.30)

Remark 5.3. Suppose, for example, that x̂ ∈ ΩW0. Note that for k sufficiently large, xnk+1
ik,jk

can396

be in either ΩW0 or Ωin. However, in each case, from Lemma 5.2, we have that inequality (5.30)397

holds. This is a consequence of the definition of FΩL.398

From equations (5.29) and (5.30), we obtain399

lim sup
xn+1
i,j →x̂

h→0
ξ→0

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
a,b + ξ

}
a6=i

or b6=j
,
{
φni,j + ξ

})

≤ lim sup
k→∞

FΩLφ
nk+1
ik,jk

+ lim sup
k→∞

[C1hk + C2ξk]

≤(FΩL)∗(φ(x̂)), (5.31)
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Similarly,400

lim inf
xn+1
i,j →x̂

h→0
ξ→0

Gn+1
i,j

(
h, φn+1

i,j + ξ,
{
φn+1
a,b + ξ

}
a6=i

or b 6=j
,
{
φni,j + ξ

})

≥ lim inf
k→∞

FΩLφ
nk+1
ik,jk

+ lim inf
k→∞

[−C1hk − C2ξk]

≥(FΩL)∗(φ(x̂)). (5.32)

401

5.3 Monotonicity402

Definition 5.2 (Monotonicity). The numerical scheme Gn+1
i,j

(
h, V n+1

i,j ,
{
V n+1
a,b

}
a6=i

or b 6=j
, V n

i,j

)
in (5.17)403

is monotone if for all Y n
i,j ≥ Xn

i,j , ∀i, j, n404

Gn+1
i,j

(
h, V n+1

i,j ,
{
Y n+1
a,b

}
a6=i

or b6=j
, Y n

i,j

)
≤ Gn+1

i,j

(
h, V n+1

i,j ,
{
Xn+1
a,b

}
a6=i

or b 6=j
, Xn

i,j

)
. (5.33)

Lemma 5.4 (Monotonicity). If scheme (5.17) satisfies the positive coefficient condition (4.15) then405

it is monotone according to Definition 5.2.406

Proof. This is easily done using the same steps as in (Forsyth and Labahn, 2008).407

5.4 Convergence in ΩL
408

Theorem 5.1 (Convergence to the viscosity solution). Assume that scheme (5.17) satisfies all409

the conditions required for Lemmas 5.1, 5.3, and 5.4, and that Assumption 3.1 holds, then the410

scheme (5.17) converges to the unique, continuous viscosity solution of the GMWB problem given411

in Definition 3.2, at any point in Ωin ∪ Γ (see Definition of Γ in Assumption 3.1).412

Proof. Since the scheme is monotone, consistent and pointwise stable, this follows from the results413

in Barles and Souganidis (1991).414

Remark 5.4. Note that since we have assumed that strong comparison holds only in Ωin ∪Γ, then415

we can guarantee uniqueness and continuity only in Ωin ∪ Γ.416

5.5 Convergence in Ω∞417

The asymptotic form of the solution for W →∞ is given in Dai et al. (2008), which we impose at418

finite Wmax through boundary condition (3.9). This, of course, causes an error due to finite Wmax419

(see equation (3.8)).420

Consider a sequence of converged viscosity solutions (V (W,A, τ))k, which satisfy Definition 3.2421

on the sequence of grids (ΩL)k, k → ∞, with W k
max > W k−1

max . In Barles et al. (1995), the limiting422

problem of convergence to the viscosity solution on unbounded domains with quadratic growth in423

the solution is discussed. It is possible to appeal to the results in (Barles et al., 1995) to show424

convergence as (ΩL)k → Ω∞. However we can use a simpler approach for problem at hand.425
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For simplicity, and to avoid notational complexity, we consider only points in (Ωin)k in the426

following, since from Theorem 5.1 we are ensured of convergence at least to points in (Ωin)k.427

We will use the following elementary Lemmas.428

Lemma 5.5 (Bounds on solution on (Ωin)k). The converged viscosity solution on each domain429

(Ωin)k has the bounds430

e−ητW ≤ (V (W,A, τ))k ≤W +A . (5.34)

Proof. Since the discrete solution satisfies the bounds in Lemma 5.1, independent of h, Wmax, we431

take the limit as h→ 0, and hence the viscosity solution satisfies these same bounds.432

Lemma 5.6. The following bound holds433

(V (W,A, τ))k+1 ≥ (V (W,A, τ))k ; (W,A, τ) ∈ (Ωin)k . (5.35)

Proof. We can regard (V (W,A, τ))k+1 on domain (ΩL)k, as the solution to the GMWB pricing434

problem on (ΩL)k, but with a known boundary condition at W = W k
max, which in general is not435

the same boundary condition as used for V (W,A, τ))k. From Lemma 5.5, we have that436

(V (W k
max, A, τ))k+1 ≥ e−ητW k

max = (V (W k
max, A, τ))k . (5.36)

Hence (V (W k
max, A, τ))k+1 and (V (W k

max, A, τ))k are solutions to the same PDE and boundary437

conditions, with the exception of the boundary condition at W = W k
max, which satisfies equation438

(5.36). Consider two discrete solutions (V (W,A, τ))kh, (V (W,A, τ))k+1
h , defined on the same set of439

nodes in (ΩL)k, and assume that the discretization satisfies all the conditions required for Theorem440

5.1. Then, from Theorem 5.2 in (Forsyth and Labahn, 2008), we have that (V (W,A, τ))k+1
h ≥441

(V (W,A, τ))kh at all the nodes. Take the limit as h → 0, and noting that (V (W,A, τ))k+1
h →442

(V (W,A, τ))k+1 and (V (W,A, τ))kh → V (W,A, τ))k, and we obtain result (5.35).443

444

Theorem 5.2 (Convergence in Ω∞). Consider the sequence of grids (ΩL)k, with W k+1
max > W k

max445

and446

lim
k→∞

(ΩL)k = Ω∞ . (5.37)

For any fixed point (W,A, τ) ∈ (Ωin)∞ we have that the sequence (V (W,A, τ))k converges to a447

unique value (V (W,A, τ))∞ as k →∞.448

Proof. Given a fixed point (W,A, τ), from Lemma 5.6 we have that the solution is a non-decreasing449

function of the domain index k. But from Lemma 5.5, the solution is locally upper bounded450

independent of the domain index k. Hence the sequence (V (W,A, τ))k, k → ∞ is bounded and451

non-decreasing, and thus converges to a limit (V (W,A, τ))∞. Consider another set of increasing452

domains (Ω̂L)k. Suppose this set of domains converges to a value453

(V̂ (W,A, τ))∞ > (V (W,A, τ))∞ . (5.38)

But, applying Lemma 5.6 to subsequences of (ΩL)k and (Ω̂L)k leads to a contradiction, hence the454

limit (V (W,A, τ))∞ is unique.455

Remark 5.5. We apply scheme (5.17) to a sequence of problems with smaller h, for fixed Wmax. We456

then increase Wmax and repeat the process. Since we use unequally spaced grids, it is computationally457

inexpensive to choose a large Wmax, hence the process of determining the limit Wmax →∞ is rapidly458

convergent, in practice.459
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6 Numerical Examples460

In this section, numerical experiments are presented using the scheme discussed in previous sections461

to price the GMWB variable annuities.462

6.1 No-arbitrage fee463

Since no fee is paid up-front, the insurance company needs to charge a proportional fee η (see equa-464

tion (2.2)), such that the value of the contract is equal to the initial premium ω0. Let V (η;W,A, τ)465

be the value of the contract as a function of η. The no-arbitrage fee is the solution to the equation466

V (η;W = ω0, A = ω0, τ = T ) = ω0 . (6.1)

We solve equation (6.1) using Newton iteration with convergence tolerance467

|ηk+1 − ηk| < 10−8 , (6.2)

with ηk being the k′th iterate.468

6.2 Computational Parameters469

In the localized computational domain Ω = [0,Wmax] × [0, ω0] × [0, T ], we set Wmax = 100ω0.470

Tests with Wmax = 1000ω0 showed no effect on the computed solution to twelve digits. The policy471

iteration error control parameter tolerance in Algorithm 1 is set to 10−8.472

From the analysis in the previous sections, we will obtain convergence if473

ε = C∆τ (6.3)

for any C > 0. However, in order to obtain reasonable results for coarse grids/timesteps, we can474

estimate a suitable constant C as follows. Recall that the maximum withdrawal rate in equation475

(2.5) is 1/ε. If 1/ε = ω0/(∆τ), then the entire guarantee amount can be withdrawn in a single476

timestep. This would suggest that a reasonable value for ε would be477

ε = ∆τC∗/ω0, (6.4)

with C∗ < 1 a dimensionless constant. We also want to make the term478

ε (Vτ − LV − κG) (6.5)

small in equation (2.13) for coarse grids. Hence, we choose C∗ = 10−2 in equation (6.4). In a479

later section, we will present the results for a series of tests with different values of C∗ in equation480

(6.4), which show that the results are insensitive to C∗ for values ranging over several orders of481

magnitude.482

Our numerical experiments are performed on the example GMWB contract used in Chen and483

Forsyth (2008). The parameters for this contract are given in Table 6.1. Table 6.2 gives the mesh484

size and timestep parameters.485
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Parameter Value
Expiry time T 10.0 years
Interest rate r 0.05
Maximum no penalty withdrawal rate G 10/year
Withdrawal penalty κ 0.10
Initial lump-sum premium ω0 100
Initial guarantee account balance A(0) 100
Initial personal annuity account balance W (0) 100
Penalty parameter ε ∆τ10−2/ω0

Table 6.1: A sample GMWB contract parameters used in the numerical experiments

Level W Nodes A Nodes Time steps
1 117 111 120
2 233 221 240
3 465 441 480
4 929 881 960
5 1857 1761 1920

Table 6.2: Grid and timestep data for convergence experiments
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Refinement Central Differencing First For/Backward Differencing Only
Level Value Itns/step Ratio Value Itns/step Ratio
σ = 0.2, η = 0.013886 Fully Implicit Method
1 101.3114 3.51 N/A 101.6030 3.47 N/A
2 100.4488 3.62 N/A 100.6914 3.55 2.02
3 100.1267 3.70 2.68 100.2816 3.66 2.22
4 100.0270 3.77 3.23 100.1082 3.74 2.36
5 99.9999 3.89 3.69 100.0346 3.88 2.36
σ = 0.2, η = 0.013886 Crank Nicolson Method
1 101.3085 3.39 N/A 101.6017 3.35 N/A
2 100.4474 3.49 N/A 100.6909 3.42 N/A
3 100.1261 3.55 2.68 100.2815 3.52 2.22
4 100.0262 3.55 3.22 100.1082 3.52 2.36
5 99.9995 3.57 3.75 100.0343 3.55 2.35
σ = 0.3, η = 0.031286 Fully Implicit Method
1 100.5946 4.19 N/A 100.8998 4.10 N/A
2 100.1488 4.31 N/A 100.3363 4.26 N/A
3 100.0357 4.33 3.94 100.1173 4.32 2.57
4 100.0081 4.39 4.09 100.0435 4.38 2.97
5 100.0000 4.38 3.40 100.0167 4.37 2.76
σ = 0.3, η = 0.031286 Crank Nicolson Method
1 100.5882 4.01 N/A 100.8949 3.93 N/A
2 100.1448 4.12 N/A 100.3342 4.08 2.33
3 100.0338 4.16 4.00 100.1154 4.14 2.56
4 100.0072 4.18 4.17 100.0426 4.17 3.00
5 99.9996 4.17 3.48 100.0163 4.16 2.78

Table 6.3: Convergence experiments for the GMWB guarantee value at t = 0 and W = A = ω0 =
100 using a fully implicit and Crank Nicolson method . Contract parameters are given in Table 6.1.
The column ”Central Differencing First” uses central differencing as much as possible for the VW

term in the equation. The column ”For/Backward Differencing Only” uses forward or backward
differencing for the VW term in the equation. Itns/step refers to the average number of iterations
per timestep for the lines 4 − 11 in Algorithm 1. Ratio is the ratio of successive changes in the
solution as the mesh/timesteps are refined. Since the no-arbitrage fee is imposed, the numerical
solution should converge to V alue = ω0 = 100.
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Figure 6.1: Vtt versus t for node (W = 100, A = 100). σ = 0.3. Fair insurance fee (i.e.
η = 0.031286) is imposed. Contract parameters are given in Table 6.1.

6.3 Results486

Table 6.3 presents the convergence results for the GMWB value with respect to two volatility values,487

assuming the no-arbitrage insurance fee is imposed.488

Aside from fully implicit timestepping, we have also carried out some tests using Crank Nicolson489

timestepping, using an obvious modification of equation (4.13). Note that convergence has only490

been proven for the fully implicit method since Crank Nicolson timestepping is not monotone in491

general. The differencing method for the VW term, which uses central differencing as much as492

possible, is also compared with forward or backward differencing only for the VW term.493

The Itns/step column in Table 6.3 shows the average number of iterations in each timestep494

required for lines 4−11 in Algorithm 1. About 3−4 non-linear iterations per timestep are required495

for the σ = .2 case, and about 4 − 5 iterations per timestep are required in the σ = .3 case. The496

convergence ratio in the table is the ratio of successive changes in the solution, as the timestep and497

mesh size are reduced by a factor of two.498

The number of iterations per timestep appears to be fairly insensitive to the grid size in Table 6.3.499

Note that since the timestep is reduced as the grid spacing is reduced, we have an excellent initial500

solution estimate at each timestep. This is consistent with the results for time dependent problems501

as reported in Bokanowski et al. (2009). For steady state problems, Santos and Rust (2004) and502

Bokanowski et al. (2009) report grid dependent number of iterations for policy iteration.503

It can be seen that using central differencing as much as possible for the VW term leads to more504

rapid convergence (as the mesh is refined) compared to pure forward or backward differencing505

for this term. Rather unexpectedly, the convergence ratios for both Crank Nicolson and fully506

implicit timestepping are similar. Figure 6.1 shows a plot of Vtt versus (forward) time, at the node507

(W = 100, A = 100). At t = 0 (τ = T ), we can see that Vtt ' 0, which would result in similar time508

truncation error for both Crank Nicolson and fully implicit timestepping.509

Although the first column in Table 6.3 uses central differencing as much as possible, there are510

large regions in the solution domain where the optimal strategy is to withdraw a finite amount (an511

infinite rate), as shown in Figure 6.2. In these regions, forward or backward differencing is used512

in both the W and A directions, which should result in first order errors. However, in the finite513

26



W

A

0 50 100 150 2000

20

40

60

80

100

Withdrawal of a
finite amount

Withdrawal at rate G

Withdrawal of a finite amount

Withdrawal at rate G or no withdrawal

Figure 6.2: The contour plot of optimal withdrawal strategy of the GMWB guarantee at t = ∆τ
in the (W,A)-plane. σ = 0.3. fair fee η = .031286 is imposed. Contract parameters are given in
Table 6.1. This plot is similar to the results in Chen and Forsyth (2008).

withdrawal amount (infinite withdrawal rate) regions, we essentially solve the PDE514

1− VW − VA = κ . (6.6)

Noting that V is linear in A at W = 0, and linear in W as W →∞, then the solution of this PDE515

in the finite withdrawal region (assuming that this region is connected to W = 0 or W →∞) will516

be a linear function of (W,A), hence the use of forward or backward differencing is exact.517

It is also interesting to see a region labeled Withdrawal at rate G or no withdrawal. Recall that518

in the finite withdrawal region, the solution satisfies519

Vτ = LV + max
γ∈[0,G]

(
γ(1− VW − VA)

)
. (6.7)

The solution in this region appears to converge to a value having (1−VW −VA) ' 0. This suggests520

that the optimal control is a finite rate, but not unique, since either a rate of zero or G is optimal.521

The value function is, however, unique. This is consistent with the results in Chen and Forsyth522

(2008).523

Since it appears (at least for this example) that fully implicit timestepping converges at a524

similar rate compared to Crank Nicolson, and that convergence can only be proven for fully implicit525

timestepping, it would appear that fully implicit timestepping is preferable to Crank Nicolson.526

Recall that the no-arbitrage fee is determined by solving equation (6.1). Table 6.4 shows the527

convergence results in terms of the no-arbitrage fee for two different volatilities. The results are528

close to those reported in Chen and Forsyth (2008). Using central differencing first on the VW term529

leads to faster convergence compared to using forward or backward differencing only on the VW530

term.531

It is also interesting to study the convergence of the penalty method for nodes near (or at) the532

finite withdrawal boundary. Figure 6.3 shows the location of the withdrawal boundaries at A = 100533

versus t, when no insurance fee (η = 0) is imposed. Note that the node (100, 100) is very near (or534

at) the boundary between a finite withdrawal rate and no withdrawal at t = T .535

Examination of the solution near maturity (which is near the start of the numerical solution536

since we solve backwards in time) shows that the numerical solution changes between being in537
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Refinement Central Differencing First For/Backward Differencing Only
Level Fair Fee Ratio Fair Fee Ratio
σ = 0.2 0.013891 (Value from (Chen and Forsyth, 2008))
2 0.015207 N/A 0.015920 N/A
3 0.014245 N/A 0.014686 N/A
4 0.013961 3.38 0.014190 2.48
5 0.013886 3.80 0.013982 2.39
σ = 0.3 0.031258 (Value from (Chen and Forsyth, 2008))
2 0.031904 N/A 0.032692 N/A
3 0.031431 N/A 0.031770 N/A
4 0.031319 4.22 0.031462 2.99
5 0.031286 3.43 0.031354 2.82

Table 6.4: Convergence study for the fair insurance fee η value. Contract parameters are given
in Table 6.1. Note that the results in Chen and Forsyth (2008) appear to be correct to about three
(rounded) digits. The column ”Central Differencing First” uses central differencing as much as
possible for the VW term in the equation. The column ”For/Backward Differencing Only” uses
forward or backward differencing for the VW term in the equation.

t
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No Withdrawal

Withdrawal at rate G

Withdrawal of a finite amount

Figure 6.3: The contour plot for the withdrawal boundary versus time t at A = 100, σ = 0.3. No
insurance fee (i.e. η = 0) is imposed. Contract parameters are given in Table 6.1. Maximal use of
central differencing on VW term is applied.
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Fully Implicit Method
Refinement Central Differencing First For/Backward Differencing Only

Value Itns/step Ratio Value Itns/step Ratio
1 116.0354 2.88 N/A 116.2730 2.88 N/A
2 115.9134 2.89 N/A 116.0339 2.91 N/A
3 115.8879 2.97 4.78 115.9477 3.00 2.77
4 115.8845 3.10 7.52 115.9143 3.12 2.59
5 115.8859 3.25 -2.40 115.9008 3.26 2.47
6 115.8876 3.38 0.86 115.8950 3.39 2.33
extrapolated value from (Chen and Forsyth, 2008) 115.8897

Table 6.5: Convergence experiments for the GMWB guarantee value at t = 0 and W = A = ω0 =
100 by using the fully implicit method. σ = 0.3. No insurance fee (η = 0) is imposed. Contract
parameters are given in Table 6.1. The column ”Central Differencing First” use central differencing
as much as possible for the VW term. The column ”For/Backward Differencing Only” uses forward
or backward differencing for the VW term. Itns/step refers to the average number of iterations per
timestep for the lines 4− 11 in Algorithm 1. Ratio is the ratio of successive changes in the solution
as the refinement is increased.

the region of withdrawal at rate G to being in a region of zero withdrawal at refinement level 4538

and above. This occurs when central differencing is used as much as possible. Table 6.5 gives539

the convergence results for this case (η = 0). We have proven that this method is convergent,540

but clearly convergence can be erratic at some exceptional nodes. Convergence (at this node) is541

smoother if the VW term is discretized using a forward or backward differencing only.542

In Section 6.2 we noted that the penalty method is convergent for any C > 0 such that ε = C∆τ .543

We argued, based on financial reasoning that a good choice for ε is544

ε =
C∗∆τ
ω0

, (6.8)

with C∗ being a dimensionless constant. All the tests reported thus far use C∗ = 10−2. Table545

6.6 shows the results at W = A = ω0, t = 0, with no insurance fee being imposed, for values of546

C∗ ∈ [1, 10−9]. The choice of C∗ affects the solution only in the seventh digit for C∗ ∈ [10−2, 10−7].547

In our initial tests varying C∗, we noticed convergence problems for C∗ < 10−7. Recall that in548

infinite precision arithmetic, the right hand side of equation (4.35) must always be non-negative.549

Analysis of the numerical experiments showed that at points near the withdrawal boundaries, for550

C∗ < 10−7, the right hand side of equation (4.35) was negative (at some iterations) at the level of551

machine precision. After solving equation (4.35), this caused changes in the solution in the eighth552

digit, which violated the convergence criteria (tolerance = 10−8 in Algorithm 1). The iterations553

would then oscillate between two states, with positive and negative right hand sides of equation554

(4.35). This problem was eliminated by simply forcing the right hand side of equation (4.35) to555

be always non-negative. This, of course, would always be true in infinite precision arithmetic.556

Consequently, if C∗ is selected too small, then this generates problems due to numerical precision557

issues. However, this is only a difficulty for very small C∗, very fine grids, and perhaps unrealistic558

convergence criteria. This issue is also discussed in Forsyth and Vetzal (2002).559
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σ = 0.2 σ = 0.3
ε Value Itns/step Value Itns/step
∆τ/ω0 107.7315 3.24 115.8828 3.25

10−1∆τ/ω0 107.7336 3.24 115.8856 3.25
10−2∆τ/ω0 107.7338 3.24 115.8859 3.25
10−3∆τ/ω0 107.7339 3.24 115.8860 3.25
10−4∆τ/ω0 107.7339 3.34 115.8860 3.25
10−5∆τ/ω0 107.7339 3.24 115.8860 3.25
10−6∆τ/ω0 107.7339 3.24 115.8860 3.25
10−7∆τ/ω0 107.7338 3.38 115.8860 3.31
10−8∆τ/ω0 107.7338 3.46 115.8859 3.45
10−9∆τ/ω0 107.7294 4.82 115.8776 5.25

Table 6.6: The effect of the penalty parameter at refinement level 5. W = A = 100 and t = 0. No
insurance fee (i.e. η = 0) is imposed. Contract parameters are given in Table 6.1. Itns/step refers
to the average number of iterations per timestep for the lines 4− 11 in Algorithm 1.

6.4 Comparison: Penalty Method (Singular Control) and Impulse Control560

As outlined in (Zakamouline, 2005), it is almost always possible to formulate a singular control561

problem as an impulse control problem, with arbitrarily small error. It is therefore interesting to562

consider the computational issues for both formulations.563

If h is the discretization parameter (as in Assumption 5.1), then the computational complexity564

of the penalty method, singular control formulation is565

Complexity: Penalty method = C ′h−3 (6.9)

where C ′ is the average number of iterations per step. Since it appears that C ′ is independent of566

h, then the complexity of the penalty method is O(h−3).567

In the impulse control formulation, the numerical method described by Chen and Forsyth (2008)568

has a complexity of O(h−4). This is due to the linear search required in the local optimization step569

of the algorithm in Chen and Forsyth (2008). The linear search guarantees location of the global570

maximum with O(h) error for smooth test functions.571

On the basis of complexity, it would appear that the penalty method is a clear winner. However,572

as noted in Chen and Forsyth (2008), it is trivial to handle discrete withdrawal times and complex573

contract features using an impulse control formulation. These generalizations may be very diffi-574

cult to handle with a singular control formulation. Zakamouline (2005) suggests that an impulse575

control formulation is preferred in general. In addition, the experimental convergence rate in Chen576

and Forsyth (2008) is smooth as the mesh is refined. This contrasts with the sometimes erratic577

convergence of the penalty method for nodes near the withdrawal boundaries. As well, the impulse578

control formulation does not require an estimate of the constant for the penalty parameter. There579

also appears to be a limit on the solution accuracy, due to numerical precision problems, with the580

penalty method. However, this limit is probably at a level of accuracy which is far beyond what581

would be required in practice.582
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7 Conclusions583

In this paper, we study the penalty algorithm proposed by Dai et al. (2008) to price GMWB variable584

annuities. Provided the original problem satisfies a strong comparison property, we prove that the585

penalty algorithm converges to the unique viscosity solution of the HJB variational inequality586

corresponding to the singular control model formed in Dai et al. (2008).587

We find that using central differencing as much as possible (Wang and Forsyth, 2008) results in588

noticeably faster convergence (as the grid/timesteps are refined) compared to forward or backward589

differencing only discretization.590

Our experimental results show that the penalty method has some limitations in determining the591

withdrawal boundaries to high accuracy. For nodes near the withdrawal boundaries, convergence592

is somewhat erratic.593

However the penalty method is very easy to implement, and convergence is fast to a level594

of accuracy probably far beyond what would be required in practice. This method has a lower595

complexity than the impulse control approach in Chen and Forsyth (2008), but at the expense of596

some loss of generality.597

The penalty method can be easily applied to a wide variety of singular stochastic control prob-598

lems.599

Appendix600

A Hedging Argument for (2.8)601

In this Appendix, we give an informal hedging argument for deriving equation (2.8). Consider the602

following scenario. The underlying asset W (a mutual fund) in the investor’s account follows the603

process604

dW = (µ− η)Wdt+WσdZ , (A.1)

where µ is the drift rate, η is the fee for the guarantee, and dZ is the increment of a Wiener process.605

We assume that the mutual fund tracks an index Ŵ which follows the process606

dŴ = µŴdt+ ŴσdZ . (A.2)

We assume that it is not possible to short the mutual fund, so that the obvious arbitrage opportunity607

cannot be exploited. (This is typically a fiduciary requirement). We further assume that it is608

possible to track the index Ŵ without basis risk.609

Now, consider the writer of the GMWB contract, with no-arbitrage value V (W,A, t). The writer610

sets up the hedging portfolio611

Π(W, Ŵ , t) = −V (W, t) + xŴ , (A.3)

where x is the number of units of the index Ŵ .612

Over the time interval t→ t+ dt, assuming that Ito’s Lemma can be used, we obtain613

dΠ = −
[(
Vt + (µ− η)WVW +

1
2
σ2W 2VWW + f(γ)− γVW − γVA

)
dt+ σWVWdZ

]
+ x[µŴdt+ σŴdZ] , (A.4)
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where γ is the (finite) rate of withdrawal by the contract holder.614

Choose615

x =
W

Ŵ
VW , (A.5)

so that equation (A.4) becomes616

dΠ = −
[(
Vt − ηWVW +

1
2
σ2W 2VWW + f(γ)− γVW − γVA

)
dt

]
. (A.6)

The worst case for the hedger will be when the contract holder chooses an action to minimize the617

value of the hedging portfolio (this of course corresponds to the contract holder maximizing her618

no-arbitrage long position), so that619

dΠ = min
γ

[
−
(
Vt − ηWVW +

1
2
σ2W 2VWW + f(γ)− γVW − γVA

)
dt

]
. (A.7)

Let r be the risk free rate, and so setting dΠ = rΠ dt (since the portfolio is now riskless) gives620

r (−V + VWW ) = −max
γ

[(
−Vτ − ηWVW +

1
2
σ2W 2VWW + f(γ)− γVW − γVA

)]
= Vτ + ηWVW −

1
2
σ2W 2VWW −max

γ

[
f(γ)− γVW − γVA

]
, (A.8)

which is equation (2.8).621

Another way to verify this equation is the following. Imagine that the hedger replicates the622

cash flows associated with the total GMWB contract. In this case, the underlying mutual fund can623

be regarded as a purely virtual instrument, following process (A.1). The actual hedging instrument624

on the other hand follows process (A.2). Having elminated the random term by delta hedging, the625

hedger then assumes the worst case which occurs when the contact holder maximizes (determinis-626

tically) the no-arbitrage value of the contract. In this case, V = U +W , where V is the value of the627

entire contract, and U is the value of the guarantee. We can obtain an equation for the guarantee628

portion U by substituting V = U +W into equation (A.8).629

Chen et al. (2008) use a similar argument to value the guarantee portion of the GMWB using630

the impulse control formulation.631

Of course, the above arguments assume that the rate of withdrawal is finite, and that the632

solution is sufficiently smooth so that Ito’s Lemma can be applied. These assumptions are not in633

general valid (i.e. we take the limit as the maximum withdrawal rate becomes infinite), and a much634

more careful analysis is required to derive the singular control problem in rigorous fashion. Delta635

hedging strategies for GMWB contacts are commonly used in the insurance industry (Bauer et al.,636

2008; Gilbert et al., 2007), although usually based on the impulse control formulation.637

B Finite Difference Approximation638

In this appendix, we use standard finite difference method to approximate the first and second639

partial derivatives in the PDE. The discretized differential operators DhA, DhW and DhWW are given640

32



by641

DhAV n
i,j =

V n
i,j − V n

i,j−1

∆A−j
, backward differencing, (B.1)

DhWV n
i,j =


V ni,j−V ni−1,j

∆W−i
backward differencing,

V ni+1,j−Vi,j
∆W+

i

forward differencing,
V ni+1,j−V ni−1,j

∆W±i
central differencing,

(B.2)

DhWWV
n
i,j =

V ni−1,j−V ni,j
∆W−i

+
V ni+1,j−V ni,j

∆W+
i

∆W±i
2

, (B.3)

where642

∆A−j = Aj −Aj−1, ∆W−i = Wi −Wi−1, ∆W+
i = Wi+1 −Wi, and ∆W±i = Wi+1 −Wi−1.

C Discrete Equation Coefficients643

Let {ϕni,j , ψni,j} denote the optimal local control parameter value for node (Wi, Aj , τ
n).644

Ahϕni,j ,ψni,jV
n
i,j

= ani,j(ϕ
n
i,j , ψ

n
i,j)DhWWV

n
i,j + bni,j(ϕ

n
i,j , ψ

n
i,j)DhWV n

i,j − cni,j(ϕni,j , ψni,j)V n
i,j

= αni,jV
n
i−1,j − (αni,j + βni,j + cni,j)V

n
i,j + βni,jV

n
i+1,j .

If central differencing is used for the DhWV n
i,j term, then645

αni,j,cent =
2ani,j(ϕ

n
i,j , ψ

n
i,j)

∆W±i ∆W−i
−
bni,j(ϕ

n
i,j , ψ

n
i,j)

∆W±i
,

βni,j,cent =
2ani,j(ϕ

n
i,j , ψ

n
i,j)

∆W±i ∆W+
i

+
bni,j(ϕ

n
i,j , ψ

n
i,j)

∆W±i
. (C.1)

When a forward/backward differencing is used for the DhWV n
i,j term, we obtain646

αni,j,for/back =
2ani,j(ϕ

n
i,j , ψ

n
i,j)

∆W±i ∆W−i
+ max

[
0,
−bni,j(ϕni,j , ψni,j)

∆W−i

]
,

βni,j,for/back =
2ani,j(ϕ

n
i,j , ψ

n
i,j)

∆W±i ∆W+
i

+ max

[
0,
bni,j(ϕ

n
i,j , ψ

n
i,j)

∆W+
i

]
. (C.2)

where647

∆W−i = Wi −Wi−1, ∆W+
i = Wi+1 −Wi, and ∆W±i = Wi+1 −Wi−1.

648
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