Hedging with a Correlated Asset:
Solution of a Nonlinear Pricing PDE

H. Windcliff J. Wang P.A. Forsyth K.R. Vetzal

June 14, 2005

Abstract

Hedging a contingent claim with an asset which is not perfectly correlated with the underlying as-
set results in unhedgeable residual risk. Even if the residual risk is considered diversifiable, the option
writer is faced with the problem of uncertainty in the estimation of the drift rates of the underlying and
the hedging instrument. If the residual risk is not considered diversifible, then this risk can be priced
using an actuarial standard deviation principle in infinitesmal time. In both cases, these models result in
the same nonlinear partial differential equation (PDE). A fully implicit, monotone discretization method
is developed for solution of this pricing PDE. This method is shown to converge to the viscosity solution.
Certain grid conditions are required to guarantee monotonicity. An algorithm is derived which, given
an initial grid, inserts a finite number of nodes in the grid to ensure that the monotonicity condition is
satisfied. At each timestep, the nonlinear discretized algebraic equations are solved using an iterative al-
gorithm, which is shown to be globally convergent. Monte Carlo hedging examples are given to illustrate
the standard deviation of the profit and loss distribution at the expiry of the option.
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AMS Classification: 65M12, 65M60, 91B28

1 Introduction

In this paper we consider the problem of hedging a contingent claim in a case where the underlying asset
cannot be traded. As a specific example, consider the following situation. Segregated funds are contracts
offered by Canadian insurers which provide guarantees on mutual funds held in pension plan investment
accounts [38]. In many cases, due to both legal and practical considerations, the insurance company hedges
these guarantees using index futures in place of the actual mutual fund. The index, of course, will not be
perfectly correlated with the underlying mutual fund, giving rise to basis risk.

In this situation, it is well known that it is possible to construct a best local hedge, in the sense that the
residual risk is orthogonal to the risk which is hedged [20]. If an index is used to construct the hedge, and the
residual risk is not correlated with the market index, it can be argued that this residual risk is firm specific
and so can be diversified away. However, the pricing equation contains an effective drift rate which is a
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function of the actual drift rates of both the underlying mutual fund and the index. Drift rates are difficult

to estimate. It is therefore natural to consider a worst case pricing approach, assuming only that the drift
parameter lies between known bounds, but is otherwise uncertain. This approach gives rise to a nonlinear
PDE [37].

However, the assumption of diversifible residual risk is questionable, especially since insurers are man-
dated to have sufficient reserves to guarantee solvency. As a result, the usual approach in the industry is to
build up a reserve to provide for unhedgeable risk. In this paper, we will follow along the lines suggested in
[25, 36], where the expected return of the hedging portfolio is adjusted to reflect a risk premium due to the
unhedgeable risk. This approach is based on a common actuarial valuation principle [25, 36]. Essentially,
insurers charge premia larger than the expected payoff of the hedging portfolio (in incomplete markets) so
that sufficient reserves are built up to ensure solvency. This is knowafaty loading In [36], this valua-
tion principle is translated into a measure of preferences. This measure can then be used in an indifference
argument to generate a financial premium principle. A similiar pricing method was also suggested in [10].

More precisely, we use local risk minimization [34, 35, 9] to determine the best local hedge. We then
use themodified standard deviation princip[26] in infinitesimal time to account for the residual risk. The
standard deviation principle is used (as opposed to the variance principle) since it gives a value which is
linear in terms of the number of units traded [26]. Applying this principle in infinitesmal time results in a
method which is easily extended to American style contracts with complex path-dependent features, such
as typically found in pension portfolio guarantees offered by insurers. This method gives rise to a nonlinear
pricing PDE.

Itis interesting to observe that the nonlinear PDE which results from worst case pricing with an uncertain
drift term and the PDE which prices a contingent claim using the actuarial safety loading principle are
identical in form. Hence, both the risk premium for bearing unhedgeable risk and the risk associated with
uncertain parameter estimation may be taken into account using the same pricing PDE.

The nonlinear PDE gives a different value depending on whether the hedger is long or short the contin-
gent claim. This is similar to the situation which arises in other nonlinear PDEs in finance, such as uncertain
volatility and transaction cost models [4, 37, 30].

Since the pricing PDE is nonlinear, questions of convergence to the financially relevant solution arise.
We develop a monotone, implicit scheme for discretization of the nonlinear pricing PDE. The results in
[5, 15] can then be used to guarantee that the discrete solution converges to the viscosity solution. In order
to ensure that the scheme is monotone, the grid must satisfy certain conditions. Given an initial grid, a
node insertion algorithm is developed which ensures that the monotonicity conditions hold. We show that
the insertion algorithm inserts a finite number of nodes, and that the grid aspect ratio of the grid after node
insertion is only slightly increased compared to the grid aspect ratio of the original grid.

At each timestep, the implicit discretization leads to a nonlinear set of algebraic equations. An iter-
ative algorithm is described for solution of the algebraic equations. The iterative method is designed so
that existing PDE pricing software can be easily modified to solve the nonlinear algebraic equations. We
prove that this algorithm is globally convergent. Moreover, convergence is quadratic in a sufficiently small
neighborhood of the solution. We also prove that the discrete scheme satisfies certain arbitrage inequalities.

Finally, we include some numerical examples demonstrating that convergence of the nonlinear iteration
at each timestep is rapid. We also include some Monte Carlo hedging simulations, where the optimal hedge
parameters are given from the solution of the pricing PDE. The hedging simulation computations can then
be used to determine the standard deviation, mean and value-at-risk (VaR) of the profit and loss distribution
of the hedging portfolio at the expiry time of the contingent claim.

Although we focus specifically on the nonlinear PDE which arises in the context of uncertain drift rates
and/or pricing of unhedgeable risk using an actuarial principle, this PDE has many of the charactersitics
which arise in other nonlinear models in finance, including uncertain volatility [4], passport options [3],



utility-based pricing models [27], transaction cost models [23], and large investor effects [2]. As a result, we

expect that many of the numerical methods developed here can be extended to these other nonlinear PDEs

in finance.

2 Formulation

LetV(St) be the value of a contingent claim written on asSethich follows the stochastic process
dS=uSdt+ocSdz (2.1)

wherep is the drift rateo is volatility, anddZ is the increment of a Wiener process.
Suppose that we cannot trade in the underh@nut only in a correlated assdtwith price process

dH = p'H dt+ 6'H dW, (2.2)

wheredW is the increment of a Wiener process. In the following we will use the usual Wiener process
propertiesdW? = dt,dZ? = dt,dZ dW= p dt, wherep is the correlation betweeiW anddZ. Consider a
case where we wish to hedge a short position in the claim with Wakte/ (S t). Construct the portfolio

MN=-V+xH+B, (2.3)

wherex is the number of units oH held in the portfolio, and is a risk free bond. We assume that
B =V —xH at timet, so thatl(t) = 0. The change in the portfolio value is given by (note thia held
constant int,t + dt])

2
dr = — [\/t+u8\/5+ %VSS dt—oS\dZ+r(V —xH)dt+x(u'H dt+ o’H dW)

282
=— [Vt + uS\+ GTVSS+ (XH—=V)r —xu'H | dt— oS\GdZ+ xc'H dW. (2.4)

The variance ofll is given by
EP [(xo'H dW — 6S\4dZ)?] = [x*(0")?H? + 62SVE — 20S\ixo'Hp | dt (2.5)

whereEP is the expectation operator under the objectivePaneasure. Choosing to minimize equa-

tion (2.5) gives
X= (@>VS. (2.6)

Substituting equation (2.6) into equation (2.4) gives

dil = — [V, +uS\,+ ﬁvss— v+ <?) Vs— (%) VS} dt —oS\,dZ+ oS\ dW. (2.7)
Defining
= (-0 P (2.8)
in equation (2.7) gives
GZSZ
dn =— [\/t +r'S\—rV + Tvss] dt+oS\(pdW—-d2Z). (2.9)
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Note that to avoid arbitrage, we must haVe- r as|p| — 1 [16]. Substituting equation (2.6) into equa-
tion (2.5) results in
var[d] = (1—p?)c?V2Sdt. (2.10)

Noting that covp dW — dZ,dW] = 0, we obtain coydln,dW] = 0, so that the residual risk is orthogonal (in
this sense) to the hedging instrument.
Define a new Brownian increment

1
1-p

dX =

_ [pdW —dZ] (2.11)

with the propertydX? = dt. This allows us to write equation (2.9) as
0’S
drn = — \/tJrr/S\/S—rVJrTVSS dt+S\W\/1-p?odX. (2.12)

Based on equation (2.12), one possible pricing approach is to require that the portfolio be mean self-
financing

EP[dN] = 0. (2.13)
This results in the linear PDE heo
Ve S\ =1V o T Vg = 0. (2.14)

2.1 Uncertain Drift Rate

Unfortunately, equation (2.14) contains the tarmwhich is a function of the drift rateg, u’. In the usual
complete market setting, the drift rate of the underlying asset disappears from the final PDE. However, in
the cross hedging case, we are required to estimaté, which are notoriously difficult to determine. It
might therefore be prudent to assume only that we can estimate a range of possible valyes for

r' € [r;'ninvr:’na)J' (2-15)

This is similar to the uncertain drift rate/dividend model described in [37]. The worst case price for an short
position in the claim is given by [37]

0’
Vi +  max (r’S\é v + VSS> =0, (2.16)
P €[Maxel o) 2
with the optimal choice for’ being
o= J max TVs>0, (2.17)
Min 1 Vg <0.
Letting
r — r;nax"" r;nin
2
M ax— M
l* — max mln’ (218)
2
we can write equations (2.16) and (2.17) as
0%s

4



A similar argument for a worst case long position gives

0’
Vi + [r* — sgnVg) 1*] S\g+ — Vss— 1V =0. (2.20)

For future reference, note that the two cases are
6222
Short Position:  V; + [r*+A"sgnVg)| S\g+ — Vs~V =0

22
Long Position:  V; + [r* — A" sgr(Ve)] S\+ %VSS— vV =0. (2.21)

2.2 Risk Loading

An insurance company which charged premia based only on equation (2.13) could soon have solvency
problems [19]. As discussed in [25], insurance companies typically charge a premium for unhedgeable risk.
If the residual risk is not diversifiable, then the option writer should be compensated for this risk. In this
incomplete market situation, there are many possible approaches to the pricing problem. We will use the
actuarial standard deviation principle in infinitesmal time. In our notation, this becomes

var(dr]
dt

EP[dM) = A dt (2.22)
where A is therisk loading parameter, which has units ¢fime)~'/2 (the same units as a market price
of risk). Note that we have specified that the expectation is undeP tlieasure in equation (2.22). In
order words, during each intervlt + dt], the portfolio should earn a premium at a rate proportional to
its instantaneous standard deviation. Note that the premium is based on the instantaneous properties of the
portfolio, which means that this approach is trivially generalized to the path-dependent case. A similar idea
was used in [1], in the context of a hedging strategy in the presence of transaction costs. In [1], the hedging
strategy was constrained so that in each small time interval the expected gains from the hedging portfolio
were proportional to the standard deviation of the gain.

From equation (2.10) we have that

Vag‘:“] — 6V /1 p2. (2.23)
Combining equations (2.12,2.22,2.23) gives
0°S
M+ 1S\ + Vgl 0/ 1—p?+ —o=Ves—1V =0, (2.24)
or equivalently
%S
Vi |17+ 20v/1= p? sgniVe)| S\ + " Vss—1V =0. (2.25)

Note that the definition of1 in equation (2.3) assumes that the hedger is short the contingent\¢laim
Consequently, equation (2.25) is valid for a short positioW irRepeating the above arguments for a long

position gives
2

V; + [r' —Aoy/1—p? sgr(vs)} S\, + %vss— v =0. (2.26)



For future reference, note that the two cases are

" °g?
Short Position:  V; + [r’ +Aoy/1-p? sgr(VS)} S\g+ GTVSS— v =0
o2&
Long Position: Vi + [r’ —Ao\/1-p?2 sgr(VS)} S\ + Tvss— v =0. (2.27)

From equations (2.12) and (2.27) we have

Short Position:  dM =A0+/1—p29Vg dt+S\\/1-p?odX

Long Position: dn =Ao+/1—p?9Vg/dt—S\L\/1—p?2cdX. (2.28)
Note that equations (2.27) have the same form as equations (2.21), if we make the identification

Aoy/1-p2— A"
r'—r*. (2.29)
In fact, we can combine both models (uncertain drift rate and actuarial risk-loading for unhedgeable

risk) by defining

! /
* rmax+ rmin
lc=—"7F7—""

2
Moax— M
Al=Ao 1—p2+w. (2.30)
As a result, the combined model which takes both effects into account becomes (for worst case prices)
0°S
Short Position:  V; + [r§ + A¢ sgn(Vg) | S\G+ —Vss— IV =0
0’S
Long Position:  V;+ [rg —Ag sgnVs)] S\ + —Vss— IV =0. (2.31)

2.3 The Nonlinear Pricing PDE

For expositional simplicity in the following, we will consider the nonlinear PDE (2.28) which results only
from the risk loading model. Of course, as outlined above, these nonlinear PDEs can as well be viewed as
models of uncertain drift rates with suitable redefinition of the parameters.

AssumingA > 0, then equations (2.27) are equivalent to

2
Short Position:  V; = max (r’ +0gioy/1— pz) S\, + EVSS— rv
ae{-1+1} 2
%S
Long Position: V, = qe{rpﬂl} [(r’ +0lo/1— p2)> S\ + TVSS— rv] ) (2.32)

wheret =T —t, with T being the expiry time of the contingent claim. Note that the optimal choice ifor
equation (2.32) is

_ +sgnVg) ?f short, (2.33)
—sgnVg) iflong.
If we write (for a short position)
0’S
N =V;— max [(r’+q/16\/1—p2) S+ ——Vgg— 1V (2.34)
q€{71ﬂ+1} 2



with the payoff denoted by = V*, then the price of a short contingent claim with an American early
exercise feature would be given by riffV,V —V*) = 0. We will focus on European options in this paper,
but much of the analysis can be extended to the American case as well.

2.4 Boundary Conditions
At =0, we seV (S,0) to the payoff. ASS— 0, equation (2.27) reduces to

V, = —1V. (2.35)

In fact, in order to ensure certain properties of the discrete equations, we will impose condition (2.35)
at some finite valu&,;, > 0, and letS,;, tend to zero as the mesh is refined. We will demonstrate the
effectiveness of this approximation through numerical tests.

As S— o, we make the common assumption thig~ 0, meaning that

V ~ A(1)S+B(7); S— 0. (2.36)

Assuming equation (2.36) holds, then substituting equation (2.36) into equation (2.27) gives ordinary dif-
ferential equations fof(7),B(7) with solution

V= A(O)Sexp[(r’ —r+gloy/1— pz) r} +B(0) exp[—r7], (2.37)

whereq is given from equation (2.33) at= 0. The initial conditions forA(0),B(0) are given from the
option payoffs.

2.5 Overview of Previous Work

We can relate equation (2.4) to the work in [34] by noting thatXce 0, dI1 is the incremental profit of
hedging. (In [34], the incremental cost is defined-a#{1.) In a complete markedll = 0. In general,
in incomplete markets, it is not possible to construct self-financing portfolios which perfectly replicate a
contingent claim.

Consider the case wheke= 0. LetMN(t+dt~) =(t) +dn(t). In general[1(t +dt~) will not be zero,
given thatl(t) = 0. In order to reset the portfolio value back to zero, cash is added to or subtracted from
the portfolio so that

M(t+dt") =nN(t+dt")—dr(t) =0, (2.38)

hence this portfolio is not self-financing.

If A =0, then the approach used above is based on local risk minimization [34], i.e. we choose the
trading strategy to minimize the variance of the incremental hedging profit/loss at each hedging time. Note
that if L = 0, then from equation (2.28) we hai[dIl] = 0, so this strategy is mean self-financing.

Given that the payoff of the option is used as an initial condition for equations (2.82) &t cash must
be infused into the portfolio during the hedging strategy in order to ensure that the payoff is met (the trading
gains do not exactly balance the change in the option value during each infinitesimal step). As noted in [12],
using the hedging parameters (2.6) given from the solution to equation (2.27), we can define a self-financing
portfolio related to the locally risk minimizing portfolio, which in general will suffer from a shortfall at
expiry. We will use this approach in our hedging simulations reported in Section 9.

The local risk minimization approach can be contrasted with the mean variance hedging or total risk
minimization approach [35, 22]. In this strategy, a self-financing portfolio is constructed which minimizes
the expected value of the square of the difference between the hedging portfolio and the payoff at the expiry



date. As discussed in [12], total risk minimization is a dynamic stochastic programming problem which is
difficult, in general, to solve. In this paper, we will consider local risk minimization only, since this strategy
attempts to control the riskiness of the hedging strategy at all times during the life of the contingent claim.
This local risk minimization also appears natural in a context where the nature of the short contingent claim
may change frequently, due to American style features [38]. Note that a similar combination of local risk
minimization and a risk premium proportional to the standard deviation of the hedging portfolio was applied
to real estate derivatives in [28].

In addition to the actuarial approaches mentioned above for optimal hedging with basis risk, another
possible pricing method is based on maximizing exponential utility [16, 27]. It is interesting to note that if
we had specified an actuarial variance principle

EP[dn] = AV [%} dt, (2.39)
then we would obtain a nonlinear PDE identical to the PDE derived in [27]. (Note that the PDE in [27] is
written for the case =0.)

3 Discretization

For discretization purposes, PDEs (2.32) can be written as
2

S
V, = [r’—i—qlcx/l—pz} S\ + GTVSS— IV, (3.1)

where the nonlinear term is given from equation (2.33). Define a gr{&,,S;,...,Sy}, and letV" =
V(S,7"). Equation (3.1) can be discretized using forward, backward or central differencing $dthec-
tion, coupled with a fully implicit timestepping to give

\/in+l _\/il’l — ain+1\/irl+11 +ﬁin+1\/i|j;§_1 . (ail"l+1 + ﬁinJrl + I‘A’L')Viwl, (32)

whereo;, B; are defined in Appendix A. We can also write the discrete equations in a manner consistent
with the local max/min control problem (2.32). Let

of = of — Qin,cent%,cent_ qir:back%,back
ﬁin = ﬁi/ + qin,cent%,cent‘f' qirjfor%,forv (3'3)

wherea/, ', 7, q" are defined in Appendix A. Note thgt = +1 (see Appendix A).
In the following analysis, it will also be convenient to express discretization (3.2) in the form

VTS = o BV (0 B TATV

1 1 1 1 1 1
+ K"){back‘vin+ _V|rlJ?L H‘ K?{for’ViT:rL _Vin+ H‘ K%cent’viiﬁ _V|rlJ:rL ’ (3'4)
where

. {+1 if short 5

-1 iflong.

We approximate the infinite computational dom&ia [0, ) by the finite domairS € [S,;,, Snax. De-
note the node corresponding30o= Snaxas§ = S, Let the discrete Dirichlet condition (2.37) 8¢ S«
be given by

DL = A(0)S ax exp[(r’ —r+gic\/1— p2> r”*l} +B(0) exp[—rr”*l] ) (3.6)
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For further notational convenience, we can write equation (3.2) in matrix form. Let
VI = VTV Vi

V= VgV (3.7)

and
MV = [(a+ B+ rAT)V" — o™y — BV i <imax (3.8)

The first and last rows ol are modified as needed to handle the boundary conditions. The boundary
condition atS= S, (equation (2.35)) is enforced by setting= §; = 0 ati = 0. LetD""* =[0,..., D1},
and letl* be the matrix which is identically zero, except for a one in the diagonal of the last row. The
boundary condition at = imax is enforced by setting the last row &f to be identically zero. With a
slight abuse of notation, we denote this last rowMs,.., = 0. In the following, it will be understood that
equations of type (3.8) hold only fok imax, with (l\?l)imax =0.

The discrete equations (3.2) can then be written as

1+ (21— )MV = [I —eM"| V" +1* (D™ - V"), (3.9)

where the term*(D"*1 — V") enforces the boundary condition 8t= S,,,.,, and we have generalized the
discretization (3.2) to the Crank Nicolso@ & 1/2) or fully implicit (6 = 0) cases. Note that the discrete
equations (3.9) are nonlinear sindé+1 = M(v™1),

4 Convergence to the Viscosity Solution

In [30], examples were given in which seemingly reasonable discretizations of nonlinear option pricing
PDEs were unstable or converged to the incorrect solution. It is important to ensure that we can generate
discretizations which are guaranteed to converge to the viscosity solution [5, 15]. Equation (2.32) satisfies
the strong comparison property [6, 7, 11]. Hence from [8, 5], a numerical scheme converges to the viscosity
solution if the method is consistent, stable (inlth@orm) and monotone. For the convenience of the reader,

we include a brief intuitive explanation of viscosity solutions in Appendix B.

4.1 Stability

We can ensure stability by requiring that discretization (3.2) be a positive coefficient meghgf, > 0.
This can be enforced by selecting a grid, and choosing forward, backward or central differencing so that the
following condition is satisfied:

Condition 4.1 (Positive Coefficient Condition).

ﬁi/_%7cent_%7for > 0; [ =0,...,imax—1
of — %,cem— a{backz 0; i=0,...,imax—1 (4.2)

Note from the definitions of in equations (A.17-A.19) that at each node only ong gfi. % tor: % pack IS
nonzero, and thag > 0. Condition (4.1) is based on the worst case choice/'ahcequation (3.3), hence

this condition is independent of the solution. In other words, a grid is constructed, and central, forward or
backward differencing is selected so that condition (4.1) is always satisfied. We emphasize that the choice
of difference scheme is fixed, and does not depend on the solution. This is an important property [29] which
will be used below. We will also give an algorithm in Section 7 which, given an arbitrary grid, can satisfy
condition (4.1) by inserting a finite number of nodes.
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Given condition (4.1), we have the following stability result
Lemma 4.1 (Stability of Discretization (3.2)). Provided that
e r>0,
e condition (4.1) is satisfied, and
¢ Dirichlet boundary conditions (2.35) and (2.36) are imposed,
then the fully implicit discretization (3.2) is unconditionally stable in the sense that

IV oo < max([[V"]leo, Diftay) (4.2)
independent of the timestep size.

Proof. If conditions (4.1) are satisfied arrd> 0O, then it follows from equation (3.3) that", 8" in dis-
cretization (3.2) are nonnegative, independent of the solution. The result then follows from a straightforward
maximum analysis. |

4.2 Monotonicity

As discussed above, another important property of a discretization is monotonicity [5]. We write equa-
tions (3.2-3.4) as

gi (Vin+1,\/irl'zl,\/n+1 V|n) — (\/in+1 _Vin) + ain+1\/irl-|il+ﬁin+1vn+l_ (ain+1+Bin+l+ I’A‘L’) Vin+1

i+1> i+1
- _ (Vin+l _Vin) + O‘i/\/irlﬁl+l3i/\/iiﬁl _ (O‘i/ ""Bil + rAr) Vin+1
+K %,back‘vin+l _Vlrl—i:_Ll‘ + K”){for ’V|T:_Ll _Vin+1} + K%,centWiT:_Ll _Vinj:—Ll
=0, i=0,...,imax—1, (4.3)

wherexk is defined in equation (3.5).

Definition 4.1 (Monotonicity). A discretization of the form (4.3) is monotone if the following conditions
hold

g (VMEVM e VT 6, W g5) > g (VT VTRV S e >0, (4.4)
g (V" g, VIR VIR V) < g (VR VMB VTRV g >0, (4.5)

Observe that definition (4.1) includes condition (4.5), whereas only condition (4.4) is usually specified in
the viscosity solution literature [5]. Condition (4.5) leads to a more intuitively appealing interpretation, and
is a consequence of condition (4.4) and consistency [18].

Lemma 4.2 (Monotonicity). If condition (4.1) is satisfied, then discretization (4.3) is monotone.

Proof. The result holds trivially at = imax since gy ., = — (Vimex—Ditl). Fori < imax from equa-

tion (4.3) we have (foe > 0, and noting thaj/ > 0; see Appendix A)
g (VLT T e V) — g (VL VT MR WY) = Ble
+ K?{cent H\/|Til té _Vﬁil‘ - ’V|Til _Vin ]
+ K gor [MT1 & =V = VT -V
> ﬁilg - Yil,cente - %,forg
=€ (.Bi/ - '}{cent_ Yi,.,for) >0 (4.6)
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which follows from condition (4.1). Similarly,
gi (Vin+lvvirfil + S’Virril’vin) - gi (Vin+lvvirl+11=Vir-:-+117Vin) > E(Oti/ - %,cent_ 7’i’,back) > 0 (4-7)
and

g (Vin+1 + 87\4[’317\41?»\4”) -0 (\/in+1’\4rlﬁla\4rlﬁla\/in) < —&— (0 + B + A7) + €Y pack+ €¥ for
- _8(l+ I’A’L’) - s(ail - 7i/,back) - £(Bi/ - '){for)

<0. (4.8)

Finally, it is obvious from equation (4.3) that
g (VM LV e) — g (VTR VTR ) > 0. (4.9)
|

4.3 Consistency

The discrete scheme (3.9) is locally consistent with PDE (3.1) if the discrete operator applied@8 any
function converges to the equation (3.1) as the mesh size and timestep vanishes.

Lemma 4.3 (Consistency).The discrete scheme (3.9) is locally consistent.

Proof. From the definitions of the discrete coefficienmts; in equation (3.2) and Appendix A, a simple
Taylor series verifies consistency. |

4.4 Convergence
Letting At = max, (t"* — "), AS=max (S, — §). we can now state our convergence result.
Theorem 4.1 (Convergence of the Fully Implicit Discretization).Provided that

o >0,

e the Dirichlet boundary conditions (2.35-2.36) are imposed, and condition (2.35) is imposgg,.at S
Syin — 0asAS— 0, and

e the positive coefficient condition (4.1) holds,

the fully implicit discretization (3.2) converges unconditionally to the viscosity solution of the nonlinear
PDE (3.1) asAS At — O.

Proof. Since PDE (3.1) satisfies the strong comparison principle, a consistent, stable, and monotone dis-
cretization converges to the viscosity solution of PDE (3.1) [5]. Hence Theorem 4.1 follows directly from
the results in [5] and Lemmas 4.1, 4.2 and 4.3. |
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5 Solution of the Nonlinear Algebraic Equations

Although we have shown that the discretization converges to the viscosity solution, it is not clear that
scheme (3.2) is practical since we must solve a set of nonlinear, nonsmooth algebraic equations at each
timestep. The following iterative method is used to solve the nonlinear discretized algebraic equations (3.9):

Iterative Solution of the Discrete Equations

Let (Vn+1)0 —\V"

LetVK = (VM1

Fork=0,1,2,... until convergence
Solve

| +(1—0)M (V¥ )}vk+1 (1 =MV V17D —Vv") G-1)

‘VkJrl Vk’
max (scale|[Vk+1|)

(k> 0) and < tolerance) then quit

EndFor

The scale factor in algorithm (5.1) is selected so that small option values are not determined with impractical
precision. For example, if the option is valued in dollars, theale= 1 would be a reasonable value for this
parameter.

Some manipulation of algorithm (5.1) results in

|+(1—9)|\7|"} (\7k+1_\7k) —(1-6) [Mkfl_w]\“x& (5.2)

whereMk = M (\7"). A key property which can be used to establish convergence of algorithm (5.1) concerns
the sign of the right hand side of equation (5.2). We utilize a result obtained in [29]:

Lemma 5.1 (Single Signed Update)lf M"V/" is given by equation (3.8), with nonlinear coefficients deter-
mined by a local control problem of form (3.3), and the choice of forward, backward, or central differencing
is independent of the solution (i.e. preselected at each node independent of solution values), then

Short Position: [I\?I"‘1 - Mk} Vk>0 (5.3)
Long Position: [I\?I"*1 — l\?lk} vk<o. (5.4)

Proof. For convenience, we summarize the proof in [29]. The result holds trivially=atmax, since
(MK~ — MKy, = 0. Writing out [Mk~1 — MK] VK in component form gives & imay)

[N VY] = (o0 + B 1 — (o + B+ 1))
( ok 1Vk1+l3lk 1V|+1 (o okt Bk 1+rAr)V) (5.5)
Consider a short position so that in terms of the local control problem (2)452/3}‘ are selected so that
Vi 1 + BV — (o + B+ raT)V (5.6)
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is maximized. Any other choice of coefficients, for examm‘él,ﬁik‘l, cannot exceed the maximum
produced by expression (5.6). Thus

(O‘ik\7i|(—1 + BV L — (o + BR+ rATNi") - (O‘ik_l\A/ik—l +BNVE L — (o B+ rAT)\A/ik> >0, (5.7)

so that for a short positio[1\7|"‘1 — I\7I"] VK> 0. A similar argument for a long position verifies (5.4). B
Itis also useful to note the following property of the matfix- (1 — 6)M™1].

Lemma 5.2 (M-matrix). If the positive coefficient condition (fl.l) is satisfied; 0, and boundary condi-
tions (2.35,2.36) are imposed atSS;;,, Smax then[l + (1— 6)M""1] is an M-matrix.

Proof. As in the proof of Lemma 4.1, condition (4.1) implies tleelt, " in equation (3.8) are non-negative.
Hence[l +(1- G)M”“] has positive diagonals, non-positive offdiagonals, and is diagonally dominant, so
itis an M-matrix. |

Remark 5.1 (Properties of M-Matrices). An M-matrix Q has the important properties that > 0 and
diag(Q?) > 0.

We can now state our main result concerning the convergence of iteration (5.1).

Theorem 5.1 (Convergence of Iteration (5.1)).Provided that the conditions required for Lemmas 5.1
and 5.2 are satisfied, then the nonlinear iteration (5.1) converges to the unique solution of equation (3.9)
for any initial iterateVV%. Moreover, the iterates converge monotonically, andfbsufficiently close to the
solution, convergence is quadratic.

Proof. Given Lemmas 5.1 and 5.2, the proof of this result is similar to the proof of convergence given in [30].
We give a brief outline of the steps in this proof, and refer readers to [30] for details. A straightforward max-
imum analysis of scheme (5.1) can be used to b¢|t\fﬁ‘qioo independent of iteratiok From Lemma 5.1, we

have that the right hand side of equation (5.2) is non-decreasing (non-increasing) for short (long) positions.
Noting that[l + (1— 6)N¥] is an M-matrix (from Lemma 5.2) and henfle+ (1— )MK] " > 0, itis easily

seen that the iterates form a bounded non-decreasing (short) or non-increasing (long) sequence. In addition,
if Vkt1 = VK the residual is zero. Hence the iteration converges to a solution. It follows from the M-matrix
property of[l +(1- 6)I\7I"] that the solution is unique. The iteration (5.1) can be regarded as a hon-smooth
Newton iteration. Since the non-smooth algebraic nonlinear equations (3.9) are strongly semi-smooth [32],
convergence is quadratic in a sufficiently small neighborhood of the solution [31]. |

6 Arbitrage Inequalities

It is interesting to verify that the discrete equations satisfy discrete arbitrage inequalities [13, 14], inde-
pendent of the choice of grid or timestep size. In other words, inequalities in option payoffs translate to
inequalities in option values. More preciselyit, W" are two solutions of the fully implicit equations (4.3)

and ifV° > WO andVK ., > WK .., (k=0,...,n), thenv" > W,

LetingDJ™t = [0,..., V2 EL)" DAL =[0,..., Wt 1)’ we have the following result:

Theorem 6.1 (Discrete Comparison Principle).The fully implicit discretization (3.9) satisfies a discrete
comparison principle, i.e. if > W",DJ*1 > D)\t and V1 w1 satisfy equation (3.9) and the conditions
for Lemmas 5.1 and 5.2 are satisfied, theli /> w1,
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Proof. V,W satisfy

[I _|_|\’/‘|(Vn+l)}vn+l:Vn_i_l*(D\r}-i-l_Vn)
[+ MW W =W 4 1*(D - W), (6.1)

Some manipulation of equation (6.1) gives

[| + M(Wn+l)] (VrH-l _Wn+1) _ (| o I*)(Vn _Wn) + [M (Wn+1) _ I\7I(V”+1)] VI’H—l

+1*(Dy - Dy (6.2)
[| + M(VnJrl)] (Vn+1 _Wn+1) _ (| _ I*)(Vn _Wn) _ [M (Vn+1) _ M(Wn+1)] wntl
+1*(DY — D). (6.3)

Consider a short position. From Lemma 5.1 (after relabefitigt = W™, vk = v"1) we have that
MW — M vVt > 0. 1f V! > W" andDy "™ > D}, then from Lemma 5.2 and equation (6.2)

(1MW) 7= 1) (V= W) +17(DG — DY) + (MW™E) - M(v™ 1) V™) >0, (6.4)

soV"t! > Wn*tl For along position, a similar argument using Lemmas 5.1 and 5.2 and equation (6.3) gives
the same result. |

Remark 6.1 (Use of Lemma 5.1) Note that a key property in the above proof is Lemma 5.1. This Lemma
holds if we ensure that we solve a discrete version of the control problem (2.32), i.e. we maximize or minimize
the discrete equations for a finite mesh and timesteps, not just in the limit of vanishing grid and timestep
size. This illustrates the importance of maximizing or minimizing the discrete equations directly.

7 Positive Coefficient Grid Condition

In this section, we develop an algorithm to ensure that grid condition (4.1) can be satisfied by insertion of
a finite number of nodes in any initial grid. Some algebra shows that condition (4.1) is satisfied by at least
one of forward or backward differencing at nadé

6?5 +(§,1-5.0) (I -2A0v/1=p?) 20 (7.1)
Equation (7.1) is always satisfieder’| — Aoﬂ) > 0. Consequently, we will examine the case when
(\r’] — loﬂ) < 0. Suppos§ ,; —§ = AS Vi, and sa§ = iAS. Then condition (7.1) reduces to
02i+2(|r’\—/10\/1——pz> > 0. (7.2)
Clearly, for sufficiently large§ condition (7.2) can be satisfieddf? > 0. Equation (7.2) simplifies at= 1

to
0'2+2<\r’\—7LG\/1—p2) > 0. (7.3)

Consequently, a§ — 0, condition (7.2) may not be satisfied, no matter how sm8lis chosen. From
equation (7.3), we can see that the problem arises sfpee0. Instead, suppose we chod§e= §, +
IAS §, > 0. In this case condition (7.2) becomes

02S)+AS(6%i+2|r')) —2ASA6+/1—p2 >0, (7.4)
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which can always be satisfiedASis sufficiently small andg, > 0. More generally, suppose

h= miax(SH—S). (7.5)
Condition (7.1) is always satisfied if
2
h< % . (7.6)
2||r| —lm/l—pz‘

Note that a grid constructed by enforcing condition (7.6) is not required in practice (as we shall see be-
low). Condition (7.6) simply ensures that givgp> 0, a grid with a finite number of nodes can always be
constructed which ensures that the positive coefficient condition (4.1) is satisfied.

In the following, we will develop an algorithm which, given an initial grid wigh> 0, will insert a finite
number of nodes to ensure that condition (4.1) is satisfied. For a given gricgyitt0, we will apply the
boundary condition (2.35) &= S,. In order to carry out a convergence study, finer grids can be constructed
by inserting nodes between each two coarse grid nodes, and redydgdhalf. In this way, the effect of
applying boundary condition (2.35) &} is reduced at each grid refinement. In fact, for practical values of
o,r’ we expect that the effect of this approximatiorSat S, is very small. This will be verified in some

numerical examples.
The node insertion algorithm is given below:

Node Insertion Algorithm

If ((\r’| —Ac\/1-p?)> o) Then
Return //Original grid satisfies condition
Endif

If ([% = 0] and[6?S; +min(S,,2S)) (|r’| —lcx/l—pz) < 0]) Then
Exit // Algorithm fails, need $> 0

Endif

i=1

While (§ is not the largest node

If (GZS +(S,1-S.1) <|r/| —/lcr\/l——p2> < 0) Then

If (GZS +2(§-5.,) (|r’|—lc\/1—7p2) < o) Then (7.7)
Insert node at§_; +5)/2
//New node labeled i
Else
Insert node at§ + S, ,)/2
//New node labeled+ 1
Endif
Else
Increment
Endif
Endwhile
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If § # 0, then algorithm (7.7) is guaranteed to produce a fine grid such that condition (7.1) holds for all
nodes. From equation (7.6), the total number of nodes inserted must be finite.

If § =0 ando?S; +min(S,,2S,) (]r’\ - /lc\/l—p2> < 0, then a new grid satisfying condition (7.1)

does not exist. Consequently, in the case that- (|r’\ —/low/l—p2> < 0, we must haveg, > 0 in
order for algorithm (7.7) to succeed. In this case, we cagstd be a small number, and apply boundary
condition (2.35) ag,. We will verify that this does not cause any significant error at asset values of interest
through some numerical experiments to be reported in subsequent sections. Algorithm (7.7) has the desirable
property that the grid aspect ratio does not become too large after the node insertion is completed. More
precisely, if the original grid has the property that
§+1 _ S ;
P < =——— <0y i=1,....n-1
°7§-5,° "
0o > Po >0, (7.8)

we prove the following result in Appendix C.

Theorem 7.1 (Grid Aspect Ratio after Application of Algorithm (7.7)). Given an initial grid with n
nodes and g q, given by equation (7.8), after application of algorithm (7.7) wigh>S0, the new grid (with
m nodes, n» n+ 1) satisfies

S4-9 .
P<a—=—<q 1<i<m-1 (7.9)
S-S
where p=min(1/3, p,) and q= max(5, 2q,).
Proof. See Appendix C. |

Note that algorithm (7.7) is based on testing only forward and backward differencing. However, in
practice, we carry out the following steps

e Given an initial grid, construct a new grid from algorithm (7.7).

e Each node of the new grid is processed, and the discretization coefficienfs are constructed
(equation (3.2)). First, central differencing is tested. If the positive coefficient condition (4.1) is
satisfied, then we use central differencing at this node. If central differencing does not result in a
positive coefficient discretization, then one of forward or backward differencing must satisfy this
condition (from algorithm 7.7). Forward or backward differencing is then used at this node.

Different nodes may use different discretization methods. In this way, central differencing is used as much as
possible. In practice, for normal market parameters, only a few nodes with forward or backward differencing
are required. Usually these nodes are r&ar0, so that accuracy in regions of interest is unaffected by low
order discretization methods.

8 Convergence Tests

This section presents a number of numerical examples which illustrate the performance and convergence
of our iteration scheme. We also examine both fully implicit and Crank-Nicolson methods, and experiment
with the minimum value in the asset gri§,§, when algorithm (7.7) is applied. We show that the solution is
insensitive to small positiv,.
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Constant timesteps are usually quite inefficient, so variable timesteps are desired. A simple and very
effective timestep selector is discussed in [21]. Given an initial time&t@p?l, a new timeste@\t™t? is

selected so that
dnorm
n+2 __ R n+1
AT = {rqm( NS A V(S )] AT (8.1)
)]

maxD, |V (V (S, 7" +AT D) [V (S, 7"

wherednormis a target relative change (during the timestep) specified by the user. Th®dsaelected
so that the timestep selector does not take an excessive number of timesteps in regions where the value is
small (for options valued in dollarf = 1 is often used).
Recall from equation (2.8) that the drift term in our PDE is
op
rl:.u'_(-u'/_r)?7 (82)
which implies
p—r'_p(—r)
= . 8.3
5 p (8.3)
When |p| = 1, the drift termr’ must equal the risk free interest ratd16]. Therefore,r, p, u, o, u’
and ¢’ cannot be determined independently. We arbitrarily chqdsas the dependent variable. From
equation (8.3) we see thatpf= 1 andr’ = r, we obtain

/

W=t (u-n, (8.4)
c
while if p = —1 (' =), we have
G/
/— fR— — [
W=r— (-0 (8.5)

This suggests that we could interpolateas
! G,
W=r+fp) -7, (8.6)

where, to avoid arbitragd,(—1) = —1, f(1) = 1. In our numerical examples we simply choose

although any other interpolant could be used which satidfijesl) = —1, f(1) = 1. In the following nu-

merical examples, we assume
/

o'p

Wo=rd(p—r— (8.8)
Substituting equation (8.6) into equation (8.2) gives
'=(1-pf(p))u+rpf(p). (8.9)
Assuming equation (8.7) holds, we obtain
r'=(1—p?)u+p?r. (8.10)
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r 0.05
p 0.9
(o] 0.2
u 0.07
o’ 0.3
W=rtpu-rSL| 0077
A 0.2
rr=p—(u'-r)22 | 0.0538
Strike priceK 100
Payoff straddle
Time to expiryT 1year

TABLE 1: Parameters used in the straddle option examples. These parametels'givdc/1— p2 =
0.03636> 0, so no new node is inserted into the asset grid when algorithm (7.7) is applied.

8.1 Fully Implicit and Crank-Nicolson Comparison

In this section, we will examine the convergence as the grid and timesteps are refined for fully implicit
and Crank-Nicolson timestepping. The parameters are given in Table 1. In this example we will assume a
European straddle with payoff

V(S t=0)=maxK —S0)+maxS—K,O0). (8.11)

whereK is the strike price. The derivativid) of the payoff changes sign, so the PDE is truly nonlinear. Note
that|r'| — Ao\/1—p? = 0.03636> 0, so no new node is inserted into the asset grid when algorithm (7.7)
is applied. The tolerance in algorithm (5.1) is set to40

Table 2 shows the convergence results for fully implicit and Crank-Nicolson timestepping (using the
modification suggested in [33]). We use variable timestepping as given in equation (8.1). As expected,
fully implicit timestepping displays first order convergence and Crank-Nicolson method exhibits quadratic
convergence. Recall from Theorem 4.1 that convergence to the viscosity solution is guaranteed only for fully
implicit timestepping. In this case, Crank-Nicolson timestepping also converges to the viscosity solution.
From algorithm (5.1), we can see the minimum number of iterations per timestep is two. In Table 2, we see
that the average number of nonlinear iterations per timestep is only slightly larger than two, indicating that
the nonlinear algebraic equations are very easily solved.

8.2 PositiveS, Tests

In Section 7, it was shown that wher? + (|r'| — Ac1/1— p2) < 0, we need the minimum value for the
asset grids, > 0 in order for algorithm (7.7) to succeed. Table 3 shows parameters which r&guiré to
ensure that algorithm (7.7) completes successfully.

Table 4 shows the option prices, deltsg)(and gammasgg under differents, values for various asset
price values. We see that as asset price gets smaller, the effect of p§gibeeomes more pronounced
(recall that the strike of this option is $100). However, $o£ 30, the effect of changin§, from 2to Q1 is
very small. The data in Table 3 was used for this test. Observe that this data rejuir@sfor algorithm
(7.7) to succeed.

Table 5 presents a convergence study using parameters from Table 3. As the asset grid size doubles and
S, goes to zero, we obtain quadratic convergence as before. In order tohaver’| — 1o+/1—p2) <0,
we have assigned large valuesatpl. This makes hedging with an imperfectly correlated asset very risky,
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Nodes| dnorm | Timesteps| Nonlinear iterationg Option value| Change| Ratio
Fully Implicit
51 0.1 37 81 17.02070
101 0.05 72 151 17.05760 | 0.03689
201 0.025 147 294 17.08743 | 0.02985| 1.2365
401 0.0125 301 602 17.10857 | 0.02113| 1.4120
801 0.00625 602 1204 17.11964 | 0.01108| 1.9078
1601 | 0.003125 1169 2338 17.12508 | 0.00544| 2.0349
Crank-Nicolson
51 0.1 37 80 17.10144
101 0.05 72 147 17.12367 | 0.02224
201 0.025 147 294 17.12899 | 0.00532| 4.1826
401 0.0125 301 602 17.13021 | 0.00122| 4.3654
801 0.00625 602 1204 17.13050 | 0.00030| 4.1054
1601 | 0.003125 1169 2338 17.13058 | 0.00007| 3.9906

TABLE 2: Convergence for fully implicit and Crank-Nicolson timestepping using variable timesteps (equa-
tion (8.1)). Crank-Nicolson incorporates the modification suggested in [33]. Input parameters are given in
Table 1. No new nodes are inserted into the asset grid. Straddle payoff (8.11), short position, option values
reported at S= 100.

and the hedger is very risk averse (i.e. seeks high compensation for bearing the unhedgeable risk). These
parameter values make the option prices extremely high as shown in Tables 4 and 5. From the data in
Tables 4 and 5, we can conclude that small posHykas little effect on the solution.

9 Hedging Simulations

In this section we use a Monte Carlo method to simulate the hedging process. We illustrate the results by
showing histograms of the hedging portfolio at the expiry time, i.e. the profit and loss (P&L) distribution.

9.1 Algorithm Description

We make a slight change from the description of the hedging portfolio in equation (2.3). In the numerical
examples, we will assume that the portfolio has initial value of zero, but no cash is injected into the portfolio
as time progresses.

As in Section 2, consider the case where we wish to hedge a short position in a claim with value
V(St). Then, a portfolio?' at timet, = iAt has three components:

e a short claim position wortl';
e along position ok shares of assét (wherex is the number of units dfl held in the portfolio); and
e an amount#' in a risk free account.

Hence, _ S
P'=-V+xH +A.

In contrast to the hedging portfolld in Section 2, we do not inject any cash into this portfolibto ensure
that & = 0 after the initial time. In the casé = 0, this portfolio is then self-financing (0@, T), where

(9.1)

19



r 0.03

p 0.5

o 0.7

u 0.04

o’ 0.25

W=r+(u-r)%2 | 0.0317857

A 0.9
r'=u—(u' - )"” 0.0375

Strike priceK 100
Payoff straddle
Time to expiryT 1year

TABLE 3: Parameters used for positive, $ests. These parameters gie& + (|r'| — Ao\/1—p2) =
—0.0181< 0. In this case gmust be positive in order for algorithm (7.7) to succeed. When algorithm (7.7)
is applied, new nodes may be inserted into the asset grid.

Asset Price| §, | Option Price| Delta (/) | GammaYsg
0.1 91.2063| -0.583641 0.000119

10 2 91.1604| -0.570818|  -0.004019

5 90.4519| -0.449766|  -0.028363

0.1 85.3930| -0.576180 0.001791

20 2 85.3879| -0.575238 0.001591

5 85.2286| -0.553956|  -0.001682

0.1 79.7849| -0.537174 0.006621

30 2 79.7839| -0.537029 0.006598

5 79.7360| -0.531765 0.005933

TABLE 4: The effect of positive,Sn the solution at low asset values. Crank-Nicolson method used with
variable timesteps and the modification suggested in [33]. Input parameters are given in Table 3. Straddle
payoff (8.11), short position. There are 401 nodes in the original grid. Seven new nodes are inserted for
$ = 0.1, and no new node is inserted fog S 2 or §, = 5.

S Nodes| dnorm | Option Value| Change| Ratio
5 58 0.1 102.69536
2.5 106 0.05 102.83341 | 0.1381
1.25 206 0.025 102.86821 | 0.0348 | 3.9678
0.625 409 0.0125 102.87715 | 0.0089 | 3.8902
0.3125 | 817 | 0.00625 | 102.87939 | 0.0022 | 3.9922
0.15625 | 1633 | 0.003125| 102.87996 | 0.0006 | 3.9541
0.078125| 3265 | 0.0015625| 102.88010 | 0.0001 | 4.0071

TABLE 5: Convergence in a case whergl#as to be positive in order for the node insertion algorithm (7.7)

to succeed. Crank-Nicolson timestepping is used with variable timesteps and the modification suggested in
[33]. Input parameters are given in Table 3. These parameters implyathat (|r'| — Aco+/1—p2) <0, so

that § has to be positive. Extreme valuesioio are required to force the necessity of making-80. The

option price is very large with these extreme parameters. When algorithm (7.7) is applied, new nodes may
be inserted into the asset grid. The sizes of the original asset grids are 51, 102, 204, 408, 816, 1632, and
3264 respectively. Straddle payoff (8.11), short position, option values reported 408
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T is the expiry time), but in general it will not meet the exact obligations of the contingent claim at expiry.
Note that PDE (2.27) does not contdn(the risk free account), so that use»bfgiven by equation (2.6)
minimizes the local risk, regardlessBf We have denoted the risk free account in the portféidoy % to
distinguish it from the account in equation (2.3). In this ca®ewill not necessarily be zero after the initial
time, since we will not inject cash into this portfolio.

As discussed in [24] for the cage= 0, this strategy is self-financing d@, T ), with a single payment
attimeT. Itis also observed in [24] that a disadvantage of this approach is that at any ¢infe the
value of the portfolio will not equal the conditional expected value of the payoff. However, in our case with
A > 0, the value of the portfolio is increased by systematic gains to compensate for the risk of the hedge,
and therefore this simple strategy may in fact be quite practical. In any case, we present the results of this
strategy since it is easy to interpret the resulting P&L diagrams. These diagrams show the distribution of the
future value of the incremental profit/loss of the hedge portfolio.

Given the option value dt= 0, which comes from the solution of the PDEs (2.27), the initial portfolio
is given by

P0 = VO 4 xXOHO + #°. (9.2)
We choose’® = VO — xHO. Let N
Vi=—=(S,1). 9.3
S 88( ) |) ( )
According to equation (2.6), to minimize the local variance we chabagtimet, to be
- [oSp\.

Let ¢, oL be random draws from a normal distribution with zero mean and unit variance. The values of the
underlying asset and the correlated hedging asset attimare given by

SRS exp{(u —062/2) M+ G¢ig\/A_t):|
HI*L = i exp| (' — (6/)7/2) Bt + 0/ 9}, VED)|
where

EP(‘PS Py) =p. (9.5)

Initially, we solve equation (2.32) numerically backward in time from T tot = 0. At each timestep, the

option values and deltas are stored in data tables. Then asset paths are generated by Monte Carlo simulation.
The hedging information is recovered from the stored tables. The hedging algorithm for one Monte Carlo
simulation is given in algorithm (9.6).
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Hedging Algorithm

7°=0
Interpolatev® andV2 from the stored tables

oS p
X0 = <—0’H°>VSO

0 —\/O _ xOHO
For each hedging time @t <T,t; = iAt
Calculate current asset pri€eandH' from equation (9.5)

. 9.6
InterpolateVe from the stored tables 59
X = (W)Vé
Update the portfolio by buying — x~* shares
%i — el‘Atf@ifl _ Hi(Xi . Xifl)
Endfor
P(T)=-V(T)+x(T)H(T)+A(T)
Recall that
Short Position:  dlM =A0+/1—p29Vgdt+S\,\/1—p20dX
Long Position: dn =Ao0+/1—p?SVg|dt—S\\/1—p?cdX. 9.7)
Considering only the short position, we have
dn =2A0+/1—p29Vy dt+S\\/1—-p?cdX. (9.8)

We will show histograms of”?(T), i.e. the future P&L distribution. Since the cash shortfall is only
realized at the expiry time in the portfoli¢?, the final value of%” can be determined in terms of the
solutionV by considering the future value df1 at each instant, i.e.

T T
Q(T):;L/ ¢TU6,/1- p2SVy dt+/ ¢T-US\,/I— p2odX. 9.9)
0 0

This means that T
EP[2(T) =EP {x/ dTV6,/1-p2\Vy dt] (9.10)
0

in the limit as the rebalancing interval tends to zero.

9.2 Hedging Simulations

Hedging experiments are carried out using 1,000,000 Monte Carlo parameters with a fixed hedging interval
of 2 days. There are many parameters which affect the hedging results, but we are primarily interested in
the risk loading factoA and the correlatiop. We will show the results of the hedging simulations in terms
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Al p Mean | VaR (95%)| CVaR (95%)| Std. Dev.| V(S=100,t =0)
0.0| 0.5] -0.0034| -23.9135 -34.7796 12.524 16.4795
0.0] 0.7| 0.0085| -19.1239 -27.6244 10.284 16.3238
0.0/ 09| -0.001 | -11.0917 -15.7675 6.293 16.1306

TABLE 6: Hedging simulation results with = 0.0 and p varying. Other input parameters are given in
Table 1. Straddle payoff (8.11), short position, hedging interval of 2 days, 1,000,000 simulation runs.

A | p | Mean | VaR (95%)] CVaR (95%)] Std. Dev.| V(S= 100, t = 0)
0.1] 0.9] 05081 -10.5158 | -15.1710 | 6.3014 16.6233
0.3/ 09| 16175 -9.1778 | -13.6682 | 6.3155 17.6516
05| 09| 2.7685| -7.9180 | -12.3103 | 6.3809 18.7388

TABLE 7: Hedging simulation results with varying andp = 0.9. Other input parameters are given in
Table 1. Straddle payoff (8.11), short position, hedging interval of 2 days, 1,000,000 simulation runs.

of mean, standard deviation, VaR and CVaR of the P&L. If the probability density of thexA&Hdenoted
by p(x), then thet% VaR and CVaR are defined as

P28

var_ LR dx

fVaR

R0 (9.11)

WhenA = 0, EP[2(T)] = 0 from equation (9.10). According to equation (2.22), increadimgplies a
greater reward for bearing the unhedgeable risk, hence the mean P&ER[#(T)]) should also increase
(when|p| # 1). Table 6 shows the case in whiths fixed at zero ang increases. Sincgé = 0, the mean of
the P&L stays at zero (it is not exactly zero because of finite rebalancing and Monte Carlo sampling error).
As p increases, standard deviation decreases, which causes VaR and CVaR to increase. Table 7 shows the
case wherdl increases and the other parameters are held constarit.ilkseases (i.e. we require greater
reward for bearing unhedgeable risk), the mean, VaR, and CVaR of P&L increase, while standard deviation
is nearly constant. These results are also depicted in panels (a), (c), and (d) of Figure 1.

When |p| = 1, asseH provides a perfect hedge and equation (2.27) reverts back to the usual Black-
Scholes equation. In this case, the hedging simulation should be the same as standard discrete delta hedging,
and thus the mean and standard deviation of the P&L should be zero. Some results for tp¢-edsare
given in Table 8. Note that the standard deviation is not identically zero in this case due to the finite (two
day) rebalancing interval.

Table 9 shows the results obtained wipeimcreases from 0.7 to 0.9 ardd# 0. When|p| increases, the
hedging results become closer to that given by standard delta hedging. The mean shifts closer to zero (the

2 | p | Mean | VaR (95%)] CVaR (95%)| Std. Dev.] V(S= 100, t = 0)
05| 1.0 | -0.001| -1.9365 2.7062 | 1.1752 16.0237
05| -1.0] -0.001| -2.2683 -3.0510 | 1.3583 16.0237

TABLE 8: Hedging simulation results witfp| = 1 andA = 0.5. Other input parameters are given in Table 1.
Straddle payoff (8.11), short position, hedging interval of 2 days, 1,000,000 simulation runs. Note that the
standard deviation of the P&L is nonzero due to the finite rebalancing interval.
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A | p | Mean | VaR (95%)| CVaR (95%)| Std. Dev.| V(S=100 t =0)
0.2 0.7| 1.8032| -17.0839 -25.4860 10.2861 18.0288
0.2 0.8| 1.4828| -14.0163 -20.7803 8.6506 17.6383
0.2] 0.9] 1.0646| -9.8292 -14.3816 5.9792 17.1302

TABLE 9: Hedging simulations witlh = 0.2 and p varying. Other input parameters are given in Table 1.
Straddle payoff (8.11), short position, hedging interval of 2 days, 1,000,000 simulation runs.

Hedging interval| Mean | VaR (95%)| CVaR (95%)| Std. Dev.
8 1.0626| -10.2150 -14.7470 6.5583
4 1.0523| -9.9895 -14.5614 6.3981
2 1.0646| -9.8292 -14.3816 6.3049
1 1.0662| -9.8029 -14.3994 6.2815

TABLE 10: Convergence of the standard deviation as the hedging interval (measured in days) is decreased.
Input parameters are given in Table 1. Straddle payoff (8.11), short position, 1,000,000 simulation runs.

mean decreases, since we take less risk), and the standard deviation of the P&L decreases. These results are
also illustrated in panels (b), (e), and (f) of Figure 1.

9.3 The Convergence of the Standard Deviation

If |p| < 1, there is unavoidable residual risk. As the hedging interval goes to zero and the number of
simulations goes to infinity, the standard deviation of the portfolio at fim@nverges to a finite value.
Table 10 provides a numerical example of this convergence.

9.4 An American Example

The price of an American claim is given by equation (2.34). We can generalize the numerical methods
described in this work to the American case using the penalty method described in [21, 17]. The proofs
of convergence to the viscosity solution are easily extended to handle this case. As a numerical example,
consider an American contingent claim, using the parameters in Table 1. Table 11 shows the values for long
and short American/European straddle positions.

From equation (2.27), it is clear that the value of a short position should always be higher than that of a
corresponding long position. Table 11 clearly shows this fact at a particular vatiie of

Option Type | V(S=100t=0)
European Shor 17.13
European Long 15.19
American Short 17.39
American Long 15.70

TABLE 11: Values for long and short positions of a straddle payoff (8.11). Input parameters are given in
Table 1. Results are correct to the number of digits shown.
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Option Type V(S=100 t=0)
European Short Call 11.86
European Short Put 6.08

European Short Straddle 17.13

TABLE 12: Call, put, and straddle values. Input parameters are given in Table 1. Results are correct to the
number of digits shown. Note that the payoff of the straddle (8.11) is the sum of the call and put payoffs.

9.5 Nonlinearity and Reinsurance

Suppose there are two firm&,andB, and a reinsure€. Further assume that all of these firms value short
positions using the parameters in Table 1. In particaB, andC all have the same estimates for drift
rates and the risk loading factor.

SupposeA needs to hedge a short call, aBcheeds to hedge a short puA andB can hedge these
positions, or purchase reinsurance fr@nC would then have a short straddle position. The values from
individually hedging a call, a put, and a straddle are given in Table 12 (calculated using PDE (2 2a)dIf
B individually hedge their positions, their total charge to an end customer would.86-£5.08 = 17.94.

On the other hand, the total chargeA@ndB if C hedges a straddle is 1IB. In this caseC can charge a
lower fee for this insurance thakandB can do by themselves. This result is due to the fact that the pricing
PDE is nonlinear.

10 Conclusions

In this paper, we have considered the situation where a financial institution selling a contingent claim cannot
hedge directly with the asset underlying the claim. At each infinitesmal time interval, the best local hedge
is constructed. Even if the residual risk is diversifiable, the option writer may be exposed to uncertainty in
parameter estimation. Assuming that the parameters are uncertain but lie within upper and lower bounds, a
worst case pricing approach can be used. This results in a nonlinear PDE.

However, since the hedge is not perfect, the writer may not be able to diversify the unhedgeable risk. In
this case, this risk can be priced using an actuarial standard deviation principle in infinitesmal time. The risk
preferences of the issuing firm enter into the valuation through a risk loading parameter. For non-zero risk-
loading, the PDE is nonlinear, producing different values for long or short positions. Note that in contrast to
many other approaches, the values are linear in terms of the number of units bought/sold.

In both cases (uncertain parameters and actuarial standard deviation principle), the nonlinear PDE has
the same form. We have developed a discretization scheme for this nonlinear PDE which is monotone,
consistent and stable; hence convergence to the viscosity solution is guaranteed. In order to ensure the
discretization is monotone, a node insertion algorithm is derived which guarantees monotonicity by insertion
of a finite number of nodes in a given initial grid. An iterative method for solution of the nonlinear discrete
algebraic equations at each timestep is developed. We have proven that this iteration is globally convergent.
Existing PDE option pricing software can be modified in a straightforward fashion to value options using
this model, simply by adding an updating step to the American pricing iteration.

If we interpret the PDE as accounting for the unhedgeable risk, then the solution of the PDE gives a
trading strategy for the best possible local hedge, as well as providing systematic gains to compensate for
the residual risk. Monte Carlo hedging experiments are given which demonstrate the use of this hedging
strategy. These examples clearly show that the unhedgeable risk is compensated by a reserve which is built
up over time.
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Finally, we note that many of the numerical methods discussed here can be extended to other nonlinear
pricing PDEs in financial applications.

A Discrete Equation Coefficients

The detailed form of the discrete equation coefficients used in equation (3.3) are given here. In the case of a
central discretization

n o n
ai,cent_ aipent_ yi,centqipent

Bir,]cent = ﬁi/,cent“‘ Yi,centqir:centv (A-l)
where

i,cent —

N sgr(vs)i”’Cennt ifshort’ (A2)
_Sgr(vs)i,cent if |0l’lg

/1 _ p2
'}/i cent = M AT
’ S+1—S1
AVAL - VALL
(Vs)in,cent = slii — SI_Jl-y (A.3)

0'232 rls :|
Of cont = [ - At
e (§-908a-51) Saa-Sa
6232 r/s
Bl cent= [ + ]Ar. (A.4)
(84198151 S-S
Note that the above definitions ensure that we are solving a discrete version of the local control prob-
lem (2.33).
In the case of forward differencing, we obtain

and

n _
ai7for - ai7for

ﬁir,]for = Bi/,for + yi,for qin,forv (A-5)
where
sgnVo)! if short
in,for: ) S)l,fcr>]r . ) (A.6)
—sgnVs)'sor iflong
Ao\/1—p?
Yifor = S—p At
' S11-39
\/_n 7V‘n
(Vs)in,for = Slill_sl ) (A.7)
and

) B 6232
%for = ((3 —S )(Sa1- s_l>> ae
’ _ 6232 rls
ﬁl’for [(S1+1_$)(3+1_S1—1) +S1+1_$} ac

(A.8)
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Again, note that we have used definition (A.6), so that we solve a discrete version of the local control
problem (2.33).
In the case of backward differencing we have

n ) n
ai,back_ ai,back_ %7backqi,back

Bback= B back (A.9)
where
sgnVo)! if short
Olback = or( S)"b?f" . : (A.10)
—sgnVg){paek  iflong
Ao\/1—p?
Yi.back ™ S'G—p At
' S-S
Vv _yn
(Vollback= oo (A.11)
S/i,back S — S—l
and
6232 r’3 :|
O hack = [ - At
ek (8-S -S) S-Sa
GZSZ
Bl back= [ ] At. (A.12)
| back ($+1_3)(S+1_371)
For future reference, it is convenient to defgenericcoefficients
{a{"cem if central differencing
of' = q o'y, if forward differencing , (A.13)

Ohack  if backward differencing

Bleene  if central differencing
B'=< BNy  ifforward differencing | (A.14)
Bhack  if backward differencing

& cene  if central differencing

o =4 & ¢ if forward differencing , (A.15)
O pack  If backward differencing
B cent if central differencing

Bl =< Bl if forward differencing . (A.16)
Blvack  if backward differencing

We also define

Y cent If central differencing
heent™ 9 o A17
W {0 otherwise ’ (A.17)
Y 1o I forward differencing
o =10 : A.18
Wt {0 otherwise (A.18)
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Y pack T backward differencing
/ =<0 . A.19
Miback {O otherwise (A.19)
Recalling equation (3.2)
\/in+l _\/in _ ainJrl\/irlJil _'_ﬁinJrl\/i:]:El . (ain+1 +ﬁin+l + I‘A’L’)VirHl, (AZO)
we can write the generic coefficierds, " as

of' = of — %,centqin,cent_ '){backqnback

Bin = ﬁi/ + Kcentqin,cent"' '){for qin,for- (A-21)

B Viscosity Solution

In this appendix, we give a brief intuitive explanation of the ideas behind the definition of a viscosity solu-
tion. For more details, we refer the reader to [15].
Consider a short position, so that we can write equation (2.32) as

0%s
— / — 2 _— — =
OV, Vg Voo Ve) = ~Vet _max [(r +aioy/1-p? ) S\G+ —Vss—IV| =0 (B)
We assume thaj(x,y,z,w) (x=V,y = Vg, 2= VsgW =V;) satisfies the ellipticity condition
g(x.y,z+e,w) = g(xy,zw) Ve =0, (B.2)

which is our case simply means thet > 0. Suppose for the moment that smooth solutions to equation (B.1)
exist, i.eV € C%1, whereC?? refers to a continuous functidéh=V (S, t) having continuous first and second
derivatives irS, and continuous first derivatives i Let ¢ be a set 0o€%? test functions. Supposge—V >0

and¢ (S, 75) = V(S 7p) at the single pointS,, 7,). Then the single pointS,, 7,) is a global minimum of

(0 —V)

¢—-V=>0
min(¢ —V) = ¢(S,, 75) —V (S, 79) = 0. (B.3)
Consequently, &S, 7,)
¢r = Ve
9s=Vs
9ss= Vss (B.4)

Hence, from equations (B.2,B.4) we have

9V (S 70), 9s(So: T0)» PS5 o) 92 (S, %))

9V (S T0), Vs(Sps 7o) s 9 S0s T0)s Ve (S, 7o)

(
(

> 9(V (S T): Vs(So: 7o), Vsd S %) Ve (So: To))
=0, (B.5)
or, to summarize,
IV (S T): 0s(So: To): 9 So: %)+ 9:(S: %)) = 0
o—V >0
min(9 —V) = 9(S, 1) — V(. %) = 0. (8.6)
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Now, suppose thag is aC>?! test function withV — y > 0, andV (S, 1) = x($, 7) at the single point
(S, 7). Then(S,, 7p) is the global minimum oY —

V—x>0
min(V — x) =V (S, %) — x($, %)
—0. (B.7)

Repeating the above arguments we have

V(S 7)s X5(S %) Xsd Sos T0)s X2 (Sp, 7)) <O
V—x>0
min(V —x) =V(S&, 1) — X($, %) = 0. (B.8)
Now suppose tha¥ is continuous but not smooth. This means that we cannot défime the solution to
9(V,Vs,Vss Vi) = 0. However, we can still use conditions (B.6) and (B.8) to define a viscosity solution to

equation (B.1) since all derivatives are applied to smooth test functions. Informally, a viscosity s@lution
to equation (B.1) is defined such that

e For anyC?? test functiong, such that

o—-V=>0 (p(SO’TO) :V(%,’L’o), (B,9)
(¢ touchesV at the single pointS,, 7;)), then
9V (S 7%0): 9s(So: 7o) 9 S T0)» 9:(S: ) = 0. (B.10)

e As well, for anyC?* test functiony such that

V_X 20 V(%vfo) :X(%vro)v (B-ll)
(x touchesV at the single pointS,, 7)) then
9V (S 70): Xs(S0 T0)s Xsd S 7o) X (S o)) < 0. (B.12)

This definition is illustrated in Figure 2.

C Grid Aspect Ratio Proof

In this appendix we will prove Theorem (7.1). For convenience, we call nodes in the original grid old nodes
and we call nodes added by algorithm (7.7) new nodes. We assume themoaes in the original grid and
m (m> n) nodes in the new grid. Far> 0, letS be the(i + 1)th node in a grid. If

(|r'| —QLG\/l——pZ) >0, (C.1)

the new grid will be the same as the original one. Hence, the non-trivial case is when

(|r'| —zo\/l——pZ) <o0. (C.2)
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FIGURE 2: lllustration of viscosity solution definition. The upper and lower curves represent smooth test
functions. The differential operator (B.1) can be applied to these test functions with the results given
by equation (B.10) (upper curve) and equation (B.12) (lower curve). When a smooth test fynction
touches the viscosity solution from below( 84, 7,), then dV (S, 7o), X5(So: T0): Xs< S To)» X2 (Sp: Tp)) < O.
Similarly, when a smooth test functigh touches the viscosity solution from above (&,7,), then

IV (S, 7): 95(So: To)s 05 S To)- 9: (S Tp)) = 0. Note that there may be some points where a smooth test
function can touch the viscosity solution only from above or below, but not both. The kink ati$San
example of such a point.

Let
P
H = — > 0. (C.3)

(\r/|—zcﬂ)

Then in the new grid for X i < m—1, we have (from equation (7.1))

ST AT (C.4)

Now, we prove Theorem (7.1).

Proof. Suppose Theorem (7.1) is not true. Then in the new gjrifl <i < m—1 such that

ZH;S =t, wheret > q=max5,2q,) ort < p=min(1/3,p,). (€5
-9
Let
& :S+1_S> (C.6)
)
g
i C.7
- (C.7)
Now suppose
& _t> q=maxs, 20p)- (C.8)

i—1
We prove the following observations first.



Ai-1 ai
@ & @
Si-1 Si Siv1

FIGURE 3: Condition (7.9) failed in a new grid.
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FIGURE4: §_, is inserted at'TS.

Observation 1. §_; has to be a new node.

Proof. See Figure 3. Suppo$: , is an old node. Then & is also an old node, we have

& -
a4 °
while if § is a new node, we have
& o1 (C.10)
g
Both cases contradict equation (C.8). Observation 1 follows. |

Observation 2. When § , is added into the grid,;$as already been in the grid.
Proof. See Figure 3. Otherwise we will have equation (C.10). |

By Observations 1 and &_; must be inserted in the middle §f and a nodes;, wherei > j, as depicted
in Figure 4.

Observation 3. SJ- has to be a new node.

Proof. See Figure 4. Suppos? is an old node. Then & is also an old node, we have

A < 2q,, (C.11)
C]
while if § is a new node, we have
& <o (C.12)
g
Both cases contradict with equation (C.8). Observation 3 follows. |

Observation 4. When $is added, Shas already been in the grid.

Proof. See Figure 3. Otherwise we will have equation (C.12). |

32



2ai-1 ai-1 ai-1 ai
@ L @ & &
Sh S Sia Si Sis1

FIGURE5: Sj is inserted atsn—;rsﬂ

By Observations 3 and 4 must be inserted in the middle §fand a node5,, whereh < j <ii, as shown
in Figure 5.

Observation 5. 25; > §

Proof. See Figure 5. Note that

S§-§=9-5=28 4 (C.13)
and
S, >0. (C.14)
This implies
S §+2., 23, 1
. 1 1z C.15
S S48, 2 (€19
hence,
25 > S§. (C.16)
|

Observation 6. 6a,_; < .7'§

Proof. See Figure 3. Sinc§_,, §, andS_, , are three consecutive nodes in the new gridtand, we have

6a_, <(t+1l)a_,=9,-§,<78S. (C.17)
[ |

We now show thag% > (is false. Suppose it is true. By Observation 1, we kihw is a new node.

Case 1.S_, is added because

Si—§ > 4§
S-S Z—JZS, (C.18)

wheres$; is the right neighbour 0§ when§_, is added. This is shown in Figure 6. Note tigat> § ;.
Then

28 1 =§-5 2= @ (C.19)

SO
da_, > 'S, (C.20)

which is a contradiction with Observation 6.
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FIGURE 7: §_, is added because condition (C.21) is true.

Case 2.S_, is added because

A,
S-&< —
where$& is the left neighbour o§; whenS _, is added. This is illustrated in Figure 7.
Note that
S=>9,+a. 5
If this does not hold, we have
=9,

since there can be no node betw&grandS; when§_, is added. This gives

xS
zaiflzsjf%zsjfse<72 ;

so that
Ji/Sj
But
4a171:$_$1>’%/81a
SO
Ji/Sj
81> 4~

which is a contradiction. Hence, equation (C.22) is true. Then we have

3 ,>§-%> XS,

so that
A,
a_q> 3
By Observation 6 and equation (C.29), we have
63 ; < A'§,
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FIGURE 8: § , is added because condition (C.35) is true.

implying

6.4°S, v

3 < XS, (C.31)
so that

2S <3S, (C.32)

contradicting Observation 5.

Hence, we get contradictions in both cases. Therefore,

A < q=max5,2qp). (C.33)
g
Now suppose
311 =t < p=min(1/3,p,). (C.34)
i—1

As before,S_; is a new node, and when it is insert&lhas already been in the grid. Supp&sg is in the
middle of § ande, as shown in Figure 8.
Since nowe;_, > &, the only reason to ad§_ , is

§-5>7S
s
S-S5 (C.35)

whereS§, is the right neighbour of; when§ ; is added. Hence,

Ji/Sj
28, = Sj -S> 5 (C.36)
so that
Jifsj
a > R (C.37)
and L
3+1 =+ 1) X'S 1
HS = %%sj < % < <f+1>q —§.,-S.,< XS (C.38)
This means
SJ- <8§, (C.39)
which is certainly false. Hence,
t > p=min(1/3,py). (C.40)
The result follows. |
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