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Abstract1

We determine a simple dynamic benchmark for asset allocation by solving an optimal stochas-2

tic control problem for outperforming the traditional constant proportion benchmark. An ob-3

jective function based on a time averaged quadratic deviation from an elevated benchmark is4

proposed. We argue that this objective function combines the best features of tracking error and5

tracking difference. Assuming parametric models of the stock and bond processes, a closed form6

solution for the optimal control is obtained. The closed form optimal control is then clipped to7

prevent use of excessive leverage, and to prevent trading if insolvent. Monte Carlo computations8

using this clipped control are presented which show that for modest levels of outperformance9

(i.e. 80-170 bps per year), this easily implementable strategy outperforms the traditional con-10

stant proportion benchmark with high probability. We advocate this clipped optimal strategy11

as a suitable benchmark for active asset allocation.12

Keywords: optimal control, benchmark outperformance, asset allocation13

JEL codes: G11, G2214

AMS codes: 91G, 65N06, 65N12, 35Q9315

1 Introduction16

Many pension plans have a benchmark portfolio which is used to measure the efficiency of the17

realized investment strategy. These benchmark (or reference) portfolios are invariably based on18

publicly traded financial assets.19

The Canadian Pension Plan (CPP) with CAD 540 billion assets under management has a base20

reference portfolio of 85% global equity and 15% Canadian government bonds (Canadian Pension21

Plan, 2022). The non-base CPP portfolio has a benchmark of 55% global equity and 45% government22

bonds.1 Note that the CPP also allows use of leverage. According to the CPP Annual Report (2022),23

the CPP has outperformed its benchmark by an annualized 80 bps after fees over the last five years.24

25
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1The base portfolio of the CPP plan is much larger than the non-base (additional) portfolio. Clearly, the base
portfolio benchmark is riskier than the non-base portfolio. This is rationalized by noting that the base CPP is only
“partially funded”, (CPP Annual Report, 2022) This, of course, means that since the plan is not fully funded, greater
risk must be taken to have a chance of meeting obligations. One of us (PAF) is currently receiving CPP benefits.
PAF finds this comment somewhat disconcerting.
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Another example is the Norwegian government pension plan, which has USD 1.35 trillion as-26

sets under management. The Norwegian plan has a benchmark of 70% equities and 30% bonds27

(Government Pension Fund Global, 2022).28

Typically, these plans will report results relative to the constant proportion benchmark, in terms29

of performance and risk measures. These reports are used to justify active investment strategies30

and/or investment in alternative assets and use of leverage.31

Investments in alternative assets are a major strategy in the Endowment Model for managing32

a portfolio. This model was based on the spectacular success of the Yale endowment over many33

years. However, a post hoc analysis of endowments and public pension plans which attempted to34

emulate the Yale model compared to a 70-30 (equity-bond) reference portfolio showed poorer returns35

compared to the benchmark (Ennis, 2021), post 2008.36

Given the widely adopted industry practice in evaluating performance relative to the constant37

proportion benchmark strategy, the quest for computing a strategy which outperforms this bench-38

mark becomes immediately relevant and important. Furthermore, one may ask whether it is time39

to revisit the ubiquitous constant proportion reference strategy.40

A better benchmark strategy needs to satisfy at least two criteria: (i) it can be easily constructed41

(ii) it robustly performs better than the existing constant proportion benchmark. We aim to out-42

perform the traditional benchmark and discover a more useful benchmark by solving a stochastic43

optimal control problem with suitable objective functions.44

There is a large literature on techniques for constructing dynamic strategies for outperforming45

a benchmark. We refer the reader to (Browne, 2000; Oderda, 2015; Al-Aradi and Jaimungal, 2018;46

Ni et al., 2022) and the references cited therein.47

In the context of measuring the efficiency of index exchange traded funds (ETFs), there are two48

common metrics: tracking error and tracking difference. The original use of these metrics was in49

the context of an index ETF, where the objective is to track the index closely, not outperform it.50

In this context, tracking error of a portfolio relative to a benchmark is defined as51

Tracking Error = std
(
R− R̂

)
, (1.1)

where std is the standard deviation, R is the return of the active portfolio, and R̂ is the return of52

the benchmark.53

In fact, the Norwegian Pension plan (more properly referred to as Government Pension Plan54

Global) specifies a very tight tracking error of the plan portfolio relative to the 70-30 benchmark of55

publicly traded assets (Norges Bank, 2021).56

The motivation for metric (1.1) is described in Wander (2000). Briefly, this metric might make57

sense if the investor wants to hire a portfolio manager who will outperform an index, without taking58

on too much risk. However, the tracking error (also known as the volatility of relative returns) has59

some odd properties. Suppose that total wealth in the active investment portfolio is denoted by60

W and the total wealth in the benchmark is Ŵ . Assume that both portfolios follow geometric61

Brownian motion (GBM),62

dŴ

Ŵ
= µ̂ dt+ σ̂ dẐ ;

dW

W
= µ dt+ σ dZ ; dẐ · dZ = ρ dt , (1.2)

where dZ, dẐ are increments of Wiener processes. From equation (1.1) we can see that the instan-63

taneous tracking error per unit time, assuming processes (1.2) is64

( Tracking Error )2 = σ̂2 + σ2 − 2ρσ̂σ . (1.3)
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Note the unusual aspect of equation (1.3): tracking error decreases as correlation increases. This65

obviously rewards a manager whose active portfolio has a high positive correlation to the benchmark.66

Suppose σ = σ̂, ρ = 1, µ � µ̂. In this case the tracking error is identically zero, even though the67

managed portfolio severely underperforms the benchmark.68

Tracking error (1.1) might be a valid criteria if we desire to track the benchmark as closely69

as possible, but this metric has been criticized (Johnson et al., 2013; Hougan, 2015; Charteris70

and McCullough, 2020; Boyde, 2021). In fact, these authors suggest that, in measuring the post71

hoc performance of ETFs, the simple tracking difference is a more appropriate metric. Tracking72

difference is simply the difference between the cumulative returns of the investment portfolio and73

the benchmark.274

Suppose that the amount invested in the benchmark at time t is Ŵ (t), and the amount in the75

active portfolio is W (t), with the same amounts invested at time zero, i.e. W (0) = Ŵ (0). We76

measure the performance of the active portfolio, relative to the benchmark, over the time horizon77

[0,T ]. Then, following the spirit of the tracking difference metric, van Staden et al. (2023) suggests78

the following control problem for outperformance relative to the benchmark79

min
P(·)

E

[(
W (T )− eβT Ŵ (T )

)2]
, (1.4)

where E[·] is the expectation and P(·) is the dynamic control strategy (i.e. the asset allocation),80

and W (T ) and Ŵ (T ) are the terminal wealth associated with strategy P(·) and the benchmark81

respectively.82

The intuition behind objective function (1.4) is clear. We desire to outperform the benchmark83

cumulatively over the period [0,T ] by a factor of eβT (i.e. continuously compounded at a rate of84

β per year). We also desire to minimize the volatility relative to the elevated benchmark. The85

performance metric (1.4) thus directly targets an outperformance of β per year, and attempts to86

minimize the uncertainty (risk) associated with meeting this target. In a sense, this performance87

metric combines the desirable features of tracking error and tracking difference.88

We can vary the amount of risk we are willing to take, relative to the benchmark, by adjusting89

β. As β → 0, then the optimal solution to problem (1.4) is to simply invest in the benchmark90

portfolio. We implicitly assume that it is possible to invest in the benchmark directly, or an asset91

which closely replicates the benchmark. However, as β becomes large, we can expect to have to92

take on more risk than the benchmark, in order to increase outperformance.93

A criticism of the objective function (1.4) is that it is symmetric with respect to the upside and94

the downside. This is, of course, a common problem with volatility-type performance criteria. In95

Ni et al. (2022), this objective function was modified to be96

min
P(·)

E

[(
max(0, eβT Ŵ (T )−W (T ))

)2

+ max(0,W (T )− eβT Ŵ (T ))

]
. (1.5)

The objective function (1.5) has a quadratic penalty for underperformance, and a linear penalty97

for outperformance. However, use of objective function (1.5) does not permit closed form solutions,98

and requires use of machine learning techniques (Ni et al., 2022) in order to determine the optimal99

policy P(·).100

Another possible criticism of objective function (1.4) is that deviation from the elevated bench-101

mark is only considered at the terminal time T . However, investment managers are usually required102

to report performance at regular intervals, perhaps quarterly or monthly. Therefore, deviations103

from the performance target throughout the investment horizon [0,T ] are also of concern.104

2In practice, this is often reported in an annualized fashion.
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To address this concern, the following objective function has been suggested in van Staden et al.105

(2022)106

min
P(·)

E

[∫ T

0

(
W (t)− eβtŴ (t)

)2

dt

]
, (1.6)

which is the time averaged quadratic deviation from the elevated benchmark over the investment107

horizon. The main focus in van Staden et al. (2022) is on the use of machine learning methods,108

coupled with a data driven approach, to solve for optimal portfolios using objective function (1.6).109

In contrast to van Staden et al. (2022), the objective of this note is to study properties of110

closed form optimal control solution to problem (1.6) for a simple two asset (stock index and bond)111

portfolio. We also provide a short, intuitive derivation of the optimal control. We use extensive112

Monte Carlo simulations to examine the properties of this closed form solution. Since the closed113

form solution permits infinite leverage, and trading can continue if bankrupt, we apply the clipping114

technique to the closed form optimal control, as in Vigna (2014), to approximate the solution to115

the constrained optimal control problem.116

If we permit a modest amount of leverage, i.e., borrowing up to 30% of net wealth, then this level117

of leverage constraint appears to have a modest effect on the solution (compared to the unconstrained118

control case). This suggests that the clipped optimal control is a good approximation of the true119

constrained control. This simple closed form approximation can then be used to obtain an intuitive120

understanding for the control produced by the objective function (1.6) with realistic investment121

constraints.122

One of our main conclusions is that the outperformance objective (1.6), for modest values of β,123

i.e. β < 200 bps per year, results in fairly conservative controls, which have a high probability of124

outperforming the benchmark, without requiring unreasonable amounts of leverage at any time in125

[0,T ].126

We further demonstrate that the clipped optimal control of the optimal analytic strategy, using127

publicly traded stock and bond indexes, offers close to optimal performance. Since the clipped128

optimal strategy can be easily computed by an asset manager based on historical data, we advocate129

this strategy as an enhanced benchmark for an active asset manager, replacing the standard constant130

proportion strategy. We believe that this new dynamic benchmark would allow investors (and the131

taxpayers paying into public pension plans) to discern true investment skill (or the lack thereof) of132

the asset managers.133

There is more room for success if we apply criteria (1.6) to cases where the investment portfolio134

has additional assets compared to the benchmark, which would normally be the case. In addition,135

it might be desirable to avoid postulating a parametric form for the portfolio constituents and136

generate market scenarios by bootstrapping historical returns (Ni et al., 2022). This requires use137

of numerical techniques (such as machine learning), which is the main topic of van Staden et al.138

(2022).139

2 Investment Market140

We assume that the investor has access to two funds: a broad market stock index fund and a constant141

maturity bond index fund, and the investment horizon is T . Let St and Bt respectively denote the142

real (inflation adjusted) amounts invested in the stock index and the bond index respectively. In143

general, these amounts will depend on the investor’s strategy over time, as well as changes in the144

real unit prices of the assets. In the absence of an investor determined control (i.e. cash injections145

or rebalancing), all changes in St and Bt result from changes in asset prices.146
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We model the stock index as following a jump diffusion process. Let St− = S(t − ε), ε → 0+,147

i.e. t− denotes immediately before time t, and let ξ be a random jump multiplier. When a jump148

occurs, St = ξSt− . We assume that log(ξ) follows a double exponential distribution (Kou, 2002;149

Kou and Wang, 2004) with parameters η1 and η2, respectively. The probability of an upward jump150

is Pu , while 1− Pu is the probability of a downward jump. The density function for y = log(ξ) is151

f(y) = Puη1e
−η1y1y≥0 + (1− Pu)η2e

η2y1y<0 . (2.1)

Note that the density of ξ has the form g(ξ) = f(log ξ)/ξ. Define κ = E[ξ − 1], and assuming152

constant units of stock index holding,153

dSt
St−

= (µ− λκ) dt+ σ dZt + d

(
πt∑
i=1

(ξi − 1)

)
, (2.2)

where µ is the (uncompensated) drift rate, σ is the diffusive volatility, Zt is a Brownian motion, πt154

is a Poisson process with positive intensity parameter λ, and ξi are i.i.d. positive random variables155

having distribution (2.1). Moreover, ξi, πt, and Zt are assumed to all be mutually independent.156

We assume the constant maturity bond index follows157

dBt = rBt dt . (2.3)

Let pt be the fraction of total wealth Wt invested in stock index at t. Assuming continuous158

rebalancing, the total wealth in the investment portfolio follows the process159

dWt = ptWt

(
dSt
St

)
+ (1− pt)Wt

(
dBt
Bt

)
+ q dt , (2.4)

where q is continuous constant rate of cash injection into the portfolio. Similarly, let Ŵt be the total160

wealth invested in the benchmark portfolio, with p̂ being the fraction of total benchmark wealth161

invested in the stock portfolio. We assume in the following that p̂ is a constant, which is normally162

the case for large pension plan benchmarks. This makes our closed form solution final expressions163

quite simple. However, it is still possible to obtain closed form solutions if p̂ = p̂(t), but the final164

expressions for the optimal control become quite unwieldy.165

Then, analogously to equation (2.4), the process followed by the benchmark wealth is166

dŴt = p̂Ŵt

(
dSt
St

)
+ (1− p̂)Ŵt

(
dBt
Bt

)
+ q dt . (2.5)

Remark 2.1 (Stochastic Bond Returns). Here we have assumed that bond process is non-stochastic,167

which is arguably a reasonable approximation for short term, low volatility bond indexes. However,168

it is possible to directly model real returns of a constant maturity bond index fund by a jump diffusion169

process (Lin et al., 2015; Forsyth, 2022).170

3 Cumulative Tracking Difference171

We will now proceed to formally define the investment problem based on the objective function172

(1.6), which we will refer to as the cumulative tracking difference (CD) in the following.173

Begin with equations (2.4 - 2.5). Define the value function Ṽ (w, ŵ,t) as174

Ṽ (w, ŵ,t) = inf
p

{
E(w,ŵ,t)
p

[∫ T

t
(Ŵ (s)eβs −W (s))2 ds

∣∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
, (3.1)
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where E(w,ŵ,t)
p [·] denotes the expectation under the control p(·) as observed at (w, ŵ,t). For nota-175

tional simplicity, we subsequently omit the dependence in p(·), when there is no confusion.176

For t ∈ [0,T −∆t] the tower property gives177

Ṽ (w, ŵ,t) = inf
p

{
E(w,ŵ,t)
p

[∫ t+∆t

t
(Ŵ (s)eβs −W (s))2 ds

+

∫ T

t+∆t
(Ŵ (s)eβs −W (s))2 ds

∣∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
= inf

p

{
E(w,ŵ,t)
p

[∫ t+∆t

t
(Ŵ (s)eβs −W (s))2 ds

+ Ṽ (W (t+ ∆t), Ŵ (t+ ∆t), t+ ∆t)

∣∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
. (3.2)

It will be convenient to write the final equation in terms of backward time τ = T − t. To this end,178

we define179

V (w, ŵ, τ) = Ṽ (w, ŵ, T − τ)

τ = T − t . (3.3)

In Appendix A, we take the limit as ∆t → 0 in equation (3.2), use Ito’s Lemma with jumps180

(Tankov and Cont, 2009), and write the final equations in terms of V (w, ŵ, τ) (as in equation (3.3))181

to obtain the Hamilton-Jacobi-Bellman (HJB) equation182

Vτ = inf
p
LpV , (3.4)

where LpV is defined as183

LpV ≡ (w(r + (µ− r − λκ)p) + q)Vw + (ŵ(r + (µ− r − λκ)p̂) + q)Vŵ184

+
p2w2σ2

2
Vww +

p̂2ŵ2σ2

2
Vŵŵ +

(
pp̂wŵσ2

)
Vwŵ185

+λ

∫ ∞
0

V (w + pw(ξ − 1), ŵ + p̂ŵ(ξ − 1), τ)g(ξ) dξ + (ŵeβ(T−τ) − w)2 − λV . (3.5)186

Here, g(ξ) is the density of ξ and subscripts in V , e.g., Vτ , denote partial derivatives. Since there are187

no investment constraints, the domain of PDE (3.4) is (w, ŵ,τ) ∈ (−∞,+∞)× (−∞,+∞)× [0,T ].188

In addition, note that from equation (3.1) we have189

Ṽ (w, ŵ, T ) = 0 , (3.6)190

hence191

V (w, ŵ,0) = 0 . (3.7)192

193

3.1 Closed form solution194

We give a brief overview of the method used to derive the closed form solution here. For a rigorous195

solution of problem (3.4), we refer the reader to van Staden et al. (2022).196
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It is convenient to define the following parameters. From equation (2.1), recalling that y = log(ξ),197

we have198

κ = E[ξ − 1] =
Puη1

η1 − 1
+

(1− Pu)η2

η2 + 1
− 1.

κ2 = E[(ξ − 1)2] =
Puη1

η1 − 2
+

(1− Pu)η2

η2 + 2
− 2κ− 1 . (3.8)

Assume199

V = A(τ)w2 +B(τ)w + C(τ) + Â(τ)ŵ2 + B̂(τ)ŵ +D(τ)wŵ

Vτ = Aτw
2 +Bτw + Cτ + Âτ ŵ

2 + B̂τ ŵ +Dτwŵ (3.9)

Recall that the subscript, e.g., Vτ , denotes partial derivative. Substitute equation (3.9) into equation200

(3.4). This is a quadratic function of the control p. It is easily verified (after the fact) that, for the201

objective function of the optimization problem in (3.4), the coefficient of p2 is positive. Applying the202

first order condition determines the optimal control. This yields a system of ODEs for the unknown203

A,B, . . ., with initial conditions for the ODEs determined by matching equation (3.9) with equation204

(3.7).205

It turns out that the control p(w, ŵ,τ), τ = T − t, depends only on A,B,D, which are given by206

Aτ = (2r − η)A+ 1 ; A(0) = 0

Dτ = (2r − η)D − 2eβt ; D(0) = 0

Bτ = (r − η)B + 2qA+ qD ; B(0) = 0

η =
(µ− r)2

σ2
e

; σ2
e = σ2 + λκ2 ; κ2 = E[(ξ − 1)2] (3.10)

The solutions are207

A =
e(2r−η)τ − 1

(2r − η)
; D = 2eβT

(
e−βτ − e(2r−η)τ

2r − η + β

)
(3.11)

and208

B =
2q

2r − η

(
e(2r−η)τ − e(r−η)τ

r
−
(
e(r−η)τ − 1

)
r − η

)
+

2qeβT

2r − η + β

(
e(r−η)τ − e−βτ

r − η + β
− (e(2r−η)τ − e(r−η)τ )

r

)
. (3.12)

The optimal control p∗ (from the first order condition) is given by209

p∗ =
(µ− r)
wσ2

e

(
h(τ) + (ŵf(τ)− w)

)
+ p̂

ŵ

w
f(τ)

h(τ) =
−B
2A

; f(τ) =
−D
2A

(3.13)

Some algebra (van Staden et al., 2022) shows that210

eβT ≥ f(τ) ≥ eβ(T−τ) ; h(τ) ≥ 0 . (3.14)

211

7



Remark 3.1 (Trading continues if bankrupt). Since the closed form solution allows unbounded212

leverage, then there is nothing to prevent Wt < 0. This is similar to the closed form solution for213

multi-period mean variance optimization (Zhou and Li, 2000; Wang and Forsyth, 2010). In this214

case, equation (3.13) implies that p∗ < 0, so that the amount in the stock index is p∗w > 0. In other215

words, the investor can continue to borrow and trade stocks, even if insolvent, which is unrealistic.216

3.1.1 Intuition from control (3.13)217

Consider the simple case where there is no cash injection, i.e. q = 0, which implies that B(τ) ≡ 0.218

For ease of exposition, make the assumptions that219

(µ− r) ≥ 0 ,

p̂ŵ ≥ 0 ,

w > 0 , but see Remark 3.1 . (3.15)

In this case, it then follows from equation (3.13) that220

p


= p̂ if w = ŵf(τ)

> p̂ if w < ŵf(τ)

< p̂ if w > ŵf(τ)

. (3.16)

The strategy is fundamentally contrarian. If the active portfolio performs poorly relative to the221

benchmark, then the stock index weight is increased. On the other had, if we are fortunate, and222

the active portfolio does well relative to the benchmark, then the stock index weight is decreased.223

Remark 3.2 (Robustness of control to misspecification). In van Staden et al. (2021), it has been224

noted that optimal multi-period mean-variance strategies are robust to model misspecification errors,225

in contrast to the single period mean-variance case. This robustness can be traced to the nature of a226

contrarian control. We conjecture that, similarly to the multi-period mean-variance case, the optimal227

control (3.13) is also robust to model parameter misspecification. Some numerical tests verifying this228

conjecture are given in Section 4.1.5.229

3.2 Clipped control: Handling bankruptcy and bounded leverage230

The closed form solution (3.13) is for the unconstrained optimal control problem, e.g. infinite231

leverage is allowed and trading can continue if bankrupt. This can produce unrealistically optimistic232

results for some closed form solutions of optimal control in financial applications, e.g., a closed form233

solution for multi-period Mean-Variance (MV) optimal strategies (Zhou and Li, 2000). In the MV234

case, if the MV control problem under a no-bankruptcy constraint (i.e. trading stops if bankrupt)235

is solved, then this constraint has a large effect on the solution, compared to the unconstrained236

solution (Wang and Forsyth, 2010).237

In order to prevent unbounded leverage, we can require that the fraction of wealth invested in238

stocks satisfy the constraint239

p ∈ [0, pmax] , (3.17)

where pmax is a bounded constant. This would then change equation (3.4) to240

Vτ = inf
p∈Z
LpV

Z = [0,pmax] . (3.18)
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In general, it is not possible to obtain a closed form solution to equation (3.18). Smooth solutions241

to the HJB equation (3.18) may not exist. It is non-trivial to devise numerical techniques which242

ensure convergence to the viscosity solution (Wang and Forsyth, 2010; Ma and Forsyth, 2017) of243

equation (3.18).244

Since we are also interested in discovering a better performing strategy satisfying the constraint245

(3.18), which can easily be computed by any asset manager, we consider a clipping procedure to the246

unconstrained optimal control (3.18). The optimal control and the clipped optimal control p∗c are247

explicitly given below248

p∗ =
(µ− r)
σ2
ew

(
h(τ) + (ŵf(τ)− w)

)
+
p̂ŵf(τ)

w

p∗c = min(max(0, p∗), pmax) , (3.19)

A similar idea was exploited in Vigna (2014) in the context of closed form solutions for multi-period249

mean-variance asset allocation.250

Remark 3.3 (No trading in stocks if bankrupt). If there are no jumps (i.e. λ = 0 in equation251

(2.4)), then imposing a bounded leverage constraint ensures that Wt ≥ 0, see Wang and Forsyth252

(2010). However, if pmax > 1, this is no longer true if we permit jumps in the stock index. Note253

that equation (3.19) also imposes the condition p∗c ≥ 0. If Wt ≤ 0, then this forces p∗c ≡ 0, which254

means that the stock is liquidated, and debt accumulates with interest r until t = T .255

Note that if w � ŵf(t) in equation (3.19), then, it is possible that p∗ < 0. In other words, the256

unconstrained control in this case shorts stocks. This problem can be attributed to the symmetric257

risk measure in equation (3.1), since extreme outperformance, i.e., w > eβtŵ, is also penalized. The258

clipped control prevents this sort of undesirable behaviour.259

Some pension plans are required to undertake a policy of no-leverage, i.e. pmax = 1, while other260

plans allow limited leverage. In our model set-up, we have only two assets: a stock index and a261

bond index for both the benchmark and the optimal portfolio. Usually the benchmark is a stock262

index and a bond index. However, many pension plans are using alternative assets, such as private263

equity and private credit. Although controversial, some authors have suggested that returns on264

private equity can be replicated using a leveraged small cap stock index (see Phalippou (2014);265

L’Her et al. (2016) ). To this end, we set pmax = 1.3 to approximate (very roughly) a portfolio with266

some exposure to alternative assets.267

To summarize, we have clipped the unconstrained control to ensure that we have a feasible268

solution to the constrained problem (3.18). It is unlikely that a closed form solution exists for269

equation (3.18). The clipped control is almost certainly sub-optimal. In the following, we will270

carry out numerical simulations using both the unconstrained control, and the feasible, sub-optimal271

clipped control. In terms of the objective function (1.4), the unconstrained control solution will272

provide a lower bound for the true constrained control objective function. We can give a bound for273

the error in using the clipped control (3.19) by examining the difference between the clipped control274

objective function value and the unconstrained control objective function value.275

However, it is of more practical interest to examine the performance, in terms of the usual276

investment metrics, of the clipped control strategy compared to the benchmark. We will see that277

this approximate control does surprisingly well.278

4 Numerical Results279

We use data from the Center for Research in Security Prices (CRSP) on a monthly basis over the280

1926:1-2021:12 period. Our base case tests use the CRSP 30 day T-bill for the bond asset and281
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the CRSP value-weighted total return index for the stock index. This latter index includes all282

distributions for all domestic stocks trading on major U.S. exchanges. All of these various indexes283

are in nominal terms, so we adjust them for inflation by using the U.S. CPI index, also supplied by284

CRSP.285

We use the threshold technique (Cont and Mancini, 2011; Dang and Forsyth, 2016) to esti-286

mate the parameters for the parametric stochastic process models. Table 4.1 shows the results of287

calibrating the models to the historical data.288

µ σ λ Pu η1 η2 T-bill return r

0.0897 0.1464 0.3229 0.2258 4.3638 5.5316 0.0035

Table 4.1: Estimated annualized parameters for double exponential jump diffusion model. Value-
weighted CRSP index, 30 day US T-bill index deflated by the CPI. Sample period 1926:1 to 2021:12.
The mean return of the 30-day T-bill index is r = 0.0035.

4.1 Investment scenario289

Table 4.2 shows our base case investment scenario. We consider T = 10 years, with an initial290

investment of 100. Cash injection occurs continuously at a rate of 10 per year. The target benchmark291

is p̂ = 0.70 in the stock index and 0.30 in bonds. Recall that this is the benchmark used by the292

Norwegian fund (Government Pension Fund Global, 2022). This is also the benchmark used in a293

study of the underperformance of endowments (Ennis, 2021).294

Investment horizon T (years) 10.0
Equity market index CRSP Cap-weighted index (real)
Bond index 30-day T-bill (US) (real)
Initial portfolio value W0 100
Cash Injection per year q 10
Rebalancing times Continuous
Outperformance target (per year) β {.01, .02}
Benchmark fraction in stock index p̂ .70
Market parameters See Table 4.1

Table 4.2: Input data for examples.

4.1.1 Bounded leverage (clipped optimal control)295

We carry out Monte Carlo simulations assuming the processes (2.2-2.3). We use 1000 timesteps296

and 6.4 × 105 simulations. We consider β = {.01, .02}. A desirable strategy should achieve high297

probability of (WT /ŴT ) > 1.298

Rather than report the objective function value (1.6), We define a normalized dimensionless299

objective function as300

Normalized Objective Function =
1

W0

√(
1

T
E

[∫ T

0

(
W (t)− eβtŴ (t)

)2

dt

])
(4.1)
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Table 4.3 shows the normalized objective function, comparing the results for the clipped and un-301

constrained controls. We remind the reader that the clipped control is only an approximation to302

the true control for equation (3.18). However, an upper bound for the error incurred by using the303

clipped control can be determined from the difference between the unconstrained objective function,304

and the objective function obtained using the clipped control. Table 4.3 shows that the worst case305

error from the approximate control (in terms of the normalized objective function) is of the order306

of one percent for β = .01 and five per cent for β = .02. We emphasize that this is very likely a307

gross overestimate of the error incurred using the clipped control to solve problem (3.18).308

β = .01 β = .02

unconstrained 0.07441 0.1556
Clipped p ∈ [0,1.3] 0.07540 0.1629

Table 4.3: Normalized objective function (4.1). Scenario in Table 4.2. Clipped control refers to
equation (3.19), unconstrained control equation(3.13). The target outperformance β is as shown.

However, perhaps a more meaningful comparison is in terms of the usual investment statistics,309

which we show in Table 4.4. We can see from Table 4.4 that the statistics are very similar for the310

unconstrained control and the clipped control, for β = .01. As we might expect, the differences311

are somewhat larger for the more aggressive case of β = .02. In this case (β = .02), the largest312

difference occurs for the expected shortfall at the 5% level, which is about six per cent. Expected313

shortfall in this case is the mean of the worst 5% of the outcomes for WT , which we denote by314

ES(5%).315

However, we emphasize that the unconstrained control case is not an implementable trading316

strategy in practice.317

318

Mean WT Median WT 5th percentile 95th percentile ES(5%) Median IRR

Unconstrained optimal control β = .01

352.38 325.45 165.65 623.29 131.99 0.062

Clipped optimal control: p ∈ [0,1.3] ; β = .01

352.17 325.43 164.43 623.26 129.27 0.062

Unconstrained optimal control β = .02

377.47 349.07 162.04 681.18 117.15 0.071

Clipped optimal control p ∈ [0,1.3] ; β = .02

375.61 348.70 147.08 681.12 110.33 0.071

Table 4.4: Statistics of WT for the clipped optimal strategy, and the constant proportion benchmark.
Scenario in Table 4.2. Clipped control (3.19) used for the stock index weight. ES(5%) is the mean of
the worst 5% of the outcomes for WT . IRR is the internal rate of return. We use 1000 timesteps and
6.4× 105 simulations. The target outperformance β is as shown. Scenario in Table 4.2. Statistics for
the benchmark portfolio given in Table 5.1

319

11



Figure 4.1 shows the cumulative distribution function (CDF) of the ratio (WT /ŴT ), for both the320

unconstrained control (3.13) and the clipped control (3.19), for β = .01, .02. A desirable outcome321

is that (WT /ŴT ) > 1 (the active portfolio has outperformed the benchmark).322

Of course, the solution to the constrained control problem, analogous to (3.4) but with p ∈323

[0, pmax], will differ from the clipped control solution. The clipped optimal control p∗c in (3.19)324

only approximates the solution to the constrained optimal control problem. Consequently we would325

expect the true constrained solution CDF of W/Ŵ to differ from the clipped control solution. How-326

ever, Figure 4.1(a) shows that, for β = .01, the CDFs from the clipped control and the unconstrained327

control overlap. This indicates that the clipped control (3.19) is almost exact in this case, since the328

constraints do not appear to be binding for this value of β. For the case of β = .02, Figure 4.1(b)329

shows that the CDFs for the clipped control approximation and the exact unconstrained control330

overlap, except for a small difference near (W/Ŵ ) = 1.331

The implication is that the clipped optimal control is a reasonable approximation to the exact332

optimal control under constraints (3.18) at least for moderate levels of the outperformance target333

β ≤ 200 bps per year.334

From now on, we will show results using only the clipped approximate control p∗c (3.19). We335

will refer to this as the clipped optimal control to distinguish this strategy from the benchmark. It336

will be understood that p∗c is in fact only an approximation to the optimal control under constraints337

(3.18).338

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unconstrained

Clipped

(a) β = .01

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unconstrained

Clipped

(b) β = .02

Figure 4.1: CDF of the ratio RT = WT /ŴT , scenario in Table 4.2. Clipped optimal control p̃∗ with
pmax = 1.3 in (3.19). Unconstrained optimal control, p∗ from equation (3.13). Outperformance is
indicated if R > 1. 1000 timesteps and 6.4× 105 Monte Carlo simulations.

4.1.2 Wealth ratio339

Figure 4.2 shows the time evolution of the wealth ratio (Wt/Ŵt), assuming the clipped control (3.19).340

Recall that outperformance at t is indicated when (Wt/Ŵt) > 1. Observe that for β = .01, there341

is an 80% probability that the clipped control strategy generates wealth greater than 0.99 of the342

benchmark wealth, at all times during the ten year investment horizon. There is an 80% probability343

of outperforming the benchmark at all times greater than about 2.5 years, for both values of β. In344

addition, from Figure 4.1, we observe that the clipped control solution has a 90% probability of345

outperforming the benchmark at t = T , for both values of β. For β = .01, there is clearly a smaller346

spread of the wealth ratio around the median value (over time) compared with β = .02, in Figure347

4.2. This corresponds to our intuition: as the outperformance target β is increased, it is necessary348
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to take on more risk.349
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Figure 4.2: Time evolution of the wealth ratio Wt/Ŵt, clipped optimal strategy (3.19). Scenario in
Table 4.2. Outperformance is indicated if Rt = (Wt/Ŵt) > 1. 1000 timesteps and 6.4 × 105 Monte
Carlo simulations.

4.1.3 Fraction in stocks350

Figure 4.3 shows the percentiles of the time evolution of the fraction in the stock index. In this351

case, there is a striking difference between Figure 4.3(a) (β = .01) and Figure 4.3(b) (β = .02). For352

β = .01, the median equity fraction starts off at about 0.83 and decreases as time goes on. The353

upper and lower percentiles are tightly clustered about the median. The 80th percentile fraction354

in equities never exceeds .90 (recall that the benchmark equity fraction is .70). In contrast, the355

β = .02 case shows a much wider variation about the median. At the 80th percentile level, the356

clipped optimal control in this case shows a modest amount of leverage (p ≤ 1.05).357

The reader should note that for any given stochastic path, the control does not stay at the358

percentile bounds, but responds to actual investment experience. For example, in the β = .01 case,359

Figure 4.3(a) can be interpreted as indicating that the fraction in equities never exceeds 0.88 at the360

80th percentile and is never less than 0.75 at the 20th percentile, over the ten year horizon.361
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Figure 4.3: Time evolution of the equity fraction, clipped optimal strategy equation (3.19). Scenario
in Table 4.2. 1000 timesteps and 6.4× 105 Monte Carlo simulations.
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4.1.4 Internal rate of return362

Another way of examining the results is to compute the annualized pathwise internal rate of return363

(IRR), for both the clipped optimal strategy (3.19) and the benchmark, over the entire 10 year364

period.365

Denote the IRR of the clipped optimal strategy by IRRco and the IRR of the benchmark by366

IRRbench. The pathwise difference IRRdiff is then determined by367

IRRdiff = IRRco − IRRbench . (4.2)

Figure 4.4 shows the CDF of IRRdiff . For the aggressive target outperformance β = .02 (Figure368

4.4(b)), observe that there is an 80% chance that the IRR of the clipped optimal strategy beats the369

benchmark by more than 100 bps per annum. The median outperformance is about 170 bps per370

annum. As expected, the less aggressive case of β = .01 (Figure 4.4(a)), has about a 92% probability371

of beating the benchmark at ten years, with a median pathwise outperformance of about 85 bps372

per year.373
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Figure 4.4: CDF of the pathwise difference in terminal IRR (clipped optimal strategy compared to
the benchmark), over [0.T ], see equation (4.2). Scenario in Table 4.2. Clipped control, pmax = 1.3 in
equation (3.19). Unconstrained control, equation (3.13). 1000 timesteps and 6.4 × 105 Monte Carlo
simulations. Outperformance indicated by IRRdiff > 0.

374

4.1.5 Parameter Misspecification375

As an additional check on the robustness of this strategy, we will simulate a case where376

• The active strategy is based on an assumed set of parameters377

• The actual risky asset follows a different set of parameters378

Numerical experiments reveal that, as might be expected, the most sensitive parameter is the379

stock drift µ in equation (2.2). We will use the base case parameters in Table 4.1, with the scenario380

in Table 4.2.381

We will focus attention on the conservative outperformance target of β = .01 in equation (1.6).382

We will compute the optimal strategy (3.19) using the parameters in Table 4.1. In our simulations,383

we will reduce the simulated stock drift by 200 bps and 400 bps (annually). To be more precise, we384
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replace µ in equation (2.2) by µa = µ− .02 and µa = µ− .04. Note that when we reduce the drift,385

we reduce the drift for both the controlled strategy and the benchmark. Table 4.5 shows that, even386

in this case where the parameters are misspecified, the active strategy continues to have a median387

outperformance of 70− 80 bps per year.388

Mean WT Median WT 5th percentile 95th percentile ES(5%) Median IRR

Reduce drift µ by 200 bps

Benchmark p̂ = .70

294.22 271.79 152.18 506.26 131.14 .040

Clipped optimal control

311.87 289.21 140.11 552.66 107.31 .048

Reduce drift µ by 400 bps

Benchmark p̂ = .70

263.36 243.68 137.87 450.17 119.11 .026

Clipped optimal control

275.87 256.84 115.79 490.98 88.31 .033

Table 4.5: Statistics of WT for the clipped optimal strategy, and the constant proportion benchmark.
Scenario in Table 4.2. Clipped control (3.19) used for the stock index weight. ES(5%) is the mean
of the worst 5% of the outcomes for WT . We use 1000 timesteps and 6.4 × 105 simulations. The
target outperformance β = .01. Control computed using the data in Table 4.1. Actual simulations
used process (2.2) for the stock, except that the actual drift µa is µa = µ− .02 and µa = µ− .04.

Figure 4.5 shows the CDFs of the wealth ratioWT /ŴT . We compare the cases with and without389

stock drift reductions. The results are very close for a reduction of 200 bps. For the 400 bps case,390

the probability of underperformance has increased from ten per cent to twenty per cent. This is391

acceptable under this extreme stress test.392

Figure 4.6 shows the time evolution of Wt/Ŵt for the cases with a drift reduction of 200 and393

400 bps per year.394

395
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Figure 4.5: CDF of the ratio RT = WT /ŴT for the scenario in Table 4.2. No reduction: control
computed using data in Table 4.1, stock price follows equation (2.2) for both controlled portfolio and
benchmark. Reduction: control computed using data in Table 4.1, stock price follows equation (2.2)
for both controlled portfolio and benchmark except that the stock drift is reduced by the amount shown.
Outperformance is indicated if R > 1.
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Figure 4.6: Time evolution of the wealth ratio Wt/Ŵt, strategy (3.19). Strategy computed using the
data in Table 4.1. Simulated stock market follows (2.2), except that the stock drift µa is reduced by
the amount shown. Scenario in Table 4.2. Outperformance is indicated if Wt/Ŵt > 1. 1000 timesteps
and 6.4× 105 Monte Carlo simulations.
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5 Summary statistics396

Table 5.1 shows summary statistics for the clipped optimal control and the constant proportion397

benchmark. We can see directly from this table that the median IRR for the clipped control for the398

aggressive case of β = .02 is about 170 bps higher than the benchmark. However, there is no free399

lunch here, the 5th percentile for the clipped control is 147 compared to the 5th percentile for the400

benchmark of 169. In Table 5.1, we include the expected shortfall at the 5% level, which is simply401

the mean of the worst five per cent of the terminal wealth values WT . We denote this tail measure402

by ES(5%). For the β = .02 case, the ES(5%) for the benchmark is 145 compared to 110 for the403

clipped optimal control.404

On the other hand, for the (relatively) conservative case of β = .01, (Table 5.1) the median405

for the clipped optimal strategy outperforms the benchmark by 80 bps per year, and has about406

the same result at the 5th percentile. The ES(5%) is, in this case, only slightly worse than the407

benchmark. In this case, the results using the clipped optimal strategy are quite impressive. If we408

target an outperformance of 100 bps per year, then the actual median outperformance is about 80409

bps per year, with very little increase in the downside tail risk.3 This is almost a free lunch.410

We remind the reader that the total real amount invested over 10 years is 200, hence these tail411

outcomes (at the 5th percentile) are very poor, for both the constant proportion benchmark and412

clipped optimal strategy. While pension plan holders would be very disappointed in these results413

for either strategy (at the 5th percentile), in general, the clipped control strategy is preferable to414

the constant proportion strategy and can therefore serve as an enhanced benchmark for active asset415

managers.416

Mean WT Median WT 5th percentile 95th percentile ES(5%) Median IRR

Benchmark p̂ = .70

329.38 303.66 168.6 570.35 144.97 0.054

Clipped optimal control β = .01

352.17 325.43 164.43 623.26 129.27 0.062

Clipped optimal control β = .02

375.61 348.70 147.08 681.12 110.33 0.071

Table 5.1: Statistics of WT for the clipped optimal strategy, and the constant proportion benchmark.
Scenario in Table 4.2. Clipped control (3.19) used for the stock index weight. ES(5%) is the mean of
the worst 5% of the outcomes for WT . We use 1000 timesteps and 6.4× 105 simulations. The target
outperformance β is as shown. Scenario in Table 4.2. ES(5%) is the mean of the worst 5% of the
outcomes. IRR is internal rate of return.

6 Conclusions417

In this paper, we have shown that the clipped form of the closed form control for the cumulative418

difference objective function can achieve a high probability (90%) of outperforming a benchmark,419

with a median outperformance of 80-170 bps per year. The clipped form of the control has the420

3The annualized outperformance of the Canadian Pension Plan (CPP) relative to the benchmark (2017-2022), net
of costs, is 80 bps. See page 46 in CPP Annual Report (2022).
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desirable property that (i) leverage is bounded and (ii) no trading if bankrupt. Technically, the421

clipped control is suboptimal, but our Monte Carlo simulations indicate that the degree of sub-422

optimality is small. This property can be traced to the inherent conservative policy of the cumulative423

difference objective function.424

Based on the assumption that the market dynamics are driven by equation (2.2), with known425

parameters, our simulations show that a dynamic trading strategy can beat a fixed weight benchmark426

by 80-170 bps per year with little risk. This is, of course, not surprising, since the admissible control427

set for a dynamic trading strategy is clearly larger than the singleton fixed weight control. Even in428

the case of misspecified parameters, the dynamic strategy still holds up well.429

The optimal control solution reminds us of a very important fact. Any attempt to outperform430

a benchmark has some risk of underperforming the benchmark. To assert otherwise is to postulate431

an arbitrage opportunity. Hence, it is important to quantify this risk-reward tradeoff.432

Consequently, we advocate the use of the clipped control from the cumulative difference objective433

function as a dynamic benchmark strategy. Since a closed form control is readily available, it would434

be straightforward to apply this clipped optimal control to historical return data of publicly traded435

assets.4 This would then differentiate true investment skill from the easy gains due to dynamic436

trading.5437

Of course, most of these pension plans employ a large universe of possible assets, including private438

equity and private credit. It is arguable that many of these alternative assets can be replicated439

using publicly traded factor portfolios (Ang, 2014). Hence, a better outperforming strategy would440

be an optimal dynamic strategy comprised of standard indexes and factor portfolios. We intend to441

report on this in our future work (van Staden et al., 2022).442
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Appendices454

455

4We could use historical data, known at the beginning of an investment period, to estimate market parameters.
The parameter β in the objective function can then be adjusted to generate the desired IRR outperformance compared
to the benchmark.

5It is interesting to note that the CPP 2021 annual report(Canadian Pension Plan, 2021) lists personnel costs as
CAD 938 million, for 1,936 employees, giving an average cost of CAD 500,000 per employee-year.
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A Informal derivation of equation (3.4)456

We rewrite equation (2.2) informally as457

dSt
St−

= (µ− λκ) dt+ σ dZt + (ξ − 1)dQ

dQ =

{
0 Probability: (1− λ dt)
1 Probability: (λ dt)

(A.1)

We can then write equations (2.4) and (2.5) as458

dWt− = Wt−(r + p(µ− r − λκ)) dt+ q dt+ pWt−σ dZ + pWt−(ξ − 1)dQ
dŴt− = Ŵt−(r + p̂(µ− r − λκ)) dt+ q dt+ p̂Ŵt−σ dZ + p̂Ŵt−(ξ − 1)dQ . (A.2)

Now, given SDEs (A.2), value function Ṽ (w, ŵ,t), with W (t) = w, Ŵ (t) = ŵ, then Ito’s Lemma459

(see (Tankov and Cont, 2009)) gives460

dṼ = Ṽt dt+ (w(r + (µ− r − λκ)p) + q) Ṽw dt+ (ŵ(r + (µ− r − λκ)p̂) + q) Ṽŵ dt

+
p2w2σ2

2
Ṽww dt+

p̂2ŵ2σ2

2
Ṽŵŵ dt+

(
pp̂wŵσ2

)
Ṽwŵ dt

+
(
p̂ŵσṼŵ + pwσṼw

)
dZt

+
(
Ṽ (w + pw(ξ − 1), ŵ + p̂ŵ(ξ − 1), t)− Ṽ (w, ŵ, t)

)
dQ . (A.3)

Rewrite equation (3.2)461

0 = inf
p

{
E(w,ŵ,t)
p

[∫ t+∆t

t
(Ŵ (s)eβs −W (s))2 ds

+ Ṽ (W (t+ ∆t), Ŵ (t+ ∆t), t+ ∆t)− Ṽ (w, ŵ, t)

∣∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
= inf

p

{
E(w,ŵ,t)
p

[
(ŵeβt − w)2 dt+ dṼ

]}
; ∆t→ 0 .

(A.4)

Recall that g(ξ) is the density of ξ. Substitute equation (A.3) into equation (A.4), noting that462

E[dZt] = 0 and E[dQ] = λ dt gives463

0 = inf
p

{
Ṽt dt+ (w(r + (µ− r − λκ)p) + q) Ṽw dt+ (ŵ(r + (µ− r − λκ)p̂) + q) Ṽŵ dt

+
p2w2σ2

2
Ṽww dt+

p̂2ŵ2σ2

2
Ṽŵŵ dt+

(
pp̂wŵσ2

)
Ṽwŵ dt

+λ

(∫ ∞
0

Ṽ (w + pw(ξ − 1), ŵ + p̂ŵ(ξ − 1), τ)g(ξ) dξ − Ṽ
)
λ dt+ (ŵeβt − w)2 dt

}
.

(A.5)

Now, define464

τ = T − t
V (w, ŵ, τ) = Ṽ (w, ŵ, T − τ) . (A.6)

19



Substitute equation (A.6) into (A.5) and divide by dt to obtain465

Vτ = inf
p
LpV , (A.7)

where466

LpV ≡ (w(r + (µ− r − λκ)p) + q)Vw + ((r + ŵ(µ− r − λκ)p̂) + q)Vŵ

+
p2w2σ2

2
Vww +

p̂2ŵ2σ2

2
Vŵŵ +

(
pp̂wŵσ2

)
Vwŵ

+λ

∫ ∞
0

V (w + pw(ξ − 1), ŵ + p̂ŵ(ξ − 1), τ)g(ξ) dξ + (ŵeβ(T−τ) − w)2 − λV .(A.8)

467
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