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Abstract5

When formulated as an impulse control problem, the no-arbitrage pricing of Guaranteed Minimum6

Withdrawal Benefit contracts with continuous withdrawals results in a Hamilton-Jacobi-Bellman7

Quasi-Variational Inequality (HJB-QVI), which must be solved numerically. In this paper, using8

an associated Green’s function, we develop a numerical Fourier method which is only monotone9

within a tolerance ϵ > 0 to solve the above HJB-QVI under jump-diffusion dynamics. We appeal to a10

Barles-Souganidis-type analysis in [14], which is originally developed for strictly monotone scheme, to11

rigorously prove the convergence of our scheme to the viscosity solution of the HJB-QVI as ϵ→ 0. Ex-12

tensive numerical experiments demonstrate an excellent agreement with benchmark results obtained13

by finite difference methods and Monte Carlo simulation.14
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1 Introduction18

In a continuous withdrawal setting, the no-arbitrage pricing problem of Guaranteed Minimum With-19

drawal Benefit (GMWB) contracts can be formulated using either impulse control or singular control,20

typically resulting in an Hamilton-Jacobi-Bellman Quasi-Variational Inequality (HJB-QVI). This HJB-21

QVI must be solved numerically, since a closed-form solution for it is not known to exist. The reader22

is referred to [15, 24, 40, 41, 42, 54] and [7, 19, 20] for an analysis of singular control and impulse con-23

trol formulations, respectively. Generally speaking, the impulse control approach is suitable for many24

complex situations in stochastic optimal control [3, 8, 16, 25, 31, 37, 46, 57, 64]. For GMWB contracts,25

impulse control is more convenient than singular control in handling complex contract features, such as26

is the reset provision[1, 24, 26, 38, 54, 67].27

Provable convergence of numerical methods for HJB equations are typically built upon the framework28

established by Barles and Souganidis in [14]. This framework requires numerical methods to be (i) mono-29

tone (in the viscosity sense), (ii) stable, and (iii) consistent. Among these requirements, monotonicity30

is often the most challenging to achieve, and consistency in the viscosity sense is usually the most diffi-31

cult to prove theoretically, especially for equations with complex boundary conditions. Non-monotone32

schemes could produce numerical solutions that fail to converge to viscosity solutions, resulting in a33
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violation of the no-arbitrage principle [55, 59, 68]. When a finite difference method is used, monotonicity34

is ensured by a positive coefficient discretization method [34, 52, 59, 66].1 In the context of pricing35

GMWB contracts with continuous withdrawal, convergence of finite difference scheme to the viscosity36

solution of the associated HJB-QVI is studied in great detail in [19, 20, 24, 40, 41, 42].37

Pricing GMWB contracts with discrete withdrawals typically involves solving, between fixed inter-38

vention times, either (i) an associated linear Partial-Integro Differential Equation (PIDE) using finite39

differences [19, 24], or (ii) an expectation problem using numerical integration [1, 15, 44, 45, 51, 62],40

or regression-type Monte Carlo [9, 43]. Across intervention times, an optimization problem needs to41

be solved. Numerical integration Fourier-based methods often depend on the availability of a closed-42

form expression of the Fourier transform of the underlying transition density function or an associated43

Green’s function [1, 45]. It is well-known that, if applicable, Fourier-based methods offer several im-44

portant advantages over finite differences, such as no timestepping error between intervention times,45

and the capability of straightforward handling of realistic underlying dynamics, such as jump diffusion46

and regime-switching. However, a major drawback of existing Fourier-based methods is their lack of47

strict monotonicity. This issue is particularly problematic in the context of stochastic optimal control48

in general where optimal decisions are determined by comparing numerically computed value functions.49

Furthermore, another challenge with Fourier-based methods is potential wraparound contamination in50

numerical solutions. This matter is also crucial to stochastic optimal control problems, especially to51

impulse control formulations, due to the non-local nature of impulses. To the best of our knowledge,52

both of these deficiencies of Fourier-based methods have not been addressed adequately in the impulse53

control literature. The reader is referred to [18, 23, 33, 49, 50] for analysis of error bounds, and [1, 45]54

for zero padding techniques in GMWB pricing.55

The main focus of this paper is the development of a provably convergent Fourier method to tackle56

the challenging HJB-QVI arising from an impulse control formulation of GMWB contracts under jump-57

diffusion dynamics. Major contributions of the paper are as follows.58

� We propose the pricing problem of GMWB contracts with continuous withdrawals under jump-59

diffusion dynamics [47, 53] as an HJB-QVI posed on an infinite definition domain consisting of a60

finite interior and infinite boundary sub-domains with appropriate boundary conditions.61

� Using the Green’s function of an associated PIDE, we study proper truncation of boundary sub-62

domains to ensure loss of information is negligible. We then develop a Fourier scheme which is63

monotone within a tolerance ϵ > 0 to solve the above HJB-QVI on a finite computational domain.64

Under a suitable growth condition, the scheme is shown to be ℓ∞-stable and consistent in the65

viscosity sense with respect to the HJB-QVI defined on the infinite domain.66

� We propose an efficient implementation of the scheme via Fast Fourier Transform, including a67

proper handling of boundary conditions and padding techniques. We mathematically prove that68

our padding techniques, whilst simple, can effectively control wraparound errors in the numerical69

solutions.70

� We prove a strong comparison principle result for the finite interior sub-domain and parts of its71

boundary. We then appeal to a Barles-Souganidis-type analysis in [14], to rigorously prove the72

convergence of our scheme the unique viscosity solution of the HJB-QVI as the discretization73

parameter and the monotonicity tolerance ϵ approach zero.74

� Numerical experiments confirm excellent agreement with benchmark results obtained by finite dif-75

ference methods and Monte Carlo simulation, as well as the robustness of the proposed ϵ-monotone76

Fourier method. Through experiments, we also numerically show that inadequate treatments of77

1When dealing with cross derivative terms, a wide-stencil method based on a local coordinate rotation can be used to

construct monotone finite difference schemes [28, 52, 52]; however, this could be computationally expensive.
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padding areas could significantly contaminate the numerical solutions of the impulse control for-78

mulation.79

Although we focus specifically on GMWB, our comprehensive and systematic approach could serve as a80

numerical and convergence analysis framework for the development of similar weakly monotone methods81

for HJB-QVIs arising from impulse control problems in finance.82

2 Underlying processes83

This section briefly reviews the impulse control formulation [7, 19, 20] and introduces the notation to84

be used in this paper. We respectively denote by Z(t) and A(t) the balance of the personal sub-account85

and of the guarantee account at time t, t ∈ [0, T ], where T > 0 is a fixed investment horizon. Let z086

be the up-front premium to the insurer, which is placed in the personal account at the inception of the87

contract, hence Z(0) = z0. The policy guarantees that the sum of withdrawals throughout the policy’s88

life is equal to the premium, hence A(0) = z0. For subsequent use, let t
− = t− ε, where ε ↓ 0+.89

Roughly speaking, the holder of the policy can either (i) withdraw continuously at a rate determined90

by the holder, or (ii) withdraw specific amounts at specific times, both determined by the holder, subject91

to a penalty charge imposed by the insurer. Regarding (i), as almost all policies with a GMWB have92

a cap on the maximum allowed continuous withdrawal rate without penalty [24], we let Cr be such a93

contractual (continuous) withdrawal rate. For (ii), withdrawing a finite amount is subject to a penalty94

charge proportional to the withdrawal amount as well as a strictly positive fixed cost. We let µ < 1 be95

the positive penalty rate, and c be the positive fixed cost.96

Under an impulse control framework [46, 57], the time-t control for the holder consists of (i) a con-97

tinuous control γ̂(t), γ̂(t) ∈ [0, Cr], representing continuous withdrawal rate, and (ii) an impulse control98

{(tk, γk)}k≤K , K ≤ ∞, representing intervention times {tk}k≤K and associated impulses {γk}k≤K , where99

each tk corresponds to a time at which the holder instantaneously withdraws a finite amount, and γk,100

γk ∈ [0, A(tk−)], corresponds to the withdrawal amount at that time. Here, {tk}k≤K is any sequence of101

(Ft)-stopping times satisfying 0 ≤ t ≤ t1 < t2 < . . . < tK ≤ T , and {γk}k≤K is a corresponding sequence102

of random variables with each γk being of Ftk -measurable for all tk. Due to penalty charge, the net103

revenue cash flow provided to the policy holder at time tk is (1− µ)γk − c.104

As shown in [24], the dynamics of A(t) are given by105

dA(t) = −γ̂(t)1{A(t)>0}dt, for t ̸= tk, k = 1, 2, . . . ,K,106

A(t) = A(t−)− γk, for t = tk, k = 1, 2, . . . ,K. (2.1)107

The dynamics of Z(t) are assumed to follow108

dZ(t)

Z(t)
= (r − β − λκ) dt+ σdW (t) + d

π(t)∑
i=1

(ψi − 1)

− γ̂(t)1{Z(t),A(t)>0}dt,109

for t ̸= tk, k = 1, 2, . . . ,K,110

Z(t) = max
(
Z(t−)− γk, 0

)
, for t = tk, k = 1, 2, . . . ,K. (2.2)111

In (2.2), W (t) denotes a standard Wiener process, r > 0 and σ > 0 are the risk-free rate and volatility,112

respectively, β is the proportional annual insurance rate paid by the policy holder, and π (t) is a Poisson113

process with intensity λ ≥ 0. Denote by ψ the random number representing the jump multiplier, and114

κ = E [ψ − 1] with E[·] being the expectation operator. Finally, ψi are i.i.d. random variables having the115

same distribution as ψ with ψi, π (t) and W (t) assumed to all be mutually independent. The mean and116

variance of ψ are assumed to be finite.117

As a specific example for dynamics (2.2), we consider two jump distributions for ψ, namely the log-118

normal distribution [53] and the log-double-exponential distribution [47]. Let b(y) be the density of lnψ.119

In the first case, lnψ is normally distributed with mean ν and standard deviation ς, with b(y) given by120

b (y) =
1

ς
√
2π

exp

{
−(y − ν)2

2ς2

}
. (2.3)121
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In the latter case, lnψ has an asymmetric double-exponential distribution, with b(y) given by122

b (y) = puη1e
−η1y1{y≥0} + (1− pu) η2e

η2y1{y<0}. (2.4)123

Here, pu ∈ [0, 1], η1 > 1 and η2 > 0. Given that a jump occurs, pu is the probability of an upward jump,124

and (1− pu) is the probability of a downward jump.125

3 Impulse control formulation126

For the controlled processes (Z(t), A(t)), t ∈ [0, T ], let (z, a) be the state of the system. We denote by127

u(z, a, t) the time-t no-arbitrage price of a variable annuity with a GMWB when Z(t) = z and A(t) = a.128

Using dynamic programming, u(z, a, t) is shown to satisfy the impulse control formulation [4, 19]129

min

{
− ut − L′u− J ′u− sup

γ̂∈[0,Cr]
γ̂
(
1− uz1{z>0} − ua

)
1{a>0},130

u− sup
γ∈[0,a]

[u (max (z − γ, 0) , a− γ, t) + (1− µ) γ − c]

}
= 0, (3.1)131

where (z, a, t) ∈ [0,∞)× [amin, amax]× [0, T ). Here, amin = 0 and amax = z0 and132

L′u (z, a, t) =
σ2z2

2
uzz + (r − λκ− β) zuz − (r + λ)u, J ′u (z, a, t) = λ

∫ ∞

−∞
u (zey, a, τ) b(y) dy, (3.2)133

with b(·) being the probability density function of lnψ. We note that the fixed cost c is introduced as a134

technical tool to ensure uniqueness of the impulse formulation, as commonly done in the impulse control135

literature [57, 58, 65].136

Let τ = T−t, and for z > 0, we apply the change of variable w = ln(z) ∈ (−∞,∞). Let x = (w, a, τ),137

and denote by v(x) ≡ v(w, a, τ) = u(ew, a, T − t). Since log(·) is undefined at zero, in (3.1), under the138

log-transformation in z, the term max(u − γ, 0) becomes ln (max (ew − γ, ew-∞)) for a finite w-∞ ≪ 0.139

With these in mind, formulation (3.1) becomes140

min

{
vτ − Lv − J v − sup

γ̂∈[0,Cr]
γ̂
(
1− e−wvw − va

)
1{a>0},141

v − sup
γ∈[0,a]

[v (ln (max (ew − γ, ew-∞)) , a− γ, τ) + (1− µ) γ − c]

}
= 0, (3.3)142

where (w, a, τ) ∈ Ω∞ ≡ (−∞,∞)× [amin, amax]× [0, T ), and L(·) and J (·) are defined by143

Lv (x) = σ2

2
vww + (r − σ2

2
− λκ− β)vw − (r + λ)v, J v (x) = λ

∫ ∞

−∞
v(w + y, a, τ) b(y) dy. (3.4)144

3.1 Localization145

Under the log transformation, the GBMW formulation (3.3) is posed on the infinite domain Ω∞. For146

the problem statement and convergence analysis of numerical schemes, we define a localized GMWB147

impulse formulation. To this end, with wmin < 0 < wmax, |wmin| and wmax sufficiently large, we define148

the following sub-domains:149

Ω∞
τ0 = (−∞,∞)× [amin, amax]× {0},

Ω∞
wmax

= [wmax,∞)× [amin, amax]× (0, T ],

Ω∞
wmin

= (−∞, wmin]× (amin, amax]× (0, T ],

Ωamin = (wmin, wmax)× {amin} × (0, T ], (3.5)

Ω∞
wamin

= (−∞, wmin]× {amin} × (0, T ],

Ωin = Ω∞ \ Ω∞
τ0 \ Ω∞

wmin
\ Ω∞

wamin
\ Ω∞

wmax
\ Ωamin ,

∂Ωin = Ωamin ∪ (wmin, wmax)× [amin, amax]× {0}
∪ {wmin, wmax} × [amin, amax]× [0, T ].

An illustration of the sub-domains for the localized

problem is given in Figure 3.1.

0

a

∞wmin−∞ wmax

amax = z0

Ωamin

ΩinΩ∞
wmin

Ω∞
wmax

Ω∞
wamin

Figure 3.1: Spatial computational do-

main at each τ .

150
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We now present equations for sub-domains defined in (3.5). We note that boundary conditions for151

τ → 0, w → −∞, w → ∞, and a → amin are obtained by relevant asymptotic forms of the HJB-QVI152

(3.1) when t→ T , z → 0, z → ∞, and a→ amin, respectively, similar to [19, 24]. We also note that the153

initial and boundary solutions in Ω∞
τ0 and Ω∞

wmax
may grow unbounded as w → ∞. Therefore, to ensure154

boundedness of numerical solutions in the interior sub-domains Ωin ∪ Ωamin , where convergence to the155

unique viscosity solution is studied, we require the initial and boundary solutions in Ω∞
τ0 and Ω∞

wmax
to156

be bounded as w → ∞. This is detailed below.157

� For (w, a, τ) ∈ Ωin, we have (3.3).158

� For (w, a, τ) ∈ Ω∞
τ0 , we use the initial condition v(w, a, 0) = max(ew, (1−µ)a− c)∧ ew∞ for a finite159

w∞ ≫ wmax, where x ∧ y = min(x, y).160

� For (w, a, τ) ∈ Ω∞
wmax

, according to [24], the withdrawal guarantee becomes insignificant for w suf-161

ficiently large. As suggested in [40], the exact boundary condition at point (w, a, τ) ∈ Ω∞
wmax

162

is v(w, a, τ) = e−βτew
(
1 +O

(
amax
ew

))
. Therefore, following [24, 40], in Ω∞

wmax
, we impose the163

(bounded) Dirichlet-type boundary condition164

v = e−βτ (ew ∧ ew∞). (3.6)165

We note that the theoretical quantity w∞ is needed to indicate that the solutions Ω∞
τ0 and Ω∞

wmax
166

are bounded as w → ∞, and it does not need to be numerically specified. It is possible to relax167

this boundedness requirement to an exponential growth via a simple change of variable (see, for168

example, [32][Remark 3.7]).169

� As w → −∞, z = ew → 0. Set z = 0 in (3.1), and then transform back to the w = ln z coordinates170

to obtain171

min

{
vτ + rv − sup

γ̂∈[0,Cr]
γ̂ (1− va)1{a>0}, v − sup

γ∈[0,a]
[v(w, a− γ, τ) + γ(1− µ)− c]

}
= 0. (3.7)172

Further justification of this boundary condition is given in [24]. We use the boundary condition173

(3.7) for point (w, a, τ) ∈ Ω∞
wmin

. This is essentially a Dirichlet boundary condition since it can be174

solved independently without using any information other than from Ω∞
wmin

.175

� For (w, a, τ) ∈ Ωamin , the impulse formulation becomes the linear PIDE vτ − Lv − J v = 0 which176

can be solved independently without using any information other than at a = 0.177

� For (w, a, τ) ∈ Ω∞
wamin

, (3.7) becomes vτ + rv = 0.2178

Note that no further information is needed along the boundary a = amax due to the hyperbolic nature179

of the variable a in the HJB-QVI (3.1).180

3.2 Compact representation181

We now write the GMWB pricing problem in a compact form, which includes the terminal and boundary182

conditions in a single equation. We define the intervention operator183

M(γ)v(x) =

{
v(w, a− γ, τ) + γ(1− µ)− c x ∈ Ω∞

wmin
,

v (ln(max(ew − γ, ew-∞)), a− γ, τ) + γ(1− µ)− c x ∈ Ωin.

(3.8a)

(3.8b)
184

With x = (w, a, τ), we let Dv(x) = (vw, va, vτ ) and D
2v(x) = vww, and define185

FΩ∞ (x, v) ≡ FΩ∞
(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
, (3.9)186

2There exists a unique viscosity solution in
{
Ω∞

wmin
∪ Ω∞

wamin

}
\ {wmin} × [amin, amax]× (0, T ] (see [10, 63]).
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where187

FΩ∞ (x, v) =



Fin (x, v) ≡ Fin

(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
, x ∈ Ωin,

Famin (x, v) ≡ Famin

(
x, v(x), Dv(x), D2v(x),J v(x)

)
, x ∈ Ωamin ,

Fwmin (x, v) ≡ Fwmin (x, v(x), Dv(x),Mv(x)) , x ∈ Ω∞
wmin

,

Fwamin (x, v) ≡ Fwamin (x, v(x), Dv(x)) , x ∈ Ω∞
wamin

,

Fwmax (x, v) ≡ Fwmax (x, v(x)) , x ∈ Ω∞
wmax

,

Fτ0 (x, v) ≡ Fτ0(x, v(x)), x ∈ Ω∞
τ0 ,

188

with operators189

Fin (x, v) = min

[
vτ−Lv−J v− sup

γ̂∈[0,Cr]
γ̂
(
1− e−wvw − va

)
1{a>0}, v− sup

γ∈[0,a]
M(γ)v

]
, (3.10)190

Famin (x, v) = vτ − Lv − J v, (3.11)191

Fwmin (x, v) = min

[
vτ + rv − sup

γ̂∈[0,Cr]
γ̂ (1− va)1{a>0}, v − sup

γ∈[0,a]
M(γ)v

]
, (3.12)192

Fwamin (x, v) = vτ + rv, (3.13)193

Fwmax (x, v) = v − e−βτ (ew ∧ ew∞), (3.14)194

Fτ0 (x, v) = v −max(ew, (1− µ)a− c) ∧ ew∞ . (3.15)195

Definition 3.1 (Impulse control GMWB pricing problem). The pricing problem for the GMWB under196

an impulse control formulation is defined as197

FΩ∞
(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
= 0, (3.16)198

where the operator FΩ∞(·) is defined in (3.9).199

We note that FΩ∞ is discontinuous [11, 14] since we include boundary equations in FΩ∞ , which are200

in general not the limit of the equations from the interior.201

Next, we recall the notions of the upper semicontinuous (u.s.c. in short) and the lower semicontinuous202

(l.s.c. in short) envelops of a function u : X → R, where X is a closed subset of Rn. They are respectively203

denoted by u∗(·) (for the u.s.c. envelop) and u∗(·) (for the l.s.c. envelop), and are given by204

u∗(x̂) = lim sup
x→x̂

x,x̂∈X

u(x) (resp. u∗(x̂) = lim inf
x→x̂

x,x̂∈X

u(x)).205

In general, the solution to impulse control problems are non-smooth, and we seek the viscosity206

solution of (3.16) [27, 39, 61]. To this end, let G(Ω∞) be the set of bounded functions defined by [13, 61]207

G(Ω∞) =

{
u : Ω∞ → R, sup

x∈Ω∞
|u(x)| <∞

}
. (3.17)208

Definition 3.2 (Viscosity solution of equation (3.16)). (i) A locally bounded function v ∈ G(Ω∞) is a209

viscosity subsolution (resp. supersolution) of (3.16) in Ω∞ if for all test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞)210

and for all points x̂ ∈ Ω∞ such that v∗ − ϕ has a global maximum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂) (resp.211

v∗ − ϕ has a global minimum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂)), we have212

(FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
≤ 0, (3.18)213 (

resp. (FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
≥ 0,

)
214

where the operator FΩ∞(·) is defined in (3.9).215

(ii) A locally bounded function v ∈ G(Ω∞) is a viscosity solution of (3.16) in Ωin ∪ Ωamin if v is a216

viscosity subsolution and a viscosity supersolution in Ωin ∪ Ωamin.217
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Remark 3.1 (Equivalent definitions). In the existing literature, there are several equivalent definitions of218

viscosity solution for HJB-QVIs arising from general impulse control problems [27, 61]. Here, equivalence219

between two different definitions of viscosity solution means that a subsolution (resp. supersolution) in220

the sense of one definition is also a subsolution (resp. supersolution) in the sense of the other. For221

example, in Definition 3.2 (i), it is possible to replace ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) by ϕ ∈ G(Ω∞) ∩ C2(Ω∞) [12].222

It is also possible to replace ϕ(x̂) by v∗(x̂) (resp. v∗(x̂)) in the non-local terms J (·) and M(·), as these223

terms contain no partial derivatives [27]. For the GMWB pricing problem as given in (3.16), equivalence224

between these definitions can be established (see Appendix B). For the purpose of verifying consistency225

of a numerical scheme, it is convenient to use Definition 3.2.226

Remark 3.2 (Strong comparison result and convergence region). Using an equivalent definition of227

viscosity solution, we can show that the GMWB pricing problem as given in (3.16) satisfies a strong228

comparison principle result in Ωin ∪ Ωamin, where Ωamin ⊂ ∂Ωin (see Appendix B). That is, if u1(x) and229

u2(x) respectively are subsolution and supersolution in Ωin ∪Ωamin, of (3.16), then u1(x) ≤ u2(x) for all230

x ∈ Ωin ∪ Ωamin. Hence, a unique continuous viscosity solution exists in Ωin ∪ Ωamin.231

In general, we cannot hope for a continuous solution to the GMWB problem (3.16) on all the boundary232

Γ = ∂Ωin \Ωamin as it is possible that loss of boundary data can occur over parts of Γ, i.e. as τ → 0 and233

w → {wmin, wmax} [40, 58, 65]. However, these problematic parts of Γ are trivial in the sense that234

either the boundary data is used or is irrelevant. In all cases, we consider the computed solution as the235

limiting value approaching Γ from the interior.236

4 Numerical methods237

The GMWB pricing problem as given in (3.16) is still posed in an infinite domain, due to the infinite238

boundary sub-domains in w. For computational purposes, we need to truncate these infinite sub-domains239

into finite ones. For the purpose of proving convergence, we also need to make sure that the boundary240

truncation error, i.e. loss of information in the boundary due to this truncation, vanish sufficiently fast241

as a discretization parameter approaches zero. This is discussed in Subsection 4.1 below.242

4.1 Computational domain243

A key step of our numerical scheme is a timestepping method based on a convolution integral that involves244

the Green’s function of an associated PIDE in w. In the following, for ease of exposition, we ignore the245

dependence on a by letting a ∈ [amin, amax] be fixed, and we primarily focus on the dependence on w246

and τ . Let {τm}, m = 0, . . . ,M , be an equally spaced partition in the τ -dimension, where τm = m∆τ247

and ∆τ = T/M . For a fixed τm > 0 such that τm+1 ≤ T , we consider the PIDE248

vτ − Lv − J v = 0, w ∈ (−∞,∞), τ ∈ (τm, τm+1], (4.1)249

subject to the initial condition at time τm given by a function v̂(w, ·, τm) where250

v̂(w, ·, τm) =


vbc(w, ·, τm) satisfies (3.7) w ∈ (−∞, wmin],

v(w, ·, τm) w ∈ (wmin, wmax),

vbc(w, ·, τm) satisfies (3.6) w ∈ [wmax,∞).

(4.2)251

We denote by g (·) the Green’s function of the PIDE (4.1) which has the form g(w,w′,∆τ) ≡ g( w − w′,∆τ ).252

The solution v(w, ·, τm+1) for w ∈ (wmin, wmax) can be represented as the convolution of g(·) and v̂(·) as253

follows [30, 36]254

v(w, ·, τm+1) =

∫ ∞

−∞
g
(
w − w′,∆τ

)
v̂(w′, ·, τm) dw′, w ∈ (wmin, wmax). (4.3)255

The solution v(w, ·, τm+1) for w ∈ (−∞, wmin] ∪ [wmax,∞) are given by the boundary conditions (3.6)256

and (3.7). In the analysis below, we focus on integral (4.3).257

7



For computational purposes, we truncate the infinite interval of integration of (4.3) to [w†
min, w

†
max],258

where w†
min ≪ wmin < 0 < wmax ≪ w†

max and |w†
min| and w

†
max are sufficiently large, resulting in259

v(w, ·, τm+1) ≃
∫ w†

max

w†
min

g(w − w′,∆τ) v̂(w′, ·, τm) dw′, w ∈ (wmin, wmax). (4.4)260

We denote by Eb the error of the above truncation of the integration domain, i.e.261

Eb =
∫
R\[w†

min,w
†
max]

g(w − w′,∆τ) v̂(w′, ·, τm) dw′, w ∈ (wmin, wmax), (4.5)262

For subsequent use in the paper, let P † = w†
max − w†

min. Results in [21][Proposition 4.2] indicate that,263

for general jump diffusion models, such as those considered in this paper, Eb is bounded by264

|Eb| ≤ K1∆τe
−K2P †

, ∀w ∈ (wmin, wmax), K1,K2 > 0 independent of ∆τ, P †. (4.6)265

For fixed [w†
min, w

†
max], and hence fixed P †, (4.6) shows Eb → 0, as ∆τ → 0. However, as typically266

required for showing consistency, one would need to ensure Eb
∆τ → 0 as ∆τ → 0. Therefore, from (4.6),267

we need P † → ∞ as ∆τ → 0, which can be achieved by letting P † = C/∆τ , for a finite C > 0.3268

(For relevant discussions, see, for example, [32][Theorem 4.2]). We note that, for practical purposes, if269

P † is chosen sufficiently large, it can be kept constant for all ∆τ refinement levels (as we let ∆τ → 0).270

The effectiveness of this practical approach is demonstrated through numerical experiments in Section 6.271

Remark 4.1 (Padding considerations). For the PIDE (4.1), the Green’s function g(w,∆τ) is not272

known in closed-form. However, we do have a closed-form representation for the Fourier transform273

of g(w,∆τ). Therefore, we can approximate (4.4) efficiently by discrete convolution via Fast Fourier274

Transform (FFT). As noted in the introduction, wraparound error (due to periodic extension) is an im-275

portant issue for Fourier methods, particularly in the case of impulse control problems. For our scheme,276

the intervals [w†
min, wmin] and [wmax, w

†
max] also serve as padding areas for nodes in Ωin ∪Ωamin. Without277

loss of generality, for convenience, we assume that |wmin| and wmax are chosen sufficiently large so that278

w†
min = wmin −

wmax − wmin

2
, and w†

max = wmax +
wmax − wmin

2
. (4.7)279

In Subsection 4.4, we show that, for practical purposes, this simple choice for padding areas is sufficient280

for eliminating wraparound error. This is also verified by extensive numerical experiments in Section 6.281

We now have a finite computational domain Ω = [w†
min, w

†
max]× [amin, amax]× [0, T ], which consists of282

Ωin = defined in (3.5), Ωamin = defined in (3.5),283

Ωτ0 = [w†
min, w

†
max]× [amin, amax]× {0}, Ωwmin = [w†

min, wmin]× (amin, amax]× (0, T ],284

Ωwamin = [w†
min, wmin]× {amin} × (0, T ], Ωwmax = [wmax, w

†
max]× [amin, amax]× (0, T ]. (4.8)285

Due to withdrawals, the non-local impulse operator M(·) for Ωin, defined in (3.8b), may require evaluat-286

ing a candidate value at a point having w = ln(max(ew − γ, ew-∞)), which could be outside [w†
min, w

†
max],287

if w-∞ < w†
min. Without loss of generality, we assume w-∞ ≥ w†

min.288

4.2 Discretization289

We denote by N (respectively N †) the number of points of a uniform partition of [wmin, wmax] (respec-290

tively [w†
min, w

†
max]). For convenience, we typically choose N † = 2N so that only one set of w-coordinates291

is needed. Recall that P † = w†
max −w†

min, and also let P = wmax −wmin. We define ∆w = P
N = P †

N† . We292

use an equally spaced partition in the w-direction, denoted by {wn}, where293

wn = ŵ0 + n∆w; n = −N †/2, . . . , N †/2, where (4.9)294

∆w = P/N = P †/N †, and ŵ0 = (wmin + wmax)/2 = (w†
min + w†

max)/2.295

3For the special case of a GBM, straightforward calculus shows that |Eb| ≤ Ce−1/∆τ/
√
∆τ , for a finite C > 0, and hence,

even with fixed P †, we still have Eb
∆τ

→ 0, as ∆τ → 0.
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We use an unequally spaced partition in the a-direction, denoted by {aj}, j = 0, . . . , J , with a0 = amin,296

and aJ = amax. We use the same previously defined uniform partition {τm}, m = 0, . . . ,M , τm = m∆τ297

and ∆τ = T/M .4 Let ∆amax = maxj (aj+1 − aj), ∆amin = minj (aj+1 − aj), j = 0, . . . , J − 1. In298

addition, we assume that there is a discretization parameter h > 0 such that299

∆w = C1h, ∆amax = C2h, ∆amin = C ′
2h, ∆τ = C3h, P † = C ′

3/h, (4.10)300

where the positive constants C1, C2, C
′
2, C3 and C ′

3 are independent of h. We denote by vmn,j a numerical301

approximation to the exact solution v(wn, aj , τm) at node (wn, aj , τm) ≡ xm
n,j . For m = 1, . . . ,M , nodes302

xm
n,j having (i) n = −N †/2, . . . ,−N/2, are in Ωwmin ∪ Ωwamin , (ii) n = −N/2 + 1, . . . N/2 − 1, are in303

Ωin ∪Ωamin , and (iii) n = N/2, . . . N †/2, are in Ωwmax . We conclude this subsection by noting that it is304

straightforward to ensure the theoretical requirement P † → ∞ as h → 0. For example, with C ′
3 = 1 in305

(4.10), we can quadruple N † as we halve h.306

4.3 Numerical scheme307

For (wn, aj , τ0) ∈ Ωτ0 , we impose the initial condition (3.15) by308

v0n,j = max(ewn , (1− µ)aj − c) ∧ ew∞ , n = −N †/2, . . . , N †/2− 1, j = 0, . . . , J. (4.11)309

We impose the condition (3.14) for (wn, aj , τm+1) ∈ Ωwmax by310

vm+1
n,j = e−βτm+1(ewn ∧ ew∞), n = N/2, . . . , N †/2, j = 0, . . . , J, m = 0, . . . ,M − 1. (4.12)311

In the subsequent discussion, we denote by γmn,j is the control representing the withdrawal amount at312

node (wn, aj , τm), n = −N †/2, . . . , N/2− 1, j = 0, . . . , J , m = 0, . . . ,M − 1. We let τ+m = τm+ ε, ε ↓ 0+.313

4.3.1 Ωwmin ∪ Ωwamin314

For (wn, aj , τm+1) in Ωwmin ∪ Ωwamin , let ṽ
m
n,j be an approximation to v(wn, aj − γmn,j , τm) computed by315

linear interpolation. To this end, we denote by I {vm} (w, a) a two-dimensional linear interpolation316

operator acting on the time-τm discrete solutions
{(

(wl, ak) , v
m
l,k

)}
, l = −N †/2, . . . , N †/2, k = 0, . . . , J ,317

m = 0, . . . ,M − 1. Then, ṽmn,j is computed as follows318

ṽmn,j = I{vm}
(
wn, aj − γmn,j

)
, n = −N †/2, . . . ,−N/2, j = 0, . . . , J. (4.13)319

We compute intermediate results vm+
n,j by solving320

vm+
n,j = sup

γm
n,j∈[0,aj ]

(
ṽmn,j + f

(
γmn,j

))
, n = −N †/2, . . . ,−N/2, j = 0, . . . , J, (4.14)321

where ṽmn,j is given in (4.13) and f (·) is the cash amount received by the investor and is defined by322

f (γ) =

{
γ if 0 ≤ γ ≤ Cr∆τ,

γ(1− µ) + µCr∆τ − c if Cr∆τ < γ.
(4.15)323

To advance to time τm+1, we solve the first-order ODE vτ + rv = 0 with the initial condition given by324

vm+
n,j in (4.14) by simply applying a finite difference timestepping method325

vm+1
n,j = vm+

n,j −∆τ
(
rvm+1

n,j

)
, n = −N †/2, . . . ,−N/2, j = 0, . . . , J, m = 0, . . . ,M − 1. (4.16)326

We note that (4.16) is strictly monotone. We also emphasize that numerical solutions in Ωwmax and327

Ωwmin ∪ Ωwamin can be computed without using information from Ωin or Ωamin .328

4While it is straightforward to generalize the numerical method to non-uniform partitioning of the τ -dimension, for the

purposes of proving convergence, uniform partitioning suffices.
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4.3.2 Ωin ∪ Ωamin: scheme329

For (wn, aj , τm+1) in Ωin∪Ωamin , let ṽ
m
n,j be an approximation to v(ln(max(ewn−γmn,j , ew

†
min)), aj−γmn,j , τm)330

computed by linear interpolation. We compute ṽmn,j by linear interpolation as follows331

ṽmn,j = I {vm}
(
ln
(
max

(
ewn − γmn,j , e

w†
min

))
, aj − γmn,j

)
, n = −N/2 + 1, . . . , N/2− 1. (4.17)332

We note that the min{·} operator of (3.3) contains two terms, with the continuous control γ̂ in the333

first term having a local nature (γ̂ ∈ [0, Cr]), while the impulse control γ in the second term having334

a non-local nature (γ ∈ [0, a]). Motivated by this observation, as in [19], with the convention that335

(Cr∆τ, aj ] = ∅ if aj ≤ Cr∆τ , we partition [0, aj ] into [0,min(aj , Cr∆τ)] and (Cr∆τ, aj ]. We compute336

respective intermediate results (vloc)
m+
n,j and (vnlc)

m+
n,j by solving the optimization problems337

(vloc)
m+
n,j = sup

γm
n,j∈[0,min(aj ,Cr∆τ)]

(
ṽmn,j + f

(
γmn,j

))
, (vnlc)

m+
n,j = sup

γm
n,j∈(Cr∆τ,aj ]

(
ṽmn,j + f

(
γmn,j

))
,338

n = −N/2 + 1, . . . , N/2− 1, j = 0, . . . , J, m = 0, . . . ,M − 1, (4.18)339

where f (·) is defined in (4.15) and ṽmn,j , n = −N/2 + 1, . . . , N/2 − 1 is given in (4.17). Intuitively, as340

h→ 0, (vloc) and (vnlc) in (4.18) respectively correspond to the solutions of the first and the second term341

of the min{·} operator of (3.3) set equal to zero.342

Remark 4.2 (Attainability of supremum). It is straightforward to show that, due to boundedness of343

nodal values used in I {vm} (·) (see Lemma 5.1 on stability), the interpolated value ṽmn,j in (4.17) is344

uniformly continuous in γmn,j. As a result, the supremum in the discrete equations for (vloc)
m+
n,j and345

(vnlc)
m+
n,j in (4.18) can be achieved by a control in [0,min(aj , Cr∆τ)] and (Cr∆τ, aj ], respectively, with346

the latter case being made possible due to c > 0 [19].347

To prepare for time advancement to τm+1, m = 0, . . . ,M − 1, we combine boundary values Ωwmin ∪348

Ωwamin and Ωwmax with results from (4.18) as below (with a slight abuse of notation)349

(vloc)
m+
l,j

(resp. (vnlc)
m+
l,j )

=


vml,j in (4.16), l = −N †/2, . . . ,−N/2,
(vloc)

m+
l,j

(resp. (vnlc)
m+
l,j )

in (4.18), l = −N/2 + 1, . . . , N/2− 1,

vml,j in (4.12), l = N/2, . . . , N †/2− 1.

(4.19)350

For τ ∈ [τ+m, τm+1], our timestepping method for solving the PIDE (4.1) is the convolution (4.4) with351

the Green’s function being g(w,∆τ) and the initial condition v̂(w, ·, τ+m) given by a linear combination352

of discrete values in (4.19). Specifically, using (vloc)
m+
l,j , l = −N †/2, . . . , N †/2− 1, v̂(w, ·, τ+m) is given by353

v̂
(
w, ·, τ+m

)
=

N†/2−1∑
l=−N†/2

φl (w) (vloc)
m+
l,j , w ∈ [w†

min, w
†
max]. (4.20)354

Here, {φl(w)}, l = −N †/2, . . . , N †/2− 1, are piecewise linear basis functions defined by5355

φl(w) =


(w − wl−1) /∆w, wl−1 ≤ w ≤ wl,

(wl+1 − w) /∆w, wl ≤ w ≤ wl+1,

0, otherwise.

(4.21)356

The timestepping results (vloc)
m+1
n,j , n = −N/2 + 1, . . . , N/2− 1, is given by the discrete convolution357

(vloc)
m+1
n,j =

∫ w†
max

w†
min

g (wn − w,∆τ) v̂(w, ·, τ+m) dw = ∆w

N†/2−1∑
l=−N†/2

g̃(wn − wl,∆τ) (vloc)
m+
l,j , (4.22)358

where g̃n−l ≡ g̃(wn − wl,∆τ) =
1

∆w

∫ w†
max

w†
min

φl(w) g(wn − w,∆τ) dw. (4.23)359

5For a discussion of different choices of basis functions, see [35].
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Using similar steps on (vnlc)
m+
l,j , l = −N †/2, . . . , N †/2 − 1, in (4.19), gives us the timestepping results360

(vnlc)
m+1
n,j , n = −N/2 + 1, . . . , N/2− 1, j = 0, . . . , J , and m = 0, . . . ,M − 1.361

That is, with g̃n−l given in (4.23) we compute two discrete convolutions362

(vloc)
m+1
n,j = ∆w

N†/2−1∑
l=−N†/2

g̃n−l (vloc)
m+
l,j , (vnlc)

m+1
n,j = ∆w

N†/2−1∑
l=−N†/2

g̃n−l (vnlc)
m+
l,j . (4.24)363

n = −N/2 + 1, . . . , N/2− 1, j = 0, . . . , J, m = 0, . . . ,M − 1.364

Finally, we compute vm+1
n,j by365

vm+1
n,j = max

(
(vloc)

m+1
n,j , (vnlc)

m+1
n,j

)
, where (vloc)

m+1
n,j and (vnlc)

m+1
n,j from (4.24),366

n = −N/2 + 1, . . . , N/2− 1, j = 0, . . . , J, m = 0, . . . ,M − 1. (4.25)367

In (4.25), the exact value of g̃n−l, n = −N/2 + 1, . . . , N/2 − 1, l = −N †/2, . . . , N †/2 − 1, defined in368

(4.23), is strictly positive. Therefore, scheme (4.25) is strictly monotone. However, since a closed-form369

representation for g(w,∆τ) is not known, the exact value of g̃n−l can only approximated, and hence, this370

potentially results in negative weights, i.e. loss of monotonicity. In the next subsection, we will show371

that it is possible to achieve monotonicity, for fixed N and ∆τ , for any tolerance ϵ > 0.372

Remark 4.3 (Optimization method). In (4.18), we discretize the control γmn,j with spacing O(h), and373

solve the optimization problem at each node by exhaustive search, using binary search to query the374

database of discrete solution values on the unequally spaced (w, a) mesh. As has been proven in [19,375

Proposition 1], the error in this step is O(h2) for any smooth test function. One dimensional optimization376

methods could be used to reduce the computational cost, but there is then no guarantee of obtaining the377

global maximum as h→ 0.378

4.3.3 Ωin ∪ Ωamin: ϵ-monotonicity379

To approximate g̃n−l, we follow the same steps as in [35]. For the sake of completeness, we provide some380

key steps below. We recall the Fourier transform and inverse Fourier transform381

F [g(·)] = G(η,∆τ) =

∫ ∞

−∞
e−2πiηwg(w,∆τ)dw, F−1[G(·)] = g(w,∆τ) =

∫ ∞

−∞
e2πiηwG(η,∆τ)dη.(4.26)382

It is straightforward to show that a closed-form expression for G (η,∆τ), the Fourier transform of the383

Green’s function of equation (4.1), is384

G (η,∆τ) = exp (Ψ (η)∆τ) , with385

Ψ(η) =

(
−1

2
σ2(2πη)2 +

(
r − λκ− 1

2
σ2 − β

)
(2πiη)− (r + λ) + λB (η)

)
. (4.27)386

Here, B (η) is the complex conjugate of the integral B (η) =
∫∞
−∞ b(y) e−2πiηy dy, noting b(y) is the387

density function of ln (ψ), where ψ is the random variable representing the jump multiplier.388

For a fixed n ∈ {−N/2 + 1, . . . , N/2− 1}, to approximate g̃n−l, l = −N †/2, . . . , N †/2− 1, in (4.23),389

we replace g(w,∆τ) by its localized, periodic approximation ĝ(w,∆τ) given by390

ĝ(w,∆τ) =
1

P †

∞∑
k=−∞

e2πiηkwG(ηk,∆τ) with ηk =
k

P † , P † = w†
max − w†

min. (4.28)391

392

Remark 4.4. We note that the coefficients G(ηk,∆τ) in (4.28) are the exact coefficients corresponding393

to the Green’s function of the PIDE (4.1) with periodic boundary conditions at w†
min and w†

max. Hence,394

ĝ(w,∆τ) is a valid Green’s function, and in particular ĝ(·) ≥ 0.395

We note that, for a fixed ∆τ , ĝ(w,∆τ) ̸= g(w,∆τ), w ∈ [w†
min, w

†
max]. However, as ∆τ → 0, or396

equivalently, as h→ 0, we have397

ĝ(w,∆τ)
(i)
=

∫ ∞

−∞
e2πiηwG(η,∆τ)dη +O

(
1/(P †)2

)
by
=

(4.26)
g(w,∆τ) +O

(
h2
)
. (4.29)398
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Here, (i) is due to P † → ∞ as h → 0, ensuring in an O
(
1/(P †)2

)
∼ O

(
h2
)
error for the traperzoidal399

rule approximation of the integral.400

After replacing g(w,∆τ) by ĝ(w,∆τ) in (4.23), we integrate the resulting finite integral and obtain401

g̃n−l ≡ g̃n−l(∞) =
1

P †

( ∞∑
k=−∞

e2πiηk(n−l)∆w

(
sin2 πηk∆w

(πηk∆w)
2

)
G(ηk,∆τ)

)
. (4.30)402

For α ∈ {2, 4, 8, . . .}, (4.30) is truncated to αN † terms, resulting in an approximation403

g̃n−l(α) =
1

P †

 αN†/2−1∑
k=−αN†/2

e2πiηk(n−l)∆w

(
sin2 πηk∆w

(πηk∆w)
2

)
G(ηk,∆τ)

 . (4.31)404

As α → ∞, there is no loss of information in the discrete convolution (4.31). However, for any finite α,405

there is an error due to the use of a truncated Fourier series. This error is given by [35]406

|g̃n−l(α)− g̃n−l(∞)| = O(e−1/h). (4.32)407

To show (4.32), we note that, for a finite α, we have408

|g̃n−l(α)− g̃n−l(∞)| =

∣∣∣∣ 1P †

∞∑
k=αN†/2

e2πiηk(n−l)∆w

(
sin2 πηk∆w

(πηk∆w)2

)
G(ηk,∆τ)409

+
1

P †

−αN†/2−1∑
k=−∞

e2πiηk(n−l)∆w

(
sin2 πηk∆w

(πηk∆w)2

)
G(ηk,∆τ)

∣∣∣∣410

≤ 2

P †

∞∑
k=αN†/2

1

(πηk∆w)
2 |G(ηk,∆τ)|411

(i)

≤ 2

P †
4

π2α2

∞∑
k=αN†/2

|G(ηk,∆τ)|412

(ii)

≤ 8

P †π2α2

∞∑
k=αN†/2

exp
(
−k2(2σ2π2∆τ)/(P †)2

)
413

(iii)

≤ 8

P †π2α2

exp
(
− σ2π2∆τ(N †)2α2/(2(P †)2)

)
1− exp

(
− 2σ2π2∆τN †α/(P †)2

) = O(e−1/h). (4.33)414

Here, (i) is due to 1
(πηk∆w)2

≤ 4
π2α2 , since ηk = k

P † , ∆w = P †

N† , and k ≥ αN †/2. For (ii), using the415

closed-form expression of Ψ(η) given in (4.27), with η = ηk, noting Re(B(ηk)) ≤ 1 and r > 0, we have416

Re(Ψ(ηk)) = −1

2
σ2(2πηk)

2 − (r + λ) + λRe(B(ηk)) ≤ −1

2
σ2(2πηk)

2,417

resulting in418

|G(ηk,∆τ)| = |exp (Ψ(ηk)∆τ)| ≤ exp

(
− 1

2
σ2(2πηk)

2∆τ

)
= exp

(
− k2(2σ2π2∆τ)/(P †)2

)
.419

In (iii), we bound the error using the sum of an associated infinite geometric series, then introduce the420

discretization parameter h via (4.10).421

Although the error in (4.32) indicates a rapid convergence of truncated Fourier series as α → ∞,422

strict monotonicity is not guaranteed for a finite α. To control this potential loss of monotonicity for a423

finite α, the selected α must satisfy424

∆w

N†/2−1∑
l=−N†/2

∣∣min (g̃n−l(α), 0)
∣∣ < ϵ

∆τ

T
, ∀n ∈ {−N/2 + 1, . . . , N/2− 1}, (4.34)425

where 0 < ϵ ≪ 1 is an user-defined monotonicity tolerance. We note that the left-hand-side of the426

monotonicity test (4.34) is scaled by ∆w so that it is bounded as h→ 0. In addition, ϵ is scaled by ∆τ
T427
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in order to eliminate the number of timesteps from the bounds of potential loss of monotonicity. This is428

a key step in achieving stability of the proposed scheme, as demonstrated in Section 5. As also discussed429

in detail in Section 5, to show convergence of the numerical scheme, we need ϵ → 0 as h → 0. In430

practice, however, if ϵ is chosen sufficiently small, it can be kept constant for all refinement levels (as we431

let h→ 0). The effectiveness of this practical approach is demonstrated through numerical experiments432

in Section 6.433

4.3.4 Efficient implementation via FFT and algorithms434

For a fixed α ∈ {2, 4, 8, . . .}, the sequence {g̃−N†/2(α), . . . , g̃N†/2−1(α)} is N †-periodic. That is, we have435

g̃q(α) = g̃q+N†(α), for any q ∈ {−N †/2, . . . , N †/2}. With this in mind, we let q = n − l in the discrete436

convolution (4.31), and, for a fixed α, the set of approximate weights in the physical domain to be437

determined is g̃q(α), q = −N †/2, . . . , N †/2− 1. Using this notation, in (4.31), with q = n− l, we rewrite438

e2πiηk(n−l)∆w = e2πikαq/(αN
†), and obtain439

g̃q(α) =
1

P †

αN†/2−1∑
k=−αN†/2

e2πik(αq)/(αN
†) yk, q = −N †/2, . . . , N †/2− 1, (4.35)440

where yk =

(
sin2 πηk∆w

(πηk∆w)
2

)
G(ηk,∆τ), k = −αN

†

2
, . . . ,

αN †

2
− 1.441

It is observed from (4.35) that, given {yk}, {g̃q(α)} can be computed efficiently via a single FFT of442

size αN †. A suitable value for α, i.e. satisfying the ϵ-monotonicity condition (4.34), can be determined443

through an iterative procedure based on formula (4.35). Let this value be αϵ. We also observe that,444

once αϵ is found, the discrete convolutions (4.24) can also be computed efficiently using an FFT. This445

suggests that we only need to compute the weights in the Fourier domain, i.e. the DFT of {g̃q(αϵ)}, only446

once, and reuse them for all timesteps. We define {G̃q(αϵ)} to be the DFT of {g̃q(αϵ)} given by447

G̃(ηk,∆τ, αϵ) =
P †

N †

N†/2−1∑
q=−N†/2

e−2πiqk/N†
g̃q(αϵ), k = −N †/2, . . . , N †/2− 1. (4.36)448

An iterative procedure for computing {G̃q(αϵ)} is given in Algorithm 4.1, where we also use the stopping449

criterion ∆w
∑N†/2−1

q=−N†/2

∣∣g̃q(α)− g̃q(α/2)
∣∣ < ϵ1, 0 < ϵ1 ≪ 1.450

Algorithm 4.1 Computation of weights G̃q(αϵ), q = −N †/2, . . . , N †/2− 1, in Fourier domain.

1: set α = 1 and compute g̃q(α), q = −N †/2, . . . , N †/2− 1 using (4.35);

2: for α = 2, 4, . . . until convergence do

3: compute g̃q(α) q = −N †/2, . . . , N †/2− 1, using (4.35);

4: compute test1 = ∆w
∑N†/2−1

q=−N†/2
min (g̃q(α), 0) for monotonicity test;

5: compute test2 = ∆w
∑N†/2−1

q=−N†/2

∣∣g̃q(α)− g̃q(α/2)
∣∣ for accuracy test;

6: if |test1| < ϵ(∆τ/T ) and test2 < ϵ1 then

7: αϵ = α;

break from for loop;

8: end if

9: end for

10: use (4.36) to compute and output weights G̃q(αϵ), q = −N †/2, . . . , N †/2− 1, in Fourier domain.

We note that, using the error bound (4.33), noting that g̃n−l(∞) ≥ 0, quantity “test1” on Line 4 of451

Algorithm 4.1 can be bounded as follows452

|test1| ≤ 8

π2α2

exp
(
− σ2π2∆τ(N †)2α2/(2(P †)2)

)
1− exp

(
− 2σ2π2∆τN †α/(P †)2

) ,453
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and |test2| can be bounded similarly. Therefore, for any ϵ, ϵ1 > 0, Algorithm 4.1 stops after a finite454

number of iterations. In a practical setting, the algorithm only takes about 1 or 2 iterations to stop, i.e.455

αϵ is typically about 2 or 4 for practical purposes.456

Remark 4.5. For simplicity, unless otherwise stated, we adopt the notional convention g̃n−l = g̃n−l(αϵ)457

and G̃(ηk,∆τ) ≡ G̃(ηk,∆τ, αϵ), where αϵ is selected by Algorithm 4.1, hence satisfies the ϵ-monotonicity458

condition (4.34): ∆w
∑N†/2−1

l=−N†/2

∣∣min (g̃n−l(α), 0)
∣∣ < ϵ∆τ

T , ϵ > 0, for all n ∈ {−N/2+ 1, . . . , N/2− 1}.459

The discrete convolutions (4.24) can then be implemented efficiently via an FFT as follows460

(vloc)
m+1
n,j ≃

N†/2−1∑
q=−N†/2

e2πiqn/N
†
Vloc(ηq, aj , τ

+
m) G̃(ηq,∆τ), (4.37)461

with Vloc
(
ηq, aj , τ

+
m

)
=

1

N †

N†/2−1∑
l=−N†/2

e−2πiql/N†
(vloc)

m+
l,j , q = −N †/2, . . . , N †/2− 1,462

where G̃(ηq,∆τ) is given by (4.36). Similarly, we can compute (vnlc)
m+1
n,j , n = −N/2 + 1, . . . , N/2 − 1,463

j = 0, . . . , J , and m = 0, . . . ,M − 1, using an FFT as above. Putting everything together, an ϵ-464

monotone algorithm for Ω is presented in Algorithm 4.2, where, for simplicity, we use the notation465

N† = {−N †/2, . . . , N †/2− 1}.466

Algorithm 4.2 An ϵ-monotone Fourier algorithm for GMWB problem defined in Definition (3.1). x◦y
is the Hadamard product of vectors x and y; N† = {−N †/2, . . . , N †/2− 1}.

1: compute vector G̃ =
[
G̃(ηq,∆τ)

]
q∈N†

, using Algorithm 4.1;

2: initialize v0n,j = max (ewn , (1− µ)aj − c), n = −N†

2 , . . . ,
N†

2 , j = 0, . . . , J ;

3: for m = 0, . . . ,M − 1 do

4: solve (4.18) to obtain (vloc)
m+
n,j and (vnlc)

m+
n,j , n = −N

2 + 1, . . . , N2 − 1, j = 0, . . . , J ; //Ωin ∪ Ωamin

5: combine results in Line-4 with vmn,j in Ωwmin , Ωwamin and Ωwmax , to obtain vectors

(vloc)
m+
j =

[
(vloc)

m+
n,j

]
n∈N†

and (vnlc)
m+
j =

[
(vnlc)

m+
n,j

]
n∈N†

, j = 0, . . . , J ;

6: compute vectors
[
(vloc)

m+1
n,j

]
n∈N†

= IFFT
{
FFT

{
(vloc)

m+
j

}
◦ G̃
}
, j = 0, . . . , J ;

7: compute vectors
[
(vnlc)

m+1
n,j

]
n∈N†

= IFFT
{
FFT

{
(vnlc)

m+
j

}
◦ G̃
}
, j = 0, . . . , J ;

8: discard FFT values in Ωwmin , Ωwamin and Ωwmax , namely (vloc)
m+1
n,j and (vnlc)

m+1
n,j ,

n = −N†

2 , . . . ,−N
2 , and n = N

2 , . . . ,
N†

2 − 1, j = 0, . . . , J ;

9: set vm+1
n,j = max

(
(vloc)

m+1
n,j , (vnlc)

m+1
n,j

)
, n = −N

2 + 1, . . . , N2 − 1, j = 0, . . . , J ; //Ωin ∪ Ωamin

10: compute vm+1
n,j , n = N

2 , . . . ,
N†

2 , j = 0, . . . , J , using (4.12); //Ωwmax

11: compute vm+1
n,j , n = −N†

2 , . . . ,−N
2 , j = 0, . . . , J , using (4.16); //Ωwmin ∪ Ωwamin

12: end for

Remark 4.6 (Algorithm complexity). The complexity of Algorithm 4.2, at each timestep, consists of467

two major parts, intervention action and time advancement. For intervention action, a binary search468

is carried out for each mesh node, with each search costing O(| log(1/h)|). For each timestep, we need469

to solve O(1/h2) optimization problems (that is, for each mesh node (wn, aj) with n = −N†

2 , . . . ,
N
2 − 1,470

j = 0, . . . , J), each optimization performs O(1/h) linear interpolations (i.e. for O(1/h) elements in471

the admissible control set). The intervention action results in O(| log(1/h)|/h3) computational cost at472

each timestep. Regarding time advancement, we basically solve O(1/h) PIDEs (i.e. for each aj when473

j = 0, . . . , J) using the ϵ-monotone Fourier method. Apart from a preprocessing step in Algorithm 4.1,474

the complexity of the time advancement mainly depends on the FFT to evaluate the discrete convolution,475

with each FFT costing O(| log(1/h)|/h). In total, the computational cost of the time advancement is476
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O(| log(1/h)|/h2) at each timestep. Thus the major cost of Algorithm 4.2 is determined by the interven-477

tion action, that is by the local optimization problems.478

4.4 Wraparound error479

A well-known issue requiring special attention is that FFT algorithms effectively assumes that the input480

functions are periodic. This tends to cause wraparound pollution near the boundaries, unless special481

care is taken when implementing the algorithms [29]. In our case, wraparound error may occur at nodes482

near wmin and wmax, i.e. near the boundaries between Ωin ∪Ωamin and Ωwmin ∪Ωwamin or Ωwmax , with the483

contamination being particularly problematic near wmin. This is because the non-local impulse operator484

always moves the solution to smaller w values, due to withdrawals.485

As introduced in Remark 4.1, the boundary sub-domains Ωwmin ∪Ωwamin and Ωwmax are also set up to486

act as padding areas to minimize the wraparound error in the computation of discrete convolutions (4.24)487

via an FFT in (4.37). Specifically, as stated in Algorithm 4.2, for each τm, solutions in the boundary488

sub-domains Ωwmin ∪Ωwamin and Ωwmax are combined with (vloc)
m+
n,j and (vnlc)

m+
n,j in Ωin∪Ωamin (Lines 4-5)489

to form the data for an FFT (Lines 6-7). After an FFT is applied, all results of auxiliary padding nodes490

in Ωwmin ∪ Ωwamin and Ωwmax are discarded to minimize the wraparound error at nodes in Ωin ∪ Ωamin491

(Line 8). Note that our treatment is different from the zero padding technique used in [1, 45], which492

might produce errors near wmin. In the below, we show that, with our choice of N † = 2N , N is chosen493

large enough, our handling of wraparound described above is sufficiently effective.494

For full generality, we consider the generic recursion in the form of the discrete convolution (4.24)495

um+1
n = ∆w

N†/2−1∑
l=−N†/2

g̃n−l u
m
l , n = −N/2 + 1, . . . , N/2− 1. (4.38)496

As noted above, wraparound in (4.38) may occur if (n− l) < −N †/2 or (n− l) > N †/2− 1. (Also see497

Appendix A.) This leads us to the following formal definition of wraparound error at each time τm.498

Definition 4.1 (wraparound error). Assume {g̃q}, q = −N †/2, . . . , N †/2−1, is periodic with period N †
499

and uml , for l < −N/2 + 1 or l > N/2− 1, are determined by boundary data with N † = 2N . Then, the500

wraparound error for equation (4.38), at timestep m, denoted by emwrap, is501

emwrap = max
−N/2+1≤n≤N/2−1

N†/2−1∑
l=−N†/2

∣∣∣g̃n−l u
m
l

∣∣∣ (1{(n−l)<−N†/2} + 1{(n−l)>N†/2−1}

)
.502

We now state a theorem on the effectiveness of our padding technique. See Appendix A for a proof.503

Theorem 4.1. Let {g̃q}, q = −N †/2, . . . , N †/2−1, be periodic with period N †, and uml , for l < −N/2+1504

or l > N/2 − 1, be determined by boundary data with N † = 2N . Assume further that {uml } is bounded505

in ℓ∞-norm, so that for 0 ≤ m ≤M , there exists a constant C > 0 such that506

|uml | ≤ C, l = −N †/2, . . . , N †/2− 1. (4.39)507

If N is selected sufficiently large so that508

∆w

−N/2∑
l=−N†/2

|g̃l| ≤ ϵe
2
∆τ and ∆w

N†/2−1∑
l=N/2

|g̃l| ≤ ϵe
2
∆τ , ϵe > 0, (4.40)509

then the wraparound error after M steps is bounded by TCϵe.510

We now have a corollary about the wraparound error of our scheme.511

Corollary 4.1. The wraparound error, defined in Definition 4.1, of scheme (4.11), (4.12), (4.16), and512

(4.25), is bounded by TCϵe, where ϵe > 0 can be made arbitrarily small by choosing N sufficiently large.513
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5 Convergence to the viscosity solution514

It is established by Barles-Souganidis in [14] that, provided a comparison result for PDEs applies, a515

numerical scheme converges to the unique viscosity solution of the equation if the scheme is ℓ∞-stable,516

strictly monotone, and consistent. In our case, as noted in Remark 3.2, a provable strong comparison517

principle result exists for Ωin ∪ Ωamin . However, our scheme is only monotone within a tolerance ϵ > 0518

(see (4.34)), and hence, the framework in [14] is not directly applicable. Nonetheless, [14] does note that519

the monotonicity requirement can be relaxed. This idea was explored in [17].520

In this section, we appeal to a Barles-Souganidis-type analysis to rigorously study the convergence of521

our scheme in Ωin∪Ωamin as h→ 0 by verifying three properties: ℓ∞-stability, ϵ-monotonicity (as opposed522

to strict monotonicity), and consistency. We will show that convergence of our scheme is ensured if the523

monotonicity tolerance ϵ → 0 as h → 0. Although our proofs share some similarities with those in [19]524

for a strictly monotone scheme, we stress that these are distant similarities. Specifically, due to key525

differences in the monotonicity property and the use of Fourier methods which requires careful handling526

of boundary regions, our proof techniques are significantly more involved. We will emphasize these key527

differences where suitable.528

For subsequent use, we state two results below: for any n ∈ {−N/2 + 1, . . . , N/2− 1}, we have529

∆w

N†/2−1∑
l=−N†/2

g̃n−l = e−r∆τ , ∆w

N†/2−1∑
l=−N†/2

(max(g̃n−l, 0) + |min (g̃n−l, 0)|) ≤ 1 + 2ϵ
∆τ

T
≤ e2ϵ

∆τ
T . (5.1)530

In (5.1), the second result follows from the first, noting g̃n−l = max(g̃n−l, 0)+min(g̃n−l, 0), and e
−r∆τ ≤ 1,531

together with the monotonicity condition (4.34). The first result in (5.1) can be proven as follows.532

Recalling ∆w = P †

N† , with q = n− l, we have533

∆w

N†/2−1∑
l=−N†/2

g̃n−l
(i)
=

P †

N †

N†/2−1∑
q=−N†/2

g̃q534

(ii)
=

P †

N †

N†/2−1∑
q=−N†/2

1

P †

αϵN†/2−1∑
k=−αϵN†/2

e2πiηkq∆w

(
sin2 πηk∆w

(πηk∆w)2

)
G(ηk,∆τ)535

=
1

N †

αϵN†/2−1∑
k=−αϵN†/2

(
sin2 πηk∆w

(πηk∆w)2

)
G(ηk,∆τ)

N†/2−1∑
q=−N†/2

exp

(
2πiqk

N †

)
536

(iii)
= G(0,∆τ)

(iv)
= e−r∆τ .537

Here, in (i), we use the fact that the sequence {g̃−N†/2, . . . , g̃N†/2−1} is N †-periodic. In (ii), recalling the538

notional convention g̃q = g̃q(αϵ) in Remark (4.5), we replace g̃q(αϵ) by the definition of g̃q(α) given in539

(4.31), with α = αϵ. In (iii), we apply properties of roots of unity. Finally, in (iv), we use the closed-form540

expression of Ψ(η) in (4.27), with η = ηk.
6

541

Our scheme consists of the following equations: (4.11) for Ωτ0 , (4.12) for Ωwmax , (4.16) for Ωwmin ∪ Ωwamin ,542

and finally (4.25) for Ωin ∪ Ωamin . We start by verifying ℓ∞-stability of our scheme.543

5.1 Stability544

Lemma 5.1 (ℓ∞-stability). Suppose the discretization parameter h satisfies (4.10). If linear inter-545

polation is used to compute ṽmn,j in (4.13) and (4.17), then scheme (4.11), (4.12), (4.16), and (4.25)546

satisfies sup
h>0

∥vm∥∞ < ∞ for all m = 0, . . . ,M , as the discretization parameter h → 0. Here, ∥vm∥∞ =547

maxn,j |vmn,j |, n = −N †/2, . . . , N †/2− 1, and j = 0, . . . , J .548

6In fact, we have ∆w
∑N†/2−1

l=−N†/2
g̃n−l(α) = e−r∆τ for any α ∈ {2, 4, 8, . . .}, of which the first result of (5.1) is a special

case with α = αϵ. However, the second result of (5.1) only holds for α = αϵ, i.e. when the monotonicity condition (4.34)

satisfied.
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Proof. We note that, for any fixed h > 0, we have
∥∥v0∥∥∞ < ∞, and therefore, suph>0

∥∥v0∥∥∞ < ∞.549

Motivated by this observation, to demonstrate ℓ∞-stability of our scheme, we will show that, for a fixed550

h > 0, at any (wn, aj , τm), we have551

|vmn,j | < K(
∥∥v0∥∥∞ + aj), K > 0 bounded above independently of h. (5.2)552

Since aj ≤ z0 < ∞, where z0 is the up-front premium to the insurer, (5.2) essentially means that553

∥vm∥ ≤ ∞ for a fixed h > 0. Therefore, we obtain suph>0 ∥vm∥∞ < ∞ for all m = 0, . . . ,M , as554

wanted. We note that the constant K > 0 is typically of the form e2mϵ∆τ
T , m = 0, . . . ,M , where ϵ is the555

monotonicity tolerance used in (4.34) with 0 < ϵ≪ 1. Since m∆τ ≤ T , K is bounded above by e2.556

For the rest of the proof, we will show the key inequality (5.2) when h > 0 is fixed. For clarity, we557

will address stability for the boundary and interior sub-domains (together with their respective initial558

conditions) separately, starting with the boundary sub-domains. It is straightforward to show that (4.11)559

and (4.12) are ℓ∞-stable, since560

max
n,j

|vmn,j | ≤
∥∥v0∥∥∞ , n = N/2, . . . N †/2, j = 0, . . . , J, m = 0, . . . ,M. (5.3)561

Similarly, we can also show ℓ∞-stability of (4.11) and (4.16) by proving maxn,j |vmn,j | ≤
∥∥v0∥∥∞ + aj via562

0 ≤ vmn,j ≤
∥∥v0∥∥∞ + aj , n = −N †/2, . . .−N/2, j = 0, . . . , J, m = 0, . . . ,M. (5.4)563

This can be done by induction on m in a straightforward manner, noting that (4.11) and (4.16) are564

strictly monotone. We omit this for brevity.565

We now prove stability for (4.11) and (4.25). For n = −N/2 + 1, . . . , N/2− 1 and j = 0, . . . , J , and566

m = 0, . . . ,M , we define the measures567 ∥∥∥vm+
j

∥∥∥
∞

= max
n

∣∣∣vm+
n,j

∣∣∣ and
∥∥vmj ∥∥∞ = max

n

∣∣∣vmn,j∣∣∣, where[
vm+
j

]
max

= max
n

{
vm+
n,j

}
,
[
vmj
]
max

= max
n

{
vmn,j
}
,
[
vm+
j

]
min

= min
n

{
vm+
n,j

}
,
[
vmj
]
min

= min
n

{
vmn,j
}
.

568

Similarly, we also have
∥∥∥(vloc)mj ∥∥∥∞ and

∥∥∥(vnlc)mj ∥∥∥∞, and other respective measures.569

Recall the monotonicity tolerance ϵ, where 0 < ϵ ≪ 1, used in (4.34). To prove stability for (4.11)570

and (4.25), we show that, for m ∈ {0, . . .M}, we have571 ∥∥vmj ∥∥∞ ≤ e2mϵ∆τ
T
(∥∥v0∥∥∞ + aj

)
, j = 0, . . . , J, (5.5)572

which is bounded above by e2(
∥∥v0∥∥∞ + z0) independently of h, since m∆τ ≤ T . We typically use573

ϵ ≤ 1/2 in the proof below. To show (5.5), using induction on m, m = 0, . . . ,M , we will show that, for574

all j ∈ {0, . . . , J},575 [
vmj
]
max

≤ e2mϵ∆τ
T
(∥∥v0∥∥∞ + aj

)
, (5.6)576

−2mϵ
∆τ

T
e2mϵ∆τ

T
(∥∥v0∥∥∞ + aj

)
≤

[
vmj
]
min

. (5.7)577

We note that numerical solutions at nodes in Ωwmin ∪ Ωwamin satisfy the bounds (5.6)-(5.7) at the same578

j ∈ {j = 0, . . . , J} and m ∈ {0, . . . ,M},579

max
−N†/2≤n≤−N/2

{
vmn,j
}

satisfies (5.6), and min
−N†/2≤n≤−N/2

{
vmn,j
}

satisfies (5.7). (5.8)580

Base case: when m = 0, (5.6)-(5.7) hold for all j ∈ {0, . . . , J}, which follows from the initial condition581

(4.11) for n = −N/2 + 1, . . . , N/2− 1.582

Hypothesis: we assume that (5.6)-(5.7) hold form = m̂, where m̂ ≤M−1, and n = −N/2+1, . . . , N/2−1,583

j = 0, . . . , J .584

Induction: we show that (5.6)-(5.7) also hold for m = m̂+1 and j = 0, . . . , J . This is done in two steps.585

In Step 1, we show, for j = 0, . . . , J ,586 [
vm̂+
j

]
max

≤ e2m̂ϵ∆τ
T
(∥∥v0∥∥∞ + aj

)
(5.9)587

−2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T
(∥∥v0∥∥∞ + aj

)
≤

[
vm̂+
j

]
min

. (5.10)588
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In Step 2, we bound the timestepping result (4.25) at m = m̂+ 1 using (5.9)-(5.10).589

Step 1 - Bound for vm̂+
n,j : Since v

m̂+
n,j = max

(
(vloc)

m̂+
n,j , (vnlc)

m̂+
n,j

)
, using (4.18), we have590

vm̂+
n,j = sup

γm̂
n,j∈[0,aj ]

[
I
{
vm̂
}(

max
(
ewn − γm̂n,j , e

w†
min

)
, aj − γm̂n,j

)
+ f(γm̂n,j)

]
. (5.11)591

As noted in Remark 4.2, for the case c > 0 as considered here, the supremum of (5.11) is achieved by592

an optimal control γ∗ ∈ [0, aj ]. That is, (5.11) becomes593

vm̂+
n,j = I

{
vm̂
}(

max
(
ewn − γ∗, ew

†
min

)
, aj − γ∗

)
+ f(γ∗), γ∗ ∈ [0, aj ]. (5.12)594

We assume that max
(
ewn − γ∗, ew

†
min

)
∈ [ewn′ , ewn′+1 ] and (aj−γ∗) ∈ [aj′ , aj′+1], and nodes that are used595

for linear interpolation are (xm̂
n′,j′ , . . . ,x

m̂
n′+1,j′+1). We note that these node could be outside Ωin ∪Ωamin ,596

in Ωwmin ∪ Ωwamin . However, by (5.8), the numerical solutions at these nodes satisfy the same bounds597

(5.6)-(5.7). Computing vm̂+
n,j using linear interpolation results in598

vm̂+
n,j = xa

(
xw vm̂n′,j′ + (1− xw) v

m̂
n′+1,j′

)
+ (1− xa)

(
xw vm̂n′,j′+1 + (1− xw) v

m̂
n′+1,j′+1

)
, (5.13)599

where 0 ≤ xa ≤ 1 and 0 ≤ xw ≤ 1 are interpolation weights. In particular,600

xa =
aj′+1 − (aj − γ∗)

aj′+1 − aj′
. (5.14)601

Using (5.8) and the induction hypothesis for (5.6) gives abound for nodal values used in (5.13)602 {
vm̂n′,j′ , v

m̂
n′+1,j′

}
≤ e2m̂ϵ∆τ

T (∥v0∥∞ + aj′),
{
vm̂n′,j′+1, v

m̂
n′+1,j′+1

}
≤ e2m̂ϵ∆τ

T (∥v0∥∞ + aj′+1). (5.15)603

Taking into account the non-negative weights in linear interpolation, particularly (5.14), and upper604

bounds in (5.15), the interpolated result I
{
vm̂
}
(·) in (5.12) is bounded by605

I
{
vm̂
}(

max
(
ewn − γ∗, ew

†
min

)
, aj − γ∗

)
≤ e2m̂ϵ∆τ

T (∥v0∥∞ + (aj − γ∗)). (5.16)606

Using (5.16) and f(γ∗) ≤ γ∗ (by definition in (4.15)), (5.12) becomes607

vm̂+
n,j ≤ e2m̂ϵ∆τ

T
(
∥v0∥∞ + aj − γ∗

)
+ γ∗ ≤ e2m̂ϵ∆τ

T
(
∥v0∥∞ + aj

)
,608

which proves (5.9) at m = m̂.609

For subsequent use, we note, since vm̂+
n,j = max

(
(vloc)

m̂+
n,j , (vnlc)

m̂+
n,j

)
, (5.9) results in610 {

(vloc)
m̂+
n,j , (vnlc)

m̂+
n,j

}
≤ vm̂+

n,j ≤ e2m̂ϵ∆τ
T
(
∥v0∥∞ + aj

)
. (5.17)611

Next, we derive a lower bound for (vloc)
m̂+
n,j and (vnlc)

m̂+
n,j . By the induction hypothesis for (5.7), we have612

vm̂n,j ≥ −2mϵ∆τ
T e2m̂ϵ∆τ

T

(∥∥v0∥∥∞ + aj
)
. Comparing (vloc)

m̂+
n,j given by the supremum in (4.18) with vm̂n,j ,613

which is the candidate for the supremum evaluated at γm̂n,j = 0, yields614

(vloc)
m̂+
n,j ≥ vm̂n,j ≥ − 2m̂ϵ

∆τ

T
e2m̂ϵ∆τ

T
(∥∥v0∥∥∞ + aj

)
, (5.18)615

which proves (5.10) at m = m̂.616

For (vnlc)
m̂+
n,j in (4.18), consider optimal γ = γ∗, where γ∗ ∈ (Cr∆τ, aj ]. Using the induction hypoth-617

esis and non-negative weights of linear interpolation, noting γ∗ ≥ 0 and assuming f(γ∗) ≥ 0, gives618

(vnlc)
m̂+
n,j ≥ −2m̂ϵ

∆τ

T
e2m̂ϵ∆τ

T
(∥∥v0∥∥∞ + (aj − γ∗)

)
+ f(γ∗) ≥ −2m̂ϵ

∆τ

T
e2m̂ϵ∆τ

T
(∥∥v0∥∥∞ + aj

)
. (5.19)619

From (5.17)-(5.18) and (5.19), noting ϵ ≤ 1/2, we have620 {
| (vloc)m̂+

n,j |, | (vnlc)m̂+
n,j |

}
≤ e2m̂ϵ∆τ

T
(
∥v0∥∞ + aj

)
. (5.20)621
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Step 2 - Bound for vm̂+1
n,j : We will show that (5.6)-(5.7) hold at m = m̂ + 1. For all n = −N/2 +622

1, . . . , N/2− 1, and j = 0, . . . , J , we have
∣∣∣(vloc)m̂+1

n,j

∣∣∣ = ∣∣∣∑N†/2−1

l=−N†/2
g̃n−l (vloc)

m̂+
l,j

∣∣∣ . . .623

. . . ≤ ∆w

N†/2−1∑
l=−N†/2

|g̃n−l| | (vloc)m̂+
l,j |

(i)

≤ e2m̂ϵ∆τ
T (∥v0∥∞ + aj)∆w

N†/2−1∑
l=−N†/2

(max(g̃n−l, 0) + |min(g̃n−l, 0)|)624

(ii)

≤ e2m̂ϵ∆τ
T (∥v0∥∞ + aj)(1 + 2ϵ∆τ/T )625

≤ e2(m̂+1)ϵ∆τ
T (∥v0∥∞ + aj). (5.21)626

Here, (i) comes from (5.20), and (ii) comes from (5.1). Similarly, for n = −N/2 + 1, . . . , N/2 − 1, and627

j = 0, . . . , J , we also have628

| (vnlc)m̂+1
n,j | ≤ e2(m̂+1)ϵ∆τ

T (∥v0∥∞ + aj). (5.22)629

Therefore, from (5.21)-(5.22), we conclude, for n = −N/2 + 1, . . . , N/2 − 1, and j = 0, . . . , J ,630

|vm̂+1
n,j | ≤ e2(m̂+1)ϵ∆τ

T (∥v0∥∞ + aj),631

which is bounded above by e2(
∥∥v0∥∥∞ + z0) independently of h, since m∆τ ≤ T . This proves (5.6) at632

time m = m̂+ 1.633

To prove (5.7) at m = m̂+ 1, note that (vloc)
m̂+1
n,j = ∆w

∑N†/2−1

l=−N†/2
g̃n−l (vloc)

m̂+
l,j . . .634

. . . ≥ −2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T (∥v0∥∞ + aj)∆w

N†/2−1∑
l=−N†/2

max(g̃n−l, 0)− e2m̂ϵ∆τ
T (∥v0∥∞ + aj)∆w

N†/2−1∑
l=−N†/2

|min (g̃n−l, 0)|635

≥ −2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T (∥v0∥∞ + aj)∆w

N†/2−1∑
l=−N†/2

(max(g̃n−l, 0) + |min (g̃n−l, 0)|)636

≥ −2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T (∥v0∥∞ + aj)(1 + 2ϵ
∆τ

T
) ≥ −2(m̂+ 1)ϵ

∆τ

T
e2(m̂+1)ϵ∆τ

T
(
∥v0∥∞ + aj

)
.637

This proves (5.7) at m = m̂+ 1 and concludes the proof.638

Remark 5.1. In the above proof, to derive (5.19), for simplicity, we assume that, for an optimal639

γ∗ ∈ (Cr∆τ, aj ], f(γ
∗) ≥ 0. If this is not the case, we still have ℓ∞-stability with (5.6) becoming640 [

vmj

]
max

≤ e2mϵ∆τ
T

(∥∥v0∥∥∞ + aj + c
)
, and (5.7) becoming

[
vmj

]
min

≥ −2mϵ∆τ
T e2mϵ∆τ

T (
∥∥v0∥∥∞ + aj + c),641

and hence (5.5) becomes
∥∥∥vmj ∥∥∥∞ ≤ e2mϵ∆τ

T

(∥∥v0∥∥∞ + aj + c
)
, noting the constant fixed cost c > 0. The642

assumption 0 < ϵ ≤ 1/2 is entirely for ease of exposition, and is trivially satisfied in any setting.643

Finally, if ϵ = 0, i.e. strictly monotone, the lower bounds (5.7) and (5.10) become zero, while the644

upper bounds (5.6) and (5.9) become
∥∥v0∥∥∞ + aj, which are the same as bounds established in [19] for645

a monotone finite difference method for fixed computational domain.646

5.2 Consistency647

While equations (4.11), (4.12), (4.16), and (4.25) are convenient for computation, they are not in a form648

amendable for analysis. For purposes of verifying consistency, it is more convenient to rewrite them in649

a single equation. Unless noted otherwise, in the following, j = 0, . . . , J , and m = 0, . . . ,M − 1.650

For (wn, aj , τm+1) ∈ Ωwmin ∪ Ωwamin , i.e. n = −N †/2, . . . ,−N/2, we define the operators651

Am+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
=

1

∆τ

[
vm+1
n,j − sup

γm
n,j∈[0,min(aj ,Cr∆τ)]

(
ṽmn,j + f

(
γmn,j

))
+∆τ

(
rvm+1

n,j

)]
,652

Bm+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
= vm+1

n,j − sup
γm
n,j∈(Cr∆τ,aj ]

(
ṽmn,j + f

(
γmn,j

))
+∆τ

(
rvm+1

n,j

)
, (5.23)653

where ṽmn,j , n = −N †/2, . . . ,−N/2, is given in (4.13), and f (·) is defined in (4.15).654
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For (wn, aj , τm+1) ∈ Ωin ∪ Ωamin , i.e. n = −N/2 + 1, . . . N/2− 1, we define the operators655

Cm+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
=

1

∆τ

[
vm+1
n,j −∆w

N/2−1∑
l=−N/2+1

g̃n−l sup
γm
l,j∈[0,min(aj ,Cr∆τ)]

(
ṽml,j + f

(
γml,j
))

656

− ∆w

−N/2∑
l=−N†/2

g̃n−l v
m
l,j −∆w

N†/2−1∑
l=N/2

g̃n−l v
m
l,j

]
,657

Dm+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
= vm+1

n,j −∆w

N/2−1∑
l=−N/2+1

g̃n−l sup
γm
l,j∈(Cr∆τ,aj ]

(
ṽml,j + f

(
γml,j
))

658

−∆w

−N/2∑
l=−N†/2

g̃n−l v
m
l,j −∆w

N†/2−1∑
l=N/2

g̃n−l v
m
l,j , (5.24)659

where ṽml,j , l = −N/2 + 1, . . . , N/2− 1, is given (4.17), and f (·) is defined in (4.15).660

Using Am+1
n,j (·), Bm+1

n,j (·), Cm+1
n,j (·) and Dm+1

n,j (·) defined above, our numerical scheme at the reference661

node (wn, aj , τm+1) ∈ Ω can be rewritten in an equivalent form662

0 = Hm+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
(5.25)663

≡



Am+1
n,j (·) w†

min ≤ wn ≤ wmin, 0 ≤ aj ≤ Cr∆τ, 0 < τm+1 ≤ T,

min
{
Am+1

n,j (·) ,Bm+1
n,j (·)

}
w†
min ≤ wn ≤ wmin, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T,

Cm+1
n,j (·) wmin < wn < wmax, 0 ≤ aj ≤ Cr∆τ, 0 < τm+1 ≤ T,

min
{
Cm+1
n,j (·) ,Dm+1

n,j (·)
}

wmin < wn < wmax, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T,

vm+1
n,j − e−βτm+1ewn wmax ≤ wn ≤ w†

max, 0 ≤ aj ≤ aJ , 0 < τm+1 ≤ T

vm+1
n,j −max(ewn , (1− µ)aj − c) w†

min ≤ wn ≤ w†
max, 0 ≤ aj ≤ aJ , τm+1 = 0.

664

To verify the consistency in the viscosity sense of (5.25), we first need some supporting results related665

to local consistency of our scheme. To this end, we define operators Fin′ and Fw′
min

for the case 0 ≤ aj ≤666

Cr∆τ , i.e. 0 ≤ a/∆τ ≤ Cr,667

Fin′ (x, v) = vτ − Lv − J v − sup
γ̂∈[0,a/∆τ ]

γ̂
(
1− e−wvw − va

)
1{a>0}, 0 ≤ a/∆τ ≤ Cr,668

Fw′
min

(x, v) = vτ + rv − sup
γ̂∈[0,a/∆τ ]

γ̂ (1− va)1{a>0}, 0 ≤ a/∆τ ≤ Cr. (5.26)669

Below, we state the key supporting lemma related to local consistency of scheme (5.25).670

Lemma 5.2 (Local consistency). Suppose that (i) the discretization parameter h satisfies (4.10), (ii) lin-671

ear interpolation in (4.13) and (4.17) is used, and (iii) wmin satisfies672

ewmin − ew
†
min ≥ Cr∆τ. (5.27)673

Then, for any test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞), with ϕmn,j = ϕ
(
xm
n,j

)
and x = (wn, aj , τm+1) ∈ Ω, and674

for a sufficiently small h, we have675

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤j

)
(5.28)676

=



Fin (·, ·) + c (x) ξ +O(h) + E(xm
n,j , h) wmin < wn < wmax, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T ;

Fin′ (·, ·) + c (x) ξ +O(h) + E(xm
n,j , h) wmin < wn < wmax, 0 < aj ≤ Cr∆τ, 0 < τm+1 ≤ T ;

Famin (·, ·) + c (x) ξ +O(h) wmin < wn < wmax, aj = 0, 0 < τm+1 ≤ T ;

Fwmin (·, ·) + c (x) ξ +O(h) w†
min ≤ wn ≤ wmin, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T ;

Fw′
min

(·, ·) + c (x) ξ +O(h) w†
min ≤ wn ≤ wmin, 0 < aj ≤ Cr∆τ, 0 < τm+1 ≤ T ;

Fwamin (·, ·)+ c (x) ξ +O(h) w†
min ≤ wn ≤ wmin, aj = 0, 0 < τm+1 ≤ T ;

Fwmax (·, ·) + c (x) ξ wmax ≤ wn ≤ w†
max, 0 ≤ aj ≤ aJ , 0 < τm+1 ≤ T ;

Fτ0 (·, ·) + c (x) ξ w†
min ≤ wn ≤ w†

max, 0 ≤ aj ≤ aJ , τm+1 = 0.

677
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Here, ξ is a constant and c(·) is a bounded function satisfying |c(x)| ≤ max(r, 1) for all x ∈ Ω, and678

E(xm
n,j , h) → 0 as h → 0. The operators Fin (·, ·), Famin (·, ·), Fwmin (·, ·), Fwamin (·, ·), Fwmax (·, ·) and679

Fτ0 (·, ·), defined in (3.10)-(3.15), as well as Fin′ and Fw′
min

defined in (5.26), are function of (x, ϕ (x)).680

To prove Lemma 5.2, starting from a discrete convolution of the Green’s function g(·,∆τ) and a function681

q ∈ G(Ω∞), we typically need to recover an associated continuous convolution (in w) and then utilize the682

Fourier Transform and inverse Fourier Transform. There are two cases: (i) q is not necessarily smooth,683

but locally bounded (as it is in G(Ω∞)), which corresponds to non-local impulses, and (ii) q is a test684

function in G(Ω∞)∩C∞(Ω∞), which corresponds to local impulses. We first present some auxiliary results,685

namely Lemma 5.3 (for case (i)) and in Lemma 5.4 (for case (ii)).686

Lemma 5.3 (Function in G(Ω∞)). Suppose the discretization parameter h satisfies (4.10). Let p(w, a, τ)687

be in G(Ω∞). For any xm
n,j, n ∈ {−N/2 + 1, . . . N/2− 1}, j ∈ {0, . . . , J} and m ∈ {1, . . . ,M}, we have688

∆w

N†/2−1∑
l=−N†/2

g̃n−l p
m
l,j = pmn,j +O(h2) + E(xm

n,j , h), where E(xm
n,j , h) → 0 as h→ 0.689

Proof of Lemma 5.3. We fix a = aj and τ = τm, and instead of writing p(w, aj , τm), we will write p(w)690

which is a bounded function of w ∈ R. We will also write pl instead of pml,j .691

Since p(w) does not need to be in L1(R), we first construct a function p̂(w) : R → R which is in692

L1(R) and bounded in R and agrees with p(w) in [w†
min, w

†
max]. This can be achieved by using a standard693

smooth cut-off function [48]. To this end, with ŵ0 =
(
w†
min + w†

max

)
/2, we define Dd(ŵ0) := {w ∈694

R : |w − ŵ0| ≤ d}, the closed ball centered at ŵ0 with radius d sufficiently large so that [w†
min, w

†
max]695

is contained in Dd(ŵ0). Consider a smooth cut-off function ζ(w), w ∈ R, satisfying 0 ≤ ζ(w) ≤ 1,696

ζ(w) = 1 on Dd(ŵ0) and ζ(w) = 0 outside of D2d(ŵ0). Then the function p̂(w) = ζ(w)ϕ(w) satisfies our697

requirements.698

Consider function q : R → R defined as follows: (i) q(w) =
∑N†/2−1

l=−N†/2
plφl(w), w ∈ [w†

min, w
†
max], and699

(ii) q(w) = p̂(w), w ∈ R\ [w†
min, w

†
max], where {φl(w)} are piecewise linear basis functions given in (4.21).700

It is straightforward to see that q(w) is in L1(R) and bounded in R. We have701

∆w

N†/2−1∑
l=−N†/2

g̃n−l pl
(i)
= ∆w

N†/2−1∑
l=−N†/2

g̃n−l(∞) pl + Ef
(ii)
=

∫ w†
max

w†
min

q(w) ĝ(wn − w,∆τ) dw + Ef + Eo702

(iii)
=

∫ w†
max

w†
min

q(w) g(wn − w,∆τ) dw + Ef + Eo + Eĝ703

(iv)
=

∫ ∞

−∞
q(w) g(wn − w,∆τ) dw + Ef + Eo + Eĝ + Eb704

(v)
= pn + Ef + Eo + Eĝ + Eb + Ec, (5.29)705

where the errors Ef , Eo, Eĝ, Eb, and Ec are described below.706

� In (i), Ef ≡ Ef(xm
n,j , h) is the Fourier series error arising from truncating g̃n−l(∞), defined in (4.30),707

to g̃n−l(α), α ∈ {2, 4, 8, . . .}, in (4.31). As noted in (4.32), Ef(xm
n,j , h) = O(e−

1
h ).708

� In (ii), Eo ≡ Eo(xm
n,j , h) is the error associated with projecting q(w) onto φl(·), and is given by709

Eo ≡ Eo(xm
n,j , h) =

∫ w†
max

w†
min

[ N†/2−1∑
l=−N†/2

plφl(w)− q(w)

]
ĝ (wn − w,∆τ) dw, (5.30)710

which, by the definition of function q(w), is zero.711
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� In (iii), the error Eĝ ≡ Eĝ(xm
n,j , h) is due to approximating g(w,∆) by its localized, periodic approx-712

imation ĝ(w,∆), and is defined by713

Eĝ ≡ Eĝ(xm
n,j , h) =

∫ w†
max

w†
min

q(w) (ĝ(wn − w,∆τ)− g(wn − w,∆τ)) dw. (5.31)714

Using (4.29) with q(w) ∈ L1(R) and its boundedness in R, we obtain Eĝ(xm
n,j , h) = O

(
h2
)
as h→ 0.715

� In (iv), Eb ≡ Eb(xm
n,j , h) is the boundary truncation error defined in (4.5), satisfying |Eb| < K1∆τe

−K2P †
,716

where K1 and K2 are positive constants independent of h, hence Eb(xm
n,j , h) = O(he−

1
h ) as h→ 0.717

� In (v), Ec ≡ Ec(xm
n,j , h) =

∫∞
−∞ g(wn − w,∆τ) (q(w)− q(wn)) dw. By the “cancelation properties”718

of the Green’s function [30, 36]), noting the continuity of q(·), we have Ec(xm
n,j , h) → 0 as h→ 0.719

Letting E(xm
n,j , h) = Ec(xm

n,j , h) concludes the proof.720

For a test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞), we have the lemma below.721

Lemma 5.4 (Test function in G(Ω∞)∩ C∞(Ω∞)). Let ϕ ∈ G(Ω∞)∩ C∞(Ω∞). For any xm
n,j, n ∈ {−N/2 +722

1, . . . N/2− 1}, j ∈ {0, . . . , J} and m ∈ {1, . . . ,M},723

∆w

N†/2−1∑
l=−N†/2

g̃n−l ϕ
m
l,j = ϕmn,j +∆τ [Lϕ+ J ϕ]mn,j +O

(
h2
)
, (5.32)724

where the operators L and J are defined in (3.4).725

Proof of Lemma 5.4. Since we apply the Fourier transform and inverse Fourier transform with respect726

to w, we fix a = aj and τ = τm. Instead of ϕ(w, aj , τm), we will write ϕ(w), which is a smooth univariate727

function of w ∈ R. Since ϕ(w) does not need to be in L1(R), we apply a similar smooth cut-off function728

as in Lemma 5.3 to obtain a smooth function χ(w) that is in L1(R), bounded in R, and agrees with ϕ(w)729

in [w†
min, w

†
max]. With this in mind, starting from the left-hand-side of (5.32), we apply steps (i)-(iv) in730

(5.29), noting that the projection error Eo(xm
n,j , h) associated with the smooth function χ(w) becomes731

(also noting χ(wl) = ϕml,j)732

Eo(xm
n,j , h) =

∫ w†
max

w†
min

[ N†/2−1∑
l=−N†/2

χ(wl)φl(w)− χ(w)

]
ĝ (wn − w,∆τ) dw = O(h2).733

Here, we used Taylor series expansions and the form of φl(w) given in (4.21). This gives734

∆w

N†/2−1∑
l=−N†/2

g̃n−l χ
m
l,j =

∫ ∞

−∞
χ(w) g (wn − w,∆τ) dw +O(h2)735

= [χ ∗ g](wn) +O(h2) = F−1 [F [χ](η) G (η,∆τ)] (wn) +O(h2), (5.33)736

where [χ ∗ g] denotes the convolution of χ(w) and g(w,∆τ). In (5.33), with Ψ(η) given in (4.27),737

expanding G(η,∆τ) = eΨ(η)∆τ by a Taylor series gives738

[χ ∗ g] (wn) = F−1
[
F [χ](η)

(
1 + Ψ(η)∆τ +R(η)∆τ2)

)]
(wn)739

= χ(wn) + ∆τF−1 [F [χ](η) Ψ (η)] (wn) + ∆τ2F−1 [F [χ](η) R (η)] (wn), (5.34)740

where R(η) = 1
2Ψ(η)2eΨ(η)ξ, ξ ∈ (0,∆τ), is the remainder.741

For the second term ∆τF−1 [·] (wn) in (5.34), first, using the closed-form expression for Ψ(η) in (4.27)742

gives743

F [χ](η) Ψ(η) = F
[
−σ

2

2
χww+

(
r − λκ− σ2

2
− β

)
χw−(r + λ)χ+ λ

∫ ∞

−∞
χ(w + y) b(y) dy

]
(η)744

= F [Lχ+ Jχ](η). (5.35)745
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Then, substituting (5.35) into the second term ∆τF−1 [·] (wn) in (5.34) gives746

∆τF−1 [F [χ] (η) Ψ (η)] (wn) = ∆τ [Lχ+ Jχ]mn,j . (5.36)747

For the third term ∆τ2F−1 [·](wn) in (5.34), we have748

∆τ2
∣∣F−1 [F [χ](η) R(η)](wn)

∣∣ = ∆τ2
∣∣∣∣ ∫ ∞

−∞
e2πiηwnR(η)

[ ∫ ∞

−∞
e−2πiηwχ(w) dw

]
dη

∣∣∣∣749

≤ ∆τ2
∫ ∞

−∞
|χ(w)| dw

∫ ∞

−∞
|R(η)| dη750

(i)
= ∆τ2

∫ ∞

−∞
|χ(w)| dw

∫ ∞

−∞

1

2
|Ψ(η)|2 eRe(Ψ(η))ξ dη751

(ii)

≤ ∆τ2
∫ ∞

−∞
|χ(w)| dw

∫ ∞

−∞

1

2
|Ψ(η)|2 e−

1
2
ξσ2(2πη)2 dη752

(iii)
= O(∆τ2). (5.37)753

Here, in (i), we use R(η) = 1
2Ψ(η)2eΨ(η)ξ and Re(Ψ(η)) is the real part of Ψ(η). In (ii), using the754

closed-form expression of Ψ(η) in (4.27), we have755

Re(Ψ(η)) = −1

2
σ2(2πη)2 − (r + λ) + λRe(B(η)) ≤ −1

2
σ2(2πη)2.756

In (iii), we note χ(w) ∈ L1(R), and the second integral is bounded by a constant, since |Ψ(η)|2 is a757

quartic polynomial in η, and
∫∞
−∞ |η|k e− 1

2
ξσ2(2πη)2dη, k ∈ {0, 1, 2, 3, 4}, are bounded. Substituting (5.36)758

and (5.37) back into (5.34), noting (5.33) and the definition of χ(w), gives759

∆w

N†/2−1∑
l=−N†/2

g̃n−l ϕ
m
l,j = ϕmn,j +∆τ [Lϕ+ J ϕ]mn,j +O(h2). (5.38)760

761

We are now ready to present a proof of Lemma 5.2.762

Proof of Lemma 5.2. Since ϕ ∈ C∞(Ω∞) and Ω is bounded, ϕ has continuous and bounded derivatives of763

up to second-order in Ω. We now show that the first equation of (5.28) is true, that is,764

Hm+1
n,j (·) = min

{
Cm+1
n,j (·) ,Dm+1

n,j (·)
}
= Fin (x, ϕ (x)) + c (x) ξ +O(h) + E(xm

n,j , h)765

if wmin < wn < wmax, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T,766

where operators Cm+1
n,j (·) and Dm+1

n,j (·) are defined in (5.24). In this case, operator Cm+1
n,j (·) is written as767

Cm+1
n,j (·) = 1

∆τ

[
ϕm+1
n,j + ξ −∆w

N/2−1∑
l=−N/2+1

g̃n−l sup
γm
l,j∈[0,Cr∆τ ]

(
ϕ̃ml,j + f

(
γml,j
))

768

−∆w

−N/2∑
l=−N†/2

g̃n−l

(
ϕml,j + ξ

)
−∆w

N†/2−1∑
l=N/2

g̃n−l

(
ϕml,j + ξ

) ]
, (5.39)769

where ϕ̃ml,j + f
(
γml,j
)
= I {ϕ (xm) + ξ}

(
ln
(
max

(
ewl − γml,j , e

w†
min

))
, aj − γml,j

)
+ γml,j . (5.40)770

Condition (5.27) implies that, for any wl ∈ (wmin, wmax), e
wl − γml,j > ew

†
min for all γml,j ∈ [0, Cr∆τ ],771

and hence, we can eliminate the max(·) operator in the linear interpolation operator in (5.40) when772

γml,j ∈ [0, Cr∆τ ]. Consequently, with γ
m
l,j ∈ [0, Cr∆τ ], (5.40) becomes773

ϕ̃ml,j + f
(
γml,j
) (i)
= ϕ

(
ln
(
ewl − γml,j

)
, aj − γml,j , τm

)
+ ξ +O

(
(∆w +∆amax)

2
)
+ γml,j774

(ii)
= ϕml,j + ξ + γml,j

(
1− e−wl(ϕw)

m
l,j − (ϕa)

m
l,j

)
+O

(
h2
)
. (5.41)775
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Here, in (i), due to linear interpolation, we obtain an error of size O
(
(∆w +∆amax)

2
)
, and also we776

can completely separate ξ from interpolated values; and in (ii), we apply a Taylor series to expand777

ϕ
(
ln
(
ewl − γml,j

)
, aj − γml,j , τm

)
about (wl, aj , τm), noting γml,j = O(∆τ).778

In (5.41), since the control γml,j can be factored out completely from the objective function, namely779

γml,j

(
1− e−wl(ϕw)

m
l,j − (ϕa)

m
l,j

)
, we define a new control variable γ̂ml,j = γml,j/∆τ ∈ [0, Cr]. With this in780

mind, let ϕ′ (γ̂,x′) be a function of γ̂ ∈ [0, Cr] and x′ = (w′, a′, τ ′) ∈ Ω∞ defined by781

ϕ′
(
γ̂,x′) = { γ̂ (1− e−wϕw (x′)− ϕa (x

′)) , wmin < w′ < wmax, Cr∆τ < a′ ≤ aJ , 0 ≤ τ ′ < T,

0 otherwise.
(5.42)782

Using (5.42), operator Cm
n,j(·) in (5.39) can be written as783

Cm+1
n,j (·) =

1

∆τ

ϕm+1
n,j −∆w

N†/2−1∑
l=−N†/2

g̃n−l ϕ
m
l,j + ξ

1−∆w

N†/2−1∑
l=−N†/2

g̃n−l

+O
(
h2
)784

−∆w

N†/2−1∑
l=−N†/2

g̃n−l sup
γ̂∈[0,Cr]

ϕ′
(
γ̂,xm

l,j

)
. (5.43)785

For the term ∆w
∑

l g̃n−l ϕ
m
l,j in (5.43), using Lemma 5.4 on the smooth function ϕ(·) at xm

n,j gives786

∆w

N†/2−1∑
l=−N†/2

g̃n−l ϕ
m
l,j = ϕmn,j +∆τ [Lϕ+ J ϕ]mn,j +O

(
h2
)
. (5.44)787

Regarding ∆w
∑N/2−1

l=−N/2+1 g̃n−l supγ̂∈[0,Cr] ϕ
′ (·) in (5.43), note that supγ̂∈[0,Cr] ϕ

′ (γ̂,x′) is a function of x′,788

and is in G(Ω∞). Applying Lemma 5.3 on
{
xm
l,j , supγ̂∈[0,Cr] ϕ

′
(
γ̂,xm

l,j

)}
, l = −N †/2, . . . , N †/2− 1, gives789

∆w

N†/2−1∑
l=−N†/2

g̃n−l sup
γ̂∈[0,Cr]

ϕ′
(
γ̂,xm

l,j

)
=

[
sup

γ̂∈[0,Cr]
γ̂
(
1− e−wϕw − ϕa

)]m
n,j

+O(h2) + E(xm
n,j , h), (5.45)790

where E(xm
n,j , h) → 0 as h → 0. Also, in (5.43), the term ∆w

∑N†/2−1

l=−N†/2
g̃n−l = e−r∆τ by (5.1). Substi-791

tuting this result and (5.44)-(5.45) into (5.43) gives792

Cm+1
n,j (·) (i)

=
ϕm+1
n,j − ϕmn,j

∆τ
− [Lϕ+ J ϕ]mn,j +

[
sup

γ̂∈[0,Cr]
γ̂
(
1− e−wϕw − ϕa

)]m
n,j

+ rξ +O(h) + E(xm
n,j , h)793

(ii)
=

[
ϕτ − Lϕ− J ϕ− sup

γ̂∈[0,Cr]
γ̂
(
1− e−wϕw − ϕa

)]m+1

n,j

+ rξ +O(h) + E(xm
n,j , h).794

Here, in (i) we have ξ
∆τ

(
1−∆w

∑N†/2−1

l=−N†/2
g̃n−l

)
= rξ +O(h). In (ii), we use795

(ϕτ )
m
n,j = (ϕτ )

m+1
n,j +O (h) , (ϕw)

m
n,j = (ϕw)

m+1
n,j +O (h) , (ϕa)

m
n,j = (ϕa)

m+1
n,j +O (h) .796

This step results in an O (h) term inside supγ̂ (·), which can be moved out of the supγ̂ (·), because it797

has the form K(γ̂)h, where K(γ̂) is bounded independently of h, due to boundedness of γ̂ ∈ [0, Cr]798

independently of h.799

For operator Dm+1
n,j (·), we have800

Dm+1
n,j (·) =

(
ϕm+1
n,j + ξ

)
−∆w

N/2−1∑
l=−N/2+1

g̃n−l sup
γm
l,j∈(Cr∆τ,aj ]

(
ϕ̃ml,j + f

(
γml,j
))

801

−∆w

−N/2∑
l=−N†/2

g̃n−l

(
ϕml,j + ξ

)
−∆w

N†/2−1∑
l=N/2

g̃n−l

(
ϕml,j + ξ

)
, (5.46)802

where ϕ̃ml,j + f
(
γml,j
)
= I {ϕ (xm) + ξ}

(
ln
(
max

(
ewl − γml,j , e

w†
min

))
, aj − γml,j

)
(5.47)803

+ γml,j(1− µ) + µCr∆τ − c.804
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Since γml,j ∈ (Cr∆τ, aj ], we cannot eliminate the max(·) operator in linear interpolation in (5.47), hence805

I {ϕ (xm) + ξ} (·) = ϕ
(
ln
(
max

(
ewl − γml,j

)
, ew

†
min

)
, aj − γml,j , τm

)
+ ξ +O(h2).806

Let ϕ′′ (γ,x′) be a function of γ ∈ [0, a] and x′ = (w′, a′, τ ′) ∈ Ω∞ defined by

ϕ′′ (γ,x′) =

{
M(γ)ϕ(x′) + µCr∆τ wmin < w′ < wmax, Cr∆τ < a′ ≤ aJ , 0 ≤ τ ′ < T,

ϕ(x′) otherwise,

(5.48a)

(5.48b)

where M(·) is defined in (3.8b). It is straightforward to show that, for a fixed x′ ∈ Ω satisfies (5.48a),807

ϕ′′ (γ;x′) is (uniformly) continuous in γ ∈ [0, a]. Hence, for the case (5.48a)808

sup
γ∈(Cr∆τ,a′]

ϕ′′
(
γ,x′)− sup

γ∈(0,a′]
ϕ′′
(
γ,x′) = max

γ∈[Cr∆τ,a′]
ϕ′′
(
γ,x′)− max

γ∈[0,a′]
ϕ′′
(
γ,x′) = O (h) , (5.49)809

since the difference of the optimal values of γ for the two max(·) expressions is bounded by Cr∆τ = O(h).810

Using (5.48), with (5.49) in mind, operator Dm
n,j(·) in (5.46) can be written as811

Dm+1
n,j (·) = ϕm+1

n,j + ξ

1−∆w

N†/2−1∑
l=−N†/2

g̃n−l

−∆w

N†/2−1∑
l=−N†/2

g̃n−l sup
γ∈[0,aj ]

ϕ′′
(
γ,xm

l,j

)
+O(h). (5.50)812

Note that supγ∈[0,aj ] ϕ
′′ (γ,x′) is a function of x′, and it is straightforward to show that it is in G(Ω∞).813

Applying Lemma 5.3 to
{
xm
l,j , supγ∈[0,a]

(
ϕ′′
(
γ,xm

l,j

))}
, l = −N †/2, . . . , N †/2− 1, we obtain814

∆w

N†/2−1∑
l=−N†/2

g̃n−l sup
γ∈[0,aj ]

ϕ′′
(
γ,xm

l,j

) (i)
= sup

γ∈[0,aj ]
M(γ)ϕ

(
xm
n,j

)
+ µCr∆τ +O(h2) + E(xm

n,j , h)815

(ii)
= sup

γ∈[0,aj ]
M(γ)ϕ

(
xm+1
n,j

)
+O (h) + E(xm

n,j , h).816

Here, in (i) the error term E(xm
n,j , h) → 0 as h→ 0, and we use the definition (5.48a) of ϕ′′(·), and in (ii)817

we have M(γ)ϕ
(
xm
n,j

)
= M(γ)ϕ

(
xm+1
n,j

)
+O (h), which is combined with µCr∆τ = O (h). Substituting818

(5.51) into (5.50) gives819

Dm+1
n,j (·) = ϕm+1

n,j − sup
γ∈[0,a]

M(γ)ϕ
(
xm+1
n,j

)
+O(h) + E(xm

n,j , h). (5.51)820

Overall, recalling x = xm+1
n,j , we have821

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤j

,
)
− Fin

(
x, ϕ (x) , Dϕ (x) , D2ϕ (x) ,J ϕ (x) ,Mϕ (x)

)
822

= c (x) ξ +O(h) + E(xm
n,j , h), if wmin < wn < wmax, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T,823

where c(·) is a bounded function satisfying 0 ≤ c(x) ≤ r and E(xm
n,j , h) → 0 as h → 0. This proves the824

first equation in (5.28). The remaining equations in (5.28) can be proved using similar arguments with825

the first equation.826

Remark 5.2. We emphasize that for the limiting case P † = ∞ (i.e. ∆τ = 0), the Green’s function827

g(w,∆τ) trivially becomes the Dirac delta function. Thus, for this case, we do not need to use the smooth828

cut-off function and the Fourier Transform as in Lemma 5.4. The results in Lemma 5.2, Lemma 5.3829

and Lemma 5.4 are still valid for this limiting case.830

Remark 5.3. We impose the condition (5.27) to ease the presentation of the proof, i.e. max(·) in the831

operator Cm+1
n,j (·) can be removed. However, we can avoid this condition by the following steps: if it832

is not satisfied, we find w′
min satisfying ew

′
min − ew

†
min ≥ Cr∆τ . For the range w ∈ [w†

min, w
′
min], we833

employ the idea in [19, Remark 5.1] to solve the HJB-QVI under the original z = ew grid using a834

finite difference method. For each time τm, numerical solutions for w ∈ [w†
min, w

′
min] (obtained by finite835

difference method) and for w ∈ (w′
min, wmax] (obtained by our scheme) can be combined to compute τm+1836

solutions in (wmin, wmax). This approach allows for a consistency proof essentially the same. It is also837

noteworthy that we show good numerical results in Section 4 without imposing the condition (5.27).838
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Remark 5.4. It can be verified that, for a smooth test function ϕ (x), the operator Fin (x, p1, p2, p3, p4, p5),839

defined in (3.10), is continuous in its parameters, i.e. continuous in (x, p1, p2, p3, p4, p5). The same840

continuity property also holds for operators Famin (x, p1, p2, p3, p4), Fwmin (x, p1, p2, p5), Fwamin (x, p1, p2),841

Fwmax (x, p1), Fτ0 (x, p1), respectively defined in (3.11)-(3.15).842

We now verify the consistency of scheme (5.25). We first define the notion of consistency in the843

viscosity sense below.844

Definition 5.1 (Consistency in viscosity sense). Suppose the discretization parameter h satisfies (4.10).845

The numerical scheme (5.25) is consistent in the viscosity sense if, for all x̂ = (ŵ, â, τ̂) ∈ Ω∞, and for846

any ϕ ∈ G(Ω∞) ∩ C∞(Ω∞), with ϕmn,j = ϕ
(
xm
n,j

)
and x = (wn, aj , τm+1), we have both of the following847

lim sup
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j +ξ,
{
ϕml,k+ξ

}
k≤j

)
≤ (FΩ∞)∗

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
, (5.52)848

lim inf
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j +ξ,
{
ϕml,k+ξ

}
k≤j

)
≥ (FΩ∞)∗

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
. (5.53)849

Below, we state and prove the main lemma on consistency of scheme (5.25).850

Lemma 5.5 (Consistency). Assuming all the conditions in Lemma 5.2 are satisfied, then the scheme851

(5.25) is consistent with the impulse control problem (3.1) in Ω∞ in the sense of Definition 5.1.852

Proof of Lemma 5.5. We first prove (5.52). There exists sequences {hi}i, {ni}, {ji}, {mi}, and {ξi},853

such that854

hi → 0, ξi → 0, xi ≡ (wni , aji , τmi+1) → x̂ ≡ (ŵ, â, τ̂), as i→ ∞, (5.54)855

and856

lim sup
i→∞

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

+ξi,
{
ϕmi
li,ki

+ξi

}
ki≤ji

)
= lim sup

h→0, x→x̂
ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j +ξ,
{
ϕml,k +ξ

}
k≤j

)
. (5.55)857

We first consider the case x̂ ∈ Ωin. Denote by ∆τi the time step associated with the parameter hi. For858

sufficiently small hi, we have859

wmin < wni < wmax, Cr∆τi < aji ≤ aJ , and 0 < τmi+1 ≤ T.860

According to the first equation of (5.28) in Lemma 5.2, we have861

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

+ ξi,
{
ϕmi
li,ki

+ ξi

}
ki≤ji

)
(5.56)862

= Fin

(
xi, ϕ (xi) , Dϕ (xi) , D

2ϕ (xi) ,J ϕ (xi) ,Mϕ (xi)
)
+ c (xi) ξi +O (hi) + E

(
xmi
ni,ji

, hi

)
.863

Combining (5.55) and (5.56), for x̂ ∈ Ωin, with continuity of Fin (see Remark 5.4), we have864

lim sup
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j +ξ,
{
ϕml,k +ξ

}
k≤j

)
≤ lim sup

i→∞
Fin

(
xi, ϕ (xi) , Dϕ (xi) , D

2ϕ (xi) ,J ϕ (xi) ,Mϕ (xi)
)

865

+ lim sup
i→∞

[
c (xi) ξi +O (hi) + E(xmi

ni,ji
, hi)

]
866

= Fin

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
867

= (FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
.868

This proves (5.52) for x̂ ∈ Ωin.869

We define Ωbd = {wmin ∪wmax} × [amin, amax]× (0, T ]. Following similar steps, (5.52) can be proved870

for x̂ ∈ Ω∞
wmin

\Ωbd, x̂ ∈ Ω∞
wmax

\Ωbd, and x̂ ∈ Ω∞
τ0 , leaving x̂ ∈ Ωbd as a special case to be addressed below.871

26



We now show (5.52) for special cases, namely x̂ ∈ Ωamin , x̂ ∈ Ω∞
wamin

, and x̂ ∈ Ωbd. First, we consider872

x̂ ∈ Ωamin . For the sequence {xi} → x̂, we cannot guarantee aji ≤ Cr∆τi or aji > Cr∆τi even for a873

sufficiently small hi. According to (5.28) in Lemma 5.2, Hmi+1
ni,ji

(·) is given by874

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

+ ξi,
{
ϕmi
li,ki

+ ξi

}
ki≤ji

)
(5.57)875

876

=



Fin

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi),Mϕ(xi)
)
+ c (xi) ξi +O(hi) + E(xmi

ni,ji
, hi),

if wmin < wni < wmax, Cr∆τi < aji ≤ aJ , 0 < τmi+1 ≤ T

Fin′
(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
+ c (xi) ξi + O(hi) + E(xm

n,j , h),

if wmin < wni < wmax, 0 < aji ≤ Cr∆τi, 0 < τmi+1 ≤ T

Famin

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
+ c (xi) ξi +O(hi),

if wmin < wni < wmax, aji = 0, 0 < τmi+1 ≤ T.

877

Note that the right hand side of (5.57) contains Fin′(·), which is problematic since this operator is not878

part of FΩ∞ . To handle this, we note that supγ̂∈[0,a/∆τ ] γ̂ (1− e−wϕw − ϕa) ≥ 0. Using this with the879

definition of Famin(·) and Fin′(·) in (3.11) and (5.26), respectively, for amin < aji ≤ Cr∆τi, we obtain880

Fin′
(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
≤ Famin

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
.881

Using this result to eliminate Fin′(·) from lim supHm+1
n,j (·) gives882

lim sup
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤j

)
≤ lim sup

i→∞
FΩ∞

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi),Mϕ(xi)
)

883

+ lim sup
i→∞

[
c (xi) ξi + E(xmi

ni,ji
, hi)

]
884

≤ (FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
,885

which proves (5.52) for x̂ ∈ Ωamin . Other special cases are treated similarly.886

We now prove (5.53) for x̂ ∈ Ω∞, which can be proven in the same manner except the case x̂ ∈ Ωamin ,887

x̂ ∈ Ω∞
wamin

. For brevity, we only show (5.53) for x̂ ∈ Ωamin here. The other special cases can be tackled888

similarly. There exists sequences {hi}, {ni}, {ji}, {mi}, and {ξi} satisfying (5.54) and889

lim inf
i→∞

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

+ ξi,
{
ϕmi
li,ki

+ ξi

}
ki≤ji

)
= lim inf

h→0, x→x̂
ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤j

)
.(5.58)890

Then, for sufficiently large i, (5.57) holds as discussed above. If 0 < aji ≤ Cr∆τi, we observe891

sup
γ̂∈[0,aji/∆τi]

γ̂
(
1− e−wniϕw (xi)− ϕa (xi)

)
≤ sup

γ̂∈[0,Cr]
γ̂
(
1− e−wniϕw (xi)− ϕa (xi)

)
,892

which implies that

Fin′
(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
≥ Fin

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi),Mϕ(xi)
)
.

Using this result to eliminate Fin′(·) from lim infHm+1
n,j (·) gives893

lim inf
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤l

)
≥ lim inf

i→∞
FΩ∞

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi),Mϕ(xi)
)

894

+ lim inf
i→∞

[
c (xi) ξi + e

(
xmi
ni,ji

, hi

)]
895

≥ (FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
.896

This concludes the proof.897

27



5.3 Monotonicity898

We present a result on the monotonicity of scheme (5.25).899

Lemma 5.6 (ϵ-monotonicity). If linear interpolation is used and the weight g̃n−l satisfies the mono-900

tonicity condition (4.34), i.e. ∆w
∑N†/2−1

l=−N†/2

∣∣min (g̃n−l, 0)
∣∣ < ϵ∆τ

T , where ϵ > 0, then scheme (5.25)901

satisfies902

Hm+1
n,j

(
h, vm+1

n,j ,
{
xml,k
}
k≤j

)
≤ Hm+1

n,j

(
h, vm+1

n,j ,
{
yml,k
}
k≤j

)
+ Kϵ (5.59)903

for bounded {xml,k} and {yml,k} having {xml,k} ≥ {yml,k}, where the inequality is understood in the component-904

wise sense, and K is a positive constant independent of h and ϵ.905

Proof. It is straightforward to show Am+1
n,j (·) and Bm+1

n,j (·), defined in (5.23), are strictly monotone, i.e.906

Am+1
n,j (·, ·,

{
xml,k
}
k≤j

) ≤ Am+1
n,j (·, ·,

{
yml,k
}
k≤j

), Bm+1
n,j (·, ·,

{
xml,k
}
k≤j

) ≤ Bm+1
n,j (·, ·,

{
yml,k
}
k≤j

). (5.60)907

The proof then boils down to proving ϵ-monotonicity for Cm+1
n,j (·) and Dm+1

n,j (·), defined in (5.24). Recall908

the linear interpolation operator I{·}(·) in (4.13)-(4.17). Let x̃mn,j and ỹmn,j be the results of the linear909

operators I{xm}(·) and I{ym}(·) acting on
{(

(wl, ak) , x
m
l,k

)}
, and

{(
(wl, ak) , y

m
l,k

)}
, respectively. We910

also define for (xloc)
m+
n,j , (xnlc)

m+
n,j , (yloc)

m+
n,j , and (ynlc)

m+
n,j in a similar way that we define (vloc)

m+
n,j , (vnlc)

m+
n,j911

in (4.18).912

For the rest of the proof, let K be a generic positive constant independent of h and ϵ, which may take913

different values from line to line. From the boundedness of {xml,k} and {yml,k}, and {xml,k} ≥ {yml,k}, noting914

I{xm}(·) and I{ym}(·) are linear interpolation operators, we have, for all l = −N †/2, . . . , N †/2− 1,915

(yloc)
m+
l,j ≤ (xloc)

m+
l,j and

∣∣∣(yloc)m+
l,j − (xloc)

m+
l,j

∣∣∣ ≤ K, (5.61)916

(ynlc)
m+
l,j ≤ (xnlc)

m+
l,j and

∣∣∣(ynlc)m+
l,j − (xnlc)

m+
l,j

∣∣∣ ≤ K, (5.62)917

where K is a positive constant independent of h and ϵ.918

Next, using (5.61) together with the definition of the operator Cm+1
n,j (·) in (5.24), we have919

Cm+1
n,j

(
h, vm+1

n,j ,
{
xml,k
}
k≤j

)
− Cm+1

n,j

(
h, vm+1

n,j ,
{
yml,k
}
k≤j

)
920

=
1

∆τ

vm+1
n,j −∆w

N†/2−1∑
l=−N†/2

g̃n−l (xloc)
m+
l,j

− 1

∆τ

vm+1
n,j −∆w

N†/2−1∑
l=−N†/2

g̃n−l (yloc)
m+
l,j

921

≤ 1

∆τ

∆w N†/2−1∑
l=−N†/2

|min (g̃n−l, 0)|
∣∣∣(yloc)m+

l,j − (xloc)
m+
l,j

∣∣∣
922

≤ K

∆τ

∆w

N†/2−1∑
l=−N†/2

∣∣min (g̃n−l, 0)
∣∣ ≤ ϵ

K

T
, (5.63)923

where the last equality uses (4.34).924

Similarly, using (5.62) together with the definition of the operator Dm+1
n,j (·) in (5.24) yields925

Dm+1
n,j

(
h, vm+1

n,j ,
{
xml,k
}
k≤j

)
−Dm+1

n,j

(
h, vm+1

n,j ,
{
yml,k
}
k≤j

)
926

≤ ∆w

N†/2−1∑
l=−N†/2

|min (g̃n−l, 0)|
∣∣∣(ynlc)m+

l,j − (xnlc)
m+
l,j

∣∣∣ ≤ ϵ
K∆τ

T
. (5.64)927

Putting (5.60), (5.63) and (5.64) together concludes the proof.928
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5.4 Convergence to viscosity solution929

We have demonstrated that the scheme (5.25) satisfies the three key properties in Ω: (i) ℓ∞-stability930

(Lemma 5.1), (ii) consistency (Lemma 5.5) and (iii) ϵ-monotonicity (Lemma 5.6). With a provable strong931

comparison principle result for Ωin ∪ Ωamin , we now present the main convergence result of the paper.932

Theorem 5.1 (Convergence in Ωin ∪ Ωamin). Suppose that all the conditions for Lemmas 5.1, 5.5 and933

5.6 are satisfied. Under the assumption that the monotonicity tolerance ϵ → 0 as h → 0, scheme (5.25)934

converges locally uniformly in Ωin ∪Ωamin to the unique bounded viscosity solution of the GMWB pricing935

problem in the sense of Definition 3.2.936

Proof. To clearly indicate the important role of the discretization parameter h, in this proof, we use937

xm+1
n,j (h) = (wn, aj , τm+1;h). Furthermore, we use vm+1

n,j (h) to denote the numerical solution at the node938

xm+1
n,j (h). We define the u.s.c. (respectively l.s.c.) function v : Ω∞ → R (respectively v : Ω∞ → R) by939

v (x) = lim sup
h→0

xm+1
n,j (h)→x

vm+1
n,j (h) (resp. v(x) = lim inf

h→0
xm+1
n,j (h)→x

vm+1
n,j (h)) x ∈ Ω∞. (5.65)940

We now show that v(x) (resp. v(x)) is a subsolution (resp. supersolution) in Ω∞ in the sense of Defi-941

nition 3.2. By stability of our scheme in Ω∞ established in Lemma 5.1, functions v and v are in G(Ω∞).942

Since definition (5.65) implies that v∗(x) = v(x) and v∗(x) = v(x) for all x ∈ Ω∞, we will work with943

v(x) and v(x) instead of their respective envelopes.944

For the case v(x), we let x̂ ∈ Ω∞ be fixed, and ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) such that (i) (v − ϕ) (x) has a945

global maximum on Ω∞ at x = x̂, and (ii) ϕ (x̂) = v (x̂). That is, ϕ (x) satisfies946 {
ϕ (x) > v (x) , ∀ x ∈ Ω∞ and x ̸= x̂,

ϕ (x) = v (x) , x = x̂.
(5.66)947

Consider a sequence of grids with discretization parameter hi such that hi → 0 as i → ∞. We denote by948

Ωhi
the grid parameterized by hi, noting that Ωhi

→ Ω∞ as i → ∞. Let xmi+1
ni,ji

(hi) ≡ (wni , aji , τmi+1;hi)949

be a node in Ω∞ such that950

vmi+1
ni,ji

(hi)− ϕmi+1
ni,ji

(hi) is a global maximum on Ωhi
, (5.67)951

where ϕ (x) is the test function satisfying (5.66), with the usual notation ϕmi+1
ni,ji

(hi) = ϕ
(
xmi+1
ni,ji

(hi)
)
.952

First, we note that953

xmi+1
ni,ji

(hi) → x̂ and also xmi
ni,ji

(hi) → x̂, as i→ ∞. (5.68)954

In addition, for any finite discretization parameter hi, the global maximum in (5.67) is not necessarily955

zero, as xmi+1
ni,ji

(hi) = x̂ is not necessarily true. Since ϕ(·) satisfies (5.66), we have956

vmi+1
ni,ji

(hi) = ϕmi+1
ni,ji

(hi) + ξi, where ξi → 0, as i→ ∞. (5.69)957

Because the global maximum (5.67) is attained at xmi+1
ni,ji

(hi), we have that, for all li and ki used in the958

scheme Hmi+1
ni,ji

(
hi, v

mi+1
ni,ji

(hi),
{
vmi
li,ki

(hi)
}
ki≤ji

)
, we have959

vmi
li,ki

(hi)− ϕmi
li,ki

(hi) ≤ vmi+1
ni,ji

(hi)− ϕmi+1
ni,ji

(hi) = ξi, (5.70)960

where ξi is defined in (5.69). Using (5.69), (5.70), and the monotonicity result in Lemma 5.6, we obtain961

0 = Hmi+1
ni,ji

(
hi, v

mi+1
ni,ji

(hi),
{
vmi
li,ki

(hi)
}
ki≤ji

)
962

≥ Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

(hi) + ξi,
{
ϕmi
li,ki

(hi) + ξi

}
ki≤ji

)
−Cϵi, (5.71)963

where C > 0 and ϵi → 0, as i→ ∞.964
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Letting i→ ∞ and using the consistency result from Lemma 5.5, (5.71) gives965

0 ≥ lim inf
i→∞

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

(hi) + ξi,
{
ϕmi
li,ki

(hi) + ξi

}
ki≤ji

)
− lim inf

i→∞
Cϵi966

≥ (FΩ∞)∗
(
x̂, ϕ (x̂) , Dϕ (x̂) , D2ϕ (x̂) ,J ϕ (x̂) ,Mϕ (x̂)

)
.967

This shows that v(x) is a subsolution in Ω∞ in the sense of Definition 3.2. A similar argument shows that968

v(x) is a supersolution in Ω∞. By definition of v(x) and v(x) in (5.65), we have that v(x) ≥ v(x), ∀x ∈ Ω∞.969

Since a strong comparison principle result holds in Ωin ∪ Ωamin , we have v(x) ≤ v(x), ∀x ∈ Ωin ∪ Ωamin .970

Therefore, v(x) = v(x) = v(x) is the unique viscosity solution in Ωin ∪ Ωamin . As a result,971

v (x) = lim
h→0

xm+1
n,j (h)→x

vm+1
n,j (h), for x ∈ Ωin ∪ Ωamin ,972

from which we obtain that convergence is locally uniform.973

6 Numerical examples974

In this section, we provide selected numerical results of our ϵ-monotone Fourier method applied to the975

the impulse control GMWB pricing problem. For all experiments, unless otherwise noted, the details of976

the mesh size/timestep refinement levels used are given in Table 6.2. As noted previously, for practical977

purposes, if P † is chosen sufficiently large, it can be kept constant for all refinement levels (as we let978

h → 0). For our numerical experiments, we use wmin = ln(z0) − 10 and wmax = ln(z0) + 10, and w†
min979

and w†
max constructed as discussed in Remark 4.1, so wmin = ln(z0)− 20 and w†

max = ln(z0) + 20. Tests980

with larger intervals also show negligible effect on numerical solutions.981

Our numerical prices are verified against those produced by two other methods, namely (i) Finite982

Difference (FD) methods ([19] and [40]), and (ii) Monte Carlo (MC) simulation. To carry out Monte983

Carlo validation, we proceed in two steps. In Step 1, we solve the GMWB pricing problem using the984

proposed ϵ-monotone Fourier method on a relatively fine computational grid (212 w-nodes, 401 a-nodes,985

and 480 timesteps). During this step, the optimal controls are stored for each discrete state value and986

timestep. In Step 2, we carry out Monte Carlo simulations from t = 0 to t = T following these stored987

PDE-computed optimal strategies, using linear interpolation, if necessary, to determine the controls for988

a given state value. For Step 2, a total of 106 paths is used.989

Motivated by findings in [19], [40], a sufficiently small fixed cost c = 10−8 is used all numerical tests.990

For user-defined tolerances ϵ and ϵ1 in Algorithm (4.1), we use ϵ = ϵ1 = 10−6 for all refinement levels.991

Through numerical experiments, it is observed that using smaller ϵ or ϵ1 produced virtually identical992

numerical results, indicating that this value of ϵ and ϵ1 are sufficient for all practical purposes.993

Parameter Value

Expiry time (T ) 10.0 years

Interest rate (r) 0.05

Maximum withdrawal rate (Gr) 10/year

Withdrawal penalty (µ) 0.10

Initial Lump-sum premium (z0) 100

Initial guarantee account balance (= z0) 100

Initial sub-account value (= z0) 100

Table 6.1: Common GMWB pa-

rameters used in the numerical tests

Level N J M

(w) (a) (τ)

0 210 51 60

1 211 101 120

2 212 201 240

3 213 401 480

4 214 801 960

Table 6.2: Grid and timestep refinement

levels for numerical tests; wmin = ln(z0) −
10 and wmax = ln(z0) + 10; w†

min and w†
max

constructed using (4.7).

994

6.1 Validation examples995

6.1.1 No Jumps – the GBM model996

In this example, we repeat some numerical examples in [19] where (2.2) is a GBM. Table 6.3 presents997

convergence results for σ = {0.2, 0.3}, assuming a zero insurance fee and continuous withdrawal. To998
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provide an estimate of the convergence rate of the algorithm, we compute the “Change” as the difference999

in values from the coarser grid and the “Ratio” as the ratio of changes between successive grids. The1000

numerical results indicate that first-order convergence is achieved for the algorithm. Results obtained1001

by MC simulation also indicate excellent agreement with those obtained by the proposed ϵ-monotone1002

Fourier method

Method Level
σ = 0.20 σ = 0.30

Value Change Ratio Value Change Ratio

ϵ-monotone

Fourier

0 107.7726 115.7736

1 107.7573 -0.0153 115.8422 0.0686

2 107.7481 -0.0092 1.65 115.8716 0.0294 2.33

3 107.7423 -0.0058 1.59 115.8834 0.0118 2.49

4 107.7391 -0.0032 1.83 115.8881 0.0047 2.50

FD 107.7313 115.8842

MC 95%-CI [107.6020, 107.8430] [115.6192, 116.0480]

Table 6.3: Convergence study for the value of the GMWB guarantee at t = 0, z = a = 100. No

insurance fee (β = 0) is imposed; FD benchmark value is from [19] (Table 3, finest grid).

1003

6.1.2 Jumps – log-normal1004

In this test, lnψ is normally distributed with its density function b(y) given by (2.3). Table 6.4 shows1005

the parameters of the log-normal jump process, taken from [42]. Table 6.5 presents the convergence1006

results with σ = 0.3, assuming a fair/no-arbitrage insurance fee of β = 0.045452043 and continuous1007

withdrawal. As stated in [42], since the no-arbitrage fee is imposed, the exact price is 100. It is observed1008

from Table 6.5 that numerical prices produced by our method exhibit (first-order) convergence to this1009

exact price. Results obtained by MC simulation also indicate excellent agreement with those obtained1010

by the proposed ϵ-monotone Fourier method.1011

Parameter Value

ς 0.45

ν -0.9

λ 0.1

Table 6.4: Jump

parameters for log-

normal distribution

Method Level Value Change Ratio

ϵ-monotone

Fourier

0 100.2822

1 100.1391 -0.1432

2 100.0694 -0.0696 2.06

3 100.0350 -0.0345 2.02

4 100.0177 -0.0173 1.99

FD 100.00003

MC 95%-CI [99.9056, 100.1010]

Table 6.5: Convergence study for the value of the GMWB guarantee at

t = 0, z = a = 100. σ = 0.3 and fair insurance fee (β = 0.045452043) is

imposed; FD benchmark value is from [42] (Table 7.4, finest grid).

1012

6.1.3 Jumps – log-double-exponential1013

In this test, lnψ is double-exponential distributed with its density function b(y) given by (2.4). Table 6.61014

shows the jump diffusion parameters. Since a reference price for this case is not available in the literature,1015

we implement the FD scheme proposed in [19], originally developed for diffusion processes. For the finest1016

grid (i.e. the level 5 grid and timestep data used in [19, Table 2]), the FD benchmark value in this case1017

is 118.4130. Table 6.7 presents the convergence results σ = 0.3, assuming a zero insurance fee and1018

continuous withdrawal. Results obtained by Monte Carlo simulation also indicate excellent agreement1019

with those obtained by the FD and the proposed ϵ-monotone Fourier method1020
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Parameter Value

pu 0.3445

η1 3.0465

η2 3.0775

λ 0.1

Table 6.6: Jump

parameters for log-

double-exponential

distribution

Method Level Value Change Ratio

ϵ-monotone

Fourier

0 118.3453

1 118.3905 0.0452

2 118.4097 0.0192 2.35

3 118.4172 0.0075 2.56

4 118.4200 0.0028 2.63

FD 118.4130

MC 95%-CI [118.1679, 118.7308]

Table 6.7: Convergence study for the value of the GMWB guarantee at

t = 0, z = a = 100; σ = 0.3 and no insurance fee (β = 0).

1021

6.2 Wrap-around errors1022

6.2.1 Application of Theorem 4.11023

In this experiment, we numerically illustrate that the proposed treatment of the wrap-around error is1024

sufficient, i.e. the wrap-around error is bounded Theorem 4.1. For brevity, we present only results of the1025

GBM case with σ = 0.2. Results of other cases are similar, and hence omitted.1026

First, we note that the condition (4.39) of Theorem 4.1 is satisfied due to stability by Lemma 5.1.1027

To numerically check condition (4.40), using similar notations in Subsection 4.4, we denote1028

SUMLEFT = ∆w

−N/2−1∑
ℓ=−N†/2

|g̃(ℓ)|, SUMRIGHT = ∆w

N†/2−1∑
ℓ=N/2+1

|g̃(ℓ)|, SUM = ∆w
∑
ℓ∈N†

g̃(ℓ).1029

Table 6.8 presents select results. Using the padding technique presented in Subsection 4.4, it is clear1030

from Table 6.8 that the approximations of the Green’s function on the left and right padding areas,1031

namely the quantities SUMLEFT and SUMRIGHT, are negligible. It is worth noting that condition (4.40) is1032

fulfilled for all refinement levels with the same user-specified numerical tolerance ϵe. Also from Table 6.8,1033

it is clear that the total sum of the approximations of the Green’s function approximately equals e−r∆τ
1034

for each level, which agrees with (5.1).1035

Level ϵe∆τ/2 SUMLEFT SUMRIGHT SUM

0 8.33333e-10 7.14037e-16 6.74673e-16 0.991701

1 4.16667e-10 8.71373e-16 7.75466e-16 0.995842

2 2.08333e-10 9.34340e-16 1.00408e-15 0.997919

3 1.04167e-10 1.17304e-15 1.15816e-15 0.998959

4 5.20833e-11 1.23246e-15 1.34286e-15 0.999479

Table 6.8: The approximation of the Green’s functions for the GBM model with ϵe = 10−8.

1036

6.2.2 Padding areas1037

Numerical results presented so far are based padding areas constructed via (4.7). In this experiment, we1038

numerically demonstrate that larger padding areas are not needed. To this end, we use1039

w†
min = wmin − 1.5 (wmax − wmin) and w†

max = wmax + 1.5 (wmax − wmin) ,1040

and N † = 4N . For fair comparison, we utilize the same padding techniques and the same ∆w with1041

previous numerical tests, where (4.7) and N † = 2N are employed. The numerical prices of this test are1042

reported in Table 6.9 (col. “Value”). They are to be compared with numerical prices from Tables 6.3,1043

6.5, 6.7 (col. “Value”), which, for convenience, are also included in Table 6.9. It it evident from Table 6.91044

that using a larger padding area virtually does not affect the numerical prices. This confirms that our1045

choice of the padding areas in (4.7) is sufficiently suitable for practical purposes.1046
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Level

GBM model log-normal

distribution

log-double-exp

distributionσ = 0.20 σ = 0.30

Value Value Value Value Value Value Value Value

(Tab. 6.3) (Tab. 6.3) (Tab. 6.5) (Tab. 6.7)

0 107.7726 107.7726 115.7735 115.7736 100.2823 100.2822 118.3451 118.3453

1 107.7574 107.7574 115.8420 115.8422 100.1390 100.1391 118.3903 118.3905

2 107.7481 107.7481 115.8714 115.8716 100.0696 100.0694 118.4096 118.4097

3 107.7423 107.7423 115.8832 115.8834 100.0352 100.0350 118.4172 118.4172

4 107.7391 107.7391 115.8879 115.8881 100.0180 100.0177 118.4201 118.4200

Table 6.9: Prices obtained using larger padding areas with θ = 3 in (4.7) and N† = 4N . Compare with

prices in Table 6.3, 6.5, 6.7 where (4.7) is used and N† = 2N .

6.2.3 Zero padding technique1047

We redo all the above experiments using the zero padding techniques proposed in [1, 45], and prices1048

obtained from these experiments are presented in Table 6.10. These prices are to be compared with1049

numerical prices from Tables 6.3, 6.5, 6.7 (col. “Value”), which, for convenience, are also included in1050

Table 6.10.1051

Level

GBM model log-normal

distribution

log-double-exp

distributionσ = 0.20 σ = 0.30

Value Value Value Value Value Value Value Value

(Tab. 6.3) (Tab. 6.3) (Tab. 6.5) (Tab. 6.7)

0 107.4793 107.7726 115.3974 115.7736 99.7237 100.2822 117.9545 118.3453

1 107.4458 107.7574 115.4431 115.8422 99.5491 100.1391 117.9760 118.3905

2 107.4274 107.7481 115.4608 115.8716 99.4636 100.0694 117.9831 118.4097

3 107.4170 107.7423 115.4668 115.8834 99.4211 100.0350 117.9847 118.4172

4 107.4115 107.7391 115.4686 115.8881 99.3999 100.0177 117.9846 118.4200

Table 6.10: Results using zero padding technique. Compare with results in Table 6.3, 6.5, 6.7 where the

asymptotic boundary conditions are used.

It is evident from Table 6.10 that numerical prices obtained using the zero padding technique do1052

not converge to the same prices as those obtained using our padding techniques. Specifically, numerical1053

prices in the former case are consistently smaller than our numerical prices, with the contamination1054

appears to be more severe with jumps-diffusion models. This is expected as the zero padding technique1055

tends to underprice a GMWB as ew → 0. These results indicate that the zero padding technique is not1056

suitable for use in pricing GMWB.1057

7 Conclusion1058

In this paper, we develop an ϵ-monotone numerical Fourier method for the HJB-QVI associated with an1059

impulse control formulation arising in the pricing of GMWB under jump-diffusion dynamics. We propose1060

an efficient implementation of the scheme via FFT, including a proper handling of boundary conditions1061

and padding techniques. We mathematically prove that our padding techniques can effectively control1062

wraparound errors in the numerical solutions. We appeal to a Barles-Souganidis-type analysis in [14],1063

to rigorously prove the convergence of our scheme the unique viscosity solution of the HJB-QVI as the1064

discretization parameter and the monotonicity tolerance ϵ approach zero. Although we focus specifically1065

on GMWB, our comprehensive and systematic approach could serve as a numerical and convergence1066

analysis framework for the development of similar weakly monotone methods for HJB-QVIs arising from1067

impulse control problems in finance.1068
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Appendix A Wraparound error1207

To avoid subscript clutter, in this appendix, we use the notation g̃(n− l) ≡ g̃n−l and u
m(n) ≡ umn . Noting this1208

notation, the equation (4.38) becomes the following generic recursion1209

um(n) = ∆w

N†/2−1∑
l=−N†/2

g̃(n− l) um−1(l), N† ∈ {N, 2N, 4N, . . .} ,1210

As an example of wraparound error, we examine a worst case term in equation (A.1) below. Consider the term in1211

(A.1) corresponding to n = −N/2+1, which corresponds to the node having w adjacent to wmin, and l = N†/2−1,1212

namely1213

∆w g̃(−N/2 + 1−N†/2 + 1) um−1(N†/2− 1). (A.1)1214

By periodic extension, we shift the argument of g̃(·) by N†, resulting in1215

g̃(−N/2 + 1−N†/2 + 1) = g̃(−N/2 + 1−N†/2 + 1 +N†) = g̃(−N/2 +N†/2 + 2),1216

and hence, the term (A.1) becomes1217

∆w g̃(−N/2 +N†/2 + 2) um−1(N†/2− 1).1218

Hence, in this extreme case, equation (A.1) becomes1219

um(−N/2 + 1) = ∆w g̃(−N/2 +N†/2 + 2) um−1(N†/2− 1) +

N†/2−2∑
l=−N†/2

( remaining terms ). (A.2)1220
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Example 1 (No padding: N† = N). Suppose we do not use any padding, so that that N† = N. In this case,1221

equation (A.2) becomes1222

um(−N/2 + 1) = ∆w g̃(2) um−1(N/2− 1) +

N/2−2∑
l=−N/2

( remaining terms ). (A.3)1223

Since, in general, g̃(2) is not small, we can see that the term um−1(N/2− 1) has a considerable effect on1224

um(−N/2+1), which should not be the case. We can see here that the periodic extension of g̃ causes a wraparound1225

effect.1226

Example 2 (Padding: N† = 2N). If N† = 2N , then equation (A.2) becomes1227

um(−N/2 + 1) = ∆w g̃(N/2 + 2) um−1(N†/2− 1) +

N†/2−2∑
l=−N†/2

( other terms ). (A.4)1228

In this case, from (4.6), we have selected N sufficiently large so that g̃(l) ≃ 0, l > N/2 and l < −N/2, hence the1229

leading term in equation (A.4) is small, and hence, wraparound error is reduced.1230

Now we proceed to proving Theorem 4.1.1231

Proof. Using |uml | ≤ C, l = −N†/2, . . . , N†/2− 1 and equation (4.39) gives1232

emwrap ≤ Cmax
n

{
∆w

N†/2−1∑
l=−N†/2

|g̃(n− l)|
(
1{(n−l)<−N†/2} + 1{(n−l)>N†/2−1}

)}
. (A.5)1233

Recall that n ∈ {−N/2 + 1, . . . , N/2 − 1}, hence the worst case values of n on the right hand side of equation1234

(A.5) are n = −N/2 + 1 and n = N/2− 1. Therefore, equation (A.5) gives1235

emwrap ≤ C∆w

N†/2−1∑
l=−N†/2

|g̃(N/2− 1− l)|1{(N/2−1−l)>N†/2−1}1236

+ C∆w

N†/2−1∑
l=−N†/2

|g̃(−N/2 + 1− l)| 1{(−N/2+1−l)<−N†/2}. (A.6)1237

Also, since N = N†/2 equation (A.6) becomes1238

emwrap ≤ C∆w

N†/2−1∑
l=−N†/2

|g̃(N†/4− 1− l)| 1{(N†/4−1−l)>N†/2−1}1239

+ C∆w

N†/2−1∑
l=−N†/2

|g̃(−N†/4 + 1− l)| 1{(−N†/4+1−l)<−N†/2},1240

and eliminating the indicator functions gives1241

emwrap ≤ C∆w

−N†/4−1∑
l=−N†/2

|g̃(N†/4− 1− l)| + C∆w

N†/2−1∑
l=N†/4+2

|g̃(−N†/4 + 1− l)|.1242

Shifting g̃(·) by ±N† so that the argument of g̃(·) is in the range [−N†/2, N†/2− 1], implies1243

emwrap ≤ C∆w

−N†/4−1∑
l=−N†/2

|g̃(N†/4− 1− l −N†)| + C∆w

N†/2−1∑
l=N†/4+2

|g̃(−N†/4 + 1− l +N†)|1244

1245

= C∆w

−N†/4−1∑
l=−N†/2

|g̃(−3N†/4− 1− l)| + C∆w

N†/2−1∑
l=N†/4+2

|g̃(3N†/4 + 1− l)|.1246

Rearranging the indices, gives1247

emwrap ≤ C∆w

−N†/4−1∑
l=−N†/2

|g̃(l)| + C∆w

N†/2−1∑
l=N†/4+2

|g̃(l)|, (A.7)1248
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which, since N = N†/2, implies that equation (A.7) satisfies1249

emwrap ≤ C∆w

−N/2−1∑
l=−N†/2

|g̃(l)| + C∆w

N†/2−1∑
l=N/2

|g̃(l)|1250

= Cϵe∆τ, (A.8)1251

where the last step follows from (4.40). Applying equation (A.8) recursively gives the bound TCϵe.1252

1253

Appendix B Proof of a strong comparison principle1254

In this section, we prove a comparison principle in Ωin ∪ Ωamin
for the GMWB impulse control pricing problem1255

given in Definition 3.1. As the first step, in the next subsection, we will establish equivalence between relevant1256

definitions of viscosity solutions for this problem.1257

B.1 Definitions of viscosity solution1258

For HJB-QVIs of the form (3.16), there are two alternative definitions of viscosity solution available in the literature.1259

The first definition, previously presented in Definition 3.2 and reproduced in Definition B.1 below, is similar to1260

[27, Definition 4.1], [6, Definition 2]. It appears that, for convergence analysis of a numerical scheme, it is often1261

more convenient to use this definition.1262

Definition B.1 (Viscosity solution of equation (3.16)). A locally bounded function v ∈ G(Ω∞) is a viscosity1263

subsolution (resp. supersolution) of (3.16) in Ω∞ if for all test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and for all points1264

x̂ ∈ Ω∞ such that (v∗ − ϕ) has a global maximum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂) (resp. (v∗ − ϕ) has a global1265

minimum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂)), we have1266

(FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
≤ 0, (B.1)1267 (

resp. (FΩ∞)
∗ (

x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)
)

≥ 0,
)

1268

where the operator FΩ∞(·) is defined in (3.9). A locally bounded function v ∈ G(Ω∞) is a viscosity solution in1269

Ωin ∪ Ωamin
if it is both a viscosity subsolution and a viscosity supersolution in Ωin ∪ Ωamin

.1270

The second definition is similar to [56, Definition 9.6], [61, Definition 5.3], [6, Definition 1], [60, Definition 2.2],1271

and [27, Definition 4.2], which it is presented in Definition B.2 below. We find that it is more convenient to use1272

this definition to prove a comparison principle.1273

Definition B.2 (Viscosity solution of equation (3.16)). A locally bounded function v ∈ G(Ω∞) is a viscosity1274

subsolution (resp. supersolution) of (3.16) in Ω∞ if for all test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and for all points1275

x̂ ∈ Ω∞ such that (v∗−ϕ) has a local maximum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂) (resp. (v∗−ϕ) has a local minimum1276

on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂)), we have1277

(FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J v∗(x̂),Mv∗(x̂)

)
≤ 0, (B.2)1278 (

resp. (FΩ∞)
∗ (

x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J v∗(x̂),Mv∗(x̂)
)

≥ 0,
)

1279

where the operator FΩ∞(·) is defined in (3.9). A locally bounded function v ∈ G(Ω∞) is a viscosity solution in1280

Ωin ∪ Ωamin
if it is both a viscosity subsolution and a viscosity supersolution in Ωin ∪ Ωamin

.1281

Proposition B.1. For the impulse control problem stated in Definition 3.1, Definition B.2 and Definition B.11282

are equivalent.1283

Proof. For a fixed x ∈ Ω∞, and δ > 0, we define Bδ(x) = {y ∈ Ω∞ : |x− y| ≤ δ}.1284

Definition B.2 ⇒ Definition B.1: Since the jump operator J and intervention operator M are non-decreasing, it1285

is straightforward to prove this part using the ellipticity of FΩ∞(·).1286

Definition B.1 ⇒ Definition B.2: In the below, we prove the “subsolution” case of this direction of implication.1287

(The “supersolution” case can be handled similarly, and hence is omitted for brevity.) Specifically, assume that1288

we are given (i) v as a viscosity subsolution in the sense of Definition B.1; and (ii) an arbitrary test function1289

ϕ ∈ G(Ω∞)∩ C∞(Ω∞) such that (v∗ − ϕ) has a local maximum at a point x̂ ∈ Bδ(x̂) ⊂ Ω∞ for some δ > 0, and that1290

v∗(x̂) = ϕ(x̂). We now show that the inequality (B.2) holds.1291

Since v∗(x) is upper semi-continuous, there exists ϕ′ ∈ G(Ω∞) ∩ C∞(Ω∞) such that, for any ϵ > 0, we have1292

v∗(x) ≤ ϕ′(x) ≤ v∗(x) + ϵ, ∀ x ∈ Ω∞. Let us consider a smooth cut-off function ζ(x) such that1293

0 ≤ ζ(x) ≤ 1; ζ(x) ≡ 1 ∀x ∈ Bδ/2(x̂); ζ(x) ≡ 0 ∀x ∈
{
Ω∞ \Bδ(x̂)

}
.1294

38



We then define a new function φ(x) := ζ(x)ϕ(x) + (1− ζ(x))ϕ′(x), x ∈ Ω∞. By construction of φ(x), it follows1295

that φ ∈ G(Ω∞) ∩ C∞(Ω∞) and1296

v∗(x) ≤ φ(x) ≤ v∗(x) + ϵ, ∀ x ∈ Ω∞. (B.3)1297

We also have v∗(x̂) = φ(x̂), since v∗(x̂) = ϕ(x̂) (by assumptions) and φ(x̂) = ϕ(x̂) by construction of φ(x).1298

Following (B.3), we can conclude that (v∗ − φ)(x) has a global maximum on Ω∞ at x̂ and v∗(x̂) = φ(x̂).1299

Since v is a viscosity subsolution in the sense of Definition B.1, using φ(x) as the test function in (B.1), we1300

arrive at (noting that φ(x̂) = ϕ(x̂), Dφ(x̂) = Dϕ(x̂), D2φ(x̂) = D2ϕ(x̂))1301

(FΩ∞)∗(x̂, ϕ(x̂), Dϕ(x̂), D
2ϕ(x̂),Jφ(x̂),Mφ(x̂)) ≤ 0. (B.4)1302

Using (B.4), we will derive (B.2) case by case, depending where Bδ(x̂) is in Ω∞.1303

� We first consider Bδ(x̂) ⊂ Ωin. By definition of FΩ∞(·) in (3.9), (B.4) becomes1304

min

[
ϕτ (x̂)− Lϕ(x̂)− Jφ(x̂)− sup

γ̂∈[0,Cr]

γ̂
(
1− e−wϕw(x̂)− ϕa(x̂)

)
, ϕ(x̂)− sup

γ∈[0,a]

M(γ)φ(x̂)

]
≤ 0.1305

If the first argument in the above min operator is less than 0, using (B.3), we have that1306

ϕτ (x̂)− Lϕ(x̂)− sup
γ̂∈[0,Cr]

γ̂
(
1− e−wϕw(x̂)− ϕa(x̂)

)
≤ λ

∫ ∞

−∞
φ(w + y, a, τ) b(y) dy1307

≤ λ

∫ ∞

−∞
(v∗(w + y, a, τ) + ϵ) b(y) dy1308

= J v∗(x̂) + λϵ. (B.5)1309

Otherwise, if the second argument in the above min operator is less than 0, using (B.3) again gives1310

ϕ(x̂) ≤ sup
γ∈[0,a]

[φ (ln(max(ew − γ, ew-∞)), a− γ, τ) + (1− µ)γ − c]1311

≤ sup
γ∈[0,a]

[v∗ (ln(max(ew − γ, ew-∞)), a− γ, τ) + ϵ+ (1− µ)γ − c]1312

= sup
γ∈[0,a]

M(γ)v∗(x̂) + ϵ. (B.6)1313

Combining these two cases (B.5) and (B.6), and letting ϵ→ 0, we have that1314

min

[
ϕτ (x̂)− Lϕ(x̂)− J v∗(x̂)− sup

γ̂∈[0,Cr]

γ̂
(
1− e−wϕw(x̂)− ϕa(x̂)

)
, ϕ(x̂)− sup

γ∈[0,a]

M(γ)v∗(x̂)

]
≤ 0,1315

which implies that1316

(FΩ∞)∗(x̂, ϕ(x̂), Dϕ(x̂), D
2ϕ(x̂),J v∗(x̂),Mv∗(x̂)) ≤ 0. (B.7)1317

� The other cases when Bδ(x̂) ⊂ Ω∞
τ0 , Ω

∞
wmin

, Ω∞
wamin

, Ω∞
wmax

, or Ωamin
can be treated similarly.1318

� We then consider a special case when Bδ(x̂) ⊂ Ωin ∪ Ω∞
wmin

and x̂ ∈ {wmin} × (amin, amax] × (0, T ]. By1319

definition of FΩ∞(·) in (3.9), (B.4) becomes1320

min
[
Fwmin(x̂, ϕ(x̂), Dϕ(x̂),Mφ(x̂)), Fin(x̂, ϕ(x̂), Dϕ(x̂), D

2ϕ(x̂),Jφ(x̂),Mφ(x̂))
]
≤ 0.1321

Using the technique in (B.5) and (B.6), we can derive (B.7). All the other cases can be treated similarly.1322

Finally, we can conclude that v is a viscosity subsolution in the sense of Definition B.2.1323

To facilitate our proof of a strong comparison principle in Ωin∪Ωamin , following [6][Appendix A] and [5, 61, 65],1324

in Definition B.3 below, we rewrite Definition B.2 specifically for the sub-domains Ωin ∪ Ωamin
, without using the1325

envelopes (FΩ∞)∗ and (FΩ∞)∗. From the definition of the operator FΩ∞ , we can deal with the lim inf and lim sup1326

operators in Ωin ∪ Ωamin
, which yields the following definition of viscosity solution.1327
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Definition B.3 (Viscosity solution of equation (3.16)). A locally bounded function v ∈ G(Ω∞) is a viscosity1328

subsolution (resp. supersolution) of (3.16) in Ωin ∪ Ωamin
if for all test functions ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and for all1329

points x̂ ∈ Ωin∪Ωamin such that (v∗−ϕ) has a local maximum on Ωin∪Ωamin at x̂ and v∗(x̂) = ϕ(x̂) (resp. (v∗−ϕ)1330

has a local minimum on Ωin ∪ Ωamin at x̂ and v∗(x̂) = ϕ(x̂)), we have1331

FΩ∞
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J v∗(x̂),Mv∗(x̂)

)
≤ 0, (B.8)1332 (

resp. FΩ∞
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J v∗(x̂),Mv∗(x̂)

)
≥ 0,

)
1333

where the operator FΩ∞(·) is defined in (3.9). A locally bounded function v ∈ G(Ω∞) is a viscosity solution in1334

Ωin ∪ Ωamin
if it is both a viscosity subsolution and a viscosity supersolution in Ωin ∪ Ωamin

.1335

It is straightforward to show that a viscosity solution in Ωin ∪Ωamin
in the sense of Definition B.2 is a viscosity1336

solution in Ωin ∪ Ωamin
in the sense of Definition B.3. We will use Definition B.3 to prove a strong comparison1337

principle in Ωin ∪ Ωamin .1338

B.2 A strong comparison principle1339

Next, we follow [61, Lemma 5.10] to introduce a lemma.1340

Lemma B.1. For the impulse control problem (3.1), there exists a function q ∈ G(Ω∞) ∩ C∞(Ω∞) and a positive1341

function k : Ω∞ → R such that1342

FΩ∞
(
x, q(x), Dq(x), D2q(x),J q(x),Mq(x)

)
≥ k, x ∈ Ωin ∪ Ωamin

. (B.9)1343

Then, for any viscosity supersolution v in the sense of Definition B.3 in Ωin ∪Ωamin
, vm := (1− 1

m )v+ 1
mq, where1344

m ≥ 1, is a viscosity supersolution in the sense of Definition B.3 of1345

FΩ∞
(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
− k/m = 0, x ∈ Ωin ∪ Ωamin

. (B.10)1346

A proof of the above lemma is straightforward, and hence omitted for brevity. For example, we can define a1347

smooth perturbation function q(x) = a+ c/r in Ω∞, with c be the positive fixed cost, and then show that1348

FΩ∞
(
x, q(x), Dq(x), D2q(x),J q(x),Mq(x)

)
≥ c, x ∈ Ωin ∪ Ωamin

.1349

Now we can proceed to proving a strong comparison principle in Ωin ∪ Ωamin .1350

Theorem B.1. Suppose that (i) a locally bounded and u.s.c. function u : Ω∞ → R is a viscosity subsolution in1351

the sense of Definition B.3 in Ωin ∪ Ωamin , and (ii) a locally bounded and l.s.c. function v : Ω∞ → R is a viscosity1352

supersolution in the sense of Definition B.3 in Ωin ∪ Ωamin , such that1353

u(x) ≤ v(x), ∀ x ∈ Ω∞
out (B.11)1354

u(x) := lim sup
y→x

y∈Ωin∪Ωamin

u(y) ≤ v(x) := lim inf
y→x

y∈Ωin∪Ωamin

v(y), ∀ x ∈ Ωin
τ0 , (B.12)1355

where Ω∞
out := {R \ [wmin, wmax]} × [amin, amax]× (0, T ] and Ωin

τ0 := [wmin, wmax]× [amin, amax]× {0}. Then u ≤ v1356

in Ωin ∪ Ωamin .1357

Proof. Following [65], we (re)define u and w for x ∈ {wmin, wmax} × [amin, amax]× (0, T ] by1358

u(x) = lim sup
y→x

y∈Ωin∪Ωamin

u(y) and v(x) = lim inf
y→x

y∈Ωin∪Ωamin

v(y). (B.13)1359

From (B.13), we have that u is u.s.c. on Ωin and v is l.s.c. on Ωin, where Ωin is the closure of Ωin, and also the1360

closure of Ωin ∪ Ωamin
. Let q as given in Lemma B.1, and vm := (1− 1

m )v + 1
mq for all m ∈ {1, 2, . . .}. Note that1361

when we impose the operators J and M on u and vm for any x ∈ Ωin ∪ Ωamin
, we need to use information from1362

Ω∞
out. Using the condition (B.11), without loss of generality, we set v ≤ q in Ω∞

out, which implies u ≤ vm in these1363

areas.1364

It is sufficient to prove that u− vm ≤ 0 for sufficiently large m. Let m be fixed for the moment. To prove by1365

contradiction, let us firstly assume Q := supx∈Ωin
[u(x)− vm(x)] > 0. Denote Q = u(x̄)−vm(x̄) with x̄ := (w̄, ā, τ̄).1366

If x̄ ∈ Ωin
τ0 , then it contradicts with the condition (B.12).1367
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� Now we consider the supremum Q is approximated from within the sub-domain Ωin, i.e. x̄ is contained1368

in some open subset G ⊂ Ωin with compact closure G. For any two points x := (wx, ax, τx) ∈ G and1369

y := (wy, ay, τy) ∈ G, we define a test function φε(x,y), for any ε > 0, such that1370

φε(x,y) =
1

2ε

∣∣x− y
∣∣2 :=

1

2ε

[
(wx − wy)

2 + (ax − ay)
2 + (τx − τy)

2
]
,1371

and then we define1372

Qε = sup
(x,y)∈G×G

[u(x)− vm(y)− φε(x,y)] .1373

By the definition of u and vm, the maximum must be attained on the compact set G ×G (independent of1374

ε). Choose a point (xε,yε) ∈ G×G where the maximum is attained. Following [22, Lemma 3.1], we obtain1375

that 1
2ε |xε − yε|2 → 0 as ε→ 0. Without loss of generality, we assume that we have chosen a sub-sequence1376

of {xε} and {yε}, converging to the same limit x̄ when ε → 0. By the definition of φε, We obtain that1377

Qε → Q = u(x̄)− vm(x̄) for all limit points x̄ of {xε} and {yε}. Let ε small enough such that xε,yε ∈ Ωin.1378

To ease the notation, we rewrite Mu(x) ≡ supγ∈[0,a]M(γ)u(x) and rewrite the operator Fin(x, v) as1379

Fin(x, v) ≡ min
[
F (x, v(x), Dv(x), D2v(x),J v(x)), v(x)−Mv(x)

]
.1380

Using Lemma B.1, we know vm(yε)−Mvm(yε) ≥ k/m.1381

– If u(xε)−Mu(xε) ≤ 0, by the definition of M, we have for ϵ > 0, there exists γϵ ∈ [0, ā] such that1382

Mu(x̄) ≤ u
(
ln(max(ew̄ − γϵ, e

w-∞)), ā− γϵ, τ̄
)
+ (1− µ)γϵ − c+ ϵ,1383

Mvm(x̄) ≥ vm
(
ln(max(ew̄ − γϵ, e

w-∞)), ā− γϵ, τ̄
)
+ (1− µ)γϵ − c. (B.14)1384

Note that Mu is u.s.c. and Mvm is l.s.c. see [61, Lemma 4.3]. Thus, we derive that1385

Q = lim sup
ε→0

(u(xε)− vm(yε)) ≤ lim sup
ε→0

Mu(xε)− lim inf
ε→0

Mvm(yε)− k/m1386

≤ Mu(x̄)−Mvm(x̄)− k/m1387

≤ Q+ ϵ− k/m, (B.15)1388

which is a contradiction for ϵ sufficiently small, and we use (B.14) in the last inequality.1389

– If u(xε)−Mu(xε) > 0, we need apply Jenson-Ishii Lemma [22, Theorem 3.2].7 To this end, following1390

[22, Section 8], we make use of the parabolic semijets P2,±
Ω u(xε) and their closures P2,±

Ω u(xε). Specif-1391

ically, consider the maximum point (xε,yε) ∈ G × G of (u − vm − φε), for any α > 0, there exists1392

(Dxφε, X) ∈ P2,+

Ω u(xε) and (Dyφε, Y ) ∈ P2,−
Ω vm(yε) such that1393

−3α

(
I 0

0 I

)
≤
(
X 0

0 −Y

)
≤ 3α

(
I −I
−I I

)
, (B.16)1394

and by definition of φε, we obtain Dxφε = −Dyφε = ε−1(xε − yε).1395

It remains to treat (using Lemma B.1 again)1396

F
(
xε, u(xε), ε

−1(xε − yε), X,J u(xε)
)

≤ 0,1397

F
(
yε, vm(yε), ε

−1(xε − yε), Y,J vm(yε)
)

≥ k/m. (B.17)1398

Subtracting the above inequalities yields1399

k/m ≤ F
(
yε, vm(yε), ε

−1(xε − yε), Y,J vm(yε)
)
− F

(
xε, u(xε), ε

−1(xε − yε), X,J u(xε)
)

1400

≤ (r + λ) (vm(yε)− u(xε)) + (J u(xε)− J vm(yε)) ,1401

where we cancel out the derivative terms. Next, letting ε→ 0 yields1402

k/m ≤ r (vm(x̄)− u(x̄)) + λ

∫ ∞

−∞

[
(u(w̄ + y, ā, τ̄)− vm(w̄ + y, w̄, τ̄))1403

− (u(x̄)− vm(x̄))
]
b(y) dy1404

≤ −rQ, (B.18)1405

which yields a contradiction.1406

7In [61], a non-local Jenson-Ishii Lemma (see Corollary 5.13) is applied there, due to the complex structure of the jump

operator. For our case, the treatment of the linear jump operator can be referred to [2].
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Similarly, we can construct a contradiction when the supremum Q is approximated from within the sub-1407

domain Ωamin
.1408

� Next we consider x̄ ∈ {wmin, wmax} × [amin, amax] × (0, T ]. From (B.13), there exists a sequence (denoted1409

by {zi = (wi
z, a

i
z, τ

i
z); i = 1, 2, . . .}) in some open subset of Ωin ∪ Ωamin

(still denoted by G ⊂ Ωin ∪ Ωamin
1410

with compact closure G) converging to x̄, such that vm(zi) tends to vm(x̄) when i goes to infinity. We only1411

consider the case when G ⊂ Ωin below, and the other case when G ⊂ Ωamin can be handled similarly. If1412

x̄ ∈ {wmax}× [amin, amax]×(0, T ] (the case when x̄ ∈ {wmin}× [amin, amax]×(0, T ] can be handled similarly),1413

we use the technique in [65] to handle the boundary area. Let εi = |zi − x̄|, and set1414

φi(x,y) =
1

2εi

∣∣x− y
∣∣2 + 1

4

(
d(y)

d(zi)
− 1

)4

+
1

4

∣∣x− x̄
∣∣4,1415

where d(y) denotes the distance from y to the boundary area, i.e. d(y) = wmax − wy. Then we define1416

Qi = sup
(x,y)∈G×G

[u(x)− vm(y)− φi(x,y)] .1417

There exists (xi,yi) ∈ G × G such that Qi = u(xi) − vm(yi) − φi(xi,yi). Denote xi = (wi
x, a

i
x, τ

i
x) and1418

yi = (wi
y, a

i
y, τ

i
y). Moreover, there exists a subsequence of (xi,yi), still denoted by (xi,yi), converging to1419

(x,y) ∈ G×G. When i goes to infinity, we have1420

Qi ≥ u(x̄)− vm(zi)−
εi
2

→ u(x̄)− vm(x̄) = Q,1421

which yields 1
2εi

∣∣xi − yi

∣∣2 is bounded and x = y. On the other hand, we also have1422

0 ≤ lim sup
i→∞

φi(xi,yi) = lim sup
i→∞

[u(xi)− vm(yi)−Qi] ≤ u(x)− vm(x)−Q ≤ 0.1423

Thus, x = x̄, 1
2εi

∣∣xi − yi

∣∣2 → 0, and d(yi) ≥ d(zi)/2 > 0 for i sufficiently large. In particular, d(yi) =1424

wmax − wi
y > 0, and so yi ∈ Ωin. When i sufficiently large, we can also assume xi,yi ∈ G. The remaining1425

proof is similar with the previous case when x̄ is attained in the sub-domain Ωin. We present some details1426

for the readers’ convenience.1427

- We can still have1428

Q = lim sup
i→∞

(u(xi)− vm(yi)) ≤ lim sup
i→∞

Mu(xi)− lim inf
i→∞

Mvm(yi)− k/m1429

≤ Mu(x̄)−Mvm(x̄)− k/m,1430

which is a contradiction according to (B.15).1431

- Now we can apply Jenson-Ishii Lemma. Consider the maximum point (xi,yi) ∈ G×G of (u−vm−φi),1432

for any α > 0, there exists (Dxφi, X) ∈ P2,+

Ω u(xi) and (Dyφi, Y ) ∈ P2,−
Ω vm(yi) such that (B.16) holds,1433

and by definition of φi, we obtain1434

Dxφi =
(xi − yi)

εi
+ (xi − x̄)

3
and Dyφi = − (xi − yi)

εi
− 1w

d(zi)

(
d(yi)

d(zi)
− 1

)3

,1435

with 1w := (1, 0, 0). Similarly with (B.17), we can have1436

F

(
xi, u(xi),

(xi − yi)

εi
+ (xi − x̄)

3
, X,J u(xi)

)
≤ 0,1437

F

(
yi, vm(yi),

(xi − yi)

εi
+

1w

d(zi)

(
d(yi)

d(zi)
− 1

)3

, Y,J vm(yi)

)
≥ k/m.1438
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Similarly with (B.18), subtracting the above inequalities, and letting i→ ∞ can derive1439

k/m ≤ (r + λ) (vm(yi)− u(xi)) + (J u(xi)− J vm(yi))1440

+

(
r − σ2

2
− λκ− β

)(wi
x − w̄

)3 − 1

wmax − wi
z

(
wmax − wi

y

wmax − wi
z

− 1

)3
1441

+ sup
γ̂∈[0,Cr]

∣∣∣∣∣∣γ̂ (aix − ā
)3

+ γ̂

(wi
x − w̄

)3 − 1

wmax − wi
z

(
wmax − wi

y

wmax − wi
z

− 1

)3
∣∣∣∣∣∣1442

≤ (r + λ) (vm(x̄)− u(x̄)) + (J u(x̄)− J vm(x̄)) (since i→ ∞)1443

≤ r (vm(x̄)− u(x̄)) + λ

∫ ∞

−∞

[
(u(w̄ + y, ā, τ̄)− vm(w̄ + y, w̄, τ̄))1444

− (u(x̄)− vm(x̄))
]
b(y) dy1445

≤ −rQ,1446

which yields a contradiction.1447

Combining all these cases concludes the proof.1448

By combining the previous results, we finally obtain an characterization of the numerical solutions.1449

Corollary B.1. For the functions v and v, defined in (5.65), we have v ≤ v in Ωin ∪ Ωamin .1450

Proof. In the proof of Theorem 5.1, we have shown that v (resp. v) is a viscosity subsolution (resp. supersolution)1451

of equation (3.16) in the sense of Definition B.1. By Proposition B.1, v (resp. v) is also a viscosity subsolution1452

(resp. supersolution) in the sense of Definition B.3. Here, the region of definition is Ωin ∪ Ωamin
.1453

To apply Theorem B.1, we only need to show that v (x) and v (x) satisfy condition (B.12) for all x ∈ Ωin
τ0 ,1454

noting condition (B.11) is trivially satisfied given the definition (5.65). We describe the main steps of this proof1455

below.1456

� Step 1 We prove a strong comparison result for an associated QVI. Note that for w ∈ [wmin, wmax],1457

max(ew, (1− µ)a− c) ∧ ew∞ trivially becomes max(ew, (1− µ)a− c). We ignore ew∞ for brevity.1458

– Step 1.1 Recalling Ωin
τ0 := [wmin, wmax]× [amin, amax]× {0}, we consider the QVI81459

min

[
v −max(ew, (1− µ)a− c), v − sup

γ∈[0,a]

M(γ)v

]
= 0, x ∈ Ωin

τ0 . (B.19)1460

We then define the viscosity solution of the QVI (B.19) in the sense of Definition B.3 below9.1461

Definition B.4 (Viscosity solution of (B.19)). A locally bounded function v ∈ G(Ω∞) is a viscosity1462

subsolution (resp. supersolution) of (B.19) in Ωin
τ0 if for all test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and for1463

all points x̂ = (ŵ, â, 0) ∈ Ωin
τ0 such that (v∗ − ϕ) has a local maximum on Ωin

τ0 at x̂ and v∗(x̂) = ϕ(x̂)1464

(resp. (v∗ − ϕ) has a local minimum on Ωin
τ0 at x̂ and v∗(x̂) = ϕ(x̂)), we have1465

min

[
ϕ(x̂)−max(eŵ, (1− µ)â− c), ϕ(x̂)− sup

γ∈[0,a]

M(γ)v∗(x̂)

]
≤ 0,1466

(
resp. min

[
ϕ(x̂)−max(eŵ, (1− µ)â− c), ϕ(x̂)− sup

γ∈[0,a]

M(γ)v∗(x̂)

]
≥ 0.

)
1467

A locally bounded function v ∈ G(Ω∞) is a viscosity solution in Ωin
τ0 if it is both a viscosity subsolution1468

and a viscosity supersolution in Ωin
τ0 .1469

– Step 1.2 We prove a strong comparison principle for (B.19)10.1470

This can be done using similar arguments in Theorem B.1. (Also see [61, Theorem 5.9].) We can then1471

conclude that, if u(x) (resp. v(x)) is a viscosity subsolution (resp. supersolution) of equation (B.19) in1472

the sense of Definition B.4, then u(x) ≤ v(x) for all x ∈ Ωin
τ0 .1473

8When a = amin = 0, this QVI trivially becomes v − ew = 0, which can be viewed as a special case.
9For the QVI (B.19), it is possible to fully remove the dependence on τ in the definition of viscosity solution. However,

to facilitate the proofs for Step 2, we still require that v ∈ G(Ω∞) in Definition B.4.
10Note that this result requires a similar condition to (B.11), which is satisfied by the function v and v in Step 3.
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� Step 2 We prove that v(x) and v(x), defined in (5.65), are viscosity subsolution and supersolution of1474

(B.19) in the sense of Definition B.4, respectively. We will provide details for Step 2 below.1475

� Step 3 By Step 2 and Step 3, we can conclude that v(x) ≤ v(x) for all x ∈ Ωin
τ0 . This result shows that1476

v (x) and v (x) satisfy condition (B.12) in Theorem B.1. Therefore, applying Theorem B.1 gives the desired1477

result v (x) ≤ v (x), ∀x ∈ Ωin ∪ Ωamin .1478

Below, we provide details for Step 2. By definition (5.65), v∗(x) = v(x) and v∗(x) = v(x), so we will work with1479

v(x) and v(x) instead of the envelopes.1480

� Step 2.1: Using Theorem 5.1 and the equivalence between Definition B.1 and Definition B.2, we have v(x)1481

(resp. v(x)) is a viscosity subsolution (resp. supersolution) of equation (3.16) in the sense of Definition B.21482

for all x ∈ Ωin ⊂ Ω∞.1483

� Step 2.2 (v(x) is a subsolution of (B.19)): Let ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and x̂ = (ŵ, â, 0) ∈ Ωin
τ0 be1484

a point at which (v − ϕ)(x̂) is a local maximum and v(x̂) = ϕ(x̂). (We only consider the case when1485

x̂ ∈ (wmin, wmax)× (amin, amax]× {0} below, and the other cases can be treated similarly.)1486

Define φ(w, a, τ) := ϕ(w, a, τ) + Cτ , where C > 0 is a constant to be chosen later. Since φ(x) ≥ ϕ(x)1487

for all x ∈ Ω∞, and φ(x) = ϕ(x) for all x ∈ Ωin
τ0 , it follows that (v − φ)(x̂) is also a local maximum, and1488

v(x̂) = φ(x̂). Thus, by Step 2.1, we have1489

0 ≥ (FΩ∞)∗
(
x̂, φ(x̂), Dφ(x̂), D2φ(x̂),J v(x̂),Mv(x̂)

)
1490

= min

[
ϕτ (x̂) + C − Lϕ(x̂)− J v(x̂)− sup

γ̂∈[0,Cr]

γ̂
(
1− e−ŵϕw(x̂)− ϕa(x̂)

)
1{â>0},1491

ϕ(x̂)− sup
γ∈[0,a]

M(γ)v(x̂), ϕ(x̂)−max
(
eŵ, (1− µ)â− c

)]
.1492

By choosing C large enough, we have1493

min

[
ϕ(x̂)−max(eŵ, (1− µ)â− c), ϕ(x̂)− sup

γ∈[0,a]

M(γ)v(x̂)

]
≤ 0,1494

which implies that v(x) is a viscosity subsolution of (B.19) in the sense of Definition B.4 in Ωin
τ0 .1495

� Step 2.3 (v(x) is a supersolution of (B.19)): Similarly, let ϕ ∈ G(Ω∞)∩ C∞(Ω∞) and x̂ = (ŵ, â, 0) ∈ Ωin
τ01496

be a point at which (v − ϕ)(x̂) is a local minimum and v(x̂) = ϕ(x̂). (We only consider the case when1497

x̂ ∈ (wmin, wmax)× (amin, amax]× {0} below, and the other cases can be treated similarly.)1498

Define φ(w, a, τ) := ϕ(w, a, τ)−Cτ , where C > 0 is a constant to be chosen later. Since φ(x) ≤ ϕ(x) for all1499

x ∈ Ω∞, and φ(x) = ϕ(x) for all x ∈ Ωin
τ0 , it follows that (v−φ)(x̂) is also a local minimum, and v(x̂) = φ(x̂).1500

Thus, by Step 2.1, we have1501

0 ≤ (FΩ∞)
∗ (

x̂, φ(x̂), Dφ(x̂), D2φ(x̂),J v(x̂),Mv(x̂)
)

1502

= max

[
min

[
ϕτ (x̂)− C − Lϕ(x̂)− J v(x̂)− sup

γ̂∈[0,Cr]

γ̂
(
1− e−ŵϕw(x̂)− ϕa(x̂)

)
1{â>0},1503

ϕ(x̂)− sup
γ∈[0,a]

M(γ)v(x̂)

]
, ϕ(x̂)−max

(
eŵ, (1− µ)â− c

)]
.1504

By choosing C large enough, we have that1505

ϕ(x̂)−max
(
eŵ, (1− µ)â− c

)
≥ 0. (B.20)1506

By definition of v(x̂), we have v(x̂) ≤ max
(
eŵ, (1− µ)â− c

)
. By the definition of M, we also have1507

sup
γ∈[0,a]

M(γ)v(x̂) ≤ sup
γ∈[0,a]

M(γ)max
(
eŵ, (1− µ)â− c

)
≤ max

(
eŵ, (1− µ)â− c

)
,1508

which yields that1509

ϕ(x̂)− sup
γ∈[0,a]

M(γ)v(x̂) ≥ ϕ−max
(
eŵ, (1− µ)â− c

)
≥ 0. (B.21)1510
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Combining (B.20) and (B.21), we have that1511

min

[
ϕ(x̂)−max(eŵ, (1− µ)â− c), ϕ(x̂)− sup

γ∈[0,a]

M(γ)v(x̂)

]
≥ 0,1512

which implies that v(x) is a viscosity supersolution of (B.19) in the sense of Definition B.4 in Ωin
τ0 .1513

1514
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