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Abstract

Several numerical issues for valuing cliquet options using PDE methods are investigated.
The use of a running sum of returns formulation is compared to an average return formulation.
Methods for grid construction, interpolation of jump conditions, and application of boundary
conditions are compared. The effect of various volatility modelling assumptions on the value
of cliquet options is also studied. Numerical results are reported for jump diffusion models,
calibrated volatility surface models, and uncertain volatility models.
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1 Introduction

Cliquet options are financial derivative contracts which provide a guaranteed minimum annual
return in exchange for capping the maximum return earned each year over the life of the contract.
Recent turmoil in financial markets has led to a demand for products that reduce downside risk
while still offering upside potential.! For example, pension plans have been looking at attaching
guarantees to their products that are linked to equity returns. Some plans, such as those described
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by Walliser (2003), limit the upside returns in order to reduce the costs associated with providing
the guarantee. These products are essentially cliquet contracts.

Wilmott (2002) illustrated that cliquet options are sensitive to the model assumed for the un-
derlying asset dynamics. In this paper we will explore a variety of modelling alternatives, including:

e a (finite activity) jump diffusion model (Merton, 1976);

e a state-dependent volatility surface (i.e. a model in which a local volatility function is cali-
brated to observed market prices of traded options, as described, for example, in Coleman
et al. (1999)); and

e a nonlinear uncertain volatility model (Avellaneda et al., 1995; Lyons, 1995).2

We find that even if a time-dependent and state-dependent local volatility model is calibrated
to prices of plain vanilla options generated from a jump diffusion model with constant parameters,
there is no guarantee that the values of cliquet options calculated using the volatility surface will
be close to cliquet values obtained using the jump diffusion model. This result is consistent with
other studies, see e.g. Hirsa et al. (2003); Schoutens et al. (2004), which have demonstrated that a
model calibrated to vanilla options does not necessarily price exotics correctly.

However, some practitioners are aware that simply using the local volatility surface calibrated
to vanillas does not correctly capture the dynamics of the skew. Practitioners often attempt to
make up for the known deficiencies of a calibrated local volatility surface by forcing the surface to
be homogeneous of degree zero in price and strike. In addition, the surface is often rolled forward
in time. It appears that previous studies have not taken into account these typical corrections.

Assuming that the true market process is a jump diffusion, we show that these two common
corrections can result in much less error for the price of a cliquet option (at the initial value of the
underlying asset). This provides some justification for common industry practice. However, the
error is small only when the underlying is at the initial price. Consequently, the deltas computed
using the local volatility surface are considerably in error.

Cliquets are discretely observed path-dependent contracts. As such, they can be conveniently
valued by solving a set of one dimensional PDEs embedded in a higher dimensional space. These
one dimensional PDEs exchange information through no-arbitrage jump conditions on observation
dates. Wilmott (1998) has recommended this approach as a general framework and it has success-
fully been used to implement models for Parisian options (Vetzal and Forsyth, 1999), Asian options
(Zvan et al., 1999), shout options (Windcliff et al., 2001), volatility swaps and options (Windcliff,
Forsyth, and Vetzal, Windcliff et al.), and many others.

An important focus of this paper is to develop effective numerical methods for valuing cliquet
options for all of the above models. Assuming we have effective methods for solving each one
dimensional problem, there are still difficulties in solving the full cliquet problem. In particular,
we will:

e show how the use of scaled grids for each one dimensional problem dramatically improves the
convergence;

2Note that this was suggested by Wilmott (2002), who observed that the volatility risk for cliquet options is
typically underestimated.



e investigate the effects of interpolation methods used to enforce the jump conditions arising
from the state variable updating rules;

e show how to specify the boundary conditions at large and small values of the asset price; and

e look at the effects of using a finite computational domain on the data needed to enforce the
jump conditions.

We will also compare the performances of a formulation that utilizes a running sum of returns with
one that uses the running average of returns.

We emphasize that although the numerical techniques illustrated in this paper will be studied
in conjunction with cliquet options, many of these methods also apply to other path-dependent
options. For example, the interpolation and grid construction techniques described in this paper
can also be used to dramatically improve the performance of algorithms for valuing discretely
observed floating strike lookback options.

2 Formulation for Jump Diffusion and Uncertain Volatility Mod-
els

Let .S represent the price of the underlying asset. The potential paths followed by .S can be modelled
by a stochastic differential equation given by

% = (£ — Ar)dt + odz + (n — 1)dg, (2.1)
where ¢ is the drift rate, dq is an independent Poisson process with mean arrival time \ (i.e. dg =1
with probability Adt and dg = 0 with probability 1 —\dt), (n—1) is an impulse function producing
a jump from S to Sn, k is the expected value of (n — 1), o is the volatility (of the continuous part
of the process), and dz is the increment of a standard Gauss-Wiener process.

Let V(S,t) be the value of a European-style contract that depends on the underlying asset value
S and time t. Following standard arguments (see, e.g. Merton, 1976; Wilmott, 1998; Andersen and
Andreasen, 2000), the following backward partial integro differential equation (PIDE) for the value
of V(S, ) is obtained

I,S,t)%52

V, = o ; Vs + (r — A&)SVs — rV + <A /Ooo V(Sn)g(n)dn — W) ; (2.2)

where 7 =T —t, T is the maturity date of the contract, I' = Vgg, r is the risk free rate of interest,
and g(n) is the probability density function of the jump amplitude n. In this paper, we will follow
Merton (1976) and assume that 7 is lognormally distributed with mean p and standard deviation
7, so that k = exp(u 4+ 7?/2) — 1. Specifically

_ (log(m) —w)*
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In equation (2.2) we have allowed the volatility to be a function of I' = Vgg, as well as the
underlying asset price, S, and time, ¢. In an uncertain volatility model (Avellaneda et al., 1995;
Lyons, 1995), it is assumed that

Omin < 0 < Omax (24)

but is otherwise uncertain. The worst case value for an investor with a long position in the option
is determined from the solution to equation (2.2) with o(T") given by

o2 ifT' <0
[)? = { max ) 2.5
o(T) {afm T >0 (25)

Conversely, the best case value for an investor with a long position is determined from the solution
to equation (2.2) with o(I") given by

o2 ifT' >0
o(T)? = { ~max ) 2.6
() {afmn ifT' <0 (26)

The worst case value for an investor with a short position (a negative payoff) in the option is given
by the negative of the solution to equations (2.2) and (2.6). Consequently, as discussed in Forsyth
and Vetzal (2001), the worst-best case long values can be thought of as corresponding to the bid-ask
prices for the option if buyers and sellers value it assuming worst case scenarios from their own
perspectives.

3 Local Volatility Models

In this section, we postulate a synthetic market where the price process is a jump diffusion with
constant parameters, as in equation (2.1). We then take the point of view of a practitioner who
attempts to fit observed vanilla option prices using a local volatility model. We first develop some
analytic results which provide some insight into the form of the fitted local volatility model. Then,
we generate two local volatility surfaces which will be used in the subsequent numerical tests.

3.1 Overview

It is common practice to fit a local volatility model to vanilla option prices, and then use this local
volatility surface to price exotic options. In this section, we will determine some properties of a
local volatility model (no jumps) which has been calibrated to prices in a synthetic market where
the price process is a constant volatility jump diffusion model.

Suppose that the asset in the synthetic market follows

% = (£ — Ar)dt + oydz + (n — 1)dg, (3.1)

where we assume that for simplicity that o; = const., and that the jump size distribution g(n) is
independent of (5,t), and given by equation (2.3).



If we assume the process (3.1), then the value of an option V' given by (2.2) can be written in
the form

2qQ2

Vo= 2 Vs +rSVs oV 1 [ (IV(Sm) - V(S) - (1= DSV )g(m v (32)
0

Now, suppose the real world process follows the jump diffusion (3.1), but a practitioner assumes
that stock prices evolve according to

% — vdi+ o (S, 1)z, (3.3)

where v is the drift term and o, is the local volatility. Let W be the price of an option obtained
assuming process (3.3). W satisfies

or(S,1)252

Wy = =2

Wes +1rSWeg —rW. (3.4)

Typically, the local volatility is determined by calibration to a set of vanilla option prices for
fixed (S,t), with varying strikes and maturities (K,T"). Let V(S,¢; K,T') be the price of a vanilla
call valued under process (3.1). The price can be regarded as a function of (5,t) with (K,T) fixed
or as a function of (K, T") with (5,t) fixed. Using the latter perspective, we will let S = S*, ¢t = t* to
emphasize that we regard (S*,t*) as fixed. Andersen and Andreasen (2000) show that the forward
PIDE for a European call option is

2K2
Vp = JJQ Vicr — rK Vi

+ A/OOO [V (S8 K /0, T) =V (", 875 K, T) + (n = 1)K Vic | g (n)dn. 3

The boundary conditions for equation (3.5) are

V(S*,t%,0,T) = S*
V(S*"t" K — 00, T) =0
V(S*,t"; K, t*) = max(S* — K, 0). (3.6)

Let W(S*,t*; K, T) be the price of a European call obtained assuming process (3.3). As shown
in Dupire (1994), the forward PDE for W satisfies

o (K, T)?K?>

Wr = 5

Wi — rKWkg. (3.7)
We will first consider the solution of the forward equation (3.7) on the finite domain Qf =
[Kmin, Kmax|. We will assume as well that S* € Q. We will also consider expiry times 7" bounded
away from t*, i.e. T' € [Tmin, Tmax), Tmin > t*. After carrying out an analysis in the finite domain
Q¢ X [Tinin, Tmax|, we will take limits as Tinin — t*, Kmin — 0, and Kyax — 00.

The calibration problem can then be stated as follows. Given V (S*,t*; K, T) satisfying initial
conditions (3.6) in 0 < K < oo, t* < T < Thax, determine o (S*,t*; K, T) such that W = V in



Q¢ X [Tmin, Tmax). In other words, determine the local volatility function such that the market prices
for vanilla calls V' are matched by the calibrated prices W at a specific (5*,t*), for all strikes and
maturities in {2y x [Tmin, Tmax)- Note that we have emphasized that the solution to the calibration
problem oy, = o7, (S*,t*; K,T) is in general valid only for a specific (S*,t*).

For future reference, at this point we gather together some conditions on the solutions for V, W:

Conditions 3.1 (Conditions on V) We assume the following conditions for V', the solution to
equation (3.5) in the domain 0 < K < 00,t* < T < Thax:

e [nitial conditions (T =t) and boundary conditions are given by equation (3.6).
e 02 >0 in equation (3.5).

o V has bounded and continuous derivatives of up to first order in T and second order in K in
Q¢ X [Tmin, Twax) (i-e. V is C12).

o Vi >01in Qf X [TminmiaX]'

Conditions 3.2 (Conditions on W) We assume the following conditions for W, the solution to
equation (3.7) in the domain Qs X [Tiin, Tmax) -
e Given a solution V to equation (3.5), initial conditions and boundary conditions for W are
W(S*a t*; K, Tmin) = V(S*) t*; K7 Tmin)
WS, 1" Kmax, T') = V(5" 1"; Kmax, T)
W(S*, t*; Kmin, T) = V(S*, t"; Kiyin, T). (3.8)

° O'% >0 Qf X [Tmin, Tmax]-

o W has bounded and continuous derivatives of up to first order in T and second order in K
(i.e. W is C12).
Remark 3.1 Clearly, as T — t*, then the initial condition (3.6) implies that Vg = 0 for K # S.
Howewver, for any Tmin > t*, Vkr >0 in Q¢ X [Tiin, Tmax]-

Let E =W — V and subtract equation (3.5) from equation (3.7) to obtain
LE = f(S*t5K,T)

f(S*7t*?K7T) = _< )

2

07 o7, 2

———= | K°V
5 > KK

) /OOO (nV(S*, 4% K /0, T) =V (™, 855 K, T) + (n = DK Vic ) g(mdn, — (3.9)

where
O'% K2
2

LE = ET — |: EKK — TKEK:| . (3.10)



From equation (3.8) we have

E(K,T)=0, K €0, T € [T Tmas
E(K, Tain) =0, K € Q. (3.11)

Consequently, the calibration problem may be restated as: find o (S*,t*; K, T) such that £ = 0 in
Qf X [TminaTmax]-

If 02 > 0 in equation (3.10), then the Green’s function (Roach, 1982; Garroni and Menaldj,
1992) of L is the solution to

LG = §(K — K')§(T — T
G(K,T)=0, K€y
G(K, Tmin) = 0, K e Qf. (3.12)

The solution to equation (3.9) can then be written as
E(K,T) / / GK, T,K'\T"f(S*,t*;K',T") dT’ dK'. (3.13)
Qf Tmin

Detailed conditions for the existence of a Green’s function for non-self adjoint operators of the
type (3.10) are given in Garroni and Menaldi (1992). Briefly, if the PDE is non-degenerate, and
has bounded coefficients, then existence of the Green’s function can be proven. Note that since we
have restricted the domain to €¢, these conditions are satisfied. (As a point of interest, reference
(Garroni and Menaldi, 1992) also discusses the existence of Green’s functions for PIDEs of the type
(2.2). It appears to us that the work in Garroni and Menaldi (1992) deserves to be better known.)

Lemma 3.1 (Condition on f(S*,t*; K,T)) If f(S*,t*; K,T) is a continuous function and o2 >
0, then E(K,T) =0 in Qf X [Tinin, max] if and only if f(S* t*; K, T) =0 in Q¢ X [Twin, Tmax)-

Proof . If f(S*,t*; K,T) = 0in Q¢ X [Tiin, Tmax], then from equation (3.13) we have immediately
that £ = 0 in Qf X [Tiin, Timax). Conversely if E = 0, then from equation (3.9) we have that
F(S* .t K, T) = 0 in Qf X [Toin, Tonas- 0

Proposition 3.1 (Existence of o1) Given a solution V to equation (3.5) for 0 < K < oo, t* <
T < Thmax such that Condition (3.1) holds, then there exists a unique, positive, and bounded local
volatility function oy such that the solution W of equation (3.7) yields the same prices (V. = W)
for given (S*,t*) in the domain Qf X [Tinin, Tmax]-

Proof. From Condition (3.1) we have that V is C12 and hence f(S*,t*;K,T) is a con-
tinuous function. Since Vixg > 0, a Taylor series argument shows that nV (S*,t*; K/n,T) —
nV(S*,t*; K,n)+ (n—1)KVk >0 (n > 0), and we have that o, given by

UL(S*,t*;K,T)2 = U?]

Afo (nV (St K/n, T) =V (S*,t*; K,T) + (n — 1)KVK)g(n)dn
K2‘2/KK

(3.14)



is positive if U?] > 0, and bounded. Thus a solution W to equation (3.7) exists with oy given
by equation (3.14). Hence W satisfies Condition (3.2), and £ = W — V satisfies equation (3.9)
in Q¢ X [Tin, Tmax|. Equation (3.9) implies that if o, is given by equation (3.14) then f = 0 in
Q¢ X [Twin, Tmax), and so from Lemma 3.1, V. = W in Qf X [Tiin, Tmax|- Lemma 3.1 also shows
that V — W =0 if and only if f =0 in Qf X [Tiin, Tmax], and thus oy, given by equation (3.14) is
unique. O

Remark 3.2 (Homogeneity of V) As noted by Merton (1973), if the underlying stock return
distribution is independent of S, call/put option values are homogeneous of degree one in S and K,
e.g. if 0% = const. and g(n) is independent of S, then the solution to equation (3.5) with initial
condition V (S*,t*; K, T = t*) = max(S* — K, 0) is such that

V(pS*,t*; pK,T) = pV(S*,t"; K, T). (3.15)
Remark 3.3 (Bounded o) Note that Proposition 3.1 requires that Vi g > 0. For vanilla options
with convex payoffs, the solution to equation (3.5) is such that Vi g > 0 in Q¢ X [Tiin, Tmax). Clearly,

the usual call payoffs have Vg = 0 away from the strike at T = t*, and for T > t*, Vkx — 0 as
K — 0,00. For short term options the denominator of

Ao (nV(S7, 475 K fn T) = gV (S, 47 K, T) + (n = 1)K Vic ) g(n)dn
K2VKK
2

(3.16)

will tend to zero faster than the numerator (which is a non-local term) as K — 0,00. Hence the
local volatility will become unbounded as Ky — 0, and Kyax — 00, T — t*. This means that we
cannot expect to solve the calibration problem over the entire domain t* <T < Tiaz, 0 < K < 00,
but only over a subset of this domain.

Now, if we calibrate o, (S*,t*; K,T) to the prices of vanilla options for fixed (S*,t*) at various
values of (K, T), then we can re-label K = S,T = t to obtain o, (S*,t*;S,t). However, we have
only matched the prices at a fixed value of (S*,¢*). There is no guarantee that the calibrated o,
found using equation (3.4) will match the values of exotic options derived from a jump diffusion
model using equation (3.2), especially for path-dependent options such as cliquets. For related
discussion, see Hirsa et al. (2003); Schoutens et al. (2004).

Lemma 3.2 (Homogeneity of o) For vanilla options, denote the value of the option as a func-
tion of (K,T) for fized (S*,t*) by V(S*,t*; K,T). Also, denote the local volatility function by
op(S*,t*, K, T). If

oj(pS*, t*pK,T) = o;(S*,t"; K, T)
V(pS*, t*; pK,T) = pV(S*,t*; K, T) , (3.17)

then or(pS*,t*, pK,T) = or,(S*, t*, K, T).

Proof. This follows directly from substituting the conditions (3.17) into equation (3.14). O



Remark 3.4 (Significance of Lemma 3.2.) In particular, if o5 = const. in equation (3.2), then
the local volatility function or(S*,t*;S,t) = or(pS*,t*;pS,t). If S* = K, then op(K,t*;5,t) =
op(K*,t*; K*(S/K),t) is “sticky delta”, i.e. a function only of S/K for vanilla options.

Remark 3.5 (Jump size 7 concentrated near unity) Suppose that g(n) ~ d(n — 1), i.e. the
Jjump size distribution is concentrated near n =1, then

VexIELIE 1 of1 -y

V(K/n) = V(K) + %mm(l —n)+

2 n
K Vik (K)K?
= V() + Sy (1 =)+ P e (3.18)
so that
> * ok * ok VKKK2 o 2
(VST B 0 T = V(ST KT (= DR Vi) () d = =57 [0 =) g(a) d.
(3.19)
Substituting equation (3.19) into equation (3.14) gives
2 2 > 2
o7 ~ o5+ )\/O (1 =n)*g(n) dn. (3.20)

This result is simply a formal statement of the well-known concept that small jumps are indistin-
guishable from diffusion (Cont and Tankov, 2004). In this unusual situation, we can expect that
o, calibrated from vanilla prices can be used to value exotics with little error (in this special case,
or, has no dependence on (S*,t*)).

3.2 Volatility Surface Based on the Analytic Expression

In order to provide a realistic volatility surface for our numerical tests, we will assume that the
synthetic market process is given by equation (3.1), with the data in Table 1. We define the current
time t* = 0 in this and subsequent sections. For future reference, this table also shows the constant
Black-Scholes implied volatilities which match the prices of at-the-money vanilla call options with
maturities of "= .25 and T' = 5. The parameters in Table 1 are similar those reported by Andersen
and Andreasen (2000), which were obtained by calibration to S&P 500 index option data.

We will construct a deterministic local volatility surface (with no jumps) which is consistent
with the observed market prices (from our synthetic market). We use the expression for the local
volatility surface given by equation (3.14). The exact analytical solution for European options
under a Merton jump diffusion model (Merton, 1976) is used to compute the prices and derivatives
in equation (3.14). The non-trivial integral in equation (3.14) was computed by converting the
integral to a convolution form and then using an FFT. We could also, of course, use the method in
Dupire (1994).

Even with an analytical solution, the local volatility becomes unbounded as T" — t* = 0 for
K # S*, and for finite 7', with K — 0,00 (recall Remark 3.3). In particular, the numerical
computation becomes very ill-posed for 7" < one month, and for K > 1.5 S* and K < .5 S* (the



Parameter Value

S* 100
o .20
T .05
A .10
I -.90
0% 45
ops,T =0.25 .2359
ops,T =5.0 3167

TABLE 1: Parameters for the jump diffusion model, with price process given in equation (3.1). The
Jump size distribution is given in equation (2.3). Also shown is opg, the constant volatility that,
if used in a Black-Scholes model with no jumps, reproduces the jump diffusion model price of an
at-the-money vanilla call with the specified maturity (T = .25,5).

initial asset price S* = 100). We set a maximum value for the local volatility of 3.0, to avoid
problems with unbounded values from equation (3.14).

We generate a dense grid of o(S,t) for S € [50,150], and ¢t € [1/12,5.0] with S spacing of 1.00
and t spacing of 1 month. Any other data needed is obtained by linear interpolation, for values of
(S,t) within the grid. For values outside the grid, we use the nearest grid value.

This grid of o (.5, t) values would have to be considered as a very good estimate of the volatility
surface which matches the synthetic market prices (in practice, we would not have data for far
out of the money options with short maturities). The resulting local volatility surface is shown in
Figure 1.

Table 2 shows the synthetic market prices of the vanilla calls, at various strikes and times,
compared with the prices obtained using the volatility surface shown in Figure 1, computed using
equation (3.14). The fit is quite good, considering that the actual surface which matches all the
prices would become unbounded as T' — 0, and for K > §* or K < 5§*. Recall that we limit the
maximum value of ¢ < 3.0, and we have used a constant surface for ¢ < month.

3.3 Volatility Surface Obtained by Calibration

Of course, in general we would not know the precise representation of the real world process. A
more realistic example of fitting a local volatility surface would be the algorithm in Coleman et al.
(1999). To summarize, this method uses a set of specified knot locations, and then attempts to
determine the best Lo fit to the data using a spline interpolant.

Synthetic market prices were generated for vanilla puts and calls at strikes {70, 80, 90, 100, 110, 120, 130},
at monthly intervals from [0, 1.0] and yearly intervals from [1.0,5.0]. These prices were computed
using the exact European prices under a Merton jump diffusion model, with the data in Table 1.
In order to avoid unbounded values of the local volatility (i.e. Remark 3.3), as well as improve the
fit to the data, the maximum value of the local volatility was constrained to be ¢ = 1.0.

The knot locations of the spline representation of the local volatility surface were specified to be
at S = {70,100, 130} and at times ¢t = {0.0,0.5,1.0,3.0,5.0}, giving a total of fifteen parameters.
Since the number of knot locations for the spline is relatively small, this has the effect of regularizing
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FIGURE 1: This volatility surface was obtained by using equation (3.14) with the exact analytical
solution for a European option under a Merton jump diffusion (parameters are given in Table 1).
The plot is truncated at a mazimum value of o = 1.0. The actual surface used had a mazrimum
value of o = 3.0.

the surface, as described in Coleman et al. (1999). The resulting volatility surface is shown in
Figure 2.

Table 3 shows the error between the prices computed using the surface in Figure 2 and the
European call prices. Note that in this case, there is more error for 7" < 1 and S* = 100 compared
to the surface used in Table 2.

4 Cliquet Contracts

4.1 Contract Description

As noted earlier, cliquet options have become popular because these contracts provide protection
against downside risk while retaining significant upside potential. This is achieved by offering a
combination of floors and caps on returns on the underlying asset.

Let S(t;) be the value of the underlying asset at observation time ¢;. There are a total of N
observation times over the life of the contract. Define the return during the period [t;—1,;] to be

S(ti) — S(ti—1)

R; =
S(ti-1)

(4.1)

The payoff of a cliquet is

Novs
Payoff = Notional x max | £, min | Cy, ZmaX{Fl,min{CZ,Ri}} (4.2)
i=1

11



K =90 K =100 K =110
Expiry time Vol. Surf. Synthetic Vol. Surf. Synthetic Vol. Surf. Synthetic

1/12 10.67 10.80 2.77 2.75 0.20 0.18
1/6 11.64 11.71 4.14 4.15 0.79 0.77
1/4 12.56 12.62 5.30 5.32 1.50 1.49
1/2 15.18 15.18 8.26 8.27 3.77 3.77
1 19.69 19.59 13.09 13.07 8.12 8.12
2 26.83 26.72 20.85 20.78 15.78 15.74
3 32.67 32.53 27.18 27.07 22.33 22.23
4 37.64 37.47 32.59 32.43 28.01 27.87
) 41.99 41.79 37.31 37.12 33.03 32.84

TABLE 2: Comparison of vanilla call synthetic market prices (jump diffusion model) and the volatil-
ity surface model computed using equation (3.14). Input parameters for the jump diffusion model
are given in Table 1. The local volatility surface is shown in Figure 1. The computed prices are
accurate to the number of digits shown.

where (', F; are local caps and floors placed on the individual returns, and C,, F, are a global cap
and floor respectively.
)) 13)

Note that a modification to equation (4.2) is
where R is a specified nominal return. If F; < 0, then equation (4.3) is the payoff of a reverse
cliquet. Such contracts give the holder a higher nominal return R in exchange for bearing some
downside market risk.

Since we are solving the PIDE (2.2) backwards in time from the maturity date to the valuation
date, we need to maintain additional state variables as one would in a dynamic programming
context. There are two obvious approaches that we now discuss and compare.

Nobs
Payoff = Notional x max (Fg, R + min <O, [Z max {F;, min {0, R; }}
i=1

4.2 Formulation
4.2.1 Running Sum Formulation

In this case, we introduce two new state variables: P, corresponding to the asset price at the
previous observation, and Z which is defined below. The value of the option is then given by
V =V(S,t; P, Z). Assume that t; <t < tpyq1. Let

k
Z(ty <t <tper) =Y _ max (F,min(Cy, Ry)), (4.4)
=1

where Z(t < t;) = 0. Consequently, the payoff (4.2) at ¢t = T becomes

Payoff = Notional x max (F,, min(Cy, 7)) . (4.5)

12



where P+ = P(t]), P~
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FIGURE 2: This volatility surface was obtained by using a least squares fit (Coleman et al., 1999)
to the exact Furopean call and put prices (under a Merton jump diffusion). The Merton model
parameters are given in Table 1. The actual surface used had a mazimum value of o = 1.0.

Similarly, let P(tx <t < tg+1) = S(tx) denote the value of the asset at the most recent observation.
If t,;,t: are the times the instant before and after the k** observation, then, following Wilmott
(1998), no-arbitrage considerations lead to the following jump conditions:

S— P~
R=—p—
R* = max (F;, min (Cy, R))
Zt=Z+R
Pt=S5

V(S,t75P7,Z7)=V(S,t5;P*, Z7),

=P(t;), Zt = Z(t}), and Z~ = Z(t;).

4.2.2 Average Formulation

It was demonstrated by Zvan et al. (1999) that the use of the arithmetic average for the additional
state variable was superior to a running sum formulation in terms of numerical performance for
Asian options. Consequently, we will also investigate an alternative formulation which uses average
(capped and floored) returns. Again the value of the option is given by V = V(S,¢; P, Z) where P
is the previous asset price as defined in the running sum context. However, in this case the state
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K =90 K =100 K =110
Expiry time Vol. Surf. Synthetic Vol. Surf. Synthetic Vol. Surf. Synthetic
1/12 10.81 10.80 3.01 2.75 0.21 0.18
1/6 11.91 11.71 4.43 4.15 0.82 0.77
1/4 12.92 12.62 5.60 5.32 1.55 1.49
1/2 15.49 15.18 8.45 8.27 3.78 3.77
1 19.69 19.59 13.11 13.07 8.04 8.12
2 26.82 26.72 20.89 20.78 15.81 15.74
3 32.64 32.53 27.21 27.07 22.34 22.23
4 37.57 37.47 32.57 32.43 27.96 27.87
5) 41.91 41.79 37.28 37.12 32.94 32.84

TABLE 3: Comparison of vanilla call synthetic market prices (jump diffusion model) and the cali-
brated volatility surface model (using a low order spline fit (Coleman et al., 1999)). Input parameters
for the jump diffusion model are given in Table 1. The calibrated local volatility surface is shown
in Figure 2. The computed prices are accurate to the number of digits shown.

variable Z is defined as

K
1
Zawg(th <t <tps1) = > max (Fy,min (Cj, R;)) ,

=1

where Z,,4(t < t1) = 0. In this case payoff (4.2) becomes

When using the average formulation the jump conditions are given by

Payoff = Notional x max (Fy, min (Cy, Nobs X Zaug)) -

Zg = Loy +
Pt=5
V(S,t7; P, Zgyy) = V(S,t7;

S— P~
R:
P_

R* = max (F}, min (C}, R))
R*—Z

avg

k

Ptz

avg

(4.7)

(4.9)

An advantage of the average formulation is that the possible range of values of Z = Z,, is
limited to min(0, F}) < Z < C}, independent of N,s. In the case of the running sum formulation,
the Z values are bounded by min(0, Nops X F}) < Z < Ngps X Cy, so that the grid is dependent on the
number of observations. Notice that we are interested in the solution V(S*,t = 0; P = S*, Z = 0),
where S* is the current value of the underlying asset. As we solve backwards in time, the solution
for some of the large Z values cannot affect the solution at V(S*,t = 0; P = S*,Z = 0) in the
running sum formulation. Consequently, some of the nodes in the Z-direction are wasted unless
the grid is dynamically reconstructed after each observation.

14



5 Numerical Solution

5.1 Discretization

Note that the PIDE (2.2) is independent of the new state variables (P, Z). Consequently, we can
discretize the state variables as

{P17"‘7Pj7"'7‘ijax} a'nd {Z1’7Zk77kaax}

For each discrete value of (P}, Zj), we can solve the one dimensional PIDE (2.2) at times between
the observation dates. To move the solution across an observation date, we use the jump conditions
(4.6) or (4.9). Notice that the jump conditions (4.6) and (4.9) are undefined if P = 0. Therefore,
it is important to discretize P so that P, > 0. Note that for geometric Brownian motion with
lognormally distributed jumps, a stock price of S = 0 is unattainable in finite time.

For fixed (P}, Zy), each one-dimensional PDE (2.2) is a function of (S,t) only. Our numerical
experiments utilize Crank-Nicolson timestepping with the modification suggested by Rannacher
(1984). Other details of the discretization can be found in Pooley et al. (2003). In particular, we
employ the iterative method described in that paper for the nonlinear uncertain volatility models.
In situations where a jump diffusion model was used, the discrete algebraic equations are solved
using a fixed point iteration combined with an FFT evaluation of the integral term in the PIDE
(2.2). This is described in detail in d’Halluin et al. (2005, 2004). The tolerances for all iterative
methods (within each timestep) were set to guarantee that the error in the solution of the discretized
equations did not affect the first six significant digits of the solution.

5.2 Similarity Reduction

As discussed by Forsyth et al. (2002), it is generally necessary to carry out an interpolation operation
to approximate the jump conditions at observation dates. Denote the possible dependence of o on
P in equation (2.2) by 0 = (5, t; P) (dropping possible dependence on I'). This interpolation can
be avoided if we assume that

o(S,t; P) =a(pS,t; pP). (5.1)

If equation (5.1) holds, the payoff is given by either (4.5) or (4.8), and the jump conditions are
given by either (4.6) or (4.9), then from equation (2.2) we have that V' is homogeneous of degree
zero in (S, P):

V(S,t; P, Z) =V (pS,t;pP, Z) . (5.2)

Setting p = P*/P gives
S
V(S,t;P,Z)=V <ﬁ X P*,t;P*,Z> , (5.3)

which implies that we need only solve for one reference value P = P*. This effectively reduces the
dimensionality of the problem from three to two. As long as the node S = P* is in the S grid,
no interpolation is required (in the S direction) to satisfy the jump conditions (4.6) or (4.9). In
the following, we will refer to assumption (5.1), which then implies equation (5.3), as the similarity
reduction.

The assumption (5.1) seems somewhat peculiar, but has a modelling rationale which we will
discuss in a later section.
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FIGURE 3: Repeated grid, constructed using the same asset price S grid for each discrete setting of
the variable P (the asset price at the preceding observation time).

5.3 Mesh Construction

With regard to the mesh for the Z variable, there are no particularly noteworthy issues. We
simply use a uniformly spaced grid. However, some issues arise in the construction of the P
grid (for cases where no similarity reduction is available). Suppose that we use an S grid with
Sg = {S1,.-,8i, ..., Sipa t and a P grid, Py = {P1,..., Pj,..., Pj..}, with P, = S, (ie. a
Cartesian product S x P grid, with the same node spacing in the S and P directions). In this case,
no interpolation in the S or P directions is required during the application of the state variable
updating rule

Pt =5 (5.4)

A illustration of a set of grids constructed in this fashion is shown in Figure 3. We refer to this
grid as a repeated grid in the following. We emphasize that a major advantage of a repeated grid,
for pricing cliquet options, is that no interpolation error is introduced in the (S, P) plane at each
observation date.

In Windcliff et al. (2001), it is shown that this type of grid results in poor convergence for shout
options. Normally, we choose a fine node spacing near the initial asset price S = 5%, since this is
the region of most interest. However, since the nodes P = S for all values of S are required during
the application of the jump condition (5.4), these values may have poor accuracy in areas where
the S node spacing is large. It is therefore desirable to have a fine node spacing in the S direction
for all nodes near the diagonal of the (.5, P) grid.

Suppose we have a prototype S grid constructed with a fine node spacing near S = S*. Denote
this set of nodes by S; = {S1,...,5i, ..., Sipna }- We also assume that the grid has been constructed
so that the point S* is contained in the discretization. In other words, there is an index i* such
that Si~ = S* and Sj» € S;. Let S) = {S7....,5),...,5) ..} represent the S nodes corresponding
to the discrete value P;. The following algorithm is used to construct Sg, with P; € Sg:
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FIGURE 4: Scaled grid, constructed using algorithm (5.5).

Scaled Grid Construction

SetPj:Sj; J=1.. . tmax; SjESg

Set Jmax = tmax

For j =1,..., jmax (5.5)
EndFor

Since there is an ¢* such that S;+ = 5%, Sf = P;. In other words, for each line of constant P;, there
is a node on the diagonal SY = P;, as depicted in Figure 4.

5.4 Interpolation

If Sg is constructed using algorithm (5.5), then interpolation is required to satisfy the state variable
updating rule (5.4). An obvious method is to linearly interpolate along the S axis and then along
the P axis, which we refer to as zy interpolation in the following. If we omit the dependence of V'
on the variables Z and t for brevity, then xy interpolation is defined as:

VS(Phigh) - VS(Plow)

V (S, P)=V3(Ppw) + P — Py
(5.P) = VS (Puw) 4 —— g0 (P Py
V' (Shigh, P) — V (Siow, P
VS(P):V(Slow,P)+ ( hgg ) S( l ) (S_Slow)
high — Rlow
Slow <S§< Shigh
Plow <P< Phigh' (56)

In Windcliff et al. (2001) it is argued that diagonal interpolation (along the diagonal of the grid
shown in Figure 4) is more suited to capturing the non-smooth payoff of a shout option. Diagonal
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FIGURE 5: Different interpolation strategies.

interpolation is defined as

V(S,P = S) = V(S = Plovalow) +

Piow < S < Phigh- (57)

Unlike zy interpolation, this method is exact if a similarity reduction is valid. These two approaches
(xy and diagonal) are illustrated in Figure 5.

5.5 Boundary Conditions

As previously discussed, away from observation dates, we need to solve a set of one dimensional
PIDES of the form (2.2) for each discrete value of (P, Z). Consequently, boundary conditions must
be specified. Normally, a finite computational domain [Spin, Smax| is specified for a one dimensional
Black-Scholes equation. Usually, Spax is selected to be a large value, and the boundary condition
Vss = 0 is specified at S = Spax as suggested by a variety of authors, including Tavella and Randall
(2000) and Wilmott (1998). The reason for this is that many contracts (including cliquets) are
asymptotically linear as S — oo. For a discussion of the stability issues surrounding this boundary
condition, see Windcliff et al. (2004). In the following, we will specify Vgs = 0 at S = Spax-

Since the PDE degenerates to an ODE at S = 0, which is easily implemented numerically,
usually Spin = 0. However, as noted in Section 5.1, the return R; = (S(t;) — S(ti—1))/S(ti—1)
becomes undefined when S(t;_1) = P = 0. Since the jump conditions require that PT = S, having
a node at S = 0 causes difficulty. Consequently, we should view the solution to the cliquet valuation
problem as being embedded in the computational domain Spin < (S, P) < Smax, wWith Spin > 0,
and Spax < 00. We seek the solution in the limit as Sy — 0 and Siax — 0o. From the nature of
the cliquet payoff, it is reasonable to impose the boundary condition Vgg = 0 at S = Spin as well.
Under normal market parameters, setting Vgg = 0 at the lower boundary results in a first order
hyperbolic equation with outgoing characteristic, which contrasts with the more delicate situation
studied in Windcliff et al. (2004) at S = Spyax. In our numerical tests, we will select a value of Spin
on a coarse grid, and then reduce Sy, as the grid is refined, so as to ensure the correct limiting
behavior.
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5.6 Effect of Finite Computational Domain on the Jump Conditions

If the scaled one dimensional grids are constructed as shown in Figure 4, then there will be situations
where S > P; or S} < P;_... In these cases, our computational domain does not have sufficient
data to allow interpolation of the state variable updating rule P+ = S. If this happens, we assume
that this data can be approximated by assuming that the similarity reduction (5.3) is locally valid.
From equation (5.3), this means that

max

V(S t;P=5,2)~ V(P

(R t;‘Pj

t; P;

min? 7?7

zZ;, SI>P
Z);, Sl<p

max ? max ? max

min? min * (58)

We will refer to (5.8) as a similarity extrapolant. In situations where there is a similarity
reduction, this extrapolation scheme is exact. Using a local volatility surface would invalidate the
use of the similarity reduction. However, typically the volatility function is assumed to be constant
outside of some range of asset values near the current asset price. Consider the boundary for
large asset values. Since the state variable updating rules only query values of S near S = P;__.,

the effect of far-field errors introduced by the approximation of constant volatility can be made
arbitrarily small, as demonstrated by Kangro and Nicolaides (2000).

5.7 Properties of the Discrete Equations

Suppose we solve a full three dimensional cliquet problem, with variables (S, P, Z). Consider the
special case where a similarity reduction (Section 5.2) is valid. In this case, it seems natural to
require that our grid construction/discretization method is discretely homogeneous of degree zero
in (S, P), and that there should be no interpolation error incurred in the (.S, P) plane after applying
the jump conditions. A grid construction/discretization method satisfying these properties should
also be useful when solving problems where a similarity reduction is not valid.

Let

T =U(S!, Py, Zy, ") (5.9)

be the discrete solution to the cliquet pricing problem. Note that we have allowed the grid Sg to
depend on Pj. Let Tk be the vector of discrete solution values for grid S7, i.e.

(Uik)i = Ul - (5.10)

Since equation (2.2) contains no derivatives w.r.t. (P, Z), then, given U}, we can solve for UZ-ZL-JFI
for each (jk) independently. If a fully implicit (6§ = 1) or Crank-Nicolson (# = 1/2) timestepping
method is used, and equation (2.2) is discretized as in d’Halluin et al. (2005, 2004), then we have
that

(I+0M)ULH = (I —(1—0)M)UJ (5.11)

where M; = M({Sf}, P;) is the matrix form of the discretization operator (for a given grid Sg).
Note that since equation (2.2) is independent of Z, then M; has no k dependence.

We first gather some conditions which are required for a similarity reduction (Section 5.2) to
be valid.
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Conditions 5.1 (Conditions for a Similarity Reduction) The following conditions are required
in order to use the similarity reduction method described in Section 5.2.

o The payoff of the cliquet is homogeneous of degree zero in (S, P), i.e. for any scalar A > 0

VIAS,A\P,Z,7=0) = V(S,P,Z,7=0). (5.12)

e The discrete form of the PIDE operator (2.2) is homogeneous of degree zero in (S, P), i.e.
for any scalar A > 0

M{ASTEAR) = M8} ) (5.13)
o The jump conditions are given as in (4.6) and (4.9).

Remark 5.1 (Homogeneity Property of the Discrete Operator) Property (5.13) holds if ei-
ther o = const. in equation (2.2), or o satisfies condition (5.1); and, in addition, boundary con-
ditions Vgg = 0 are imposed at S = Smin, Smaz, and the discretization method in d’Halluin et al.

(2005, 2004) is used.

We also gather some conditions on the grid construction, discretization and jump condition
enforcement that we wish to impose.

Conditions 5.2 (Grid Construction/Discretization Properties) We assume that the grid is
constructed with the following conditions

e The mesh is constructed using the scaled grids as described in Algorithm 5.5.

e Diagonal interpolation (5.7) is used where required to enforce the jump conditions. The sim-
ilarity extrapolant (5.8) is used if missing data is required.

o The boundary condition Vss = 0 is imposed for each grid at S = 57 S = 5w

min’

We can now state an interesting property of grid construction and discretization methods which
satisfy Conditions 5.2.

Property 5.1 (Grid Construction/Discretization Property) Provided that the similarity re-
duction Conditions 5.1 are satisfied, and the grid is constructed satisfying Conditions 5.2 then

1

where j* denotes the index such that Py~ = S*. Equation (5.14) then implies that
UNS!, AP}, Zy,, ") = U(S!, P, Zy,, ")

(5.15)

which can be interpreted as a discrete homogeneity property. In addition, there is no interpolation
error introduced in the (S, P) planes upon applying jump conditions (4.6) or (4.9).
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Proof. Suppose that the scaled grid for Sg is constructed as in Algorithm 5.5. Since the payoff
is homogeneous of degree zero in (.5, P) (condition (5.12)), then at timestep n = 0, we have

)

Ul = U(S!, Py, Zk,m=0)

P,  P;5*
= U _jSZ7 ’ 7Z y T = 0
(geSi =g 27 =0)
= U(S;,S*, Zk, 7=0)
Uk » (5.16)
Suppose that at timestep n, we have that

From condition (5.13) we have that

P; P;S*
M, = M({ZLs b 2
J <{SS} 5 )

= M({Si},57)
- Mj, (5.18)

It then follows from equation (5.11), using equations (5.17) and (5.18) that

Uit = (I+0M;) "' (I — (1—0) MU},
= (I+60Mp)""(I—(1—0)M;)ULy,
= UL (5.19)
Consequently, since U Jok =U jo* o then U]”k = U;i ;. for all steps between applications of the jump

conditions.
Let (U;‘,jl)* = (U]T,gl)* be the discrete solution the instant before application of the jump

conditions (going backwards in time), and (U;LI:FI)Jr be the solution the instant after application of
the jump conditions (backwards in time). If the jump conditions (4.6) or (4.9) are specified, and if
diagonal interpolation (5.7) is used, along with the similarity extrapolant (5.8), then it is easy to
see that

Ut = (UEhHT, (5.20)

hence properties (5.14) and (5.15) hold after application of the jump conditions. Note that the
jump conditions (4.6) or (4.9) require evaluation of (noting equation (5.15))

(U2, 89, 2,7~ = (U(S*, 5%, Z,7" 1)~ (5.21)

hence from equation (5.7), there is no interpolation error in the (S, P) plane with diagonal inter-
polation. 0
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Remark 5.2 (Significance of Property 5.1) If the Conditions 5.1 for a similarity reduction
are rigorously satisfied, and the grid is constructed satisfying Conditions 5.2, then the solution
vector is discretely homogeneous of degree zero in (S, P), as in equation (5.15). Furthermore,
application of the jump conditions does not generate any interpolation error in the (S, P) plane.
In this case, we need only solve for a single value of P = S* in each (S, P) plane, i.e. there is no
need to solve a full three dimensional problem. However, in cases where the similarity reduction
is not valid, we expect that a grid satisfying Conditions 5.2 will still be desirable. For erxample,
if o = o(S,t), then in general a similarity reduction cannot be used. However, any interpolation
error introduced by the diagonal interpolant (on the grid satisfying Conditions 5.2) will be a result of
deviations from a constant volatility, which we expect to be small in regions where the local volatility
function is smooth.

6 Numerical Tests: Methods

6.1 Comparison of Running Sum and Average Formulations

As a first test we compare the convergence of the running sum and average formulations as the
grid size is refined and number of timesteps is increased. Details of the contract used in these tests
are provided in Table 4. Note that the contract is the same as that studied in Wilmott (2002).
For these tests we use a constant volatility model without jumps. Input parameters are presented
Table 5.

The results of the convergence tests are shown in Table 6. Since o5 = const., we can use the
similarity reduction to reduce this to a two dimensional PDE. A series of tests was carried out
where at each refinement level new nodes were inserted between each pair of nodes in the coarser
grid, a new node was added between 0 and Sy, from the previous grid, and the timestep size was
reduced by a factor of two. Contrary to the results found by Zvan et al. (1999) for Asian options,
the running sum formulation seems to be converging faster than the average formulation. In all
subsequent tests, we will use the running sum formulation.

Note that we use second order methods to discretize each one dimensional PIDE as described in
d’Halluin et al. (2005, 2004). The jump conditions are also imposed using linear interpolation in the
Z direction, which would also have quadratic error for smooth solutions (assuming a finite number
of observations). However, application of the jump conditions (4.9) results in a non-smoothness

Parameter Value

Observation times 1.0, 2.0, 3.0, 4.0, 5.0
T 5.0

Notional 1.0

C 0.08

F; 0.0

Cy 00

F, 0.16

TABLE 4: Cliquet contract details.
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Parameter Value

S* 100
oy 0.20
r 0.03
A 0.0

TABLE 5: Parameters for the constant volatility case without jumps.

Nodes Timesteps Value Change  Ratio
Running Sum Formulation
31 x13 40 0.174467312
62 x 25 80 0.174230223 .00023709
124 x 49 160 0.174099404 .00013082 1.8
248 x 97 320 0.174066778 .00003262 4.0

496 x 193 640 0.174060717 .00000606 5.4
Average Formulation

31 x13 40 0.174807390

62 x 25 80 0.174368430 .00043896

124 x 49 160 0.174207223 .00016121 2.7
248 x 97 320 0.174110595 .00009663 1.7

496 x 193 640 0.174089486 .00002111 4.6

TABLE 6: Value of a cliquet option using the running sum and average formulations. Contract
details are provided in Table 4. Parameters are given in Table 5. Nodes refers to the number of
nodes in the S and Z directions respectively. A similarity reduction is used, so no grid is needed in
the P direction. At each refinement level, new nodes are inserted between each pair of grid nodes
on the coarser grid, a new node is added between S = 0 and the first coarser grid node, and the
timestep size is halved. Change refers to the change in numerical value from one level of refinement
to the next. Ratio refers to the ratio of changes between successive refinements. An asymptotic
ratio of four indicates quadratic convergence.

of the solution in the Z direction, due to the local caps and floors. This non-smoothness can be
expected to cause the convergence rate to be somewhat erratic. We can see in Table 6 that the
ratio of changes departs somewhat from the ideal asymptotic value of four which would be observed
for exact quadratic convergence.

6.2 Effect of Grid and Interpolation

Using the local volatility surface shown in Figure 1, obtained using equation (3.14), and the contract
outlined in Table 4, a series of convergence tests was carried out. These are shown in Table 7. In
this case no similarity reduction is possible since the volatility surface is a general function of S
and t and does not satisfy equation (5.1). As before, a series of refined grids was constructed where
on each refinement the timestep size was halved, new nodes were inserted between each coarse grid
node, and a new node was inserted in the S grid in (0, Spin)-

The results in Table 7 indicate that using a Cartesian product grid (Repeated Grid) that uses
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the same node spacing in the (S, P) directions results in very poor convergence even though there
is no interpolation error in the (5, P) directions when applying the jump conditions. Clearly, the
use of the scaled grid/discretization method satisfying Conditions 5.2 is very effective. Hence, we
will use these methods in the following.

Nodes Timesteps Scaled Grids Scaled Grids Repeated
(diagonal interpolation) (xy interpolation) Grid
35 x 35 x 13 40 167847 169728 148230
70 x 70 x 25 80 167229 167837 .159672
140 x 140 x 49 160 .167046 167211 .164720

TABLE 7: Value of a cliquet option with a volatility surface (Figure 1 and equation (3.14)). Contract
details are provided in Table /. Nodes refers to the number of nodes in the S, P, and Z directions
respectively. Scaled grids refers to the S-grid construction method (5.5), shown in Figure 4, and
satisfying Conditions 5.2. Diagonal interpolation refers to interpolation method (5.7), shown in
Figure 5(b), whereas xy interpolation refers to the interpolation method (5.6), shown in Figure 5(a).
Repeated grid refers to a Cartesian product grid with the same node spacing in the S and P directions
(Figure 3).

6.3 Effect of Boundary at S = 5.

Table 8 shows the effect of choosing different values of S;,4.. The results were obtained using the
volatility surface in Figure 1, with grids/discretization satisfying Conditions 5.2. The initial coarse
grid with 35 x 35 x 13 nodes used Spae = 18 x P;. The initial grid with 31 x 31 x 13 nodes used
Sz = 4 X P;. As we can see, there is no effect on the solution (to six figures) of imposing the
boundary condition Vgg = 0 at these values of S,,4. Note that this is because we use both scaled
grids (as shown in Figure 4), and the similarity extrapolant (5.8) where necessary to impose jump
conditions. In the following, we use Sz = 18 X P;.

Nodes Timesteps Scaled Grids Nodes Timesteps Scaled Grids
35 x 35 x 13 40 167847 31 x31x13 40 167847
70 x 70 x 25 80 167229 62 x 62 x 25 40 167229
140 x 140 x 49 160 .167046 124 x 124 x 25 160 .167046

TABLE 8: Value of a cliquet option with a volatility surface (Figure 1 and equation (3.14)). Con-
tract details are provided in Table 4. Nodes refers to the number of nodes in the S, P, and Z
directions respectively. Scaled grids refers to the S-grid construction method (5.5), shown in Fig-
ure 4. Diagonal interpolation refers to interpolation method (5.7), shown in Figure 5(b). The base
grid 35 x 35 x 13 used SJ . =18 x P;. The reduced base grid 31 x 31 x 13 used S =4x P;.

max max
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7 Numerical Tests: Modelling Assumptions

7.1 Volatility Surface Based on Analytic Expression

There is increasing evidence that jump processes provide reasonable explanations of volatility smiles
and skews. If the real stock price process is a jump diffusion, then the common approach of fitting
a volatility surface to vanilla option prices can, as we will demonstrate, result in a significant error
when pricing exotic options such as cliquet contracts. However, as we shall see, it is standard
practice in industry to use various methods to correct for these deficiencies. These corrections do
appear to reduce the pricing errors dramatically, but only near S = S*, the initial asset price.

We assume that the synthetic market dynamics are given by the parameters in Table 1 and
the contract details are contained in Table 4. We use the local volatility surface constructed using
equation (3.14), as described in Section 3.2. The surface is shown in Figure 1.

The resulting value of a cliquet option is given in Table 9. At each refinement level, new nodes
are inserted between each two coarse grid nodes, and the timestep is halved. As we increase the
refinement level, the solution will converge to the correct value. The column “Vol. Surf.” of this
table provides corresponding results if we value this same option without using a jump diffusion
model but instead using a volatility surface which was fit to our synthetic vanilla market data
(arising from a jump model). Note that these are quite different from the correct values, at least
in our synthetic market. This is also illustrated in Figure 6.

Refinement Jump Diffusion Vol. Surf. Vol. Surf. Vol. Surf. Const. Vol. Const. Vol.

Level Const. Vol. (Fig 1)  Sim. Red. Sim. Red. ¢ =.2359 o = .3167
Rebased ¢
0 177303 167847 .170017 178142 163874 .160253
1 177515 167229 169491 177942 163415 159533
2 177540 167046 .169358 177909 163259 .159339

TABLE 9: Value of a cliquet option under jump diffusion with constant volatility (parameters are
given in Table 1) and various other volatility models. The wvolatility surface is computed using the
method described in Section 3.2, using equation (3.14), ans shown in Figure 1. Contract details
are provided in Table 4. Volatility surface shown in Figure 1, computed using equation (3.14).
Vol. Surf. refers to a wvolatility surface model with no jumps. Vol. Surf. Sim. Red. refers to the
assumption of equation (5.1), and no jumps. Vol. Surf. Sim. Red. Rebased t refers to assumption
(7.5), and no jumps. Const. Vol. models have no jumps (values of o are provided in Table 1). At
each refinement level, new nodes are inserted between each coarse grid node, and the timestep is
halved.

Figure 6 compares the true synthetic market price (t* = 0) compared with the local volatility
approach. This Figure shows the value of V/(S,P = S*,Z = 0,t = 0). Note that the minimum
value of this contract, independent of the underlying model and initial asset price, is about .1246,
so that the error, relative to this minimum value, is quite large near the current price S* = 100.

However, practitioners are well aware of the problems with using a calibrated local volatility
surface to price exotics. If we calibrate a local volatility surface at t = t* with S* = P, and
subsequently assume that equation (5.1) holds, then a modelling decision has been made to assume
that the volatility surface is a function of S/P. We can think of this as assuming that the observed
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FIGURE 6: Cliquet option value. Comparison of jump diffusion model with constant volatility
(parameters are given in Table 1) with a volatility surface (Figure 1). The surface is computed
using the method described in Section 3.2.

volatility skew will always be “centered” in some sense around the current asset level. This can be
justified on the basis of Lemma 3.2 in Section 3. If we calibrate a local volatility model (assuming
process (3.3)) to prices generated where the process actually follows (3.1), then in the case of
oy = const., Lemma 3.2 states

op(pS*,t*; pS,t) = o (S*,t%; S, 1), (7.1)

where o, is the local volatility, determined by calibration as described in Section 3. If we let S* = P
in equation (7.1), then

or(pP,t*; pS,t) = or,(P,t*; S, t)

=0y (S*,t*; X S*,t) . (7.2)
Therefore, if o(S,t; P) = or(P,t*; S,t), then equation (5.1) holds.

Another common assumption made by practitioners is to rebase the time for the evaluation
of the volatility surface in order to fix the forward starting volatility skew dynamics. To explain,
if we calibrate the surface initially at time ¢*, then we will typically observe a heavy skew in the
implied volatilities of short dated options maturing near t*. For longer dated options, expiring at
t; > t*, the volatility surface is much flatter. When hedging cliquet positions, we may want to take
static positions in market traded options at observation dates in order to reduce model risk. If we
re-calibrate the volatility surface at time t;, usually we will find that the new surface now has a
heavy skew for options maturing close to t;, which are now short dated options. If {1 <t < tg,
where t; are observation dates, then it can be postulated that

o(S,t; P) =or(P,tk_1;S,t —tx_1). (7.3)
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In our case since oj = const., then
or(Ptk—1;S,t —tg_1) = op(P,t"; S, t — ti—1). (7.4)
Combining assumptions (5.1), (7.1), and (7.4) together gives

o(S,t; P) = o(pS,t; pP)
= O'L(,OP, t*7pSat - tk—l)

=0F (S*,t*;% X S*,t — tk—l) (75)

where oy, is the volatility surface calibrated to prices at t;_1, and we have assumed that the
calibration is carried out at stock price S* = P at time t;_1. Again, these modelling assumptions
are often used by practitioners to mitigate the skew of the volatility surface and its flattening out,
as one looks farther ahead in time.

Values for the cliquet option under assumption (7.1) or (7.5) are also given in Table 9 (columns
headed “Vol. Surf. Sim. Red.” and “Vol. Surf. Sim. Red. Rebased ¢”). In the latter case, the
agreement between the volatility surface and the true synthetic market price is excellent. Note that
either of the assumptions (7.1) or (7.5) allow us to use the similarity reduction method described
in Section 5.2.

Finally, we also value this cliquet contract using constant volatility models (no jumps). The
resulting values are poor approximations (see Table 9). The volatility values are obtained by
calibration to a single at-the-money call (priced in our synthetic jump diffusion market) at two
different maturities.

Although Table 9 suggests that the common practitioner adjustments to compensate for the
deficiencies of a calibrated local volatility surface perform very well, this is a bit misleading. Figure
7 gives a plot of a comparison of the synthetic market price, and the prices which result from
the local volatility with the additional assumptions (7.1) and (7.5). We can see that, under the
similarity reduction, rebased time approximation (assumption (7.5)), the price agreement is only
good near S = S*, and deviates substantially as we move away from S* = 100.

This problem can be seen more clearly by plotting the option delta. Figure 8 shows the option
delta for the case of the jump diffusion model and the volatility surface model constructed using
equation (3.14), and shown in Figure 1. We use the similarity reduction and rebased time assump-
tion (7.5). Even though the values for the cliquet option are comparable close to S* = 100 (see
Figure 7), the deltas are significantly different.?

7.2 Volatility Surface Obtained by Calibration

In Table 10, we show the cliquet prices computed using the surface in Figure 2. We remind the
reader that this surface was computed using the method in Section 3.3, which calibrates to vanilla
prices using a least squares fit to a spline representation of the surface (Coleman et al., 1999).
Once again we see that the fitted local volatility surface cliquet prices are considerably in error,
compared to the exact synthetic market price. However, the use of the rebased time and forced

3Note that in the context of a jump diffusion model, the hedging portfolio should include additional options to
minimize the jump risk (Andersen and Andreasen, 2000).
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FIGURE 7: Cliquet option value. Comparison of the jump diffusion model with constant volatility
(parameters are given in Table 1) and the volatility surface approzimation. Left panel: volatility
surface with a similarity reduction (equations (7.1). Right panel: volatility surface with a similarity
reduction, rebased time (equations (7.1) and (7.5)). The volatility surface is computed using the
method described in Section 3.2, using equation (3.14). The surface is shown in Figure 1.

0.001

/Jump Diffusion

0.0008

0.0006

Delta

0.0004

0.0002 Volatility Surface
Similarity Reduction
Rebased Time

0 I T T TR |
50 75 100 125 150

Asset Price

FI1GURE 8: Cliquet option delta. Comparison of jump diffusion model with constant volatility
(parameters are given in Table 1) with a calibrated volatility surface with a similarity reduction
(equations (7.1) and (7.5)). The volatility surface is computed with the method described in Section
3.2, and using equation (3.14). The surface is shown in Figure 1.
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homogenization of the volatility surface (as in equation (7.5)) considerably reduces the error. The
error is, naturally, not as small as is obtained using the expression (3.14), as shown in Table 9.

Refinement Jump Diffusion Vol. Surf. Vol. Surf. Vol. Surf.

Level Const. Vol. (Fig 2)  Sim. Red. Sim. Red.
Rebased ¢

0 177303 .169180 172563 181226
1 177515 168433 171966 .180802
2 177540 .168193 171866 .180569

TABLE 10: Value of a cliquet option under jump diffusion with constant volatility (parameters are
given in Table 1) and various other volatility models. The volatility surface was computed using a
spline fit to the Furopean prices (Coleman et al., 1999), as described in Section 3.3. The surface
is shown in Figure 2. Contract details are provided in Table 4. Vol. Surf. refers to a wvolatility
surface model with no jumps. Vol. Surf. Sim. Red. refers to the assumption of equation (5.1), and
no jumps. Vol. Surf. Sim. Red. Rebased t refers to assumption (7.5), and no jumps. Const. Vol.
models have no jumps (values of o are provided in Table 1). At each refinement level, new nodes
are inserted between each coarse grid node, and the timestep is halved. Compare with Table 9.

Figure 9 verifies that the use of the calibrated local volatility model (Figure 2), with the ad-
ditional assumptions (7.1) and (7.5), yields good agreement with the synthetic market price near
S = 5%, but poor agreement elsewhere.

7.3 Uncertain Volatility

As pointed out by Wilmott (2002), valuing cliquets with extreme values of constant volatility does
not really capture the risk of mis-specification of volatility. Wilmott suggests using an uncertain
volatility model to quantify the effect of volatility risk. Table 11 provides the best-worst case prices
of a cliquet option in an uncertain volatility model, where o, and opax are taken from Table 1.
Table 11 reveals a large spread between the two cases.

Refinement Worst Case Best Case

Level Long Long
0 150548 175657
1 .149929 175183
2 .149745 175049

TABLE 11: Value of a cliquet option using an uncertain volatility model (no jumps) with r = .05,
Omin = -2359, and omax = .3167. Contract details are provided in Table 4.

Figure 10(a) shows the jump diffusion price and the best-worst case uncertain volatility prices.
Surprisingly, the uncertain volatility best case value is quite close to the jump diffusion value, but
we suspect that this is will not be true in general. Note that the best case price is not always above
the jump diffusion price. This is because the best case price is guaranteed to be above the constant
volatility price only for pure diffusion models. This is illustrated in Figure 10(b).
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FIGURE 11: Reverse cliquet option value (S* = 100, t = 0). Comparison of jump diffusion
model with constant volatility (parameters are given in Table 1), with a volatility surface, similarity
reduction model, rebased time, as in equation (7.5). Contract details are provided in Table 12.

7.4 Reverse Cliquet Example

As a final example, we consider a reverse cliquet, with the payoff given in equation (4.3). The
contract details are given in Table 12.

Parameter Value

S* 100

Observation times 1.0, 2.0, 3.0, 4.0, 5.0
T 5.0

Notional 1

R 50

F -.15

F, 10

TABLE 12: Rewverse cliquet contract details.

Figure 11 compares the jump diffusion results for the reverse cliquet, and the volatility surfaces
shown in Figure 1 and Figure 2, with the similarity reduction and rebased time modifications (7.5).
As with the regular cliquet, there is good agreement between the synthetic market price and the
local volatility model, as long as S ~ S*. However, there are significant differences in the shape
of the two curves. This indicates that the deltas computed with the volatility surface will be quite
different from the deltas computed with the jump diffusion model.
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8 Conclusions

Recent turmoil in financial markets has heightened investor awareness of the effect of volatility
on portfolios. Cliquet options have become popular insurance against market volatility for large
pension plans as well as retail investors. It is therefore of interest to have effective techniques for
valuing and hedging these instruments.

The discretely observed cliquet valuation problem reduces to solving a set of one dimensional
PDEs embedded in a two or three dimensional space. These one dimensional problems exchange
information through jump conditions at each sampling date. With respect to numerical issues, our
main results are:

e Unlike the case for discretely observed Asian options, the running sum formulation seems
superior to the running average return formulation.

e The type of grid used and interpolation method employed for enforcement of the jump con-
ditions at observation dates has a very large impact on the convergence of the solution. In
particular, we recommend using a special scaling method for constructing each one dimen-
sional grid, coupled with diagonal interpolation, and an extrapolation method for determining
missing data at the extremes of the grid.

From a practical point of view, we also observe that cliquet options are sensitive to the volatility
model assumed. If constant volatilities are used, the value of the cliquet option is insensitive to an
extreme range of volatilities. On the other hand, if an uncertain volatility model is used, there is
a large spread between best and worst case values.

Recently, jump diffusion models have been touted as better models of market dynamics than
the commonly used volatility surface model. If we assume a synthetic market which is driven by a
jump diffusion process, and then calibrate a volatility surface model (no jumps) to vanilla option
prices generated in the synthetic market, there is a large discrepancy between the value obtained
for a cliquet option using the calibrated volatility surface compared to the true value found using
the jump diffusion model.

The limitations of volatility surfaces for modelling forward start type options are well known.
Practitioners attempt to correct for these problems by

e forcing the local volatility function to homogeneous of degree zero in current price and price
at last reset; and

e rolling the local volatility surface forward, i.e. using only the small time part of the surface,
to avoid the flattening of the skew.

If the usual local volatility is modified by these two corrections, the price of the cliquet at the
initial asset price is in very close agreement with the synthetic market price. However, if we move
away from the initial asset price, the agreement deteriorates. The deltas from the corrected local
volatility approach are quite different from the synthetic market deltas.

This result suggests that use of calibrated volatility surface models for cliquet options should
be viewed with suspicion. If the corrected local volatility function is used, the prices are reasonably
accurate, but only at a single point. An uncertain volatility model, as suggested in Wilmott (2002),
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which generates a large spread between best and worst cases, at least signals to the hedger the real
volatility risk involved in writing these options.
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