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1 Introduction

Many problems in finance can be posed in terms of an optimal stochastic con-
trol. Some well-known examples include transaction cost/uncertain volatility
models [17, 2, 25], passport options [1, 26], unequal borrowing/lending costs
in option pricing [9], risk control in reinsurance [23], optimal withdrawals in
variable annuities[13], optimal execution of trades [20, 19], and asset alloca-
tion [28, 18]. A recent survey on the theoretical aspects of this topic is given
in [24].

These optimal stochastic control problems can be formulated as nonlinear
Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). In gen-
eral, especially in realistic situations where the controls are constrained (e.g.
in the case of asset allocation, we may require that trading must cease upon
insolvency, that short positions are not allowed, or that position limits are
imposed), there are no analytical solutions to the HJB PDEs. At first glance,
it would appear to be a formidable task to develop a numerical method for
solving such complex PDEs. In addition, there may be no smooth classical so-
lutions to the HJB equations. In this case, we must seek the viscosity solution
[12] of these equations.

However, using the powerful theory developed in [7, 5, 3] we can devise
a general approach for numerically solving these HJB PDEs. This approach
ensures convergence to the viscosity solution.

The contributions of this article are as follows:

• We discuss several examples of optimal stochastic control in finance.
• We give an intuitive description of the concept of a viscosity solution.
• We present a general approach for discretizing the HJB PDEs. This tech-

nique ensures that the discrete solutions converge to the viscosity solution
[7, 5, 3]. The method uses fully implicit time stepping. Consequently, there
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are no time step restrictions due to stability considerations, an advantage
over the Markov chain approach [16].

• We also discuss some techniques for the solution of the nonlinear dis-
cretized algebraic equations and an important property of the discrete
solutions (i.e. preservation of arbitrage inequalities).

• Finally, we present a numerical example, illustrating that seemingly rea-
sonable discretization methods, which do not satisfy the conditions in [7]
can converge to incorrect (i.e. non-viscosity) solutions, and even solutions
which embed arbitrage opportunities.

2 Examples

2.1 Uncertain Volatility

Let V (S, t) be the value of a contingent claim written on an asset which has
a price S that evolves according to the stochastic process

dS = µS dt+ σS dZ, (1)

where µ is the drift rate, σ is volatility, and dZ is the increment of a Wiener
process. There are a number of situations where V (S, t) must be determined
by solving an optimal control problem.

Consider for example, the uncertain volatility model developed in [2, 21].
This provides a pricing mechanism for cases where volatility is uncertain, but
lies within a band, σ ∈ [σmin, σmax]. In this case, the PDE which is used to
determine the value of a contingent claim is determined by the two extremal
volatilities. Let the expiry time time of the claim be T , and let τ = T − t. For
a short position the optimal control problem is given by

Vτ = sup
Q∈Q̂

{
Q2S2

2
VSS + SVS − rV

}
= 0 (2)

where Q̂ = {σmin, σmax} and r is the borrowing/lending rate. Replacing the
sup by an inf gives the corresponding pricing equation for a long position. It
should also be pointed out that a PDE of precisely the same form as (2) arises
in the completely different context of option valuation under transaction costs
[17].

2.2 Continuous Time Mean-Variance Asset Allocation

We suppose that an investor may divide his wealth W into a fraction p in a
risky asset, the price of which follows process (1), and a fraction (1− p) in a
risk-free bond, the value of which follows

dB

dt
= rB, (3)
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where r is the risk-free rate. If α is the number of units of S owned, then
W = αS +B, and the process followed by W is

dW = [pµ+ (1− p)r]W dt+ pσW dZ. (4)

We suppose that the investor follows an asset allocation strategy p(t) for time
t ∈ [0, T ]. If WT is the wealth at the terminal time T , then the optimal
strategy may be posed as finding the p(t) that maximizes the expected return
less a penalty for risk (as measured by variance), i.e.

sup
p(t)∈z

{
Et=0[WT ]− λ vart=0[WT ]

}
, (5)

where

Et=0[·] is the expectation as seen at t = 0

vart=0[·] is the variance as seen at t = 0
z is the set of admissible controls, and
λ is the risk aversion parameter.

Varying λ allows us to generate a set of points
(√

vart=0[WT ], Et=0[WT ]
)

on
the mean-variance efficient frontier.

Problem (5) is the pre-commitment version of the mean-variance trade-
off [8]. There is no direct dynamic programming formulation of problem (5).
However, we can solve a different problem which has the same optimal control
p(t) and which is easier to solve.

We would like to use dynamic programming to determine the efficient
frontier, given by equation (5). However, the presence of the variance term
causes some difficulty. This can be avoided with the help of the results in
[18, 28]:

Theorem 1 (Equivalent Linear Quadratic (LQ) problem). If p∗(t) is
the optimal control of problem (5), then p∗(t) is also the optimal control of
problem

sup
p(t)∈z

{
Et=0[µWT − λW 2

T ]
}
, (6)

where
µ = 1 + 2λEt=0

p∗ [WT ], (7)

with p∗ being the optimal control of problem (6).

The notation Et=0
p∗ [·] refers to the expected value given the strategy p∗(t).

This result seems at first sight to be not very useful, since the parameter µ is
a function of the optimal control p∗, which is not known until the problem is
solved. However, we can write equation (6) in the form

−λ inf
p(t)∈z

Et=0[W 2
T − γWT ] (8)
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with γ = µ/λ, since λ > 0. Consequently, for fixed γ, an optimal control of
problem (8) is an optimal control of

inf
p(t)∈z

{
Et=0

[
(WT −

γ

2
)2
]}

. (9)

As a result, for fixed γ, we can determine the optimal control p(t) of problem
(5) as follows. Let

V (W, τ) = ET−τ
[
(WT − γ)2

]
. (10)

Then, V is given from the solution to

Vτ = inf
p∈z

{
(pµ+ (1− p)r)WVW + (pσ)2W 2VWW

}
(11)

V (W, τ = 0) = (W − γ/2)2. (12)

Having solved equation (12), we then have the optimal control p∗(W, t). This
can be used to determine a pair

(√
vart=0[WT ]), Et=0[WT ]

)
. Varying γ allows

us to trace out an efficient frontier.

2.3 Guaranteed Minimum Withdrawal Benefit Variable Annuity

Guaranteed Minimum Withdrawal Benefit (GMWB) variable annuities are
discussed at length in [22, 13, 11]. We briefly review the final equations here.
Let W ≡ W (t) be the stochastic process of the personal variable annuity
account and A ≡ A(t) be the stochastic process of the account balance of the
guarantee. We assume that the reference portfolio S ≡ S(t), which underlies
the variable annuity policy before the deduction of any proportional fees,
follows a geometric Brownian motion under the risk-neutral measure with a
volatility of σ and a risk-free interest rate of r:

dS = rS dt+ σS dZ. (13)

The major feature of the GMWB is the guarantee on the return of the entire
premium via withdrawal. The insurance company charges the policy holder a
proportional annual insurance fee η for this guarantee. Therefore we have the
following stochastic differential equation for W :

dW =

{
(r − η)Wdt+ σWdZ + dA if W > 0,
0 if W = 0.

(14)

Let γ ≡ γ(t) denote the withdrawal rate at time t and assume 0 ≤ γ ≤ λ
(λ is the maximum possible withdrawal rate). The policy guarantees that
the accumulated sum of withdrawals throughout the policy’s life is equal to
the premium paid up front, which is denoted by ω0. Consequently, we have
A(0) = ω0, and
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A(t) = ω0 −
∫ t

0

γ(u) du. (15)

In addition, almost all policies with GMWB put a cap on the maximum
allowed withdrawal rate without penalty. Let G be such a contractual with-
drawal rate, and κ be the proportional penalty charge applied on the portion
of withdrawal exceeding G. The net withdrawal rate f(γ) received by the
policy holder is then

f(γ) =

{
γ 0 ≤ γ ≤ G,
G+ (1− κ)(γ −G) G < γ ≤ λ.

(16)

The no-arbitrage value V (W,A, t) of the variable annuity with GMWB there-
fore is given by

V (W,A, t) = max
γ∈[0,λ]

Et

[
e−r(T−t) max (W (T ), 0) +

∫ T

t

e−r(u−t)f (γ(u)) du

]
(17)

where T is the policy maturity time and the expectation Et is taken under
the risk-neutral measure. The withdrawal rate γ is the control variable chosen
to maximize the value of V (W,A, t).

Define

LV =
σ2

2
W 2VWW + (r − η)WVW − rV, (18)

and
FV = 1− VW − VA. (19)

If we let the maximum possible withdrawal rate λ → ∞ (withdrawing in-
stantaneously a finite amount), then we obtain the singular control problem
[13]

min [Vτ − LV −Gmax(FV, 0), κ−FV ] = 0. (20)

3 Viscosity Solutions

The highly nonlinear PDEs (2,12,20) do not have smooth (i.e. differentiable)
solutions in general. In this case, it is not obvious what we mean by the solution
to a differential equation. To clarify, it is useful to give an intuitive description
of the concept of a viscosity solution. For sake of illustration, consider equation
(2).

We can write our PDE as

g(V, VS , VSS , Vτ ) = Vτ − sup
Q∈Q̂

{
Q2S2

2
VSS + SVS − rV

}
= 0. (21)
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We assume that g(x, y, z, w) (x = V, y = VS , z = VSS , w = Vτ ) satisfies the
ellipticity condition

g(x, y, z + ε, w) ≤ g(x, y, z, w) ∀ε ≥ 0, (22)

which in our case usually means that the coefficient of the VSS term in LV is
non-negative. Suppose for the moment that smooth solutions to equation (21)
exist, i.e. V ∈ C2,1, where C2,1 refers to a continuous function V = V (S, τ)
having continuous first and second derivatives in S, and a continuous first
derivative in τ . Let φ be a set of C2,1 test functions. Suppose V − φ ≤ 0, and
that φ(S0, τ0) = V (S0, τ0) at the single point (S0, τ0). Then the single point
(S0, τ0) is a global maximum of (V − φ),

V − φ ≤ 0,
max(V − φ) = V (S0, τ0)− φ(S0, τ0) = 0. (23)

Consequently, at (S0, τ0)

φτ = Vτ

φS = VS

(V − φ)SS ≤ 0 ⇒ φSS ≥ VSS . (24)

Hence, from equations (22,24), we have

g (V (S0, τ0), φS(S0, τ0), φSS(S0, τ0), φτ (S0, τ0))
= g (V (S0, τ0), VS(S0, τ0), φSS(S0, τ0), Vτ (S0, τ0))
≤ g (V (S0, τ0), VS(S0, τ0), VSS(S0, τ0), Vτ (S0, τ0)) = 0, (25)

or, to summarize,

g (V (S0, τ0), φS(S0, τ0), φSS(S0, τ0), φτ (S0, τ0)) ≤ 0
V − φ ≤ 0

max(V − φ) = V (S0, τ0)− φ(S0, τ0) = 0.
(26)

If this is true for any test function φ, then we say that V is a viscosity subso-
lution of equation (21).

Now, suppose that χ is a C2,1 test function, with V − χ ≥ 0, and
V (S0, τ0) = χ(S0, τ0) at the single point (S0, τ0). Then, (S0, τ0) is the global
minimum of V − χ,

V − χ ≥ 0
min(V − χ) = V (S0, τ0)− χ(S0, τ0) = 0. (27)

Consequently, at (S0, τ0)
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χτ = Vτ

χS = VS

(V − χ)SS ≥ 0 ⇒ χSS ≤ VSS . (28)

Hence, from equations (27,28), we have

g (V (S0, τ0), χS(S0, τ0), χSS(S0, τ0), χτ (S0, τ0))
= g (V (S0, τ0), VS(S0, τ0), χSS(S0, τ0), Vτ (S0, τ0))
≥ g (V (S0, τ0), VS(S0, τ0), VSS(S0, τ0), Vτ (S0, τ0)) = 0. (29)

Summarizing,

g (V (S0, τ0), χS(S0, τ0), χSS(S0, τ0), χτ (S0, τ0)) ≥ 0
V − χ ≥ 0

min(V − χ) = V (S0, τ0)− χ(S0, τ0) = 0.
(30)

If this is true for any test function χ, we say that V is a viscosity supersolu-
tion of equation (21). A solution which is both a viscosity subsolution and a
viscosity supersolution is a viscosity solution.

Now, suppose that V is continuous but not smooth. This means that we
cannot define V as the solution to g(V, VS , VSS , Vτ ) = 0. However, we can
still use conditions (26) and (30) to define a viscosity solution to equation
(21), since all derivatives are applied to smooth test functions. Informally, a
viscosity solution V to equation (21) is defined such that

• For any C2,1 test function φ, such that

V − φ ≤ 0; φ(S0, τ0) = V (S0, τ0), (31)

(φ touches V at the single point (S0, τ0)), then

g (V (S0, τ0), φS(S0, τ0), φSS(S0, τ0), φτ (S0, τ0)) ≤ 0. (32)

• As well, for any C2,1 test function χ such that

V − χ ≥ 0; V (S0, τ0) = χ(S0, τ0), (33)

(χ touches V at the single point (S0, τ0)), then

g (V (S0, τ0), χS(S0, τ0), χSS(S0, τ0), χτ (S0, τ0)) ≥ 0. (34)

An example of a subsolution and a typical test function is shown in Figure 1.
Similarly, the supersolution case is shown in Figure 2.

Note that there may be some points where a smooth test function can
touch the viscosity solution only from above or below, but not both. The kink
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Fig. 1. Illustration of viscosity subsolution definition.
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at S = 1 in Figure 2 is an example of such a situation. It is not possible for a
smooth C2,1 test function χ satisfying V −χ ≥ 0, χ(1, τ0) = V (1, τ0) to exist.

There may also be some points where a smooth C2,1 test function cannot
touch the solution from either above or below. As a pathological example,
consider the function

f(x) =

{√
x x ≥ 0,
−
√
−x x < 0.

(35)

This function cannot be touched at the origin from below (or above) by any
smooth function with bounded derivatives. Note that the definition of a vis-
cosity solution only specifies what happens when the test function touches the
viscosity solution at a single point (from either above or below). The definition
is silent about cases where this cannot happen.

4 General Form for the Example Problems

We can treat many control problems in finance using a similar approach.
Even singular control problems, as in equation (20), can be solved using the
methods described here, if we use the penalty technique described in [13].

For ease of exposition, we will focus on single factor optimal control prob-
lems. We give a brief overview of the methods here—see [15] for more details.
Let the value function be denoted by V = V (S, τ), where τ = T − t, with T
being the expiry time of the contract or claim being considered. Set

LQV ≡ a(S, τ,Q)VSS + b(S, τ,Q)VS − c(S, τ,Q)V, (36)

where Q is a control parameter. We write our problem in the general form

Vτ = sup
Q∈Q̂

{
LQV + d(S, τ,Q)

}
, (37)

Q̂ being a compact set of feasible controls. Note that we can replace the sup
in equation (37) by an inf and all the methods remain essentially the same.

We will assume in the following that a(S, τ,Q) ≥ 0 and c(S, τ,Q) ≥ 0. In
a financial context this corresponds to non-negative interest rates and volatil-
ities.

4.1 Boundary Conditions

We will assume that the problem is posed on a bounded domain [Smin, Smax].
In many cases, the original problem is posed on an unbounded domain. We
assume that the problem has been localized for computational purposes. We
will assume that the boundary conditions at [Smin, Smax] are either the limit
of the PDE as S → Smin, Smax or some type of given Dirichlet condition.
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4.2 Strong Comparison Result

We assume that the HJB PDE (37) along with appropriate boundary con-
ditions satisfies the strong comparison property [12], which then implies that
there exists a unique, continuous viscosity solution to equation (37).

5 Discretization

Define a grid {S0, S1, . . . , Sp} with Sp = Smax, and let V ni be a discrete ap-
proximation to V (Si, τn). Let V n = [V n0 , . . . , V

n
p ]′, and let (LQh V n)i denote

the discrete form of the differential operator (36) at node (Si, τn). The opera-
tor (36) can be discretized using forward, backward or central differencing in
the S direction to give

(LQh V
n+1)i = αn+1

i (Q)V n+1
i−1 + βn+1

i (Q)V n+1
i+1

− (αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q))V n+1

i . (38)

It is important that central, forward or backward discretizations be used
to ensure that (40) is a positive coefficient discretization. To be more precise,
this condition is

Condition 1 Positive Coefficient Condition

αn+1
i (Q) ≥ 0, βn+1

i (Q) ≥ 0, cn+1
i (Q) ≥ 0, i = 0, . . . , p− 1, ∀Q ∈ Q̂. (39)

We will assume that all models have cn+1
i (Q) ≥ 0. Consequently, we choose

central, forward or backward differencing at each node so as to ensure that
αn+1
i (Q), βn+1

i (Q) ≥ 0. Appendix A provides details concerning forward,
backward and central differencing. Note that different nodes can have dif-
ferent discretization schemes. If we use forward and backward differencing,
then equation (57) in Appendix A guarantees a positive coefficient method.
However, since this discretization is only first order correct, it is desirable to
use central differencing as much as possible (and yet still obtain a positive
coefficient method). This issue is discussed in detail in [27].

Equation (37) can now be discretized using fully implicit time stepping
together with the discretization (38) to give

V n+1
i − V ni
∆τ

= sup
Qn+1∈Q̂

{
(LQ

n+1

h V n+1)i + dn+1
i

}
. (40)

Of course, an explicit method would involve evaluating the terms on the right
hand side of equation (40) at the old time level n instead of n+ 1. A Crank-
Nicolson scheme would be an equally-weighted average of the fully implicit
scheme (40) and an explicit scheme.
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5.1 Matrix Form of the Discrete Equations

Set V n+1 = [V n+1
0 , V n+1

1 , . . . , V n+1
p ]′ and Q = [Q0, Q1, . . . , Qp]′. We can write

the discrete operator (LQh V n)i as

(LQh V
n)i = [A(Q)V n]i

=
[
αni (Q)V ni−1 + βni (Q)V ni+1 − (αni (Q) + βni (Q) + cni (Q))V ni

]
, i < p.

(41)

The first and last rows of A are modified as needed to handle the boundary
conditions. Let Fn+1 be a vector which encodes boundary conditions (i.e.
Fn+1
i = 0 except possibly at i = 0, p).

Let Dn(Q) be the vector with entries

[D(Q)]ni =

{
dni (Q) for i < p→ i is not a Dirichlet node
0 for i = p→ i is a Dirichlet node

.

Remark 1 (Matrix Supremum Notational Convention). In the following, we
will denote

sup
Q∈Q̂

{[
An+1(Q)V n+1 +Dn+1(Q)

]
i

}
by

An+1(Qn+1)V n+1 +Dn+1(Qn+1),

where the optimal control at time level n+ 1 for node i is

Qn+1
i ∈ arg sup

Q∈Q̂

{[
An+1(Q)V n+1 +Dn+1(Q)

]
i

}
.

If the local objective function is a continuous function of Q, then the supre-
mum is simply the maximum value (since Q̂ is compact), and Qn+1 is the
point where a maximum is reached. Alternatively, if the local objective func-
tion is discontinuous, An+1(Qn+1) is interpreted as the appropriate limiting
value of [An+1(Q)]i which generates the supremum at the limit point Qn+1.
An example of an algorithm for computing this limit point is given in [27] for
the case of maximizing the usage of central weighting. Note that Qn+1 is not
necessarily unique.

The discrete equations (40) can be written as[
I −∆τAn+1(Qn+1)

]
V n+1 = V n +∆τDn+1(Qn+1) + (Fn+1 − Fn), (42)

where
Qn+1
i ∈ arg sup

Q∈Q̂

{[
An+1(Q)V n+1 +Dn+1(Q)

]
i

}
.

For convenience, define
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(∆τ)max = max
n

(τn+1 − τn) and (∆τ)min = min
n

(τn+1 − τn),

where we assume that there are mesh size/time step parameters hmin, hmax

such that

(∆S)max = C1hmax, (∆τ)max = C2hmax,

(∆S)min = C3hmin, (∆τ)min = C4hmin,

with C1, C2, C3, C4 being positive constants independent of h.
We can then write the discrete equations (40) or (42) at each node in the

form
Gn+1
i (hmax, V

n+1
i , V n+1

i+1 , V n+1
i−1 , V

n
i , V

n
i+1, V

n
i−1) = 0,

where

Gn+1
i ≡ V n+1

i − V ni
∆τ

− sup
Qn+1∈Q̂

{(
An+1(Qn+1)V n+1 +Dn+1(Qn+1)

)
i

}
− Fn+1

i − Fni
∆τ

. (43)

For notational brevity, we shall occasionally write

Gn+1
i (hmax, V

n+1
i , {V n+1

j }j 6=i, V ni ) ≡ Gn+1
i (hmax, V

n+1
i , V n+1

i+1 , V n+1
i−1 , V

n
i ),
(44)

where {V n+1
j }j 6=i is the set of values V n+1

j , for j = 1, . . . , p, with j 6= i.

6 Convergence to the Viscosity Solution

In [25], examples were given in which seemingly reasonable discretizations of
nonlinear option pricing PDEs were either unstable or converged to the incor-
rect solution. It is important to ensure that we can generate discretizations
which are guaranteed to converge to the viscosity solution [3, 12]. Assum-
ing that equation (37) satisfies the strong comparison property [4, 6, 10],
then, from [7, 3], a numerical scheme converges to the viscosity solution if the
method is (i) consistent, (ii) stable (in the l∞ norm), and (iii) monotone. To
be precise, we define these terms.

Definition 1 (Stability). Discretization (43) is stable if

‖V n+1‖∞ ≤ C5,

for 0 ≤ n ≤ N , T = N∆τ , for (∆τ)min → 0, (∆S)min → 0, where C5 is
independent of (∆τ)min, (∆S)min.

Lemma 1 (Stability). If the discretization (43) satisfies the positive coeffi-
cient condition (39), then the scheme is l∞ stable.
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Proof. This is easily shown using a maximum analysis as in [15].

For ease of exposition, we consider the simple case where we restrict at-
tention to interior nodes. This allows us to use the following definition of
consistency.

Definition 2 (Consistency). Let φ denote any smooth function with φni =
φ(Si, τn), and let

Φ =

(
φτ − sup

Q∈Q̂

{
LQφ+ d

})n+1

i

−Gn+1
i

(
hmax, φ

n+1
i , φn+1

i+1 , φ
n+1
i−1 , φ

n
i , φ

n
i+1, φ

n
i−1

)
.

Scheme (43) is consistent if

lim
hmax→0

|Φ| = 0. (45)

Remark 2. For the general case where the HJB PDE degenerates at the bound-
ary, a more complicated definition of consistency is required in order to handle
boundary data [3]. We refer the reader to [3] for this definition, and to [11]
for a specific application of this more complex definition.

Remark 3. Note that Definition 2 is given in terms of smooth test functions
φ, and does not require differentiability of the actual solution.

Lemma 2 (Consistency). If the discrete equation coefficients are as given
in Appendix A, then the discrete scheme (43) is consistent as defined in Def-
inition 2.

Proof. This follows from a Taylor series argument.

Definition 3 (Monotonicity). The discrete scheme (43) is monotone if for
all εlj ≥ 0 and i

Gn+1
i

(
hmax, V

n+1
i , {V n+1

j + εn+1
j }j 6=i, {V nj + εnj }

)
≤ Gn+1

i

(
hmax, V

n+1
i , {V n+1

j }j 6=i, {V nj }
)
. (46)

Lemma 3 (Monotonicity). If the discretization (43) satisfies the positive
coefficient condition (39), then it is monotone as defined in Definition 3.

Proof. We write equation (43) out in component form (at the interior nodes
so that Fi = 0)

Gn+1
i

(
h, V n+1

i , V n+1
i+1 , V n+1

i−1 , V
n
i

)
=
V n+1
i − V ni
∆τ

+

inf
Qn+1∈Q̂

{(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
V n+1
i

− αn+1
i (Q)V n+1

i−1 − β
n+1
i (Q)V n+1

i+1 − d
n+1
i (Q)

}
. (47)



14 Peter A. Forsyth and Kenneth R. Vetzal

Note that, given two functions X(x), Y (x),

inf
x
X(x)− inf

y
Y (y) ≤ sup

x
(X(x)− Y (x)).

Then, for ε ≥ 0, we have

Gn+1
i

(
h, V n+1

i , V n+1
i+1 + ε, V n+1

i−1 , V
n
i

)
−Gn+1

i

(
h, V n+1

i , V n+1
i+1 , V n+1

i−1 , V
n
i

)
= inf
Q∈Q̂

{(
αn+1
i (Q) + βn+1

i (Q) + cn+1
i (Q)

)
V n+1
i

− αn+1
i (Q)V n+1

i−1 − β
n+1
i (Q)V n+1

i+1 − β
n+1
i (Q)ε− dn+1

i (Q)
}

− inf
Q∗∈Q̂

{(
αn+1
i (Q∗) + βn+1

i (Q∗) + cn+1
i (Q∗)

)
V n+1
i

− αn+1
i (Q∗)V n+1

i−1 − β
n+1
i (Q∗)V n+1

i+1 − d
n+1
i (Q∗)

}
≤ sup
Q∈Q̂

{
−βn+1

i (Q)ε
}

= −ε inf
Q∈Q̂

{
βn+1
i (Q)

}
≤ 0.

(48)

This follows from the fact that βn+1
i (Q) ≥ 0. Similarly,

Gn+1
i

(
h, V n+1

i , V n+1
i+1 , V n+1

i−1 + ε, V ni
)
−Gn+1

i

(
h, V n+1

i , V n+1
i+1 , V n+1

i−1 , V
n
i

)
≤ 0.
(49)

Finally, it is obvious from equation (47) that

Gn+1
i

(
h, V n+1

i , V n+1
i+1 , V n+1

i−1 , V
n
i + ε

)
−Gn+1

i

(
h, V n+1

i , V n+1
i+1 , V n+1

i−1 , V
n
i

)
≤ 0,
(50)

concluding the proof.

Theorem 2 (Convergence to the Viscosity Solution). Provided that the
original HJB PDE satisfies the strong comparison property, and discretization
(42) satisfies all the conditions required for Lemmas 1, 2, and 3, then scheme
(42) converges to the viscosity solution of equation (37).

Proof. This follows directly from the results in [7, 3].

7 Solution of the Nonlinear Discretized Equations

Note that an implicit time stepping method requires the solution of highly
nonlinear algebraic equations at each time step. We use a Newton-like form
of policy iteration to solve the discrete equations:
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Policy Iteration

Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

For k = 0, 1, 2, . . . until convergence

Solve
[
I − (1− θ)∆τAn+1(Qk)

]
V̂ k+1 =

[I + θ∆τAn(Qn)]V n + (Fn+1 − Fn)+

(1− θ)∆τDn+1(Qk) + θ∆τDn

Qki ∈ arg sup
Q∈Q̂

{[
An+1(Q)V̂ k +Dn+1(Q)

]
i

}
If k > 0 andmax

i

∣∣∣V̂ k+1
i − V̂ ki

∣∣∣
max

(
scale,

∣∣∣V̂ k+1
i

∣∣∣) < tolerance


then quit

EndFor

(51)

The term scale in scheme (51) is used to preclude unrealistic levels of accuracy
when the value is very small. Typically, scale = 1 for values expressed in
dollars.

Theorem 3 (Convergence of the Policy Iteration). Provided that the
discretization (43) satisfies the positive coefficient condition (39), then the
policy iteration (51) converges to the unique solution of equation (42) for any
initial iterate V̂ 0. Moreover, the iterates converge monotonically.

Proof. See [15].

The most fundamental principle of valuation in finance is the absence of
arbitrage (i.e. there are no free lunches). One way of stating this is as follows.
Imagine that we have two contingent claims with the same expiry time that
are written on the same underlying asset, which has a price of S. Denote these
two claims by V (S, τ) and W (S, τ). No-arbitrage implies that if the terminal
payoff for V is always at least as high as that for W , then V must be worth
at least as much as W at any time prior to expiry. More succinctly,

V (S, 0) ≥W (S, 0)⇒ V (S, τ) ≥W (S, τ). (52)

Let V n and Wn denote discrete solutions to equation (42). We would like to
ensure that these solutions are arbitrage-free, i.e.

V n ≥Wn ⇒ V n+1 ≥Wn+1. (53)
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It can be shown that this property is satisfied under certain conditions, which
we state in the following theorem:

Theorem 4 (Discrete no-arbitrage principle). Assume that:

(i) Discretization (43) satisfies the positive coefficient condition (39);
(ii) Fully implicit time stepping is used; and
(iii) Appropriate boundary conditions are imposed at the end-points of the

discrete grid (see [15] for details).

Then the discrete no-arbitrage condition (53) holds.

Proof. See [15].

8 Numerical Example: Uncertain Volatility

As a simple illustration of the methods outlined above, we will consider the
case of pricing an option contract in an uncertain volatility model, as described
in [2, 21] and outlined above in Section 2.1. Recall that we are interested in
valuing an option under the assumption that the volatility σ lies between two
bounds, σmin and σmax, but is otherwise unknown. From the standpoint of
the option writer, the best case is found by solving equation (2), reproduced
here for convenience:

Vτ = sup
Q∈Q̂

{Q2S2

2
VSS + SVS − rV

}
= 0, (54)

with Q̂ = {σmin, σmax}. Of course, from the perspective of the purchaser
of the option, this would represent the worst possible case. Conversely, the
worst case for the writer (found by replacing the sup by an inf in the equation
above) corresponds to the best situation for the purchaser. At first glance
this problem might appear to be trivial, since option values are increasing in
volatility. However, while this is the case for a plain vanilla European option, it
is not true in general provided that the option “gamma” VSS can change sign.
This can happen, for example, in the case of barrier options. Consider the case
of an up-and-out call option, which is just like a regular call option unless the
underlying asset price S moves above some barrier H during the contract’s
life, in which case the payoff becomes zero. The gamma of this contract can be
positive for some values of S and negative for others, as noted, for example,
in [14].

Another example arises in the context of portfolio of plain vanilla European
options, and it is this case that we will consider here. Note that this highlights
the nonlinear nature of the problem, in that the problem is trivial for each
of the options in the portfolio, but not for the linear combination that forms
the portfolio. Suppose that an investor purchases a butterfly spread from a
financial institution. This involves taking a long position in a low strike (K1)
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Parameter Value

r .04
T 0.5
K1 95
K2 100
K3 105
σmin 0.30
σmax 0.45

Table 1. Input parameters for test case.
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Fig. 3. Payoff function for butterfly spread.

option, a short position in two middle strike (K2) options, and a long position
in a high strike (K3) option, all with identical maturities. Assume that the
strikes are evenly spaced, and that all options are calls.3 Our test case uses
the input parameters provided in Table 1.

The payoff function at maturity is plotted in Figure 3. The sharp peak
around the middle strike K2 = 100 will generate rapid changes with S in the
solution value as we solve over time. This can be expected to cause problems
with numerical methods unless we are careful.

Our numerical experiment uses a discrete grid ranging from Smin = 0 to
Smax = 500. The coarsest grid has 94 unevenly spaced nodes (a finer spacing is

3 Actually, it doesn’t matter if we form the combined position using three call
options or three put options, as the overall payoff is the same either way.
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Refinement Grid Time Value at Total Iterations
level nodes steps S = 100 Change Ratio iterations per step

0 94 100 0.792639 227 2.27
1 187 200 0.796737 0.004098 450 2.25
2 373 400 0.798984 0.002247 1.82 871 2.18
3 745 800 0.800263 0.001279 1.76 1689 2.11
4 1489 1600 0.800957 0.000694 1.84 3260 2.04
5 2977 3200 0.801322 0.000365 1.90 6445 2.01
6 5953 6400 0.801511 0.000189 1.93 12802 2.00

Table 2. Best case for long position, fully implicit time stepping.

Refinement Grid Time Value at Total Iterations
level nodes steps S = 100 Change Ratio iterations per step

0 94 100 0.130726 227 2.27
1 187 200 0.128638 -0.002088 443 2.22
2 373 400 0.127363 -0.001275 1.64 870 2.18
3 745 800 0.126643 -0.000720 1.77 1685 2.11
4 1489 1600 0.126257 -0.000386 1.87 3297 2.06
5 2977 3200 0.126056 -0.000201 1.92 6488 2.03
6 5953 6400 0.125954 -0.000102 1.97 12844 2.01

Table 3. Worst case for long position, fully implicit time stepping.

placed near the strikes), and uses 100 (constant-sized) time steps. Successive
grid refinements involve doubling the number of time steps and inserting new
grid points midway between previously existing nodes.

We begin by considering the results for the best case for a long position
with fully implicit time stepping. Results are provided in Table 2. In this
table, the column labelled “Change” is the difference in the computed solution
from the previous grid refinement level, and the column labelled “Ratio” is
the change for the current refinement level divided by that for the previous
level. Values of “Ratio” around 2 indicate approximate first order convergence.
Approximate second order convergence would be shown by values of “Ratio”
of about 4. As can be seen from the table, fully implicit time stepping leads
asymptotically to approximate first order convergence. The last two columns
of the table show the total number of nonlinear iterations taken during the
solution, and the average number of nonlinear iterations per time step. For
this particular case, about two iterations are required for each time step.

Table 3 repeats the analysis, but for the worst case for a long position.
Clearly, the value at S = 100 is much lower, but we again see that the algo-
rithm exhibits approximate linear convergence and that around two iterations
are needed per time step. Figure 4 plots the solution profile obtained for the
best and worst cases for a long position using fully implicit time steps.
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Fig. 4. Value of butterfly spread with uncertain volatility. Fully implicit time step-
ping, long position.

Tables 4 and 5 document the serious problems which can occur when we
use numerical methods which are not guaranteed to converge to the viscos-
ity solution and are not necessarily arbitrage-free. The only difference here
compared to Tables 2 and 3 is the switch from fully implicit time stepping to
Crank-Nicolson. The key results from Table 4 are as follows. Although Crank-
Nicolson is in theory second order accurate in time, the convergence rate here
is actually less than first order. More importantly, the scheme is converging
to a different answer than that obtained in Table 2. Since the fully implicit
scheme used in Table 2 is guaranteed to converge to the viscosity solution, the
implication here is that the Crank-Nicolson approach is converging to some
other (i.e. non-viscosity) solution. Comparing Tables 2 and 3, we can also see
that the Crank-Nicolson approach requires more than twice as many nonlinear
iterations.

The same general conclusions apply to Table 5: the Crank-Nicolson scheme
converges at a rate which is slower than first order, it requires more than twice
as many iterations than does the fully implicit approach, and it is converging
to an answer which is not the viscosity solution. In fact, the Crank-Nicolson
method converges here to a negative value. This represents an obvious ar-
bitrage opportunity and is clearly an absurd result. Cases like this are in a
sense reassuring, since it is obvious that the answer makes no sense. From this
perspective, the Crank-Nicolson results for the best case long position are pos-
sibly of greater concern. Without calculating the correct answer via the fully
implicit approach, it is not immediately clear that the Crank-Nicolson answer
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Refinement Grid Time Value at Total Iterations
level nodes steps S = 100 Change Ratio iterations per step

0 94 100 4.410778 428 4.28
1 187 200 4.571876 0.161098 897 4.49
2 373 400 4.687534 0.115658 1.39 1780 4.45
3 745 800 4.765390 0.077856 1.49 3539 4.42
4 1489 1600 4.816438 0.051048 1.53 7161 4.48
5 2977 3200 4.849302 0.032864 1.55 13995 4.37
6 5953 6400 4.870269 0.020967 1.57 27529 4.30

Table 4. Best case for long position, Crank-Nicolson time stepping.

Refinement Grid Time Value at Total Iterations
level nodes steps S = 100 Change Ratio iterations per step

0 94 100 -6.178730 457 4.57
1 187 200 -6.399983 -0.221253 926 4.63
2 373 400 -6.545795 -0.145812 1.52 1901 4.75
3 745 800 -6.643648 -0.097853 1.49 3815 4.77
4 1489 1600 -6.709119 -0.065471 1.49 7341 4.59
5 2977 3200 -6.751707 -0.042588 1.54 14379 4.49
6 5953 6400 -6.778385 -0.026678 1.60 28317 4.42

Table 5. Worst case for long position, Crank-Nicolson time stepping.

is incorrect. Figure 5 plots the solution profile obtained for the best and worst
cases for a long position using the Crank-Nicolson scheme.

In addition to calculating the value of the position, we are often interested
in hedging parameters such as delta and gamma. Figures 6 and 7 plot the delta
and gamma respectively for the best case for a long position with fully implicit
time steps. The corresponding plots for the Crank-Nicolson case for delta and
gamma are given in Figures 8 and 9 respectively. Comparing Figure 6 and
8, we see that the plot for delta is much smoother for the fully implicit case
(in addition to being far smaller in magnitude). In fact, there appears to be
a discontinuity in the delta at S = 100 for the Crank-Nicolson case. Figure 7
shows a smooth profile for the option gamma using fully implicit time steps.
On the other hand, Figure 9 shows severe oscillations around values of S =
100.4 Taken collectively, these plots again provide a strong warning against
the näıve use of Crank-Nicolson methods in that the calculation of important
hedging parameters is prone to serious errors. This is not surprising—if the
solution itself is not accurate, we should expect the estimates of its derivatives
to be even worse.

4 Note that Figure 9 uses a different scale on the x-axis to highlight the oscillations.
The rapid changes associated with the oscillations in gamma are one reason why
the Crank-Nicolson scheme requires more iterations to solve the nonlinear discrete
equations.
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Fig. 5. Value of butterfly spread with uncertain volatility. Crank-Nicolson time
stepping, long position.

70 80 90 100 110 120 130
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Asset Price

D
el

ta

Delta of Butterfly Spread With Uncertain Volatility
Best Case, Long Position, Fully Implicit

Fig. 6. Delta of butterfly spread with uncertain volatility. Fully implicit time step-
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9 Conclusions

Many problems of practical interest in finance can be cast as stochastic op-
timal control problems. These problems are generally nonlinear and require
numerical solution. This article has described some of these problems, along
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Fig. 7. Gamma of butterfly spread with uncertain volatility. Fully implicit time
stepping, long position, best case.
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Fig. 8. Delta of butterfly spread with uncertain volatility. Crank-Nicolson time
stepping, long position, best case.

with a general approach that can be taken to solve them numerically. This
approach stresses the importance of using a positive coefficient discretization
and fully implicit time stepping. This guarantees convergence to the viscos-
ity solution, and has the important feature that the discrete solutions are
arbitrage-free. Apparently reasonable discretizations such as Crank-Nicolson
methods are not guaranteed to converge to the viscosity solution, nor can
we be sure that they do not lead to free lunches. Moreover, the use of such
methods can lead to serious errors in the estimation of hedging parameters.

A Discrete Equation Coefficients

Let Qni denote the optimal control at node i and time level n, and set



Numerical Methods for Nonlinear PDEs in Finance 23

98 98.5 99 99.5 100 100.5 101 101.5 102
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Asset Price

G
am

m
a

Gamma of Butterfly Spread With Uncertain Volatility
Best Case, Long Position, Crank−Nicolson

Fig. 9. Gamma of butterfly spread with uncertain volatility. Crank-Nicolson time
stepping, long position, best case.

an+1
i = a(Si, τn, Qni ), bn+1

i = b(Si, τn, Qni ), cn+1
i = c(Si, τn, Qni ). (55)

Then we can use central, forward or backward differencing at any node. For
central differencing:

αni,central =
[

2ani
(Si − Si−1)(Si+1 − Si−1)

− bni
Si+1 − Si−1

]
βni,central =

[
2ani

(Si+1 − Si)(Si+1 − Si−1)
+

bni
Si+1 − Si−1

]
. (56)

For forward/backward differencing: (bni > 0/bni < 0)

αni,forward/backward =
[

2ani
(Si − Si−1)(Si+1 − Si−1)

+ max
(

0,
−bni

Si − Si−1

)]
βni,forward/backward =

[
2ani

(Si+1 − Si)(Si+1 − Si−1)
+ max

(
0,

bni
Si+1 − Si

)]
.

(57)
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