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Abstract5

In contrast to single-period mean-variance (MV) portfolio allocation, multi-period MV optimal6

portfolio allocation can be modified slightly to be effectively a down-side risk measure. With7

this in mind, we consider multi-period MV optimal portfolio allocation in the presence of pe-8

riodic withdrawals. The investment portfolio can be allocated between a risk-free investment9

and a risky asset, the price of which is assumed to follow a jump diffusion process. We consider10

two wealth management applications: optimal de-accumulation rates for a defined contribution11

pension plan and sustainable withdrawal rates for an endowment. Several numerical illustra-12

tions are provided, with some interesting implications. In the pension de-accumulation context,13

Bengen (1994)’s historical analysis indicated that a retiree could safely withdraw 4% of her14

initial retirement savings annually (in real terms), provided that her portfolio maintained an15

even balance between diversified equities and U.S. Treasury bonds. Our analysis does support16

4% as a sustainable withdrawal rate in the pension de-accumulation context (and a somewhat17

lower rate for an endowment), but only if the investor follows an MV optimal portfolio alloca-18

tion, not a fixed proportion strategy. Compared with a constant proportion strategy, the MV19

optimal policy achieves the same expected wealth at the end of the investment horizon, while20

significantly reducing the standard deviation of wealth and the probability of shortfall. We also21

explore the effects of suppressing jumps so as to have a pure diffusion process, but assuming a22

correspondingly larger volatility for the latter process. Surprisingly, it turns out that the MV23

optimal strategy is more effective when there are large downward jumps compared to having24

a high volatility diffusion process. Finally, tests based on historical data demonstrate that the25

MV optimal policy is quite robust to uncertainty about parameter estimates.26
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Figure 1.1: Investor withdraws $50,000 per year, initial investment $1 million. CRSP Stock Index:
value of investment with entire capital invested in equity index and without withdrawals. Buy and
hold, stock only, after withdrawals: entire capital invested in equity index, with regular withdrawals.
Buy and hold, stock and bond, after withdrawals: capital invested in U.S. Treasuries and equity in-
dex, withdrawals financed from Treasuries with regular withdrawals. Rebalance, stock weight 50%,
after withdrawals: 50% stock and 50% short-term U.S. Treasuries, rebalanced monthly, with regular
withdrawals.

1 Introduction31

As a motivational illustration, consider a hypothetical investor who retired on January 1, 200032

with retirement savings of U.S. $1,000,000. Knowing that the long-term returns of the stock33

market have generally exceeded those of government bonds, suppose that this investor invested all34

of these savings in a broadly diversified U.S. stock market index (a buy and hold strategy). Also35

suppose that this retiree made monthly withdrawals totalling $50,000 per year for living expenses.36

In order to examine the performance of this investor’s portfolio, we use historical data for a total37

return stock index from the Center for Research in Security Prices (CRSP, see www.crsp.com).38

The CRSP VWD index is a capitalization-weighted index of all domestic equities trading on major39

U.S. exchanges, and includes dividends and other distributions. Figure 1.1 shows the performance40

of the index itself (i.e. without withdrawals) and the buy and hold (stock only) strategy (after41

withdrawals) during the period 2000-2015. It turned out that the regular withdrawals and two42

major market shocks (dot-com and financial crisis) hit investors following this strategy very hard.43

By 2015, this retiree was left with about $400,000.44

On the other hand, suppose the investor was very cautious. In 2000, long-term U.S. Treasuries45

were yielding about 6.5%. Assume that the investor bought $770,000 of U.S. Treasuries maturing46

in 2015, which would generate $50,000 per year. In addition, suppose that the remaining $230,00047

was invested in the stock index. The investor’s portfolio in this case is also shown in Figure 1.148

(buy and hold, stock and bond, after withdrawals). The investor would have fared much better by49
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Initial stock Initial bond Final portfolio
investment investment Total withdrawals value

Strategy (2000) (2000) (2000-2015) (2015)

Buy and hold $1,000,000 $0 $0 $1,876,844

Buy and hold $1,000,000 $0 $750,000 $393,370

Buy and hold $230,770 $769,230 $750,000 $1,202,349

Rebalance $500,000 $500,000 $750,000 $525,159

Table 1.1: Comparison of strategies which generate $50,000 per year, based on historical data for
2000-2015. In the rebalance case, the rebalancing is done monthly, and the bond component of the
portfolio is invested in short term T-bills.

following this approach, having around $1.2 million by 2015.150

A more classic strategy involves investing equal amounts in the stock index and short term51

bonds, with periodic rebalancing (Graham, 2014). Figure 1.1 shows the performance of this strat-52

egy, rebalancing monthly (rebalance, stock weight 50%, after withdrawals). For this illustration,53

historical short term T-bill rates were used for the bond investment. By following this strategy,54

the investor would have ended up with about $525,000 after withdrawing $50,000 annually, quite55

an improvement over the stock only case. The results for these cases are summarized in Table 1.1.56

We can see from this example that the choice of an asset allocation strategy combined with57

regular withdrawals can have a very large effect on the terminal wealth. However, in view of the fact58

that defined benefit pension plans are rapidly disappearing, many individuals who are planning for59

retirement are faced with this predicament. The basic decision variables are (i) an asset allocation60

strategy; and (ii) a sustainable withdrawal rate.61

It is not surprising that this wealth management issue has received much attention. A classic62

analysis is described in Bengen (1994). Essentially, Bengen examined historical data to determine63

the maximum inflation-adjusted withdrawal rate that a retiree can safely use without exhausting64

her assets over a 35 year period. It was assumed that the initial endowment was invested in a65

constant mix of 50% stocks and 50% intermediate-term U.S. Treasuries. The main conclusion66

reached was that a 4% withdrawal rate (escalated by the rate of inflation) could be considered to67

be quite safe. This 4% rule is frequently cited by financial planners, and optimal withdrawal rules68

under various assumptions have been the subject of many other studies. For a small selection of69

this large literature, see sources such as Milevsky and Young (2007), Scott et al. (2009), Horneff70

et al. (2010), and Milevsky and Huang (2011).71

In this paper, we consider an asset allocation problem in which an investment manager can72

dynamically switch total wealth between risk-free assets (e.g. short-term government bonds) and a73

risky asset (e.g. an index ETF). The investment fund is also subject to periodic withdrawals that74

are inflation-adjusted. We consider two concrete applications of optimal asset allocation. In the75

first case, we consider the management of an endowment fund. The objective is to manage the fund76

so that the expected real value of the endowment is maintained at the end of a relatively long time77

horizon, which might typically be 20-30 years. More precisely, we seek to find the asset allocation78

strategy which permits specified periodic withdrawals from the endowment while preserving the79

1This ballpark estimate is conservative in the following sense. The Treasury does not actually issue 15-year bonds.
If the investor had bought newly issued 30-year bonds for their par value at the start of 2000, the same $50,000 of
coupon income would have been collected each year but there would also have been a significant capital gain due to
declining interest rates between 2000 and 2015. In other words, as of 2015 the investor would have owned bonds with
a remaining maturity of 15 years that were worth substantially more than par.
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real value of the endowment at the specified time horizon with the smallest possible risk.80

We also consider the retirement spending problem addressed by Bengen (1994). There are81

several possible ways to formulate this problem. One way would be to specify an estimate of82

the longevity of the retiree, plus a longevity buffer. This might give us a target of 30-40 years83

for withdrawals. Bengen (1994) essentially determined the withdrawal rate (using historical data)84

which gave a worst case withdrawal longevity of about 35 years. This would be a conservative target85

for a 65-year old retiree. Another possibility would be to examine withdrawal rates which result86

in an expected value of zero wealth at the 35-year mark. Given this target wealth, we would then87

determine the withdrawal rate which hits this expected value of terminal wealth with an acceptable88

level of risk.89

However, this strategy seems somewhat unsatisfactory. Due to the risk of exhausting assets90

before death, most individuals would probably use an overly conservative longevity estimate. Con-91

sequently, in this paper we pose the problem somewhat differently. We consider an initial investment92

horizon of 20 years. Our target expected wealth value at the end of this time is one-half of the orig-93

inal wealth (in real terms). Many 65-year olds can expect to live for at least 20 years. At the end of94

this time, if all goes according to plan, then the retiree will have half of her initial real wealth. At95

that point, the retiree can re-evaluate her personal situation, in terms of health, spending habits96

and bequest motivation. It seems to us that this target is a reasonable compromise allowing a97

conservative buffer after 20 years, without being unnecessarily cautious. The strategy can then be98

re-evaluated in light of changing circumstances. The 20-year initial time horizon is long enough99

to allow the optimal strategy to recover from downward market shocks, if any. To summarize, the100

retirement withdrawal rate (pension de-accumulation) problem is formulated as follows. Given a101

specified real withdrawal rate, we determine the optimal asset allocation strategy which results in102

an expected value of one-half the real initial wealth with the smallest possible risk after 20 years.103

In this study, for either the endowment problem or the pension de-accumulation problem, we104

determine the optimal asset allocation which minimizes risk in terms of a multi-period MV strategy.105

Variance has been criticized as a risk measure since it penalizes the upside as well as the downside.106

However, the analysis of Zhou and Li (2000) and Li and Ng (2000) shows that continuous time107

MV asset allocation is equivalent to specifying a wealth target with a quadratic shortfall penalty.108

Vigna (2014) notes that the quadratic wealth target is never exceeded in the case where continuous109

rebalancing is allowed and the price of the risky asset is assumed to follow geometric Brownian110

motion (GBM). In this sense, continuous time MV asset allocation seeks to hit an expected value111

target while simultaneously minimizing two risk measures: variance and quadratic loss with respect112

to the quadratic wealth target, which is slightly above the expected value. See Vigna (2014) for a113

discussion of the practical implications of this result.114

The strategy used in this paper is a pre-commitment policy. As noted in Basak and Chabakauri115

(2010), this is not time consistent. However, as pointed out in Wang and Forsyth (2011), a time116

consistent policy can be generated by adding a constraint to the pre-commitment algorithm. Hence,117

the time consistent strategy will generally be sub-optimal compared to the pre-commitment policy118

(Wang and Forsyth, 2011, 2012). We take the point of view that forcing time consistency is119

expensive and thus undesirable for the long-term investor.120

If we permit rebalancing of the assets only at discrete intervals (e.g. yearly) and we use a jump121

diffusion model for the underlying risky asset in order to model the possibility of market crashes,122

then it is possible to exceed the quadratic wealth target. However, based on an observation of123

Cui et al. (2012), if we allow the possibility of optimally withdrawing cash from the investment124

portfolio, we can achieve an investment strategy which is never inferior and usually is superior in125

the MV sense to a policy which does not permit cash withdrawals (Dang and Forsyth, 2016; Forsyth126

and Vetzal, 2016). In this way, we can ensure that the quadratic wealth target is never exceeded127
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at the end of the investment horizon, i.e. we do not penalize the upside.128

The remainder of the paper is structured as follows. Section 2 describes the formulation of129

the MV wealth management problem, which requires solving a partial integro-differential equa-130

tion (PIDE). Section 3 discusses various relevant details about the specification of withdrawal131

rates. Section 4 presents extensive numerical results for both the endowment and the pension de-132

accumulation problems. Several interesting properties of the MV optimal strategy are shown. We133

also demonstrate its superiority over constant proportion strategies and its robustness to parameter134

and model uncertainty. Section 5 provides a concluding summary.135

2 Preliminaries136

2.1 Assets137

For simplicity, we assume that just two assets are available in the financial market, namely a risky138

asset and a risk-free asset. Let St ≡ S(t) and Bt ≡ B(t) respectively be the amounts (i.e. total139

dollars) invested in the risky asset and the risk-free asset at time t ∈ [0, T ], where T is the time140

horizon of the investment. In the following, we are interested in the terminal value of the total141

wealth WT = ST +BT .2142

First consider the risky asset. Define t− = t − ε, i.e. t− is the instant of time before the143

(forward) time t, and let ξ be a random number representing a jump multiplier. When a jump144

occurs, St = ξSt− . Allowing discontinuous jumps permits us to explore the effects of severe market145

crashes on the risky asset holding. As a specific example, as in Merton (1976) we assume that ξ146

follows a log-normal distribution p(ξ) given by147

p(ξ) =
1√

2πζξ
exp

(
−(log(ξ)− ν)2

2ζ2

)
, (2.1)

with mean ν and standard deviation ζ, with E[ξ] = exp(ν+ζ2/2), where E[·] denotes the expectation148

operator. In the absence of control (i.e. if we do not adjust the amount invested according to our149

control strategy), the amount invested in the risky asset S follows the process150

dSt
St−

= (µ− λκ)dt+ σdZ + d

(
πt∑
i=1

(ξi − 1)

)
. (2.2)

where κ = E[ξ] − 1, dZ is the increment of a Wiener process, µ is the real world drift rate, σ is151

the volatility, πt is a Poisson process with positive intensity parameter λ, and ξi are i.i.d. positive152

random variables having distribution (2.1). Moreover, ξi, πt, and Z are assumed to all be mutually153

independent.3154

Also, it is assumed that in the absence of control the dynamics of the amount invested in the155

risk-free asset B are given by156

dBt = rBtdt, (2.3)

2Unlike previous work (e.g. Björk, 2009; Vigna, 2014), we do not assume that the portfolio is continuously rebal-
anced. As a result, we cannot specify the total wealth process in terms of a single stochastic differential equation.
Consequently, it is simpler to define S(t) and B(t) in terms of dollar amounts invested, rather than prices of a unit
investment in each assets, as is typically done with continuous rebalancing.

3One may argue that it would be preferable to include stochastic volatility effects in the S process. However,
recent tests indicate that stochastic volatility has little effect on long-term dynamic MV optimal strategies (Ma and
Forsyth, 2016).
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where r is the (constant) risk-free rate. We make the standard assumption that the real world drift157

rate of S is strictly greater than r. Since there is only one risky asset, it is never optimal in an MV158

setting to short stock, i.e. St ≥ 0, t ∈ [0, T ]. However, we do allow short positions in the risk-free159

asset, i.e. it is possible that Bt < 0, t ∈ [0, T ].160

In some of the examples considered in this paper, we assume that the dynamics for St (absent161

control) follows GBM. This is implemented by suppressing any possible jumps in (2.2), i.e. by162

setting the intensity parameter λ to zero.163

2.2 A discrete rebalancing/withdrawal model164

To avoid the unrealistic assumption of continuous rebalancing or withdrawals, we consider a set of165

pre-determined intervention times denoted by T ,166

T ≡ {t0 < · · · < tM = T}. (2.4)

At these intervention times, cash withdrawals can be made and the investor’s portfolio may be167

rebalanced. To keep transaction costs to a minimum, these times would be typically at an annual168

or quarterly frequency. As discussed in Forsyth and Vetzal (2016), with long-term investment169

horizons, the result for an optimal strategy with yearly rebalancing is quite close to the result170

obtained using continuous rebalancing.171

Let t0 (i.e. t = 0) be the inception time of the investment. For simplicity, we specify the set of172

intervention times (2.4) to be equidistant with tm − tm−1 = ∆t = T/M , m = 1, . . . ,M .173

At an intervention time, the investor withdraws an amount of cash, denoted by am, from the174

risk-free asset. The amount withdrawn at time tm is denoted by am and is determined by175

am =

{
a(tm − tm−1)eI tm = a∆teI tm = a∆temI ∆t, m = 1, . . . ,M

0 m = 0
(2.5)

where a is the (continuous and constant) withdrawal rate and I is the (continuous and constant)176

inflation rate. Note that we assume there is no withdrawal at t0. These periodic withdrawals are177

used to fund living expenses (in the pension de-accumulation case) or endowment cash flows. The178

presence of the inflation factor I preserves the real value of the withdrawals over time.179

In addition, at intervention times t0, . . . , tM−1, the investor adjusts the amounts in the stock and180

bond (i.e. rebalances the portfolio). At intervention times t1, . . . , tM−1, where both the specified181

cash withdrawal and rebalancing occur, we assume that the cash is withdrawn first and then the182

portfolio is rebalanced.183

2.3 Controls at each rebalancing date184

We denote by X(t) = (Sct , B
c
t ), t ∈ [0, T ], the multi-dimensional (controlled) underlying process.185

The control generates a new allocation of the stock and bond. Let c(·) ≡ (b̂(·), f̂(·)) denote the186

control as a function of the current state at t ∈ [0, T ], i.e.187

c(·) : (X(t−), t−) 7→ c = c(X(t−), t−) ≡ (b̂(X(t−), t−), f̂(X(t−), t−)) ≡ (b̂(t), f̂(t)). (2.6)

At each rebalancing time tm ∈ T , let the control be denoted by cm, m = 0, . . . ,M , where188

cm =

{
(b̂m, f̂m) m = 0, . . . ,M − 1

(0, 0) m = M
, (2.7)
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where we assume no rebalancing at the terminal time T . In (2.7), b̂m is the amount of the risk-free189

asset after rebalancing and f̂m is the free cash flow generated. The optimal withdrawal of free cash190

is discussed in Cui et al. (2012) and Dang and Forsyth (2016). We will describe f̂m in detail below191

in Section 2.8.192

Let x ≡ (s, b) = (Sct− , B
c
t−) denote the state of the portfolio at time t−, t ∈ [0, T ]. We denote193

by (S+, B+) ≡ S+(s, b, c, t), B+(s, b, c, t) the state of the system immediately after application of194

the control c ≡ (b̂, f̂). After a scheduled withdrawal am and application of the controls (b̂m, f̂m) at195

time tm ∈ T , we have196

S+(s, b, c, tm) = S+
tm = s+ b− am − b̂m − f̂m

B+(s, b, c, tm) = B+
tm = b̂m . (2.8)

2.4 Allowable controls197

Let the (controlled) wealth of the portfolio at time t ∈ [0, T ] be given by198

W c
t ≡W (Sct , B

c
t ) = Sct +Bc

t , t ∈ [0, T ].

We strictly enforce the solvency condition, i.e. the investor can continue trading only if ((s, b) =199

(Sct− , B
c
t−))200

W (s, b) = s+ b > 0. (2.9)

In the event of insolvency, we require that the investor immediately liquidate all investments in the201

risky asset and stop trading, i.e.202

S+ = 0; B+ = W (s, b); if W (s, b) ≤ 0. (2.10)

Equation (2.10) holds for all t ∈ [0, T ]. We also constrain the leverage ratio, i.e. the investor must203

select an allocation satisfying (tm ∈ T )204

S+
tm

S+
tm +B+

tm

≤ qmax, (2.11)

where qmax is a specified positive constant. In particular, for the endowment scenario we use205

qmax = 1, whereas in the pension de-accumulation scenario we set qmax = 1.5.206

More precisely, define the solvency region N as207

N = {(s, b) ∈ [0,∞)× (−∞,+∞) : s+ b > 0}. (2.12)

The insolvency (or bankruptcy) region B is defined as208

B = {(s, b) ∈ [0,∞)× (−∞,+∞) : s+ b ≤ 0}. (2.13)

Let209

ZN =
{
c≡(B, f̂) ∈ [−∞,+∞)×(0,+∞) : S = (s+ b)− am − f̂ −B,

where t ∈ T , S ≥ 0, and 0 ≤ S

S +B
≤ qmax

}
,

and210

ZB =


{
c ≡ (b̂, f̂) = (s+ b, 0)

}
; t ∈ [0, T ] \ T{

c ≡ (b̂, f̂) = (s+ b− am, 0)
}

; t ∈ T
. (2.14)
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The set of admissible controls Z is then211

Z =

{
ZN if (s+ b) ≥ 0

ZB if (s+ b) < 0
. (2.15)

212

2.5 Efficient frontiers and embedding methods213

We now discuss how MV efficient frontiers can be determined in our setting. Let Et,x[W c
T ] and214

Vart,x[W c
T ] respectively denote the expectation and the variance of the controlled terminal wealth215

W c
T conditional on the state (t, x) and on the control c(·). We denote the initial state by (t0, x0) =216

(t = 0, X0). Then the achievable MV objective set Y is217

Y = {(Vart0,x0 [W c
T ],Et0,x0 [W c

T ]) : c ∈ Z}, (2.16)

where Z is the set of admissible controls (2.15). For each point (V, E) ∈ Y, and for an arbitrary218

scalar ρ > 0, define the set of points YP (ρ) as219

YP (ρ) =
{

(V∗, E∗) ∈ Ȳ : ρV∗ − E∗ = inf
(V,E)∈Y

ρV − E
}
. (2.17)

Here, Ȳ denotes the closure of Y, and ρ can be viewed as a risk-aversion parameter which governs220

how the investor trades off expected return (reward) and variance (risk). For a given ρ, YP (ρ)221

represents Pareto efficient points in that, given the variance of any point in YP (ρ), the corresponding222

expectation is the largest expectation that can be obtained for that variance.223

Note that we have made no assumptions about the convexity (or lack thereof) of the achievable224

set. If the upper boundary of Ȳ is not strictly convex, use of the scalarization method (2.17) may225

not generate all possible Pareto points, but any points in YP (ρ) are sure to be Pareto optimal. In226

addition, YP (ρ) may not be a singleton.227

The set of points on the efficient frontier, denoted by YP , is just the collection of efficient points228

for all values of ρ > 0, i.e.229

YP =
⋃
ρ>0

YP (ρ).

In the context of MV optimal asset allocation, one of the primary objectives is to determine230

the efficient frontier YP . However, as noted in the literature (see, e.g. Zhou and Li, 2000; Li231

and Ng, 2000; Basak and Chabakauri, 2010), the presence of the variance term in (2.17) causes232

difficulty if we try to determine YP (ρ) by solving the associated value function problem using233

dynamic programming. This problem can be circumvented by using the embedding result in Zhou234

and Li (2000) and Li and Ng (2000). More specifically, consider the set235

YQ(γ) = inf
c(·)∈Z

{
Et0,x0 [(W c

T − γ/2)2]

}
, (2.18)

where the parameter γ ∈ (−∞,+∞), and the set236

YQ =
⋃

−∞<γ<+∞
YQ(γ).

The embedding result implies that there exists a γ ≡ γ(t, x, ρ), such that for a given positive ρ, an237

optimal control c∗ of (2.17) is also an optimal control of (2.18). Furthermore, we have the relation238

(Zhou and Li, 2000):239

γ

2
=

1

2ρ
+ Et0,x0 [W c∗

T ],

8



which implies that YP ⊆ YQ. In the following, we refer to γ/2 as the quadratic wealth target and240

Et0,x0 [W c∗
T ]

as the expected wealth target.241

2.6 Value function and its solution242

We define the value function243

V (t, x) = V (t, s, b) = inf
c(·)∈Z

{
Et,x[(W c

T − γ/2)2]

}
. (2.19)

We solve for the value function using dynamic programming, backwards from the terminal time244

t = T to the initial time t = 0. Define the following operator245

LV ≡ σ2s2

2

∂2V

∂s2
+ (µ− λκ)s

∂V

∂s
+ rb

∂V

∂b
− λV +

∫ ∞
0

p(ξ)V (ξs, b, t) dξ. (2.20)

For a given value of γ, we compute the corresponding point on the efficient frontier by first solving246

problem (2.19). We use the following algorithm to solve for the value function (2.19) using dynamic247

programming. In reverse time order, at times tm,m = M, . . . , 0, we enforce the following conditions:248

1. If (s, b) ∈ B, we enforce the liquidation condition249

V (t−m, s, b) = V (tm, 0, s+ b− am). (2.21)

2. If (s, b) ∈ N , we determine the optimal control c∗m250

V (t−m, s, b) = inf
cm∈Z

V (tm, S
+
m, B

+
m)

c∗m = (b̂m, f̂m)

S+
tm = s+ b− am − b̂m − f̂m ; B+

tm = b̂m. (2.22)

As noted above, Z is the set of admissible controls, defined in equation (2.15). Note that for251

the special case of tm = T , we have V (T, s, b) = (W (s, b)− γ/2)2.252

Within each time period [tm−1, tm), m = M, . . . , 1, we have253

1. If (s, b) ∈ B, we enforce the liquidation condition254

V (t, s, b) = V (t, 0, s+ b). (2.23)

2. If (s, b) ∈ N , V (t, s, b) satisfies the PIDE255

∂V

∂t
+ LV = 0, (2.24)

subject to the initial condition (2.22). We solve PIDE (2.24) from t−m → tm−1.256

Equation (2.24) follows from equations (2.2) and (2.3) using standard dynamic programming ar-257

guments (Øksendal and Sulem, 2009). See Dang and Forsyth (2014) for relevant details regarding258

a derivation of the localized problem. We numerically solve this localized problem using finite259

differences with a semi-Lagrangian timestepping method as described in Dang and Forsyth (2014).260
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2.7 Constructing the efficient frontier261

We denote by c∗γ(·) the optimal control of problem (2.19). Once we have determined c∗γ(·) from the262

solution process described above, we use this control to determine263

U(t, x) = Et,x[W
c∗γ
T ], (2.25)

since this information is needed to determine the corresponding MV point on the efficient frontiers.264

This essentially involves solving an associated linear partial differential equation (PDE), details265

of which are similar to those described in Dang and Forsyth (2014) and hence are omitted here.266

Using numerical solutions for (2.19) and (2.25) evaluated at (t0, x0), we compute the variance and267

expectation point (Vart0,x0 [W
c∗γ
T ],Et0,x0 [W

c∗γ
t ]). Repeating this procedure for different values of γ268

traces out the efficient frontier.269

This procedure for constructing the efficient frontier generates points that are MV optimal with270

respect to the embedding problem. While all the points in the original MV efficient frontier YP are271

MV optimal with respect to the embedding problem, note that the converse does not necessarily272

hold. This is an important issue in the context of a numerical algorithm. An algorithm for removing273

spurious points and relevant discussions are presented in Tse et al. (2014) and Dang et al. (2016).274

2.8 Semi-self financing: optimal free cash withdrawal275

In the solution process for the value function (2.18), we employ the semi-self-financing strategy276

discussed in Dang and Forsyth (2016). More specifically, given a rebalancing time tk, k = 1, . . . ,M ,277

the time-tk value of all specified cash withdrawals am made on or after time tk, denoted by wk, is278

computed by279

wk =
M∑
m=k

ame−r (tm−tk) =
M∑
m=k

(a∆t)eI tme−r (tm−tk) = (a∆t)
M∑
m=k

e∆t (I m−r(m−k)). (2.26)

At time tk, if Wtk > γ
2 e−r (T−tk) + wk, where wk is defined in (2.26), we (i) withdraw Wtk −280

(γ2 e−r(T−tk) +wk) from the portfolio, and (ii) invest the remaining wealth (γ2 e−r(T−tk) +wk) in the281

risk-free asset for the balance of the investment horizon. We refer to the amount of (i) as “free cash282

flow” to clearly distinguish it from the specified cash withdrawal am.283

As shown in Dang and Forsyth (2016), this strategy is MV optimal. This is easy to see: suppose284

that at time tk, after withdrawal of free cash, we have precisely W ∗tk = γ
2 +wk, with wk given from285

equation (2.26). If W ∗tk is invested in risk-free bonds, then after withdrawals we will have WT = γ
2286

with certainty. From (2.19), we have V (x, t) ≡ 0. Since V (x, t) ≥ 0, this is an optimal strategy.287

Assuming that this value of γ generates a valid point on the original MV efficient frontier (Tse288

et al., 2014), then this strategy must also be MV efficient.289

Since the free cash flow falls outside the scope of the MV framework, we do not include the290

expected value of the free cash flow and accumulated interest in the terminal portfolio wealth. We291

also do not use the free cash flow to fund any of the withdrawals. More precisely, the control292

variable f̂m in (2.22) is given by293

f̂m = max

(
(s+ b)− γ

2
e−r (T−tm) − wm, 0

)
(2.27)

If the free cash flow is available at a rebalancing time, it might make sense to substitute the free294

cash flow for part of the actual cash withdrawal at that time. However, our numerical experiments295
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indicate that with annual rebalancing and downward (on average) jumps, the expected free cash296

flow is very small compared to the actual cash withdrawal. Consequently, using the free cash flow297

to reduce the withdrawals has very little impact on the results. For simplicity, we ignore these298

possible benefits.299

We conclude this section by noting that for a given withdrawal rate a and provided W0 is large300

enough, there is an obvious strategy which generates zero variance: at each rebalancing time tm,301

m = 1, . . . ,M , invest in the risk-free asset all wealth after the withdrawal amount am is made. The302

certain value of the terminal portfolio wealth corresponding to this risk-free strategy, denoted by303

Erf, is304

Erf = W0erT − a∆t
M∑
m=1

eI tmer (T−tm) = W0erT − a∆t
M∑
m=1

e∆t (I m+(M−m) r). (2.28)

For future reference, let aone be the second term on the right side of (2.28), i.e.305

aone = a∆t

M∑
m=1

e∆t (I m+(M−m) r). (2.29)

The quantity aone is the time T value of all cash withdrawals am, m = 1, . . . ,M .306

2.9 Target driven investing307

Recall that the optimal control for multi-period MV objective functions can be found by determining308

the optimal control for (2.19). Since we use the semi-self-financing policy in Dang and Forsyth309

(2016), thenWT ≤ γ/2. Hence multi-period MV optimal strategies can be interpreted as minimizing310

the quadratic loss with respect to γ/2.311

As a result, we can view our strategies as a form of target driven investing, i.e. find the strategy312

c(·) which solves313

inf
c(·)∈Z

{
Et0,x0 [(W c

T −W)2]

}
W determined from the constraint Et0,x0 [W c

T ] = d

d = specified by the investor . (2.30)

We can identify W = γ/2, and the quantity (W − Et0,x0 [W c
T ]) = 1/(2ρ) can be regarded as314

safety factor, which ensures that we achieve the specified expected value with the smallest possible315

quadratic loss with respect to the target W. Of course, the control which solves problem (2.30) is316

also MV optimal.317

3 Withdrawal rates318

Our objective is to investigate the effects of withdrawal rates on the risk associated with the319

expectation of terminal portfolio wealth. In particular, we study this issue from the perspective of320

an investor who wants to maintain a specified level of the expected terminal wealth E[WT ]. We321

denote this expected wealth target by Wspec.
4 In our endowment context,322

Wspec = W (1)
spec = W0 eI T , (3.1)

4We are careful to distinguish the expected wealth target Wspec from the quadratic wealth target γ/2 in equation
(2.18).
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Figure 3.1: Supporting higher withdrawals while keeping the same level of Wspec requires taking on
more risk.

i.e. the investor wants to maintain the real value of the endowment. In the pension de-accumulation323

case, we use324

Wspec = W (2)
spec =

W0

2
eI T . (3.2)

That is, the individual wants to maintain one half of the real value of the original wealth at the325

end of the time horizon T . As discussed above in the Introduction, if T is of the order of half of326

the remaining maximum life expectancy, then this objective allows the investor to re-evaluate her327

strategy in light of health and bequest motives, while still allowing enough time for the optimal328

asset allocation strategy to recover from possible downward jumps in the risky asset.329

It follows from (2.28) that there exists a withdrawal rate at which Wspec can be achieved with330

zero variance if W0 er T −Wspec > 0. This withdrawal rate, denoted by arf, can be computed as331

arf =
W0 er T −Wspec∑M

m=1 e∆t (I m+ (M−m) r)
. (3.3)

We denote by a(1)
rf and a(2)

rf the values of arf in the endowment and de-accumulation scenarios332

respectively.333

In Figure 3.1 we plot three efficient frontiers corresponding to three different values of the334

withdrawal rate, namely a = arf, a = a1 > arf and a = a2 > a1. The left most point on the efficient335

frontier when a = arf corresponds to a portfolio that follows a zero variance strategy. The certain336

value of the terminal portfolio wealth in this case is Wspec. However, when a = a1, the efficient337

frontier shifts downward. Hence, in this case a zero variance strategy results in E[WT ] < Wspec.338

Thus, to maintain the same level of Wspec, some risk must be taken. For the higher withdrawal rate339

a2, the amount of risk taken must be larger.340

We are interested in a numerical study of the following issue. Given a withdrawal rate a > arf,341

what is the minimum amount of risk that must be taken to maintain the same level of Wspec? To342

answer this, given Wspec and a fixed withdrawal rate a > arf, we can find an optimal control c∗(·)343

which guarantees Et0,x0 [W c∗
T ] = Wspec with the smallest variance. This task can be embedded into344
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Base Diffusion with
Parameters case Jump diffusion effective volatility

µ (drift) 0.10 0.10 0.10
σ (volatility) 0.15 0.15 0.23 = σeff

λ (jump intensity) N/A 0.10 N/A
ν (jump multiplier mean) N/A -0.50 N/A
ζ (jump multiplier std. dev.) N/A 0.20 N/A
r (risk-free interest rate) 0.03 0.03 0.03
I (inflation rate) 0.02 0.02 0.02
W0 (initial wealth) 100 100 100
T (investment horizon - years) 20 20 20
ti+1 − ti (rebalance interval - years) 1 1 1

Table 4.1: Input parameters for the various cases. See definitions of jump diffusion parameters in
(2.1). With these parameters, the expected jump multiplier is E[ξ] ' .62.

the problem of finding the parameter γ from (2.19) for which Et0,x0 [W c
T ] = Wspec can be achieved345

with the smallest variance. This can be solved using Newton’s method (see Algorithm A.1 in346

Appendix A). To compare the effects of the withdrawal rate on the minimum amount of risk for347

these different cases, it is convenient to plot the standard deviations
√

Vart0,x0 [W c
T
∗] obtained with348

different withdrawal rates versus the withdrawal rates.349

4 Numerical results350

Default parameters for our experiments are given in Table 4.1. The base case is GBM with drift351

µ = .10, volatility σ = .15, and a risk-free rate of r = .03. These parameter values are similar352

to those estimated by Forsyth and Vetzal (2016) using U.S. market data from the past 60 years.353

In addition, to examine the effects of market crashes we consider a jump diffusion case, with354

parameters selected so that jumps occur on average about once per decade and jump sizes which355

are on average strongly negative (on the order of about −40%), but with a fairly large standard356

deviation. We also include a diffusion case with an effective volatility which approximates the357

behavior of the jump diffusion model by a pure diffusion process (Navas, 2000). It is interesting358

to include this case as conventional wisdom asserts that over long times, jump diffusions can be359

approximated by diffusions with enhanced volatility. In our experiments, the effective (enhanced)360

volatility is computed as in Navas (2000), i.e.361

σeff =
√
σ2 + λ(ν2 + ζ2) (4.1)

=
√

0.152 + 0.10((−0.5)2 + (0.2)2) ≈ 0.23 .

Our two scenarios of endowment and pension de-accumulation use different Wspec and qmax.362

Table 4.2 lists these values, along with the quantity arf defined in (2.29). Our PIDE solutions363

below use 120 timesteps and 245 and 117 nodes in the b and s directions, respectively. Numerical364

tests show that this level of grid refinement gives about three digits of accuracy in the mean and365

standard deviation.366
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Scenario Wspec qmax arf

Endowment Wspec = W (1)
spec = 149.2 qmax = q(1)

max = 1.0 arf = a(1)
rf = 1.0

Pension de-accumulation Wspec = W (2)
spec = 149.2/2 qmax = q(2)

max = 1.5 arf = a(2)
rf = 3.3

Table 4.2: Levels of Wspec and maximum leverage constraints in the endowment and wealth man-
agement scenarios.

4.1 Effects of withdrawal rates367

Figure 4.1 presents plots of the standard deviations vs. withdrawal rates to show the amount of risk368

required to maintain the same level of Wspec for different withdrawal rates. The withdrawal rates369

can be interpreted as the real withdrawal rate expressed as a per cent of initial wealth. Panel (a)370

shows the endowment case for a wide range of withdrawal rates, while panel (b) zooms in to provide371

a clearer comparison for relatively low withdrawal rates. Panels (c) and (d) are similar, but for372

the pension de-accumulation scenario. We observe that the effect of the withdrawal rate is quite373

substantial in both cases. For the same withdrawal rate under either scenario, the base case is374

the least risky. This is followed by the jump diffusion case and then the diffusion with effective375

volatility case. It seems clear that approximating the jump diffusion by a pure diffusion with376

enhanced volatility overstates the risk. This should be borne in mind in any practical application377

of these results since an empirical estimate of historical market volatility (based, e.g., on GBM)378

will produce an effective volatility that includes both diffusive and jump effects.379

For the pension de-accumulation scenario with the input data considered, it appears that with-380

drawing at any rate above 5% probably involves unacceptably high risk, especially in the jump381

diffusion setting. A 4% withdrawal rate does seem to be a reasonable compromise here between382

risk and reward, but note that this is only under the assumption of an optimal asset allocation383

policy. For the endowment case, a 4% withdrawal rate seems to generate quite a bit of risk, while384

a 3% withdrawal rate would be considerably safer.385

4.2 Order of random returns386

As noted by Milevsky and Salisbury (2006), the order of random returns is irrelevant for long-term387

investors with no need to generate income each year. However, under both of our scenarios the388

investor does need to generate income each year, and so is exposed to risk embedded in the order389

of random returns. Losses in the early years of investment can be devastating, resulting in a rapid390

depletion of the fund.391

To investigate the effects of the order of random returns, we carry out the following experiment.392

Instead of withdrawing the amount am every year, m = 1, . . . ,M , we withdraw only once at time393

tM = T the amount aone defined in (2.29). In this one-off withdrawal, we take into account the time394

value of money of the annual withdrawals. We focus here exclusively on the endowment scenario.5395

Note that under this one-off withdrawal a(1)
rf remains unchanged at one, as indicated in Table 4.2,396

and Wspec is set to be the same as for the yearly withdrawals, i.e. 149.2.397

Figure 4.2 shows plots of standard deviation vs. withdrawal rates for this experiment. Panel (a)398

shows the tradeoff between risk and withdrawal rate for the base, jump diffusion, and diffusion with399

effective volatility cases. Panels (b)-(d) respectively consider these three modeling cases, comparing400

the risk required to maintain the same level of Wspec for the one-off withdrawal and with that for the401

5While similar numerical results are obtained for the pension de-accumulation case, the one-off withdrawal is
unlikely to be practically feasible in that setting since pensioners rely on periodic withdrawals.
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(d) Pension de-accumulation case: zoom in.

Figure 4.1: Standard deviations vs. withdrawal rates. The withdrawal rates are expressed in real
terms as a per cent of initial capital. Input data are given in Tables 4.1 and 4.2.

annual withdrawals. These plots illustrate that order of return risk is highly significant, especially402

for large withdrawal rates.403

4.2.1 An endowment strategy404

The above results suggest a potentially interesting strategy for a charitable endowment which is405

concerned about risk due to the order of random returns. Suppose that the endowment has real406

assets (e.g. office buildings). The order of return risk could be eliminated by doing the following:407

• Take out a bullet loan in the amount of aone e
−rT using the real assets as collateral, where408

aone is given in equation (2.29). This loan is to be repaid entirely at t = T .409
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(d) Diffusion with effective volatility case.

Figure 4.2: Standard deviation vs. withdrawal rate, comparing the risks of annual withdrawals with a
one-off withdrawal at the investment horizon T for the endowment case. Input data are from Tables 4.1
and 4.2.

• Invest the loan proceeds in risk-free assets to fund the endowment cash flows in [0, T ].410

• Manage the investment portfolio using the optimal dynamic strategy over [0, T ]. Note there411

are no withdrawals from the portfolio.412

• At time t = T , make a balloon payment aone to repay the loan.413

Based on our results reported above, this strategy would reduce risk compared to funding the fixed414

cash flows from the investment portfolio.415

Of course, since this strategy essentially involves borrowing, this can be reproduced by simply416

allowing more leverage in the set of admissible strategies. However, many endowments specifically417
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Diffusion with
No. of No. of Base case Jump diffusion effective volatility

MC simulations timesteps Mean Std. dev. Mean Std. dev. Mean Std. dev.

Endowment scenario

4× 104 80 148.7 103.1 148.6 156.8 146.5 178.8
16× 104 160 149.1 104.9 149.0 158.9 148.7 180.8
64× 104 320 149.2 105.7 149.2 159.9 149.2 182.1

PDE-computed 149.2 105.6 149.2 159.9 149.2 182.7

Pension de-accumulation scenario

4× 104 80 72.7 45.1 74.0 78.8 69.6 80.0
16× 104 160 73.8 44.9 76.5 78.0 72.9 80.5
64× 104 320 74.5 44.8 77.4 77.4 74.5 80.8

PDE-computed 74.6 44.7 74.6 77.1 74.6 80.7

Table 4.3: Convergence of MC-computed and PDE-computed means and standard deviations. The
withdrawal rate is a = 6. Other input data are from Tables 4.1 and 4.2.

prohibit use of leverage. Hence the strategy of borrowing against real assets may be more acceptable418

to endowment trustees, even though this is clearly economically equivalent to use of leverage.6419

4.3 Monte Carlo results420

In this section, we carry out Monte Carlo (MC) simulations using the optimal controls generated421

by our PIDE solver. This provides further insight into the controlled investment process.422

4.3.1 MC validation423

As a model validation check, we proceed here to compute the mean and standard deviation of424

terminal wealth using both an MC method and the PDE approach (see Section 2.7). In particular,425

we proceed as follows. For each fixed value of W (1)
spec and W (2)

spec (see Table 4.2), we use the PIDE426

method described above in Section 2.6 to find optimal strategies which achieve this value with the427

smallest possible variance. These controls are stored for each discrete state value and timestep. We428

then carry out MC simulations from t = 0 to t = T following these stored PIDE-computed optimal429

strategies. If necessary, we use interpolation to determine the controls for a given state value. For430

the MC computations, we use different timestep sizes and numbers of simulations. See Appendix B431

for details. We then compare MC-computed means and variances with the corresponding values432

calculated using the PDE approach of Section 2.7. As an illustrative example, Table 4.3 provides433

means and standard deviations for both the endowment and pension de-accumulation scenarios for434

a withdrawal rate of a = 6. In all cases it is clear that the MC-computed means and standard435

deviations converge consistently to the respective PDE-computed values.436

6An alternative perspective on this strategy is to consider it as a form of debt restructuring. The commitment to
withdraw cash on an annual basis for spending purposes has similar effects to those generated by incurring annual
interest payments on a loan. The strategy outlined here effectively substitutes long-term zero-coupon debt for the
leverage inherent in having yearly withdrawals.
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4.3.2 Probability density functions437

To avoid notational clutter, we will drop the superscript from W c
T , with the understanding that438

all references to WT in the following refer to the controlled wealth. Figure 4.3 presents plots of439

the probability density functions of the terminal wealth WT for several different withdrawal rates a440

for both the endowment and the pension de-accumulation scenarios. These are obtained using MC441

simulations with 320 timesteps and 64× 104 replications, as described in the previous subsection.442

For brevity, we present just the jump diffusion (panels (a) and (c)) and diffusion with effective443

volatility cases (panels (b) and (d)). The corresponding γ values used for this experiment are given444

in Table 4.4.445

Pension
Endowment de-accumulation

a Jump diffusion Diffusion with a Jump diffusion Diffusion with
effective volatility effective volatility

4 384.4 419.9 4 158.4 164.5
6 509.8 699.9 7 353.9 435.0
8 1011.1 1332.9 8 510.0 648.5

Table 4.4: Values of γ used to produce Figure 4.3.

We make the following observations regarding Figure 4.3:446

• The shape of the density functions is typically highly skewed. This is due to the optimal447

control, which attempts to minimize the quadratic loss with respect to the wealth target of448

γ/2, as in (2.18). Note that the quadratic wealth target γ/2 is an increasing function of the449

withdrawal rate a.450

• The shape of the probability density function depends on the withdrawal rate. Note the451

change of the shape of the density function from single-peaked to double-peaked as a increases,452

with the second peak centered at a small negative value. This behavior is observed for both453

the jump diffusion and diffusion with effective volatility cases.7 When a is small enough (e.g.454

a = 4), the chance of bankruptcy is quite low and so the density has a single peak near Wspec.455

As a increases (e.g. to 6 and 7), the chance of bankruptcy rises. This happens for two reasons:456

(i) the amounts withdrawn are larger; and (ii) the optimal strategy is to invest more in the457

risky asset over longer periods of time. Moreover, once bankruptcy occurs, the insolvency458

condition (2.14) leaves no scope for action: the investor has to liquidate all investments in the459

risky asset, and is not allowed to make further trades. Subsequent withdrawals are financed460

by borrowing, but the portfolio remains insolvent. This results in a clustering of values of461

terminal wealth in a narrow range below zero, resulting in a second peak in the left tail of462

the WT distribution.463

• Comparing the jump diffusion and diffusion with effective volatility cases, it appears that the464

jump diffusion setting is less risky as the density function has thinner tails and a higher peak.465

Note that the compensated drift for the jump diffusion specification is higher than for the466

pure diffusion case, as indicated by equation (2.2) (recall λ > 0 and κ < 0). Consequently,467

since jumps are comparatively rare, the investor has a higher probability of de-risking as the468

target is approached, compared with the effective volatility case. Hence, in the jump diffusion469

7The same effect also occurs in the base case.
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Figure 4.3: Probability density function of WT for several different withdrawal rates a. For a = 4,
the density plots are clipped. A total of 320 timesteps and 64× 104 replications are used. Other input
data are from Tables 4.1 and 4.2.

scenario, if a downward jump occurs, there is little negative effect on a de-risked portfolio.470

In contrast, if there is a high effective volatility, it is more difficult (and less likely) for the471

investor to de-risk. This is a bit counterintuitive, as it suggests that the optimal strategy can472

overcome sudden market drops more easily than continuous large volatility.473

• Comparing the endowment and the pension de-accumulation scenarios for the same a, we474

observe that the densities for the endowment case have heavier tails and more pronounced left475

peaks. This follows since for the same a, the expected terminal wealth for the endowment case476

is larger than for the de-accumulation case. Hence, we expect more risk for the endowment477
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case (i.e. a more spread out density function).478

4.3.3 Means and standard deviations of the MV optimal control479

To gain further insight into the optimal control strategy, we perform additional MC simulations480

using the same steps outlined in Section 4.3.1. For each rebalancing time tm, m = 0, . . . ,M , we481

compute the mean and standard deviation of the portion of the portfolio wealth that is invested482

in the risky asset after an optimal allocation has been applied. That is, we compute the mean and483

standard deviation of Stm/(Stm + Btm). We then plot these two quantities vs. rebalancing times484

t0, . . . , tM . Figures 4.4 and 4.5 respectively show illustrative results for the endowment and pension485

de-accumulation scenarios with a = {4, 8}.486

We make the following observations based on these figures:487

• The diffusion with effective volatility cases have the highest average allocation to the risky488

asset in both the endowment and the pension de-accumulation scenarios (see panels (a) and489

(c) of Figures 4.4 and 4.5). In addition, in all cases the mean fraction of wealth invested in490

the risky asset decreases over time. This is because we expect that on average491

γ

2
e−r(T−t) + wk −W c

t (4.2)

will decrease with increasing time (Vigna, 2014). The intuition here is that on average con-492

trolled wealth will get closer to the sum of the discounted final quadratic wealth target and the493

discounted value of specified cash withdrawals. As indicated above (Section 2.8), if controlled494

wealth reaches this level, the optimal strategy is to de-risk completely.8495

• Figure 4.5(a) shows that for the pension de-accumulation scenario with a = 4 the fraction496

invested in the risky asset is, on average, never larger than 0.5 and declines to a relatively497

low level over time.498

• Figure 4.4(c) indicates that for the endowment scenario with a = 8, the investor will need499

to maintain the maximum allowable leverage ratio for quite a long time before switching to500

investing more in the risk-free asset. In this figure, the mean fraction of wealth invested in501

the risky asset for all modeling cases starts at q(1)
max = 1 and remains there for several years.502

4.4 Fixed proportion rules503

In this section, we compare the performance of the MV optimal asset allocation strategy to a simple504

fixed proportion rebalancing rule of Graham (2014), with the constant fraction being p. For this505

experiment, we proceed as follows:506

1. Step 1: carry out MC simulations for the portfolio under this fixed proportion strategy. At507

each rebalancing time, we adjust the asset allocation so that the constant fraction p of the508

wealth is invested in the risky asset.509

2. Step 2: given the value of expected terminal wealth calculated for the constant proportion510

strategy in Step 1, we then use PIDE methods to determine the MV optimal strategy which511

generates the same value for Et0,x0 [W c
T ] = Wspec with smallest amount of risk, as described512

earlier.513

8Of course, if controlled wealth is ever greater than the amount needed to be invested in the risk-free asset which
ensures that all remaining withdrawals can be made and the final wealth target can be reached for certain, the excess
is a free cash flow.
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(c) a = 8: endowment scenario; mean.
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Figure 4.4: Means and standard deviations of the fraction of wealth invested in the risky asset at
each rebalancing time for the endowment scenario. Withdrawal rates are a = {4, 8}. Other input data
are from Tables 4.1 and 4.2.

We emphasize that we do not specify Wspec exogenously for the MV optimal strategy, as in the514

previous numerical tests. Rather, Wspec is determined from the expected terminal wealth of the515

constant proportion strategy. We compare the MV optimal and the fixed proportion rule strategies516

in terms of standard deviation and probability of shortfall. For brevity, we only present the results517

for the pension de-accumulation scenario.9518

As an illustrative example, consider a fixed proportion rule with p = 0.5, T = {20, 30} years, a =519

4 and remaining parameters from Table 4.1. Results for this case are presented in Table 4.5. We note520

that the value of expected terminal wealth from the constant proportion strategy is approximately521

9We obtain qualitatively similar results for the endowment scenario.

21



 Rebalancing times (years)

M
e

a
n

 (
S

/(
S

+
 B

))

0 5 10 15 20
0

0.5

1

1.5

jump
diffusion

base case

diffusion
(effective vol. = 0.23)

(a) a = 4: pension de-accumulation scenario; mean.
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(c) a = 8: pension de-accumulation scenario; mean.
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Figure 4.5: Means and standard deviations of the fraction of wealth invested in the risky asset at
each rebalancing time for the pension de-accumulation scenario. Withdrawal rates are a = {4, 8}.
Other input data are from Tables 4.1 and 4.2.

180 and 259 for T = {20, 30}, respectively.522

Table 4.5 shows that for the case with an investment horizon of T = 20 years and given the523

same mean, the MV optimal strategy always results in smaller standard deviations than those524

obtained under the fixed proportion rule. While this is expected, we emphasize that the differences525

are quite substantial (e.g. 50.1/98.7 ≈ 50% for the base case; 104/158 ≈ 65% for the diffusion with526

effective volatility case). In addition, the shortfall probabilities under the MV optimal strategy are527

also much reduced compared to the constant proportion policy. When T = 30 years, the shortfall528

probabilities under the MV optimal strategy are less than one-half those for the constant proportion529
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Diffusion with
Base case Jump diffusion effective volatility

Fixed MV Fixed MV Fixed MV
prop. optimal prop. optimal prop. optimal

Investment horizon: T = 20 years

Mean 180.1 180.1 181.2 181.2 180.9 180.9
Std. dev. 98.7 50.1 133.3 91.8 157.8 104.0
Prob. shortfall: P (WT < 180) 0.57 0.20 0.58 0.28 0.62 0.33

Investment horizon: T = 30 years

Mean 258.4 258.4 259.6 259.6 259.1 259.1
Std. dev. 210.4 92.1 287.3 170.1 346.5 195.7
Prob. shortfall: P (WT < 250) 0.58 0.15 0.60 0.26 0.65 0.31

Table 4.5: Comparison of the fixed proportion rule with p = 0.5 and the MV optimal strategy for
the pension de-accumulation scenario with investment horizons of 20 and 30 years and a withdrawal
rate of a = 4. Other input data are from Tables 4.1 and 4.2, except that Wspec for the MV optimal
strategy is determined from the expected terminal wealth under the constant proportion strategy.

strategy (e.g. 0.15/0.58 ≈ 25% for the base case; 0.31/0.65 ≈ 45% for the diffusion with effective530

volatility case). These results demonstrate the superiority of MV optimal strategies, especially for531

longer investment horizons.532

4.5 Historical data tests: robustness to mis-specified parameters533

Our previous numerical examples used base case parameters which were approximately equivalent to534

those estimated by Forsyth and Vetzal (2016) using the last six decades of U.S. market experience.535

In this subsection, we use parameters determined from longer term historical data to explore the536

robustness of the investment strategy to parameter estimation.537

The parameters for the base case and the jump diffusion case are calibrated to historical data538

as discussed in Section 7 of Dang and Forsyth (2016). More specifically, we use daily and monthly539

total return data for the CRSP VWD index. This is the same index from Figure 1.1 above, but540

extended to cover the period from 1926 through 2014.541

The parameters µ and σ for the base case (GBM) can be determined by maximum likelihood542

estimation. In order to determine the set of parameters for the jump diffusion model, the use543

of maximum likelihood methods is well-known to be problematic, due to multiple local maxima544

and the ill-posedness of trying to distinguish high frequency small jumps from diffusion (Honore,545

1998). From the perspective of a long-term investor, the most important feature of a jump diffusion546

model is that it incorporates the effects of infrequent large jumps in asset prices. Small, frequent547

jumps look like enhanced volatility. When examined on a large scale, these effects are probably not548

important when building a long-term investment strategy. In calibrating jump diffusion models,549

we use the thresholding technique described in Mancini (2009) and Cont and Mancini (2011). This550

technique is considered to be more efficient for low frequency data. The reader is referred to Dang551

and Forsyth (2016) for details of the calibration techniques.552

Since we consider annual rebalancing, we use the average one year T-bill rate over the period553

from 1934 to 2014, obtained from the U.S. Federal Reserve.10 For inflation, we use the average CPI554

10See www.federalreserve.gov/releases/h15/data.htm. This data series is only available starting in 1934.
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inflation rate from the U.S. Bureau of Labor Statistics over the 1926-2014 period.11
555

The calibrated parameters are given in Table 4.6.12 The base case parameters are estimated556

using the daily data. For the jump diffusion case, both the daily and monthly data are used. Note557

that the drift rates and volatilities are similar for all cases, but the jump parameters are quite558

different when estimated using daily vs. monthly data. Since the jump parameters are difficult to559

estimate, we can examine the effect of differing estimates on the investment results.560

Parameters Base case Jump diffusion
Daily Daily Monthly

µ (drift) 0.1119 0.1120 0.1122
σ (volatility) 0.1862 0.1631 0.1715
λ (jump intensity) N/A 1.528 0.0899
ν (jump multiplier mean) N/A -0.00759 -0.2631
ζ (jump multiplier std. dev.) N/A 0.0733 0.0476
r (risk-free interest rate) 0.0499 0.0499 0.0499
I (inflation rate) 0.029 0.029 0.029
W0 (initial wealth) 100 100 100
T (investment horizon) 30 years 30 years 30 years
ti+1 − ti (rebalance interval) 1 year 1 year 1 year

Table 4.6: Parameters for the empirical data tests for three cases: GBM with daily data and jump
diffusion using both daily and monthly returns.

A comparison of the jump diffusion results for daily and monthly data in Table 4.6 shows some561

apparent substantial differences. The daily data implies a much higher frequency of jumps, but the562

jumps are on average of a much smaller magnitude. However, applying formula (4.1) gives effective563

volatilities of 0.1868 and 0.1893 for the daily and monthly data respectively.564

In this test of the method’s robustness to mis-specified parameters, we consider the pen-565

sion de-accumulation case with a withdrawal rate a = 4%. The value for Wspec in this case is566

100e0.029×30/2 ≈ 119.2. For the probabilities of shortfall, we compute P (WT < 0.9×Wspec) ≈ 107.567

For the models, we consider only the base case and the jump diffusion case. We proceed as follows:568

• Step 1: Assume a model for the risky asset under which MV optimal strategies are computed569

(e.g. GBM). Under this strategy computing model, compute and store the MV optimal strate-570

gies from t = 0 to t = T for which Et0,x0 [W c
T ] = Wspec = 119.2 can be achieved with the571

smallest variance.572

• Step 2: Carry out MC simulations for the portfolio from t = 0 to t = T following the stored573

optimal strategies from Step 1, but assuming that the real world’s dynamics of the risky asset574

follow a different model (e.g. jump diffusion). This different model is referred to as the real575

world model.576

• Step 3: Compare the MC-computed mean, variance, and probability of shortfall for each pair577

of strategy computing model and real world model.578

We begin by noting that across all different strategy computing models in Step 1, the parameter579

γ for which Et0,x0 [W c
T ] = Wspec = 119.2 can be achieved with the smallest variance is approximately580

11In particular, we use the annual average of the all urban consumers index (CPI-U), see http://www.bls.gov/cpi.
12This table is reproduced from Table 8.1 of Dang and Forsyth (2016).
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258. With this value of γ, the smallest variance is about 34.1 across all different strategy computing581

models.582

Table 4.7 shows the results for all combinations of representative test cases. These results clearly583

demonstrate that the MV optimal strategy results in very similar means, standard deviations, and584

shortfall probabilities for terminal wealth in all cases. This implies that the MV optimal strategy is585

quite robust to parameter mis-specification (e.g. if we compute the strategy assuming jump diffusion586

based on parameter estimates using daily data but run the simulations using a real world model587

which has parameter estimates based on monthly data).13
588

Real world model
Strategy computing model Mean Std. Prob. shortfall Mean Std. Prob. shortfall

dev. P (WT < 107) dev. P (WT < 107)

GBM Jump diffusion (daily) Jump diffusion (monthly)
119.1 34.1 0.26 118.9 33.9 0.26

Jump diffusion (daily) GBM Jump diffusion (monthly)
118.9 33.9 0.26 119.0 33.8 0.27

Jump diffusion (monthly) GBM Jump diffusion (daily)
119.2 33.8 0.27 119.1 34.1 0.26

Table 4.7: MC-computed mean and variance for each pair of different strategy computing and real
world models. Same level of refinement as in Table 4.3 is used. Input data are provided in Table 4.6.
The withdrawal rate is a = 4%, and γ = 258 for all strategy computing models.

5 Conclusions589

It can be argued that a reasonable long-term model for a stock index uses a jump diffusion process.590

In this study, we use parameters which generate a jump about once per decade and such that when591

a jump occurs, the average result is a decline of about 40% in the value of the risky asset. With592

this jump diffusion model, we investigate the impact of periodic withdrawals on target final real593

wealth for two scenarios: de-accumulation of a defined contribution pension plan and operation of594

an endowment. In both scenarios, we use the optimal dynamic asset allocation determined using595

a multi-period MV objective function. Using either standard deviation or probability of shortfall596

to measure risk, the optimal strategy considerably outperforms a standard constant proportion597

strategy.598

Under our assumed market parameters, we observe that withdrawal rates of 4% are probably599

reasonable for the pension de-accumulation scenario. This is, perhaps somewhat surprisingly, con-600

sistent with the results in Bengen (1994). However, we emphasize that the results in this paper are601

based on an optimal asset allocation strategy, not a simple constant mix rule. The optimal asset602

allocation for this scenario has a fairly low average allocation to risky assets. On the other hand,603

we find that 4% withdrawals for an endowment are probably not sustainable. This finding might604

raise some concerns for managers of endowments who are using a 4% withdrawal rate.605

We also note that the same general conclusions are obtained if we use either a low risk diffusion606

model (our base case), or a diffusion model with an effective volatility that matches the total607

volatility of the jump diffusion model. Although the results are qualitatively similar for these608

13A different type of robustness test for long-term MV optimal strategies has recently been reported by Ma and
Forsyth (2016). They compare a stochastic volatility model with GBM, and find that the two models produce very
similar results.
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other specifications, we reiterate that the use of effective volatility diffusion model to approximate609

the jump diffusion model seems to lead to a significant overestimate of risk, at least for the cases610

considered here. Overall, the MV optimal policy under jump diffusion seems to be quite resilient611

to relatively rare jumps which on average represent significant market downturns.612

Finally, we calibrate our jump diffusion and GBM models to long-term historical data. The613

jump diffusion parameter estimates are sensitive to the sampling frequency. Nevertheless, MC tests614

show that the resulting distribution of terminal wealth for the MV optimal strategy is robust to615

parameter uncertainty. This suggests that our conclusions with respect to withdrawal rates are616

robust as well.617
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Appendices675

A A numerical algorithm to find γ to achieve Wspec with smallest676

variance677

Algorithm A.1 describes a Newton’s method to find γ for which given a withdrawal rate â > arf,678

Wspec is achieved with the smallest variance:679

Algorithm A.1 A Newton algorithm to find a γ value for which, given a withdrawal rate â > arf,
Wspec is achieved with the smallest variance.

1: γ(0) = γ0 with γ0 being an initial guess;
2: for k = 0, 1, . . . ,until convergence do
3: solve value function problem (2.18) with γ = γ(k) and a = â to obtain the optimal control

c∗
γk

(·)
4: use the control from Line 3 to compute E(γ(k)) = Et0,x0

c∗
γk

(·)[WT ];

5: repeat Lines 3-4 with γ = γ(k) + ε, where 0 < ε� 1, to obtain E(γ(k) + ε);

6: compute E′(γ(k)) ≈ E(γ(k) + ε)− E(γ(k))

ε
;

7: compute

γ(k+1) = γ(k) − E(γ(k))−Wspec

E′(γ(k))
;

8: if (converged) then
9: break from the iteration;

10: end if
11: end for
12: return γ = γ(k+1);

B Monte Carlo algorithm680

This appendix provides a Monte Carlo algorithm for simulating the portfolio allocation problem681

under the jump diffusion model (2.2)-(2.3), assuming an allocation rule. We denote the rule by682

R ≡ {Rm}Mm=0. Here, Rm is the allocation rule for the rebalancing time tm. Each of Rm,m =683

0, . . . ,M , can be expressed in the form684

Rm ≡
{

(sk, bl, p
m
k,l)

}
, k = 1, . . . , kmax, l = 1, . . . , lmax, (B.1)

where sk and bl respectively denote the PDE grid point values in the s and b directions, and pmk,l685

denotes the time-tm optimal proportion of the portfolio wealth invested in the risky asset if the686

stock and bond amounts are sk and bl, respectively. Note that the pmk,l are computed during the687

solution process of the PDE method.688

We denote by Sm,− and Bm,− simulated values of S and B at the rebalancing time t−m, m =689

0, . . . ,M , after the withdrawal am has been made. At t−m, if the portfolio is still solvent it is then690

rebalanced according to the rule Rm. Since Sm,− and Bm,− may not be exactly sk, bl, for some k691

and l, we employ Rm and linear interpolation along the s and b directions to compute an optimal692
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allocation of the portfolio. On the other hand, for the fixed proportion rule with parameter p, we693

simply have694

Sm = (Sm,− + Bm,−)p; Bm = (Sm,− + Bm,−)(1− p). (B.2)

An MC simulation of the portfolio allocation problem under the jump diffusion model (2.2)-(2.3)695

is given in Algorithm B.1. In the algorithm, N is the number of timesteps, and I is the number of696

replications. We denote by S·,−i , B·,−i , i = 1, . . . , I, the i-th replication of S·,− and B·,−, respectively.697

Also, IA denotes an indicator function.698

Algorithm B.1 A Monte-Carlo algorithm for simulating the portfolio allocation problem under
the jump diffusion model (2.2)-(2.3).

1: compute S0 and B0 using linear interpolation or (B.2);
2: set B0

i = B0, S0
i = S0, logS0

i = log(S0), AlreadyLiquidatedi = 0; i = 1, 2, . . . , I;
3: set dt = T/N ;
4: for n = 1, 2, . . . , N do {Timestep loop}
5: set tn = ndt;
6: for i = 1, 2, . . . , I do {Simulation loop}
7: set Bn,−

i = Bn−1
i erdt −

∑M
m=1 amItn=tm,tm∈T ; {interest and withdrawal}

8: if AlreadyLiquidatedi = 1 then
9: Sni = 0; logSni = −∞; Bn

i = Bn,−
i ;

10: else
11: generate K ∼ Poisson(λdt);
12: set logSn,−i = logSn−1

i +(µ−λκ+σ2/2)dt+σ
√
dtNormal(0, 1)+νK+ξ

√
KNormal(0, 1);

13: if Sn,−i ,Bn,−
i ∈ B then

14: set Bn
i = Sn,−i + Bn,−

i , Sni = 0, logSni = −∞, AlreadyLiquidatedi = 1;
15: {liquidate the portfolio}
16: end if
17: set Sn,−i = elogSn,−i ;
18: if ( (tn ∈ T ) and (AlreadyLiquidatedi 6= 1) ) then
19: compute Sni and Bn

i using interpolation or (B.2);
20: {rebalance the portfolio}
21: if

Sni
Sni + Bn

i

> q then

22: let Wn
i = Sni + Bn

i ; {enforce leverage cond.}
23: set Sni = qWn

i and Bn
i = (1− q)Wn

i ;
24: end if
25: else
26: set Sni = Sn,−i , and Bn

i = Bn,−
i ; {not a rebalancing time or liquidated}

27: end if
28: set logSni = log(Sni );
29: end if
30: end for{End Simulation loop}
31: end for{End Timestep loop}
32: set Portfolioi = SNi + BN

i , i = 1, . . . , I;
33: return E(Portfolio) and Var(Portfolio);

29


