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Abstract

In this paper we give a method for computing the fair insurance fee associated with the
guaranteed minimum death benefit (GMDB) clause included in many variable annuity contracts.
We allow for partial withdrawals, a common feature in most GMDB contracts, and determine
how this affects the GMDB fair insurance charge. Our method models the GMDB pricing
problem as an impulse control problem. The resulting quasi-variational inequality is solved
numerically using a fully implicit penalty method. The numerical results are obtained under
both constant volatility and regime-switching models. A complete analysis of the numerical
procedure is included. We show that the discrete equations are stable, monotone and consistent
and hence obtain convergence to the unique, continuous viscosity solution, assuming this exists.
Our results show that the addition of the partial withdrawal feature significantly increases the
fair insurance charge for GMDB contracts.

Keywords: Variable annuities, guaranteed minimum death benefit (GMDB), viscosity solution, impulse
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1 Introduction

A variable annuity or equity-linked insurance contract is a retirement and/or investment vehicle
created by insurance companies. It is a contract between the customer and the insurance company
where the insurer generally agrees to make periodic payments to the client starting at a given
date. These contracts are particularly popular in the United States and the United Kingdom since
the investment gains are tax-deferred until the funds are withdrawn or annuitized at retirement.
In addition to the tax deferral these contracts also include a death benefit. Specific examples
of variable annuity contracts include guaranteed minimum income benefits, guaranteed minimum
withdrawal benefits [28, 17, 10] and guaranteed minimum death benefits.
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In the case of the guaranteed minimum death benefit (GMDB), if the customer passes away
before the maturity of the contract, then the beneficiary receives the greater of the investment
account value or the death benefit. We consider the case of market guarantees, where some form
of market returns are guaranteed through periodic ratchet dates [29]. A GMDB contract has two
phases: the accumulation phase and the continuation phase. During the accumulation phase, the
value of the death benefit is reset periodically to the maximum of the current account value or the
prior death benefit value1. Once the accumulation phase is over, the continuation phase begins
with the value of the death benefit now remaining constant. At expiry time, the client receives the
market value of the invested capital. Should the client pass away prior to the contract maturity, the
beneficiary receives the maximum of either the guaranteed death benefit or the current investment
account value.

A common feature in GMDB contracts is the ability to have partial withdrawals from the
account. Determining the fair insurance fee for a GMDB contract allowing partial withdrawals is a
challenging and important problem. As discussed in [15], a conservative approach to pricing these
guarantees is based on assuming optimal withdrawal at any given instant (i.e. the worst case from
the hedger’s point of view). Thus determining insurance fees for GMBD contracts with partial
withdrawal becomes an optimal control problem.

Bauer, Kling and Russ [6] give a solution to the GMDB problem allowing optimal withdrawal
at discrete instances under a constant volatility Brownian motion pricing model. In between the
withdrawal times, the solution of a modified Black-Scholes PDE is determined by a Green’s function
integral, which is approximated numerically. The optimal withdrawal at each withdrawal time is
determined by a grid search. Other methods for pricing GMDB contracts but without partial
withdrawals can be found in [27, 21, 12].

In this paper, we determine the fair insurance charge for a GMDB contract from a combined
no-arbitrage and actuarial approach (see [37]). We characterize the GMDB pricing problem as
an impulse control problem and develop a pricing model based on partial differential inequalities.
The valuation takes into account the partial withdrawal feature. We use a regime switching model
for the underlying stochastic process, which provides a more realistic model for market conditions,
compared to constant volatility models. Not surprisingly, our results, show that the withdrawal
feature is very valuable and results in significantly higher insurance fees than found previously in
the literature when withdrawals are ignored.

Our valuations for the fair insurance fee of GMDB contracts are determined as solutions to a
four dimensional system of nonlinear PDEs. This nonlinear system is solved using a fully implicit
penalty method, where we allow both complete lapsation and partial withdrawal. Note that it is
possible in the case of nonlinear PDEs that even reasonable discretization schemes either never
converge or converge to an incorrect solution [32]. As such we also take care to ensure that our
discretization converges to the unique viscosity solution [16] between rachet dates, which is well-
known to correspond to the financially relevant solution.

Unlike previous work mentioned above, our approach gives a complete solution to the GMDB
with partial withdrawal problem. By this we mean that we: (a) give a complete specification of
the problem in terms of PDEs, including localized boundary conditions; (b) discretize the system
of PDEs using a fully implicit method; and (c) prove that the discrete equations converge to the
viscosity solution [16] (assuming it exists) away from ratchet dates. The last named property follows

1Intuitively, this can be viewed as a discretely observed lookback option based on the maximum value of the
underlying [35].
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from proving that our discrete equations are monotone, stable and consistent.
While we have looked at a particular pricing problem which results in an impulse control

problem, such problems occur naturally in many other financial contexts. We expect that our
techniques, along with the ability to obtain provably correct solutions, will generalize to other
impulse control problems in finance.

The remainder of this paper is organized as follows. In Section 2, we give the model for pricing
GMDB contracts with constant volatility in terms of an impulse control problem. The pricing model
is then extended in Section 3 to include the concept of regime-switching with Section 4 detailing the
boundary conditions. Section 5 outlines details of the numerical solution method, while Section 6
contains a theoretical analysis of the discrete pricing model. Proofs justifying the theory are given
in the following section. Numerical results obtained when computing the no-arbitrage insurance
charge for the GMDB guarantee are presented in Section 8. Concluding remarks are made in
Section 9. The appendix contains descriptions of GMDB contracts needed to construct our pricing
model along with some technical proofs needed to justify our results.

2 Pricing the GMDB Guarantee with Partial Withdrawls Prob-
lem

The cost to the issuer of a GMDB guarantee can be modelled as a function of four variables
V = V (S, B, D, t) with t being time and:

• S is the current value of the underlying investment account,

• B is the current death benefit level,

• D is the current amount deposited in the investment account.

For ease of exposition, we will first consider the no-arbitrage valuation of the GMBD under
the Black-Scholes framework. Recall that a typical GMDB contract provides market guarantees by
locking in gains at ratchet dates. At each ratchet date, the death benefit B is reset to the maximum
of the current benefit and the investment account S. No-arbitrage implies that for any rachet date
to we have

V (S, B+, D, t+o ) = V (S, B−, D, t−o ), (2.1)

where B+ = max(B−, S) and t−o and t+o are times just before and after to. As such we only need
determine the prices away from the rachet dates.

We assume that the underlying S follows a classic geometric Brownian motion process (under
the risk-neutral measure)[24]:

dS

S
= (r − ρtotal)dt + σdZ. (2.2)

Here r is the risk-free rate, ρtotal are the mortality and expense (M&E) fees, σ is the asset volatility
and dZ is the increment of a Wiener process [35].

We remark that the annual fees ρtotal associated with variable annuity contracts, are charged
to the policy owner. These fees are calculated as a predetermined percentage of the account value
S, and include both management fees (ρman) and insurance charges (ρins) so that

ρtotal = ρman + ρins. (2.3)
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Assuming the management fees (ρman) are known, we will determine in Section 8 the value of ρins

such that the issuer does not incur any loss, assuming the contract is hedged. As outlined in [29],
these M&E charges can be modeled similarly to dividends.

When the GMDB contract expires at t = T , the owner, if still alive, receives a payoff corre-
sponding to the value of the invested capital at contract maturity. As such, the issuing company is
not liable for any additional payment at maturity beyond the current investment account value so

V (S, B, D, T ) = 0. (2.4)

Following the derivation in [36, 37], the cost of the GMDB guarantee in the Black-Scholes
framework is then given by

Vt +
1
2
σ2S2VSS + (r − ρtotal)SVS − rV −R(t)ρinsS +M(t)f = 0, (2.5)

whereM(t) represents the mortality function of the policy owners,R(t) is the survival probability of
policy owners and f = f(S, B, D, t) denote the death benefit exposure to the issuer. The mortality
function is defined such that the fraction of original owners who pass away during the time interval
[t, t + dt] is M(t)dt. Consequently, the portion of policy owners still alive at time t, denoted by
R(t), is:

R(t) = 1−
∫ t

0
M(n)dn, (2.6)

where the integral term represents the owners who have died during the period [0, t]. Note that
equation (2.5) is derived under the assumption that mortality risk is diversifiable amongst many
policy owners [27]. In Appendix A we show that the death benefit f is given by

f(S, B, D, t) = max(B − S, 0) + γ(t)D (2.7)

where γ(t) is the partial or full withdrawl (lapsing) charge.
In this paper we also include a second level of uncertainty by allowing holders of GMDB contracts

to withdraw some of their funds at any time. Many GMDB contracts include a feature allowing
the policy owner to make partial withdrawals from the invested capital at any time prior to the
maturity of the contract (during both the accumulation and continuation phase). When the owner
makes a withdrawal, both the deposit D and the death benefit B are reduced [31]. In this work,
we assume that D and B are reduced on a dollar-for-dollar basis following a partial withdrawal.2

In Appendix A we give the details showing that the pricing problem with partial withdrawals
for the GMDB guarantee (away from the ratchet dates) can be given as an impulse control problem.
If we change variables to τ = T − t, the time to maturity (with an abuse of notation, we now let
V = V (S, G,D, τ), M = M(τ), and so on), then this impulse control problem is

min
(

Vτ − LV +R(τ)ρinsS −M(τ)f,AV − V

)
= 0. (2.8)

Here the differential operator L is defined as

LV =
1
2
σ2S2VSS + (r − ρtotal)SVS − rV (2.9)

2We remark that our PDE approach can easily be extended to model different withdrawal policies. For example,
an alternate withdrawal policy whereby the deposit is reduced by the amount withdrawn but the death benefit is
reduced on a proportional basis, could be easily implemented.

4



while AV (S, B, D, τ) given by

AV ≡ max
(
−R(τ)γ(τ)S, max

W∈[0,S−ω]

(
V (S −W,max(B −W, 0),max(D −W, 0), τ)−R(τ)γ(τ)W

)
− c

)
.

(2.10)
We can also express this as a penalized problem

lim
ε→0

(
Vτ − LV +R(τ)ρinsS −M(τ)f − 1

ε
max(AV − V, 0)

)
= 0. (2.11)

In Section 6 we will show that a discrete version of equation (2.11) is consistent with equation
2.8. Here c > 0 is a small fixed cost added to the constraint to ensure that the impulse control
problem is well-posed. While our formulation requires that c > 0, the numerical scheme presented
subsequently accepts both c = 0 and c > 0. We expect in practice that very small values of c will
have little effect on the numerical solution obtained. This is confirmed by the examples included
in Section 8.

3 Pricing the GMDB Guarantee with Regime-Switching

The assumption of constant volatility for option contracts is well-known to be inconsistent with
the implied volatility observed in the market. In this section, we introduce the concept of regime-
switching to the GMDB impulse control problem in equation (2.11). The underlying assumption
is that the volatility switches randomly between a finite number of states or regimes. Each regime
has a different volatility value and is meant to represent a different economic state. While the
underlying account value follows a log-normal process within a given state, a jump in S occurs
when the state of the economy changes.

One could argue that stochastic volatility [35] is a valid alternative to regime-switching when
dealing with long-term contracts such as variable annuities. However, using a stochastic volatility
model implies solving a higher dimensional PDE. While both models are valid remedies to unrealistic
constant volatility models for long-term contracts, regime-switching appears to be less expensive
from a computational point of view and may be somewhat more intuitive.

Introduced in [23], the concept of regime-switching has since been used extensively when mod-
eling both interest rates [22, 39, 11] and pricing option contracts [7, 18, 40, 9, 8].

To extend our modelling framework to regime-switching, we introduce an additional model-
ing variable E which represents the current state of the economy and define M distinct states:
E ∈ {e1, e2, . . . , eM}. Associated with each state em is a constant volatility value denoted as σm.
Assuming we are in state em, the value of the GMDB guarantee is denoted as:

V m = V (S, B, D, em, t). (3.1)

For a given regime em, the value of the underlying investment account S follows (under the risk
neutral measure):

dS

S
=
(

r − ρtotal −
M∑
l=1
l 6=m

λm→l(Jm→l − 1)
)

dt + σmdZ +
M∑
l=1
l 6=m

(Jm→l − 1)dqm→l, (3.2)
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where dqm→l is an independent Poisson process and Jm→l ≥ 0 (l 6= m) is an impulse function
producing a jump from S to Jm→lS when the state of the economy changes from em to el. We
define λm→l (l 6= m) as the risk-neutral probability of a jump from economic state em to state el

and have (for l 6= m):

dqm→l =

{
0 with probability 1− λm→ldt,

1 with probability λm→ldt.
(3.3)

A system of coupled PDEs can then be derived to determine the value of the GMDB guarantee
in the regime-switching context. Each PDE represents a different economic state and can be written
as (see [11]) (assuming for the moment no withdrawal or lapsing):

V m
t +

(
r − ρtotal −

M∑
l=1
l 6=m

λm→l(Jm→l − 1)
)

SV m
S +

1
2
σ2

mS2V m
SS − rV m

−R(t)ρinsS +M(t)f +
M∑
l=1
l 6=m

λm→l(V (SJm→l, B, D, el, t)− V m) = 0. (3.4)

For a given regime em, the withdrawal constraint AV m = AV m(S, B, D, em, t) can be written as:

AV m ≡ max
(
−R(t)γ(t)S, max

W∈[0,S−ω]

(
V (S −W,max(B −W, 0),max(D −W, 0), em, t)

−R(t)γ(t)W
)
− c

)
, (3.5)

where c is a small fixed cost. We remark that determining the optimal withdrawal amount in
equation (3.5) is a local optimization problem whose solution is discussed in Section 5.3.

The jump condition applied at each ratchet date can be written as:

V (S, B+, D, em, t+o ) = V (S, B−, D, em, t−o ), (3.6)

where B+ = max(B−, S). The initial conditions for this pricing problem are similar to those
outlined in equation (2.4) and can be written as:

V (S, B, D, em, T ) = 0. (3.7)

Consequently, we obtain a set of M impulse control problems which are solved simultaneously
to determine the value of the GMDB guarantee. Assuming the economy is in state em, we solve
the following equation in terms of time to maturity (τ = T − t):

min
(

V m
τ − LV m +R(τ)ρinsS −M(τ)f, V m −AV m

)
= 0, (3.8)

where now V m = V (S, B, D, em, τ) and LV m is now defined as:

LV m =
1
2
σ2

mS2V m
SS +

(
r − ρtotal −

M∑
l=1
l 6=m

λm→l(Jm→l − 1)
)

SV m
S − rV m

+
M∑
l=1
l 6=m

λm→l(V (SJm→l, B, D, el, τ)− V m). (3.9)
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Equation (3.8) can also be written in penalized form:

lim
ε→0

(
V m

τ − LV m +R(τ)ρinsS −M(τ)f − 1
ε

max
(
AV m − V m, 0

))
= 0. (3.10)

This set of coupled PDEs is solved, working backward in time, using an iterative penalty scheme [20]
to determine the value of the guarantee at each timestep.

4 Boundary Conditions

For each regime em, the GMDB guarantee pricing problem in equation (3.10) is solved on an
S×B×D× τ domain. Since B = D0 at τ = T (or t = 0), equation (2.1) indicates that the benefit
level B can only increase, unless a withdrawal occurs. Similarly, D = D0 at τ = T and the deposit
D decreases only when a partial withdrawal occurs. Since D is reduced by the same amount as B
following a withdrawal, we have that B ≥ D and so the solution domain is

[0,∞]× [D,∞]× [0,D0]× [0, T ], (4.1)

where D0 is the initial investment deposit and T is the contract maturity. For numerical purposes,
we localize the problem to the following domain

[0, Smax]× [D,Bmax]× [0,D0]× [0, T ]. (4.2)

To localize the GMDB pricing problem, additional boundary conditions are necessary. As S →
0, the partial withdrawal policy is no longer applicable and the penalized problem in equation (3.10)
reduces to (noting the definition of f = f(S, B, D, τ) in equation (2.7)):

V m
τ + rV m −M(τ)(B + γ(τ)D) = 0. (4.3)

As S → Smax, we make the common assumption that V m
SS → 0 [38], which implies that V m is a

linear function of S, along with the additional assumption that the linear term dominates in size
(see Appendix C). In the case when the state of the economy does not change then using the above
assumptions, we obtain the following approximation to equation (3.10):

V m
τ + ρtotalV

m +R(τ)ρinsS −
1
ε

max(AV m − V m, 0) = 0 ; S = Smax. (4.4)

However the presence of jumps in S when the state of the economy changes requires careful con-
sideration when S → Smax. More specifically, the case when S jumps outside the discrete domain
following a regime change, i.e. SJm→l > Smax, must be dealt with in an appropriate manner. We
assume that any asset value that jumps outside the discrete S grid is set to Smax, which implies
that the jump size Jm→l (l 6= m) is now a function of S:

Jm→l(S) =

{
Jm→l when 0 ≤ S ≤ Smax

Jm→l ,
Smax

S when Smax

Jm→l < S ≤ Smax.
(4.5)

Again, this is an approximation, where we expect the error to be small as Smax →∞. This will be
verified in some numerical tests in Section 8.
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The penalized GMDB pricing equation with regime-switching can then be written as:

V m
τ − LV m +R(τ)ρinsS −M(τ)f − 1

ε
max

(
AV m − V m, 0

)
= 0, (4.6)

where:

LV m =
1
2
σ2

mS2V m
SS +

(
r − ρtotal −

M∑
l=1
l 6=m

λm→l(Jm→l(S)− 1)
)

SV m
S − rV m (4.7)

+
M∑
l=1
l 6=m

λm→l(V (Jm→l(S)S, B, D, el, τ)− V m).

As B → D, no additional boundary condition is required and the pricing equation in (3.10) is
solved. As B → Bmax, equation (3.10) is solved but the jump condition in equation (2.1) needs to
be modified to take into consideration the discrete solution domain. For those grid nodes where
S > Bmax, the discrete S × B plane does not contain the required data to calculate the jump
condition outlined in equation (2.1). We assume that no ratchet events occur for those nodes
where S > Bmax, which implies (in terms of τ = T − t):

V (S, B, D, em, τ+
o ) =


V (S, B, D, em, τ−o ) if S ≤ B,

V (S, S,D, em, τ−o ) if B < S ≤ Bmax,

V (S, B, D, em, τ−o ) if S > Bmax.

(4.8)

where τo denotes the ratchet date, while τ−o and τ+
o denote the instants immediately before and after

a ratchet event. This is clearly an approximation but the resulting error will be small, assuming
Bmax is chosen sufficiently large. Numerical tests conducted in Section 8 verify this to be the case.

In the D direction, no additional boundary condition is required as D → D0, since AV m

requires information only from problems where D < D0 (from equation (2.10)). As D → 0, the
partial withdrawal feature remains applicable and the usual pricing equation (3.10) is solved.

The boundary conditions for each regime can therefore be summarized as

V m
τ + rV m −M(τ)(B + γ(τ)D)−

M∑
l=1
l 6=m

λm→l(V (0, B, D, el, τ)− V m) = 0 for S =0, (4.9)

V m
τ +R(τ)ρinsS + ρtotalV

m −
M∑
l=1
l 6=m

λm→lJm→l(S)
(
V (S, B, D, el, τ)− V m

)

−1
ε

max(AV m − V m, 0) = 0 for S =Smax, (4.10)

while the usual pricing equation in (4.6) is solved on the boundaries of the B ×D plane.
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5 Numerical Solution of the GMDB Problem with Regime-Switching

In this section, we present details for the numerical solution of the GMDB pricing problem. Sec-
tion 5.1 describes the construction of the underlying grid in each regime, while Section 5.2 presents
the discrete equations for the GMDB pricing problem. Finally, Section 5.3 discusses how the local
optimization problem is handled when determining the value of the partial withdrawal constraint.

5.1 Construction of the Underlying Grid

The regime-switching pricing problem requires the addition of a fourth dimension to the solution
domain. As such, we build a discrete S × B × D × E domain where the E grid contains M
nodes. The pricing equations for each economic state em are solved on a discrete three-dimensional
[0, Smax] × [D,Bmax] × [0,D0] grid. The three-dimensional S × B × D grid is identical for each
economic state em and its construction is now described in more detail.

A set of discrete nodes is built in the D direction and denoted as {Dk}, for k = 0, . . . , kmax.
Note that D0 = 0 and Dkmax = D0, where D0 is the initial deposit made by the policy owner.
Associated with each Dk value is a two-dimensional S × B plane. Since equation (2.11) contains
no derivatives in the B direction, each S × B plane is a collection of one-dimensional problems.
As the domain definition for B depends on Dk, we begin by building a S × B grid on the larger
[0, Bmax]× [0, Smax] domain which is then truncated to the required size.

To construct the S×B grid, we build a set of nodes over the domain [0, Bmax] which we denote
by {Bl} for l = 0, . . . , lmax where:

• B0 = 0 and Blmax = Bmax,

• each of the nodes in {Dk} is also included in the grid {Bl}, i.e. {Dk} ⊂ {Bl}, and

• the bulk of the nodes in {Bl} are placed around the initial deposit amount D0.

For a fixed Bl, we construct a set of S nodes {Sl
i} as follows:

Sl
i = Bi

Bl

D0
for i = 0, . . . , lmax − 1,

Sl
imax

=
(Blmax)

2

D0
. (5.1)

The main characteristic of the grid construction defined in equation (5.1) is that the bulk of the
nodes in the S direction are placed around the current benefit level Bl. This scaled grid construction
enables a more precise calculation of the jump condition in equation (4.8). Note that interpolation
is generally required when calculating the jump condition in (4.8) on a scaled grid.

As specified previously, the discrete S ×B grid is truncated according to the deposit value Dk

to which it is associated. Therefore, assuming we have determined the index p such that Bp = Dk,
the grid along the B direction is truncated such that:

Bk
j = Bp+j for j = 0, . . . , jmax. (5.2)

The resulting S ×B grid for a fixed deposit amount Dk is shown in Figure 5.1.
This grid construction ensures that we use the minimum number of nodes to solve the GMDB

pricing problem for each economic state em. The final three-dimensional S × B × D domain is
presented in Figure 5.2.
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B

B

0 S = B S Smax

max

maxS = D
B = D

Figure 5.1: Representation of a [0, Smax] × [D,Bmax] plane where each one-dimensional S grid is
built using the scaled grid technique defined in equation (5.1).

5.2 Discrete Equations

Let us now consider the discretization of equation (3.8) on the S×B×D×E domain. We denote the
discrete value as V n+1

i,j,k,m = V (Sj
i , B

k
j , Dk, em, τn+1), while AhV n+1

i,j,k,m = AV (Sj
i , B

k
j , Dk, em, τn+1)

represents the discrete version of the withdrawal constraint defined in equation (3.5). In terms of
notation, discrete operators will be denoted as Ah and Lh where the superscript h represents the
space discretization parameter.

Assuming fully implicit timestepping is used, the discrete form of equation (3.8) is obtained by
applying standard finite difference approximations:

V n+1
i,j,k,m − V n

i,j,k,m

∆τ
= [LhV ]n+1

i,j,k,m −R
n+1ρinsS

j
i +Mn+1fn+1

i,j,k +
µn+1

i,j,k,m

ε

(
AhV n+1

i,j,k,m − V n+1
i,j,k,m

)
, (5.3)

where

Mn+1 = M(τn+1), Rn+1 = R(τn+1), γn+1 = γ(τn+1), (5.4)

fn+1
i,j,k = f(Sj

i , B
k
j , Dk, τ

n+1) = max(Bk
j − Sj

i , 0) + γn+1Dk, (5.5)

µn+1
i,j,k,m =

{
1 if AhV n+1

i,j,k,m > V n+1
i,j,k,m,

0 otherwise.
(5.6)

The discrete differential operator Lh can be written as:

[LhV ]n+1
i,j,k,m = αi,j,mV n+1

i−1,j,k,m + βi,j,mV n+1
i+1,j,k,m − (αi,j,m + βi,j,m + r)V n+1

i,j,k,m

+
M∑
l=1
l 6=m

λm→l(H(Jm→l)iV
n+1
j,k,l − V n+1

i,j,k,m), (5.7)

where αi,j,m, βi,j,m are defined in Appendix D and satisfy:

αi,j,m ≥ 0 ; βi,j,m ≥ 0 ∀i, j, m, (5.8)
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maxS0

B

B

B = D
D

Dmax

max

S

Figure 5.2: Three dimensional solution domain to price the GMDB guarantee in economic state
em. Each S ×B plane is constructed as in Figure 5.1.

and H(Jm→l)iV
n+1
j,k,l represents the interpolated guarantee value in regime el when the asset price

jumps to Jm→l(S)S. Assuming linear interpolation is chosen, we have:

H(Jm→l)iV
n+1
j,k,l = (1− wi,j,m)V n+1

a,j,k,l + wi,j,mV n+1
a+1,j,k,l , (5.9)

where Sj
a ≤ Jm→l(Sj

i )S
j
i ≤ Sj

a+1 and the interpolation weight 0 ≤ wi,j,m ≤ 1 can be written as:

wi,j,m =
Jm→l(Sj

i )S
j
i − Sj

a

Sj
a+1 − Sj

a

. (5.10)

Since the node (Sj
i − W,max(Bk

j − W, 0),max(Dk,−W, 0)) does not always coincide with an
existing grid node, interpolation must be used when calculating the discrete withdrawal constraint
AhV n+1

i,j,k,m. We define the vector I(W )i,j,k as the interpolation operator used when calculating the
value of the GMDB guarantee following a withdrawal W . Thus, we have:

AhV n+1
i,j,k,m =max

(
−Rn+1γn+1Sj

i , max
W∈[0,Sj

i−ω]

[
I(W )i,j,kV

n+1
m −Rn+1γn+1W

]
− c

)
, (5.11)

where V n+1
m is a vector containing the GMDB values for regime em:

V n+1
m =


V n+1

0,0,0,m

V n+1
1,0,0,m

...
V n+1

imax−1,jmax,kmax,m

V n+1
imax,jmax,kmax,m

 , (5.12)

and I(W )i,j,k can be written as follows assuming linear interpolation:

I(W )i,j,kV
n+1
m =

∑
u,v,w

ηu,v,w,mV n+1
u,v,w,m , (5.13)
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where 0 ≤ ηu,v,w,m ≤ 1 are the interpolation weights and:∑
u,v,w

ηu,v,w,m = 1. (5.14)

Letting Wn+1
i,j,k,m denote the optimal withdrawal amount at node (Sj

i , B
k
j , Dk, em) and time τn+1,

and defining the indicator variable an+1
i,j,k,m as:

an+1
i,j,k,m =

{
1 if it is optimal to lapse,
0 if it is optimal to withdraw Wn+1

i,j,k,m,
(5.15)

we can rewrite equation (5.11) as:

AhV n+1
i,j,k,m = −an+1

i,j,k,mRn+1γn+1Sj
i + (1− an+1

i,j,k,m)
(
I(Wn+1

i,j,k,m)i,j,kV
n+1
m −Rn+1γn+1Wn+1

i,j,k,m − c
)

.

(5.16)
The numerical scheme in equation (5.3) is a positive coefficient discretization [19] when the

following definition is satisfied.

Definition 5.1 (Positive Coefficient Scheme). The numerical scheme defined in equation (5.3) is
a positive coefficient discretization when:

αi,j,m , βi,j,m ≥ 0, ∀i, j, m ,

r ≥ 0 ,

λm→l ≥ 0, when m 6= l ,

and the interpolation operators H(Jm→l)i and I(W )i,j,k represent linear interpolation.

Since αi,j,m, βi,j,m ≥ 0 by construction (see Appendix D), λm→l ≥ 0, when m 6= l and r ≥ 0 for
all problems considered, the numerical scheme in (5.3) is a positive coefficient scheme.

5.3 Optimal Withdrawal

In this section, we outline the method used to determine the optimal withdrawal W when calcu-
lating the constraint in equation (3.5) at a discrete grid node (Sj

i , B
k
j , Dk, em). We solve this local

optimization problem by considering all possible discrete withdrawals.
After checking that a withdrawal is possible by verifying Sj

i > ω, where ω is the minimal deposit
amount, we carry out a linear search over all possible discrete withdrawals W̄ where:

W̄ = min(Sj
l , S

j
i − ω), (5.17)

assuming Sj
l < Sj

i . For each W̄ considered, we calculate the effect of the partial withdrawal to the
issuer, denoted by A(W̄ ):

A(W̄ ) = I(W̄ )i,j,kV
n+1
m −Rn+1γn+1W̄ , (5.18)

where I(W̄ )i,j,k is defined in (5.13).
The optimal withdrawal is determined by taking the maximum of A(W̄ ) over all discrete with-

drawals W̄ and the final withdrawal constraint for node (Sj
i , B

k
j , Dk, em) is computed as

AhV n+1
i,j,k,m = max

(
−Rn+1γn+1Sj

i ,max
W̄

[
A(W̄ )

]
− c

)
. (5.19)

This search procedure is summarized in Algorithm 5.1.

12



W̄ = 0 ; A = 0 ; Amax = 0

if Sj
i > ω then

Determine maximum withdrawal: W̄ = Sj
i − ω

Calculate: Amax = I(W̄ )i,j,kV
n+1
m −Rn+1γn+1W̄

Determine index imax s.t.: Sj
i−1 < Sj

imax
< Sj

i − ω

for l = 0, . . . , imax do
Determine withdrawal: W̄ = Sj

l

Calculate: A = I(W̄ )i,j,kV
n+1
m −Rn+1γn+1W̄

Amax = max(A,Amax)
end for

end if

AhV n+1
i,j,k = max

(
Amax − c,−Rn+1γn+1Sj

i

)
Algorithm 5.1: Calculation of Withdrawal Constraint for GMDB Contracts

6 Convergence to the Viscosity Solution

In [32], the authors demonstrate how some reasonable discretization schemes either never converge
or converge to a wrong solution. Thus, it is important to ensure that our discretization method
converges to the unique viscosity solution [16], which corresponds to the financially relevant solution.
Assuming that a unique, continuous viscosity solution to equation (5.3) exists, the numerical scheme
in (5.3) converges to the viscosity solution away from the ratchet dates if it satisfies certain stability,
consistency and monotonicity requirements [3, 5].

Assuming a given state em, the solution domain for the GMDB pricing problem in equation (3.8)
is [0, Smax]× [D,Bmax]× [0,D0]. When working backward in time, we denote the ratchet dates as
τu
o for u = 0, . . . , umax, and use τu−

o and τu+
o to denote the times right before and after a ratchet

event. Thus, we define the solution domains Πu and Π by:

Πu = [0, Smax]× [D,Bmax]× [0,D0]× [τu+
o , τ (u+1)−

o ] for u = 0, . . . , umax − 1, and (6.1)

Π =
⋃
u

Πu = [0, Smax]× [D,Bmax]× [0,D0]×
⋃
u

[τu+
o , τ (u+1)−

o ]. (6.2)

This enables us to define the pricing problem for the GMDB guarantee in detail.

Definition 6.1 (GMDB Pricing Problem with Discrete Ratchets). The pricing problem for the
GMDB guarantee with discrete ratchet events is defined in Π as follows: within each domain Πu, for
u = 0, . . . , umax−1, we determine the solution to the pricing problem presented in equation (3.8) with
initial conditions expressed in equation (3.7) when u = 0 or in equation (4.8) when u > 0, boundary
conditions described in equations (4.9)–(4.10) and localization conditions in equations (4.5) and
(4.8).

Remark 6.2. Note that we have not defined the pricing problem for the GMDB guarantee over the
entire contract lifetime τ ∈ [0, T ] since the solution can be discontinuous across ratchet dates τu

o ,
for u = 0, . . . , umax − 1, due to the no-arbitrage condition in equation (4.8).
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Assumption 6.3. We assume that a unique, continuous viscosity solution exists [3, 26, 30] for
the localized pricing problem in Definition 6.1 which satisfies equations (4.9)–(4.10) and localization
conditions in equations (4.5) and (4.8). More specifically, we assume that the unique viscosity
solution is continuous within each domain Πu, for u = 0, . . . , umax − 1.

Remark 6.4. A unique, continuous viscosity solution exists if the PDE satisfies a strong com-
parison property. In a financial context, the strong comparison property states that if U(S, τ) and
V (S, τ) are two contingent claims with U(S, 0) ≥ V (S, 0), then U(S, τ) ≥ V (S, τ) for any time
τ [14]. Strong comparison has been shown to hold for similar (but not identical) scaler impulse
control problems in [34, 1, 25]. In the regime switching case, existence of a continuous, viscosity
solution is shown using properties of the value function [30]. Note that the definition of viscosity
solution has to be generalized for systems of weakly coupled PDEs, such as regime switching models
[26, 30].

If Assumption 6.3 holds, then showing that the discrete equations are monotone, stable and
consistent will enable us to conclude that the solution of the numerical scheme in equation (5.3)
converges to the unique viscosity solution of the pricing problem outlined in Definition 6.1.

6.1 Stability

We begin by showing that the discrete equations in (5.3) satisfy the l∞-stability requirement which
involves demonstrating that the discrete contract value V n+1

i,j,k,m is bounded. We define:

∆Sj
max = max

i
(Sj

i+1 − Sj
i ), ∆Bk

max = max
j

(Bk
j+1 −Bk

j ), ∆Dmax = max
k

(Dk+1 −Dk) and ∆τ =
T

N
.

Definition 6.5 (Stability). For fixed Smax, Bmax and T , the numerical scheme presented in equa-
tion (5.3) is l∞-stable if:

||V n||∞ ≤ C (6.3)

for 0 ≤ n ≤ N , as ∆τ → 0, maxj ∆Sj
max → 0, maxk ∆Bk

max → 0, ∆Dmax → 0 and ε → 0. The
constant C is independent of ∆τ , ∆Sj

max, ∆Bk
max, ∆Dmax and ε.

For notational convenience, we make the following assumption.

Assumption 6.6. We assume that ∆Bk
max, ∆Sj

max, ∆τ and ε are parametrized by:

∆Bk
max = c0h, ∆Sj

max = c1h, ∆τ = c2h and ε = c3h,

with c0, c1, c2 and c3 constants.

Theorem 6.7. Assume the numerical scheme satisfies Definition 5.1, that the boundary conditions
are described by the discrete version of equations (4.9)–(4.10), that the initial conditions are given
by the discrete version of equation (3.7) and that fully implicit timestepping is used. Then:

−Sj
i ≤ V n+1

i,j,k,m ≤ Cn+1
0 Bmax + Cn+1

1 Dmax ∀i, j, k,m, n, (6.4)

where the constants 0 ≤ Cn+1
0 ≤ 1 and 0 ≤ Cn+1

1 are defined as:

Cn+1
0 = ∆τ

n+1∑
i=0

Mi and Cn+1
1 = ∆τ

n+1∑
i=0

Miγi. (6.5)
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Proof. See Section 7.1.

Theorem 6.7 enables us to conclude that the numerical scheme for V n+1
i,j,k,m, as defined in equa-

tion (5.3), is stable according to Definition 6.5.

6.2 Monotonicity

In this section, we show that the discrete equations presented in (5.3) are monotone. To facilitate
exposition, we denote the discrete equations on interior nodes (when Sj

i < Smax) as:

G
(
h, x, V n+1

i,j,k,m, V n
i,j,k,m, {V n+1

a,p,u,l}
)

=
V n+1

i,j,k,m − V n
i,j,k,m

∆τ
− [LhV ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

− 1
ε

max
(
AhV n+1

i,j,k,m − V n+1
i,j,k,m, 0

)
, (6.6)

where x = (Sj
i , B

k
j , Dk, em, τn+1), h is the discretization parameter, and {V n+1

a,p,u,l} represents all
discrete nodes, other than V n+1

i,j,k,m and V n
i,j,k,m, included in the discrete equations. Similarly, at the

boundary when Sj
i = Smax, the discretization is given as:

G
(
h, x, V n+1

imax,j,k,m, V n
imax,j,k,m, {V n+1

a,p,u,l}
)

=
V n+1

imax,j,k,m − V n
imax,j,k,m

∆τ
+ ρtotalV

n+1
imax,j,k,m +Rn+1ρinsS

j
imax

−
M∑
l=1
l 6=m

λm→lJm→l
imax

(V n+1
imax,j,k,l − V n+1

imax,j,k,m)− 1
ε

max
(
AhV n+1

imax,j,k,m − V n+1
imax,j,k,m, 0

)
. (6.7)

Definition 6.8 (Monotonicity). The numerical scheme G(h, x, V n+1
i,j,k,m, V n

i,j,k,m, {V n+1
a,p,u,l}) presented

in equations (6.6) and (6.7) is monotone if for all Y n
i,j,k,m ≥ V n

i,j,k,m:

G(h, x, V n+1
i,j,k,m, Y n

i,j,k,m, {Y n+1
a,p,u,l})− G(h, x, V n+1

i,j,k,m, V n
i,j,k,m,{V n+1

a,p,u,l}) ≤ 0. (6.8)

Note that this definition of monotonicity is equivalent to the one presented in [3].

Theorem 6.9 (Monotone Discretization). Assuming that the discretization satisfies Condition (5.1),
the numerical scheme G(h, x, V n+1

i,j,k,m, V n
i,j,k,m, {V n+1

a,p,u,l}) defined in equations (6.6) and (6.7), is
monotone.

Proof. Notice that the numerical scheme presented in equations (6.6) and (6.7) is a positive coeffi-
cient discretization since it satisfies Condition 5.1. In [19], the authors demonstrate that a positive
coefficient discretization of a control problem, such as the one considered here, is monotone. Using
the same technique as in [19], it is straightforward to show that the numerical scheme presented in
equations (6.6) and (6.7) is monotone and satisfies Definition 6.8.
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6.3 Consistency

We now show that the numerical scheme in equation (5.3) is consistent. For the GMDB pricing
problem, the impulse control problem can be written in compact form as:

F (V (x)) = 0 for all x = (S, B, D, em, τ), (6.9)

where

F (V (x)) =

{
Fin(V (x)) if S < Smax,

Fbound(V (x)) if S = Smax.
(6.10)

The continuous problem evaluated at discrete interior nodes when Sj
i < Smax is then:

Fin(V )n+1
i,j,k,m =

[
min

(
Vτ − LV +R(τ)ρinsS −M(τ)f, V −AV

)]n+1

i,j,k,m

= 0, (6.11)

while at boundary nodes when Sj
i = Smax we have:

Fbound(V )n+1
imax,j,k,m =

[
min

(
Vτ + ρtotalV −

M∑
l=1
l 6=m

λm→lJm→l(S)
(
V (S, B, D, el, τ)− V

)
+R(τ)ρinsS,

V −AV

)]n+1

imax,j,k,m

= 0, (6.12)

where the continuous operator L is defined in equation (3.9) and f = f(S, B, D, τ) is defined in
equation (2.7).

Since ε > 0, the discrete scheme in equation (6.6) can be rewritten as:

Ĝ
(
h, x, V n+1

i,j,k,m, V n
i,j,k,m, {V n+1

a,p,u,l}
)

=

min

(
ε

(
V n+1

i,j,k,m − V n
i,j,k,m

∆τ
− [LhV ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
+ V n+1

i,j,k,m −AhV n+1
i,j,k,m,

V n+1
i,j,k,m − V n

i,j,k,m

∆τ
− [LhV ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
= 0, (6.13)

at interior nodes when Sj
i < Smax, while equation (6.7) can be rewritten as:

Ĝ
(
h, x, V n+1

imax,j,k,m, V n
imax,j,k,m, {V n+1

a,p,u,l}
)

= min

(
ε

(
V n+1

imax,j,k,m − V n
imax,j,k,m

∆τ
+ ρtotalV

n+1
imax,j,k,m

−
M∑
l=1
l 6=m

λm→lJm→l
imax

(V n+1
imax,j,k,l − V n+1

imax,j,k,m) +Rn+1ρinsS
j
imax

)

+ V n+1
imax,j,k,m −AhV n+1

imax,j,k,m,
V n+1

imax,j,k,m − V n
imax,j,k,m

∆τ
+ ρtotalV

n+1
imax,j,k,m

−
M∑
l=1
l 6=m

(λm→lJm→l)imax(V
n+1
imax,j,k,l − V n+1

imax,j,k,m) +Rn+1ρinsS
j
imax

)
= 0, (6.14)
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on the boundary when Sj
i = Smax.

To formally define the notion of consistency, we require the concept of upper and lower semi-
continuous envelope of a function.

Definition 6.10. Assume we have a function f : C → R where C is a topological space. Then the
upper semi-continuous and lower semi-continuous envelopes of f are defined as:

f∗(y) = lim sup
x→y
y∈C

f(x) and f∗(y) = lim inf
x→y
y∈C

f(x). (6.15)

Definition 6.11 (Consistency). For any smooth test function φ with bounded derivatives of all
orders with respect to S and τ , the numerical scheme Ĝ(h, x, φn+1

i,j,k,m, φn
i,j,k,m, {φn+1

a,p,u,l}) is consistent

if, for all points in the domain x̂ = (Ŝ, B̂, D̂, em, τ̂) with x = (Sj
i , B

k
j , Dk, em, τn+1), we have:

lim sup
h,ξ→0

x→x̂

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φn
i,j,k,m + ξ, {φn+1

a,p,u,l + ξ}
)
≤ F ∗(φ(x̂)), (6.16)

lim inf
h,ξ→0

x→x̂

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φn
i,j,k,m + ξ, {φn+1

a,p,u,l + ξ}
)
≥ F∗(φ(x̂)), (6.17)

where φn
i,j,k,m = φ(Sj

i , B
k
j , Dk, em, τn) and ξ ≥ 0.

Remark 6.12 (Continuous Scheme). When the numerical scheme is continuous over the entire
domain (both interior nodes and boundary), the conditions in equations (6.16) and (6.17) reduce
to:

lim
h→0

∣∣∣∣∣F (φ)n+1
i,j,k,m − Ĝ

(
h, x, φn+1

i,j,k,m, φn
i,j,k,m, {φn+1

a,p,u,l}
)∣∣∣∣∣ = 0. (6.18)

Equation (6.18) is the typical formulation used when verifying consistency of a numerical scheme
and applies, for example, to cases where the equation on the boundary is obtained by taking the limit
of the equation on the interior nodes. Unfortunately, this is not the case for our GMDB pricing
model which is why the consistency requirements are outlined as in equations (6.16) and (6.17).

Theorem 6.13 (Consistent Discretization). The numerical scheme presented in equation (5.3) is
consistent according to Definition 6.11.

Proof. See Appendix 7.2.

7 Proofs of Stability and Consistency of Discretization

In this section we give proofs of both stability and consistency of our discretization in order to
complete our theoretical analysis of the previous section. We note that such proofs are usually
loosely presented without any details. However the details are often subtle and in order to ensure
correctness we give the complete proofs.
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7.1 Proof of Theorem 6.7

In this subsection, we show that the discrete GMDB cost V n+1
i,j,k,m is bounded. Before proving

Theorem 6.7, we prove some utility lemmas. We define the vector V n+1 as:

V n+1 =


V n+1

1

V n+1
2
...

V n+1
M

 , (7.1)

where V n+1
m is defined in equation (5.12) and the κth entry of V n+1 is denoted as [V n+1]i,j,k,m

where:

κ = (i + 1) + j(imax + 1) + k(imax + 1)(jmax + 1) + (m− 1)(imax + 1)(jmax + 1)(kmax + 1).

Let Pn+1 be defined as:

[Pn+1Zn+1]i,j,k,m =

(
1 + ∆τ

(
αi,j,m + βi,j,m + r +

M∑
l=1
l 6=m

λm→l

))
Zn+1

i,j,k,m −∆ταi,j,mZn+1
i−1,j,k,m

−∆τβi,j,mZn+1
i+1,j,k,m −∆τ

M∑
l=1
l 6=m

λm→lH(Jm→l)iZn+1
j,k,l (7.2)

when i < imax and

[Pn+1Zn+1]imax,j,k,m =

(
1 + ∆τ

(
ρtotal +

M∑
l=1
l 6=m

λm→lJm→l
imax

))
Zn+1

imax,j,k,m

−∆τ

M∑
l=1
l 6=m

λm→lJm→l
imax

Zn+1
imax,j,k,l (7.3)

when i = imax. Also, let Qn+1(V n+1) be defined by:

[Qn+1(V n+1)Zn+1]i,j,k,m =[Pn+1Zn+1]i,j,k,m +
∆τµn+1

i,j,k,m

ε
Zn+1

i,j,k,m

−
∆τµn+1

i,j,k,m

ε
(1− an+1

i,j,k,m)I(Wn+1
i,j,k,m)i,j,kZn+1

m , (7.4)

valid for all i. Here, µn+1
i,j,k,m is defined in equation (5.6), an+1

i,j,k,m is defined in equation (5.15) and
the interpolation operators H(Jm→l)i and I(Wn+1

i,j,k,m)i,j,k are defined in equations (5.9) and (5.13)
respectively. The matrix Qn+1(V n+1) is the matrix of coefficients for all terms involving elements
from V n+1 in the discretization (5.3). Note that Qn+1(V n+1) is a function of the solution since the
interpolation operators, the µ and a values all depend on the solution.

It is useful to note the following property of the coefficient matrices Pn+1 and Qn+1(V n+1).

18



Lemma 7.1 (M-matrix). The matrices Pn+1 and Qn+1(V n+1) as defined in equations (7.2),(7.3)
and (7.4) are M-matrices for any V n+1.

Proof. The diagonal entries in Pn+1 are positive while the off-diagonal entries are negative or equal
to zero. In addition, the row sum of the entries in both matrices are strictly positive for all rows.
The above are also true for the matrixQn+1(V n+1) for any V n+1. Thus both Pn+1 andQn+1(V n+1)
are M-matrices.

Remark 7.2. We remark that an M-matrix has the important property that it is invertible with
a positive inverse. In particular, for any vector Z, Pn+1Z ≥ 0 or Qn+1(V n+1)Z ≥ 0 implies that
Z ≥ 0.

Lemma 7.3. The following are true.

(a) Let [Zn+1]i,j,k,m = Cn+1
0 Bmax + Cn+1

1 Dmax (with Cn+1
0 , Cn+1

1 defined in (6.5)). Then:

Qn+1(V n+1)Zn+1 > Zn+1

for any V n+1.

(b) Let [Zn+1]i,j,k,m = Sj
i . Then3:

Pn+1Zn+1 = (1 + ρtotal∆τ)Zn.

(c) Let Z solve the discrete equations (5.3). Then:

Qn+1(Zn+1)Zn+1 = Zn + ∆τRestn+1,

where for all i (since fimax,j,k = 0)

[Restn+1]i,j,k,m = Mn+1fi,j,k −Rn+1ρinsS
j
i −

µn+1
i,j,k,m

ε

[
an+1

i,j,k,mR
n+1γn+1Sj

i

+(1− an+1
i,j,k,m)(Rn+1γn+1Wn+1

i,j,k,m + c)
]

(7.5)

denotes the constant terms of the discretization.

(d) Let Z solve the discrete equations (5.3). Then:

Pn+1Zn+1 = Zn + ∆τRestn+1,

where for all i (since fimax,j,k = 0)

[Restn+1]i,j,k,m = Mn+1fi,j,k −Rn+1ρinsS
j
i +

µn+1
i,j,k,m

ε

[
−an+1

i,j,k,mR
n+1γn+1Sj

i (7.6)

+(1− an+1
i,j,k,m)(I(Wn+1

i,j,k,m)i,j,kZn+1
m −Rn+1γn+1Wn+1

i,j,k,m − c)−Zn+1
i,j,k,m

]
.

3Note that this is trivially true at Sj
0 = 0.
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Proof. Identity (a) follows by looking at the i, j, k,m components of the matrix form of P and Q.
For example, when i < imax we have

[Qn+1(V n+1)Zn+1]i,j,k,m = (1 + ∆τ(r + ai,j,k,m
µi,j,k,m

ε
))[Zn+1]i,j,k,m

> [Zn+1]i,j,k,m

with a similar inequality when i = imax. A similar argument holds for identity (b). Identities (c)
and (d) follow directly from the definitions of Q and P and the discretization in (5.3).

We now present the proof of Theorem 6.7.

Proof. (of Theorem 6.7)
Let Zn be the vector defined by [Zn]i,j,k,m = Sj

i + V n
i,j,k,m for all i, j, k,m. We will use induction to

show that Zn ≥ 0 for all n.
Notice that [Z0]i,j,k,m = Sj

i + V 0
i,j,k,m = Sj

i ≥ 0. Assume now that n > 0 and that Zn ≥ 0.
Then, from Lemma 7.3(b)(d) we have:

[Pn+1Zn+1] = Zn + ∆τGn+1, (7.7)

with (since fi,j,k ≥ 0)

[Gn+1]i,j,k,m ≥ (ρtotal −Rn+1ρins)S
j
i +

µn+1
i,j,k,m

ε

[
−an+1

i,j,k,mR
n+1γn+1Sj

i

+(1− an+1
i,j,k,m)(I(Wn+1

i,j,k,m)i,j,kV
n+1
m −Rn+1γn+1Wn+1

i,j,k,m − c)− V n+1
i,j,k,m

]
.(7.8)

Note that ρtotal − Rn+1ρins ≥ 0. Furthermore, notice that µn+1
i,j,k,m = 1 only when (see equa-

tion (5.6)):

−an+1
i,j,k,mR

n+1γn+1Sj
i +(1−an+1

i,j,k,m)(I(Wn+1
i,j,k,m)i,j,kV

n+1
m −Rn+1γn+1Wn+1

i,j,k,m−c)−V n+1
i,j,k,m > 0 (7.9)

and µn+1
i,j,k,m = 0 otherwise. Hence, equation (7.8) implies that [Gn+1]i,j,k,m ≥ 0.

Since Zn ≥ 0, we see that Pn+1Zn+1 ≥ 0 and, since Pn+1 is an M-matrix, Zn+1 ≥ 0. Thus, by
induction Zn ≥ 0 for all n, proving the first inequality of (6.4).

Now let Z be the vector defined by [Zn]i,j,k,m = Cn
0 Bmax + Cn

1 Dmax for all i, j, k,m. We will
prove the second inequality of (6.4) by using induction to show that Zn − V n ≥ 0 for all n. Since
(see equation (6.5)):

[Z0 − V 0]i,j,k,m = ∆τM0 Bmax + ∆τM0γ0Dmax ≥ 0, (7.10)

the result is true for n = 0. Assume that n > 0 and that Zn − V n ≥ 0. From Lemma 7.3(a) along
with the definition of Cn

0 and Cn
1 (see equation (6.5)) we have:

Qn+1(V n+1)Zn+1 > Zn+1 = Zn + ∆τ [Mn+1Bmax +Mn+1γn+1Dmax].

Hence, using Lemma 7.3(c) gives:

Qn+1(V n+1)(Zn+1 − V n+1) > (Zn − V n) + ∆τ [Mn+1Bmax +Mn+1γn+1Dmax]−∆τRestn+1,
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where the components of Restn+1 are given in equation (7.5). Let

G = [Mn+1Bmax +Mn+1γn+1Dmax]− Restn+1.

Then, for i < imax, and using:

0 ≤ fn+1
i,j,k = max(Bk

j − Sj
i , 0) + γn+1Dk ≤ Bmax + γn+1Dmax , (7.11)

we have:

[G]i,j,k,m = Mn+1
(
Bmax + γn+1Dmax − fi,j,k

)
+Rn+1ρinsS

j
i

+
µn+1

i,j,k,m

ε

[
an+1

i,j,k,mR
n+1γn+1Sj

i + (1− an+1
i,j,k,m)(Rn+1γn+1Wn+1

i,j,k,m + c)
]

≥ Rn+1ρinsS
j
i

+
µn+1

i,j,k,m

ε

[
an+1

i,j,k,mR
n+1γn+1Sj

i + (1− an+1
i,j,k,m)(Rn+1γn+1Wn+1

i,j,k,m + c)
]

≥ 0, (7.12)

since there are only positive terms in the expression. This is also the case when i = imax. As
before, Zn − V n ≥ 0 so that Qn+1(V n+1)(Zn+1 − V n+1) ≥ 0 and, since Qn+1(V n+1) is an M-
matrix, Zn+1 − V n+1 ≥ 0. Hence, by induction, Zn − V n ≥ 0 for all n.

Thus, we have shown that V n+1
i,j,k,m is bounded with:

−Sj
i ≤ V n+1

i,j,k,m ≤ Cn+1
0 Bmax + Cn+1

1 Dmax for all i, j, k,m, n. (7.13)

Note that the bound presented in equation (7.13) also holds immediately after each ratchet date
τu+
o . Recall that the value of the GMDB guarantee is updated on each ratchet date τu

o according
to equation (4.8), which implies (for the continuous problem):

V m(S, B, D, em, τu+
o ) =


V m(S, B, D, em, τu−

o ) if S ≤ B,

V m(S, S,D, em, τu−
o ) if B < S ≤ Bmax,

V m(S, B, D, em, τu−
o ) if S > Bmax.

(7.14)

Equation (7.14) implies that the bound for V n+1
i,j,k,m presented in equation (7.13) remains applicable

at times τu+
o .

Remark 7.4 (Tighter Upper Bound). We remark that it is possible to obtain the tighter bound for
V n+1

i,j,k,m:

−Sj
i ≤ V n+1

i,j,k,m ≤ Cn+1
0 Bmax + Cn+1

1 Dk for all i, j, k,m, n. (7.15)

However, bound (6.4) is sufficient for our purposes.
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7.2 Proof of Theorem 6.13

In this subsection, we show that the numerical scheme in equation (5.3) is consistent. Before
proving Theorem 6.13, we prove an important lemma.

Lemma 7.5. For any smooth test function φ with bounded derivatives of all orders with respect to
S and τ , with x = (Sj

i , B
k
j , Dk, em, τn+1), we have (see equation (6.13)):

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φn
i,j,k,m + ξ, {φn+1

a,p,u,l + ξ}
)
− F (φ)n+1

i,j,k,m = O(h) + ξb(x), (7.16)

where b(x) is a bounded function of x with |b(x)| ≤ max(r, ρtotal).

Proof. To prove Lemma 7.5, we consider the truncation error for the differential operator L and
the penalty term.

Let
[Lφ]n+1

i,j,k,m (7.17)

represent the continuous operator L at node (Sj
i , B

k
j , Dk, em, τn+1), while the discrete version of

the operator is denoted by: [
Lhφ

]n+1

i,j,k,m
. (7.18)

Using Taylor series expansion, we have:[
Lh(φ + ξ)

]n+1

i,j,k,m
−[Lφ]n+1

i,j,k,m = −rξ + O(∆Sj
max), (7.19)

when computing Hiφ
n+1
j,k,l using linear interpolation (see equation (5.9)).

Similarly, we assume that:
[Aφ]n+1

i,j,k,m (7.20)

represents the continuous withdrawal constraint evaluated at node (Sj
i , B

k
j , Dk, em, τn+1), while the

discrete version of the withdrawal constraint is denoted as:

[Ahφ]n+1
i,j,k,m. (7.21)

Recall that the discrete withdrawal constraint is determined by linear search as in Algorithm 5.1.
The discretization error associated with the penalty term occurs when it is optimal for the

owner to conduct a withdrawal, as opposed to lapsing his policy. Indeed, interpolation is required
when calculating the penalty term when a withdrawal occurs, but not when the owner lapses (see
equation (5.11)). Since the maximum of a linearly interpolated value is obtained at the nodes, the
linear interpolation truncation error is O(h2) (noting Assumption 5.6). Taking the maximum of the
linear interpolation function, as done in Algorithm 5.1, is also second order correct. Assuming two-
dimensional linear interpolation is used when calculating the withdrawal constraint as described
in equation (5.13), the interpolation error will be O(∆Sj

max∆Bu
max). Therefore, we obtain (from

equation (5.16)):

[Ah(φ + ξ)]n+1
i,j,k,m − [Aφ]n+1

i,j,k,m = ξ + O(∆Sj
max∆Bu

max) + O(h2) (7.22)

when it is optimal to withdraw and 0 when it is optimal to lapse.
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Recall from equation (6.6) that the discrete scheme G
(
h, x, V n+1

i,j,k,m, V n
i,j,k,m, {V n+1

a,p,u,l}
)

is denoted

as follows on interior nodes when Sj
i < Smax:

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k −

1
ε

max
(
[Ahφ]n+1

i,j,k,m − φn+1
i,j,k,m, 0

)
= 0.

(7.23)
We re-formulate the penalized problem in equation (7.23) as:

min

[
φn+1

i,j,k,m − φn
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k −

1
ε

(
[Ahφ]n+1

i,j,k,m − φn+1
i,j,k,m

)
,

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

]
= 0. (7.24)

Equation (7.24) implies that one of the following holds with equality:

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k −

1
ε

(
[Ahφ]n+1

i,j,k,m − φn+1
i,j,k,m

)
≥ 0,

(7.25)

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k ≥ 0.

(7.26)

Since ε > 0, equation (7.25) is equivalent to:

ε

(
φn+1

i,j,k,m − φn
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
+φn+1

i,j,k,m−[Ahφ]n+1
i,j,k,m ≥ 0. (7.27)

Similarly, equations (7.26) and (7.27) can be combined to obtain:

min

(
ε

(
φn+1

i,j,k,m − φn
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
+ φn+1

i,j,k,m − [Ahφ]n+1
i,j,k,m ,

φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
= 0, (7.28)

which corresponds to the definition of Ĝ(h, x, V n+1
i,j,k,m, V n

i,j,k,m, {V n+1
a,p,u,l}) in equation (6.13) for in-

terior nodes. Applying the same technique for the boundary nodes, we can show the equivalence
between the original scheme G(h, x, V n+1

imax,j,k,m, V n
imax,j,k,m, {V n+1

a,p,u,l}) in equation (6.7) and
Ĝ(h, x, V n+1

imax,j,k,m, V n
imax,j,k,m, {V n+1

a,p,u,l}) in equation (6.14). This demonstration is omitted for brevity.
Using the result in equation (7.28) and the discretization error estimates in equations (7.19)

and (7.22), we find for the interior nodes when Sj
i < Smax (noting that |max(x, y)−max(α, β)| ≤
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max(|x− α|, |y − β|) ):∣∣∣∣Ĝ(h, x, φn+1
i,j,k,m + ξ, φn

i,j,k,m + ξ, {φn+1
a,p,u,l + ξ}

)
− Fin(φ)n+1

i,j,k,m

∣∣∣∣ (7.29)

≤ max

(∣∣∣∣(φn+1
i,j,k,m + ξ −Ah(φn+1

i,j,k,m + ξ)
)
−
[
φ−Aφ

]n+1

i,j,k,m

+ε

(
φn+1

i,j,k,m − φn
i,j,k,m

∆τ
− [Lh(φ + ξ)]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)∣∣∣∣,∣∣∣∣(φn+1
i,j,k,m − φn

i,j,k,m

∆τ
− [Lh(φ + ξ)]n+1

i,j,k,m +Rn+1ρinsS
j
i −M

n+1fn+1
i,j,k

)
−
[
φτ − Lφ +R(τ)ρinsS −M(τ)f

]n+1

i,j,k,m

∣∣∣∣
)

= max

(∣∣∣∣O(∆Sj
max∆Bu

max) + O(h2) + ε

(
φn+1

i,j,k,m − φn
i,j,k,m

∆τ
− [Lhφ]n+1

i,j,k,m +Rn+1ρinsS
j
i

−Mn+1fn+1
i,j,k − ξr

)∣∣∣∣, ∣∣∣∣O(∆τ) + O(∆Sj
max) + rξ

∣∣∣∣
)

Similarly, for the boundary nodes when Sj
i = Smax, we have:∣∣∣∣Ĝ(h, x, φn+1

imax,j,k,m + ξ, φn
imax,j,k,m + ξ, {φn+1

a,p,u,l + ξ}
)
− Fbound(φ)n+1

imax,j,k,m

∣∣∣∣ (7.30)

≤ max

(∣∣∣∣(φn+1
i,j,k,m + ξ −Ah(φn+1

i,j,k,m + ξ)
)
−
[
φ−Aφ

]n+1

i,j,k,m
+ ε

(
φn+1

imax,j,k,m − φn
imax,j,k,m

∆τ

+ρtotal(φn+1
imax,j,k,m + ξ)−

M∑
l=1
l 6=m

λm→lJm→l
imax

(φn+1
imax,j,k,l − φn+1

imax,j,k,m) +Rn+1ρinsS
j
imax

)∣∣∣∣,
∣∣∣∣(φn+1

imax,j,k,m − φn
imax,j,k,m

∆τ
+ ρtotal(φn+1

imax,j,k,m + ξ)−
M∑
l=1
l 6=m

λm→lJm→l
imax

(φn+1
imax,j,k,l − φn+1

imax,j,k,m)

+Rn+1ρinsS
j
imax

)
−
[
φτ + ρtotalφ−

M∑
l=1
l 6=m

λm→lJm→l(S)
(
φ(S, B, D, el, τ)− φ

)
+R(τ)ρinsS

]n+1

imax,j,k,m

∣∣∣∣
)

= max
(∣∣∣∣O(∆Sj

max∆Bu
max) + O(h2) + ε

(
φn+1

imax,j,k,m − φn
imax,j,k,m

∆τ

+ρtotal(φn+1
imax,j,k,m + ξ)−

M∑
l=1
l 6=m

λm→lJm→l
imax

(φn+1
imax,j,k,l − φn+1

imax,j,k,m) +Rn+1ρinsS
j
imax

)∣∣∣∣,
∣∣∣∣O(∆τ) + O(∆Sj

max) + ρtotalξ

∣∣∣∣).
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Using Assumption 6.6, we obtain:

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φn
i,j,k,m + ξ, {φn+1

a,p,u,l + ξ}
)

= F (φ)n+1
i,j,k,m + O(h) + ξb(x), (7.31)

for both boundary and interior nodes, where b(x) is a bounded function with |b(x)| ≤ max(r, ρtotal).

We now present the proof of Theorem 6.13.

Proof. (of Theorem 6.13)
We begin by proving that equation (6.16) holds. From the definition of lim sup, there exists se-
quences hd, id, jd, kd, nd, ξd such that

hd → 0, ξd → 0, xd = (Sjd
id

, Bkd
jd

, Dkd
, em, τnd+1) → x̂ = (Ŝ, B̂, D̂, em, τ̂) as d →∞, (7.32)

and

lim sup
d→∞

Ĝ
(
hd,xd, φ

nd+1
id,jd,kd,m + ξd, φ

nd
id,jd,kd,m + ξd, {φnd+1

ad,pd,ud,l + ξd}
)

= lim sup
ξ, h→0

x→x̂

Ĝ
(
h, x, φn+1

i,j,k,m + ξ, φn
i,j,k,m + ξ, {φn+1

a,p,u,l + ξ}
)
. (7.33)

From our result in equation (7.5), we have:

Ĝ
(
hd, xd, φ

nd+1
id,jd,kd,m + ξd, φ

nd
id,jd,kd,m + ξd, {φnd+1

ad,pd,ud,l + ξd}
)

= F (φ(xd)) + O(hd) + ξdb(xd), (7.34)

where F (φ(x)) is defined in equation (6.10) for interior and boundary nodes.
Now consider a sequence of nodes xd as defined in equation (7.32) which may contain both

interior (Sjd
id

< Smax) and boundary nodes (Sjd
id

= Smax). Combining equation (7.34) with equa-
tion (7.33), we get:

lim sup
ξ, h→0

x→x̂

Ĝ
(
h, x,φn+1

i,j,k,m + ξ, φn
i,j,k,m + ξ, {φn+1

a,p,u,l + ξ}
)

≤ lim sup
d→∞

F (φ(xd)) + lim sup
d→∞

[O(hd) + ξdb(xd)] ≤ F ∗(φ(x̂))

where the last inequality holds because of:

lim sup
d→∞

[O(hd) + ξdb(xd)] = 0. (7.35)

Verifying equation (6.17) can be done in a similar fashion.

Having shown that equations (6.16) and (6.17) hold, we conclude that the discrete equations in
(5.3) are consistent according to Definition 6.11.
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8 Results from Numerical Experiments

This section focuses on determining the fair insurance charge associated with a GMDB guarantee
from the issuer’s perspective. More specifically, we are looking for ρins such that:

V (ρins;S = D0, B = D0, D = D0, E = em, τ = T ) = 0, (8.1)

where D0 is the initial deposit made by the contract owner and T is the contract maturity in years.
Newton iteration is used to determine the fair insurance charge ρins that satisfies equation (8.1)
assuming an economic state em. The Newton iteration tolerance, denoted by tol, ensures that:

|ρk+1
ins − ρk

ins|∞ ≤ tol, (8.2)

where tol = 1 × 10−6 and k is the iteration index. Unless otherwise stated, this tolerance level is
used for all numerical results included in this section.

8.1 Results for Constant Volatility

Assuming volatility is constant, we present numerical results when pricing the GMDB guarantee.
In a regime-switching sense, this is equivalent to assuming that only one economic state, e0, exists.
The volatility associated with e0, as well as other contract parameters, are presented in Table 8.1.
We are looking to determine the insurance fee ρins which satisfies:

V (ρins;S = $100, B = $100, D = $100, E = e0, τ = T ) = 0. (8.3)

Additional assumptions are necessary regarding the owner of the GMDB contract. We assume
that the owner of the variable annuity is a male of 50 years of age at the time of purchase. As such,
the accumulation period of the contract, during which there are periodical ratchet events, will last
30 years. The contract is assumed to come to maturity when the owner turns 90 years old which
implies that T = 40 years, as reflected in Table 8.1. The mortality data used to price the GMDB
guarantee is taken from the Complete life table, Canada, 1995-1997 for males and females found
in [13].

Table 8.1 also specifies some grid construction details. While an unequally spaced grid contain-
ing 36 nodes is built along S, the grid built in the D direction contains 21 nodes spanning [0,D0].
Though not presented here, numerical tests were carried out to ensure that the choice of Bmax,
and consequently Smax, provides a minimum of 6 digits of accuracy. Recall that Smax = B2

max/D0,
where D0 is the initial deposit (see Section 5.1 for more details). Similarly, numerical tests show
that choosing a sufficiently small fixed cost, such as c = 1 × 10−10, results in values identical to
those obtained when c = 0 up to at least 6 digits. Consequently, for all numerical experiments in
this section, we set c = 1 × 10−10. The penalty parameter ε (see equations (6.6) and (6.7)) is set
to ε = ∆τ10−6.

In addition to the parameters in Table 8.1, the surrender charge imposed when a withdrawal
occurs (denoted as γ̂(t) in equation (2.10)) is defined as in [29]:

γ̂(t) =

{
0.08− 0.01dte t ≤ 7 years,
0.00 t > 7 years,

(8.4)

where d·e represents the ceiling function.
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State Information - e0

σ0 - Volatility 0.20
Contract Information

r - Interest rate 0.06
ρman - Management fees 0.015
Ratchet interval 1 year
Last Ratchet Date 30 years
T - Contract maturity 40 years

Grid Construction
D0 - Initial deposit $100
Smax - Grid parameter $3.6× 107

Bmax - Grid parameter $60000

Table 8.1: Parameter values used when pricing the GMDB guarantee in the classic Black-Scholes
context.

To determine the accuracy level that can be attained, we carry out a convergence analysis
when pricing the GMDB guarantee. Table 8.2 holds the cost of the GMDB guarantee assuming
ω = $80 for different refinement levels when the parameters in Table 8.1 are used. Note that we
have set ρins = 0.008 for the time being. The top section of Table 8.2 contains the values obtained
when fully implicit timestepping is used while the bottom panel presents the values recovered when
Crank-Nicolson timestepping is used. Constant timesteps are taken for both fully implicit and
Crank-Nicolson timestepping and the initial timestep is ∆τ = 0.05 years on the coarsest grid. To
eliminate oscillations in the final Crank-Nicolson solution, two fully implicit timesteps are taken at
the start of the solution process [33]. Note that Crank-Nicolson is not monotone, and hence is not
guaranteed to converge to the viscosity solution.

We see that the results for the highest refinement level in Table 8.2 provide an acceptable level
of accuracy. However, results from higher refinement levels would be required to establish a definite
conclusion about the convergence rate of the numerical scheme with both timestepping methods
considered. Clearly the results in Table 8.2 show that the convergence has not settled down to the
asymptotic rate. Results from higher refinement levels were not generated due to the prohibitive
running time for such large problems. Nonetheless, since our interest lies in determining the fair
insurance fee associated with the contract, the results in Table 8.2 provide adequate accuracy for
practical purposes.

Table 8.3 presents the convergence of the fair risk charge obtained when we use Crank-Nicolson
timestepping. As before we assume that the owner is male, 50 years old when the contract is
purchased, and that ω = $80. Other contract parameters are set to the values presented in Table 8.1.
Results for the highest refinement level in Table 8.3 suggest that the no-arbitrage fee is accurate
to about 2× 10−5.

We now examine how the minimum deposit amount (ω) affects the fair insurance charge ρins

obtained when solving equation (8.3). Table 8.4 presents the fair insurance charge for the GMDB
clause with annual ratchet events when the minimum deposit ω ranges from $10 to $90. For
comparison purposes, we also include the fair insurance charge for the GMDB clause when no
withdrawals or contract lapsing are allowed. The results for both male and female owners are
presented in Table 8.4. Other parameter values are specified in Table 8.1. In observing the results
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Cost of a GMDB guarantee
Refinement Nodes

Level S B D Option Value Difference Ratio
Fully Implicit

0 36 36 21 1.653844 n.a. n.a.
1 71 71 41 1.728004 0.074161 n.a.
2 141 141 81 1.752456 0.024452 3.03

Crank-Nicolson
0 36 36 21 1.711003 n.a. n.a.
1 71 71 41 1.761588 0.050585 n.a.
2 141 141 81 1.769926 0.008338 6.07

Table 8.2: Cost of the GMDB guarantee when the owner is assumed to be a male of 50 years old
at the time of purchase, ω = $80 and ρins = 0.008. Other contract parameters are presented in
Table 8.1. Nodes - B indicates the maximum number of nodes in the B direction (i.e. when D = 0).
The initial timestep is ∆τ = 0.05 years on the coarsest grid.

Fair Insurance Fee for GMDB Guarantee
Refinement Nodes Insurance

Level S B D Fee (ρins)
0 36 36 21 0.009255
1 71 71 41 0.009225
2 141 141 81 0.009216

Table 8.3: Fair insurance fee (ρins) for a GMDB guarantee for different grid refinement levels when
the owner is assumed to be a male of 50 years old at the time of purchase, ω = $80. Crank-Nicolson
timestepping is used and the initial timestep is ∆τ = 0.05 years on the coarsest grid. Other contract
parameters are presented in Table 8.1. Nodes - B indicates the maximum number of nodes in the
B direction (i.e. when D = 0).

contained in Table 8.4, we see that the minimum deposit amount ω significantly impacts the fair
insurance charge for the GMDB clause. Intuitively, as ω decreases, larger withdrawals can occur
which is more detrimental to the issuing company and, as such, results in a higher insurance charge.
The results in Table 8.4 show that the withdrawal feature is very valuable.

Table 8.4 also demonstrates the impact of the gender of the contract owner on the required
insurance charge. Since female owners generally live longer than their male counterparts, a lower
insurance fee is required. As shown in Table 8.4, this can be observed for different values of ω, as
well as when the GMDB does not allow withdrawals or lapsing.

In [27], the authors state that certain contracts with a GMDB clause include longer time
intervals between ratchet dates such as 2 or 5 years. As such, numerical results for pricing GMDB
contracts with ω = $20 for different ratchet intervals ranging from 6 months to 10 years are
presented in Table 8.5. Note that the parameter values presented in Table 8.1 are used and that
the owner is assumed to be 50 years of age when the contract is purchased. The results of Table 8.5
demonstrate that a lower insurance charge is imposed by the issuer as the ratchet interval is
increased. With fewer ratchet events during the contract lifetime, the death benefit exposure of the
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Minimal Deposit ω No withdrawal
Owner $90 $80 $60 $40 $20 $10 or lapsing
Male 0.0090 0.0092 0.0097 0.0106 0.0123 0.0137 0.0077

Female 0.0068 0.0069 0.0074 0.0081 0.0096 0.0108 0.0053

Table 8.4: Fair insurance charge (ρins) for contracts containing a GMDB clause with annual ratchet
events as a function of the minimal deposit amount (ω). Contract owners are assumed to be 50
years old at the time of purchase. The parameters in Table 8.1 are used in the pricing process.

Ratchet Interval
Owner 0.5 year 1 year 2 years 5 years 10 years
Male 0.0137 0.0123 0.0105 0.0080 0.0059

Female 0.0107 0.0095 0.0082 0.0062 0.0046

Table 8.5: Fair insurance charge (ρins) for a GMDB guarantee with different ratchet intervals
ranging from 0.5 to 10 years. The owner is assumed to be 50 years old at the time of purchase and
ω = $20. Other contract parameters used when solving equation (8.3) are presented in Table 8.1.

issuing company is generally reduced resulting in a lower insurance fee. This relation is observed for
both male and female owners. Clearly, modifying the ratchet interval also significantly impacts the
fair insurance charge associated with the GMDB clause. It would appear that both the withdrawal
and ratchet features are very valuable when included in a GMDB contract.

8.2 Numerical Results with Regime Switching

We now consider results from numerical experiments where regime-switching is added to the pricing
model, as described in Section 3. In accordance with the calibration carried out in [2], we assume
that there are three economic regimes which we denote as e1, e2 and e3. In [2], the authors assume
that the underlying is in one of three regimes of Brownian volatility and calibrate this model to an
existing volatility smile. Therefore, we will determine the fair insurance charge ρins that satisfies:

V (ρins;S = $100, B = $100, D = $100, E = e1, τ = 40 years) = 0. (8.5)

The data for all three states, e1, e2 and e3, is presented in Table 8.6 and is taken from [2]. Table 8.6
also includes additional information about contract parameters and details on the grid construction
used when solving equation (8.5) for different values of ω. We have verified that our choice for Bmax,
and consequently Smax, still provides a minimum of 5 digits of accuracy in the numerical results
obtained. We choose to set the small fixed cost to c = 1 × 10−10 to ensure accuracy of at least 6
digits in the numerical results obtained.

Table 8.7 holds the fair insurance fee for a GMDB guarantee with regime-switching assuming
ω = $80 for different grid refinement levels. We further assume that the contract owner is a male
of 50 years of age when the contract is purchased. Additional contract parameters are presented
in Table 8.6 and constant timesteps are used with fully implicit timestepping. The initial timestep
is ∆τ = 0.05 years on the coarsest grid. Due to the high dimensionality of the pricing problem
considered, the coarsest grid in the D direction is limited to 11 nodes and results from only 2 refine-
ment levels were obtained. We estimate that the results are correct to within 2× 10−4 when using
a grid refinement of 2. While results from higher refinement levels would be necessary to establish
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State Information - e1

σ1 - Volatility 0.0955
Jump sizes: J1→2 = 0.9095 ; J1→3 = 1.0279
Jump intensities: λ1→2 = 0.2405 ; λ1→3 = 3.3208

State Information - e2

σ2 - Volatility 0.0644
Jump sizes: J2→1 = 1.2502 ; J2→3 = 1.6512
Jump intensities: λ2→1 = 1.1279 ; λ2→3 = 0.0729

State Information - e3

σ3 - Volatility 0.0241
Jump sizes: J3→1 = 0.9693 ; J3→2 = 0.7732
Jump intensities: λ3→1 = 2.9882 ; λ3→2 = 0.2025

Contract Information
r - Interest rate 0.06
ρman - Management fees 0.015
Ratchet interval 1 year
Last Ratchet Date 30 years
T - Contract maturity 40 years

Grid Construction
D0 - Initial deposit $100
Smax - Grid parameter $3.6× 107

Bmax - Grid parameter $60000

Table 8.6: Parameter values used when pricing GMDB contracts with regime-switching. Jump
sizes and intensities taken from [2].

a more definite convergence analysis, problem size and running time would be unmanageable. We
remind the reader that the regime switching HJB problem is four dimensional. Note that typically,
one obtains convergence estimates for nonlinear HJB equations which are of the form O(hρ) where
h is the discretization parameter. Estimates of ρ vary from 1/27 to 1/2 depending on assumptions
about regularity of the solution and the PDE coefficients. See [4] for an overview of recent work
along these lines.

Table 8.8 holds the fair insurance charge associated with the GMDB guarantee as a function of
ω assuming the economy is in state e1. Based on previous comments, the results in Table 8.8 are
obtained with a grid refinement level 2. Note that the owner is once again assumed to be 50 years
of age when the contract is purchased. Other contract parameters used during the pricing process
are presented in Table 8.6. For comparison purposes, the fair insurance charge associated with
the GMDB guarantee when no withdrawal or lapsing is allowed is included in the last column of
Table 8.8. As noted previously in Section 8.1, decreasing the minimum deposit amount ω increases
the insurance fee charged by the issuing company. For example, setting ω = $10 when the contract
owner is a man, requires a fee close to twice as large as that charged when no partial withdrawals
are allowed. Notice that this remark applies equally to both male and female contract owners. In
addition, the gender of the contract owner still affects the fair insurance charge for a given value
of ω. Assuming ω = $40, the fair insurance charge for the GMDB guarantee when owned by a
woman is about 25% less than what is charged for a male contract owner. Thus, even when more
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Fair Insurance Fee for GMDB Guarantee
with Regime-Switching

Refinement Nodes Insurance
Level S B D Fee (ρins)

0 119 36 11 0.006286
1 237 71 21 0.006085
2 473 141 41 0.005931

Table 8.7: Fair insurance fee (ρins) for a GMDB guarantee with regime-switching for different grid
refinement levels. The owner is assumed to be a male of 50 years old at the time of purchase
and ω = $80. Fully implicit timestepping is used and the initial timestep is ∆τ = 0.05 years on
the coarsest grid. Other contract parameters are presented in Table 8.1. Nodes - B indicates the
maximum number of nodes in the B direction (i.e. when D = 0).

Minimal Deposit ω No withdrawal
Owner $90 $80 $60 $40 $20 $10 or lapsing
Male 0.0058 0.0059 0.0063 0.0070 0.0082 0.0091 0.0049

Female 0.0044 0.0045 0.0049 0.0054 0.0065 0.0073 0.0034

Table 8.8: Fair insurance charge (ρins) for contracts containing a GMDB clause with annual ratchet
events as a function of the minimal deposit amount (ω) assuming the economy is in regime e1.
Contract owners are assumed to be 50 years old at the time of purchase. The parameters in
Table 8.6 are used in the pricing process.

realistic assumptions are made regarding the state of the economy, we see that both the gender of
the contract owner and the value of ω have a significant impact on the fair insurance fee for the
GMDB guarantee.

The results presented in Table 8.8 are significantly different from those included in previous work
on the topic such as [27]. In [27], the authors consider a GMDB contract with continuous ratchet
events, no partial withdrawals and a shorter maturity period, resulting in much lower insurance
fees than those presented in Table 8.8. Thus, Table 8.8 clearly demonstrates that higher fees are
required for GMDB contracts with a partial withdrawal feature in a regime-switching context.

9 Conclusion

Increasingly popular in both the United States and the United Kingdom, variable annuity contracts
include many different features. Focusing on contracts with a guaranteed minimum death benefit
(GMDB) clause, we characterize the pricing problem as an impulse control problem. A pricing
model based on partial differential equations was developed to determine the fair or no-arbitrage
insurance charge for contracts with a GMDB clause. Regime-switching is also included in the
pricing model due to the longer maturity of the contract considered. A numerical scheme was given
which was shown to converge to the viscosity solution away from the ratchet dates. Based on results
from numerical experiments, we have also shown that a much higher insurance charge is required
when partial withdrawals are added to the GMDB guarantee. Previous work in the area [27] which
ignores the possibility of partial withdrawals results in lower insurance fees.
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The most costly aspect of the computation of the guarantee involves the linear search for finding
the optimal withdrawal. Further work will focus on techniques for speeding up this computation.
While we have shown that our procedure converges to the viscosity solution, we are not able to
determine the rate of convergence. It is interesting to note that this popular contract results in a
complex optimal control problem which puts us close to the boundaries of the computing resources
which would typically be available in an insurance company.

A Death Benefits for GMDB Problem

In this appendix section we give some details on determining the death benefit exposure for the
issuer of a GMDB contract. We will assume that the economy state is constant for this section and
that V = V (S, B, D, t) denotes the cost of the GMDB contract from the issuers point of view.

When a GMDB contract is issued (t = 0), the death benefit is set to the initial deposit D0 made
by the policy owner, i.e. B = D0 at t = 0. The death benefit can then be reset at each ratchet date
to the maximum of the current investment account value or the current benefit level. Generally,
ratchet events only occur during the accumulation phase of the contract and the last ratchet date
is typically scheduled at the end of the policy year when the owner turns 80 years old [31]. If to
denotes a rachet date and t−o and t+o are times just before and after to then standard no-arbitrage
arguments give

V (S, B+, D, t+o ) = V (S, B−, D, t−o ), (A.1)

where B+ = max(B−, S).
Should the policy owner pass away prior to the expiry of the GMDB contract, the death benefit

is exercised and the beneficiary receives the greater of the current benefit level or the current
investment account value. Consequently, the issuing company is liable for any excess payment
when the current death benefit is higher than the investment account value.

When the holder of the contract makes a partial or full withdrawal (lapsing), a surrender charge,
denoted as γ(t), is imposed. When the death benefit is exercised, the owner’s estate does not pay a
surrender charge. However, the issuer may have to pay a surrender charge to the re-seller [31]. In
this paper, we consider the value of the guarantee from the issuer’s perspective. To be concrete, we
can think of the issuer of the guarantee as a re-insurer, and the re-seller as an insurance company
selling the guarantee to retail customers. We assume that the surrender charge is calculated as a
percentage of the current deposit level D [31]. Generally, the surrender charge is highest at the
start of the contract and decreases annually. After the initial ts years of the contract, the surrender
charge disappears: γ(t) = 0 when t > ts years. Typically, ts = 7 years. Hence, the death benefit
exposure of the issuer, denoted by f = f(S, B, D, t), is defined as:

f(S, B, D, t) = max(B − S, 0) + γ(t)D. (A.2)

B Partial Withdrawal Features

In this section we give the details involved in allowing a partial withdrawal feature to be included
in a GMDB contract.

The partial withdrawal feature enables the contract owner to withdraw any cash amount up to
the current account value S. However, to keep the policy active, a minimal deposit amount must
remain in the investment account. We denote the partial withdrawal amount as W ∈ [0, S − ω],
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where ω is the minimal deposit amount. For each partial withdrawal, a surrender charge, denoted
by γ(t) and calculated as a percentage of W , is imposed. The surrender charge γ(t) is also applied
when the owner chooses to lapse his policy. Recall that when an investor decides to lapse his policy,
the investment account is liquidated and the GMDB policy cancelled. In this case, the surrender
charge is a percentage of the investment account value S.

While we determine the no-arbitrage insurance charge for the GMDB guarantee, for explanatory
purposes, it is useful to first consider the effect of partial withdrawals on the entire GMDB contract
(investment account plus guarantee) and determine the appropriate withdrawal constraint. The
withdrawal constraint for the entire GMDB contract is then used as a tool to derive the withdrawal
constraint for the GMDB guarantee.

Let V = V(S, B, D, t) represent the value of the entire GMDB contract (investment account
plus guarantee). Assuming optimal behavior and ignoring mortality effects for the moment, the
policy owner will maximize his return and choose W such that:

W = argmax
W ′∈[0,S−ω]

(
(1− γ(t))W ′ + V(S −W ′,max(B −W ′, 0),max(D −W ′, 0), t)

)
. (B.1)

Taking into consideration the option to lapse, the value of the total GMDB contract satisfies (after
optimal withdrawal or lapsing):

V = max
(

(1− γ(t))S, max
W∈[0,S−ω]

(
(1− γ(t))W + V(S −W,max(B −W, 0),max(D −W, 0), t)

))
.

(B.2)

While we have assumed in equation (B.2) that the contract owner will lapse whenever it is optimal
to do so, alternate assumptions could be made whereby the contract owner would lapse at a pre-
determined rate. See [36, 37] for more details on modeling investor lapsing.

Since our goal is to determine the value of the GMDB guarantee, we now derive the equivalent
withdrawal constraint from the issuer’s perspective. Recall that we are looking to value the GMDB
guarantee in an aggregate sense by assuming that contracts are sold to a given population. As such,
the mortality/survival function defined in equation (2.6) must be taken into consideration when
determining the withdrawal constraint. More precisely, we redefine V(S, B, D, t) as the value of the
whole contract to the issuer which can be written as: V(S, B, D, t) = V (S, B, D, t)+R(t)S. Notice
that only the investment account is affected by the survival probability since investor mortality is
already included in the differential equation for V (S, B, D, t) presented as (2.5). Since only those
owners that are alive can conduct a withdrawal or choose to lapse, the cash flows associated with
both actions will also be scaled by the survival probability.

As such, integrating our cash flow assumption into equation (B.2), we obtain:

V = max
(
R(t)(1− γ(t))S,

max
W∈[0,S−ω]

(
R(t)(1− γ(t))W + V(S −W,max(B −W, 0),max(D −W, 0), t)

))
= max

(
R(t)(1− γ(t))S, (B.3)

max
W∈[0,S−ω]

(
−R(t)γ(t)W + V (S −W,max(B −W, 0),max(D −W, 0), t) +R(t)S

))
.
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Since V(S, B, D, t) = V (S, B, D, t) +R(t)S, we have:

V = max
(
−R(t)γ(t)S, max

W∈[0,S−ω]

(
V (S −W,max(B −W, 0),max(D −W, 0), t)−R(t)γ(t)W

))
.

(B.4)
Thus, we can denote the withdrawal constraint by AV = AV (S, B, D, t) with:

AV ≡ max
(
−R(t)γ(t)S, max

W∈[0,S−ω]

(
V (S −W,max(B −W, 0),max(D −W, 0), t)−R(t)γ(t)W

)
− c

)
,

(B.5)
where c > 0 is a small fixed cost added to the constraint to ensure that the impulse control problem
is well-posed.

C Derivation of the Boundary Condition as S →∞
To determine the boundary condition for equation (2.11) as S →∞, we make the common assump-
tion that VSS → 0 [38], which implies:

V ≈ H(B,D, τ)S + F (B,D, τ), (C.1)

where H(B,D, τ) and F (B,D, τ) are independent of S. We further assume that S is so large that
H(B,D, τ)S � F (B,D, τ), which leads to:

V ≈ H(B,D, τ)S. (C.2)

Equation (C.2) implies:
VS ≈ H(B,D, τ), (C.3)

and hence, we can rewrite the differential equation in (2.11) as:

Hτ (B,D, τ)S =(r − ρtotal)H(B,D, τ)S − rH(B,D, τ)S −R(τ)ρinsS +M(τ) max(B − S, 0)

+M(τ)γ(τ)D +
1
ε

max
(
A(H(B,D, τ)S)−H(B,D, τ)S, 0

)
, (C.4)

where

A(H(B,D, τ)S) = (C.5)

max
(
−R(τ)γ(τ)S, max

W∈[0,S−ω]

(
H(max(B −W, 0),max(D −W, 0), τ)(S −W )−R(τ)γ(τ)W

)
− c

)
.

Since B � Smax and W ≤ D0 � Smax, we can simplify equation (C.4) as:

Hτ (B,D, τ)S ≈ (C.6)

− ρtotalH(B,D, τ)S −R(τ)ρinsS +
1
ε

max
(
A(H(B,D, τ)S)−H(B,D, τ)S, 0

)
.

As a result, we obtain the following approximation to equation (C.4):

Vτ = −ρtotalV −R(τ)ρinsS +
1
ε

max(AV − V, 0) ; S = Smax. (C.7)

A similar argument gives the boundary condition for large S when regime switching is used.
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D Discretization

The regime-switching partial differential equation presented in (3.8) can be approximated by re-
placing derivatives by finite difference approximations. Recall that the discrete version of equation
(3.8) can be written as in equation (5.3) (assuming fully implicit timestepping).

The choice of discretization for the derivative terms in equation (3.8) will determine the value
of both αi,j,m and βi,j,m. For example, choosing the higher order central difference scheme leads to
the following values of αi,j,m and βi,j,m:

αi,j,m,central =
(σmSj

i )
2

(Sj
i − Sj

i−1)(S
j
i+1 − Sj

i−1)
−

Sj
i (r − ρtotal −

∑M
l=1; l 6=m λm→l(Jm→l

i,j − 1))

Sj
i+1 − Sj

i−1

,

βi,j,m,central =
(σmSj

i )
2

(Sj
i+1 − Sj

i )(S
j
i+1 − Sj

i−1)
+

Sj
i (r − ρtotal −

∑M
l=1; l 6=m λm→l(Jm→l

i,j − 1))

Sj
i+1 − Sj

i−1

, (D.1)

where Jm→l
i,j = Jm→l(Sj

i ). However, to produce a positive coefficient method, it is preferable to
choose other discretization techniques at the problem nodes such as forward or backward differences.
Forward differences produces:

αi,j,m,forward =
(σmSj

i )
2

(Sj
i − Sj

i−1)(S
j
i+1 − Sj

i−1)
,

βi,j,m,forward =
(σmSj

i )
2

(Sj
i+1 − Sj

i )(S
j
i+1 − Sj

i−1)
+

Sj
i (r − ρtotal −

∑M
l=1; l 6=m λm→l(Jm→l

i,j − 1))

Sj
i+1 − Sj

i

, (D.2)

while backward differences delivers:

αi,j,m,backward =
(σmSj

i )
2

(Sj
i − Sj

i−1)(S
j
i+1 − Sj

i−1)
−

Sj
i (r − ρtotal −

∑M
l=1; l 6=m λm→l(Jm→l

i,j − 1))

Sj
i+1 − Sj

i

,

βi,j,m,backward =
(σmSj

i )
2

(Sj
i+1 − Sj

i )(S
j
i+1 − Sj

i−1)
. (D.3)

Algorithmically, the decision between a central or forward discretization at each node is made based
on the criteria presented in Algorithm D.1. Note that Algorithm D.1 guarantees that both αi,j,m

and βi,j,m are non-negative:

αi,j,m ≥ 0 ; βi,j,m ≥ 0 for all i, j and m. (D.4)
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