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RÉSUMÉ – Nous étudions quatre jeux différents sur le changement climatique et les com-
parons aux résultats des choix d’un Planificateur Social. Dans un contexte dynamique,
deux joueurs choisissent des niveaux d’émissions de carbone. L’augmentation des stocks
de carbone dans l’atmosphère augmente la température moyenne mondiale, ce qui nuit aux
services publics des joueurs. La température est modélisée comme une équation différen-
tielle stochastique. Nous contrastons les résultats d’un jeu à la Stackelberg avec un jeu dans
lequel les deux joueurs jouent le rôle de meneur (un jeu Leader-Leader, ou Trumpian).
Nous examinons également un jeu Entrelacé dans lequel il existe un intervalle de temps
important entre les décisions des joueurs. Enfin, nous examinons un jeu dans lequel un
équilibre de Nash est choisi s’il existe, et un jeu de Stackelberg est joué dans le cas con-
traire. Un seul ou les deux joueurs peuvent terminer dans une meilleure position avec ces
jeux alternatifs par rapport au jeu à la Stackelberg, dépendamment des variables d’état.
Nous concluons qu’il est important d’envisager d’autres structures de jeu lors de l’examen
des interactions stratégiques dans les jeux portant sur pollution. Nous démontrons égale-
ment que le jeu de Stackelberg constitue une limite du jeu Entrelacé lorsque le temps entre
les décisions tend vers zéro.

ABSTRACT – We study four different climate change games and compare with the outcome
of choices by a Social Planner. In a dynamic setting, two players choose levels of carbon
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Americans Bud Abbott and Lou Costello.



2 L’ACTUALITÉ ÉCONOMIQUE

emissions. Rising atmospheric carbon stocks increase average global temperature which
damages player utilities. Temperature is modelled as a stochastic differential equation. We
contrast the results of a Stackelberg game with a game in which both players act as leaders
(a Leader-Leader, or Trumpian game). We also examine an Interleaved game where there
is a significant time interval between player decisions. Finally we examine a game where a
Nash equilibrium is chosen if it exists, and otherwise a Stackelberg game is played. One or
both players may be better off in these alternative games compared to the Stackelberg game,
depending on state variables. We conclude that it is important to consider alternate game
structures in examining strategic interactions in pollution games. We also demonstrate that
the Stackelberg game is the limit of the Interleaved game as the time between decisions
goes to zero.

INTRODUCTION

Many of the world’s serious environmental problems can be described in terms
of a tragedy of the commons whereby individual agents ignore the effect of their
own actions on the state of particular natural assets, whether fish or forest stocks
or the resilience of the world’s ecosystems. The tragedy of the commons can
only be alleviated by some sort of collective action, whether through government
regulatory measures or through informal activities such as moral suasion at the
community level. The effectiveness of actions to thwart the tragedy of the com-
mons will depend on individual circumstances of each situation, including the
strength of the incentives for individual agents to act strategically to further their
own interests at the expense of the common good.

Strategic incentives related to the tragedy of the commons have long been stud-
ied in the literature using models of differential games, mostly in a deterministic
setting. Long (2010) and Dockner et al. (2000) provide surveys of this large lit-
erature. Some notable contributions include Dockner and Long (1993); Zagonari
(1998); Wirl (2011); List and Mason (2001). Papers tackling pollution games in
a stochastic setting include Xepapadeas (1998); Nkuiya (2015); Wirl (2006). Key
questions addressed are conditions for the existence of Nash equilibria, whether
players are better off with cooperative behaviour, and the steady state level of pol-
lution under cooperative versus non-cooperative games. Linear quadratic games
in which utility is a quadratic function of the state variable and the state variable
is linear in the control, have been used extensively as these permit a closed form
solution for certain types of problems. A leading edge of the literature studies
problems which include a more robust characterization of uncertainty and game
characteristics such that optimal player controls may depend on state variables
and are not restricted in terms of permitted strategies.

Economic models of climate change have been sharply criticized in recent
years for their arbitrary assumptions regarding the costs of climate change and in-
adequate accounting of the uncertainly over how quickly the earth’s climate will
change and how human society might adapt. Pindyck (2013) is a good example
of this critique. In the earlier literature, uncertainty was typically been addressed
through sensitivity analysis or Monte Carlo simulation. A developing literature
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uses more sophisticated approaches, in particular by depicting optimal choices
in fully dynamic models with explicit characterization of uncertainty in key state
variables. Chesney, Lasserre and Troja (2017) examine optimal climate policies
when temperature is stochastic and there is a known temperature threshold which
will cause disastrous consequences if exceeded for a prolonged period of time.
Other recent papers which incorporate stochasticity into one or more state vari-
ables include Crost and Traeger (2014); Ackerman, Stanton and Bueno (2013);
Traeger (2014); Hambel, Kraft and Schwartz (2017).

Bressan (2011) provides an excellent summary of the specification and solu-
tion of non-cooperative differential games. He shows that in cases where the state
variables evolve according to an Ito process with drift depending on player con-
trols, value functions can be found by solving a Cauchy problem for a system of
parabolic equations. The Cauchy problem is well posed if the diffusion tensor has
full rank. We note that in the model studied in this paper, the diffusion tensor is
not of full rank, and hence we cannot necessarily expect Nash equilibria to exist.

Insley, Snoddon and Forsyth (2019) develop a sequential pollution game model
to address the specific circumstances of climate change. The model depicts two
players, each being a large contributor to global carbon emissions. Players emit
carbon in order to generate income, thereby increasing the atmospheric stock of
carbon. Rising carbon stocks increase the average global temperature, which is
modelled as an Ito process to reflect the inherent uncertainty associated with tem-
perature. Players choose emissions in a repeated Stackelberg game. The game
occurs every two years, at which time the leader and follower choose their opti-
mal emission level, with the follower choosing immediately after the leader. There
is no closed form solution to this game. A numerical approach is presented, based
on the solution of a Hamilton-Jacobi-Bellman (HJB) equation.

The results of Insley, Snoddon and Forsyth (2019) indicated a classic tragedy
of the commons whereby player utility is lower than would be achieved by a Social
Planner seeking to maximize the sum of player utilities. Players in the game
choose emission levels that are too high relative the levels chosen by a Social
Planner. The paper also demonstrates the importance of temperature volatility
and asymmetric damages and preferences on optimal choices.

Insley, Snoddon and Forsyth (2019) do not impose the requirement that opti-
mal strategies represent Nash equilibria. However it is possible to check for the
existence of Nash equilibrium at every time step for all possible values of the state
variables. This is done in the numerical example, and is reported in the paper.

The Stackelberg game has the advantage that a solution will always exist, even
though the chosen optimal controls may not represent Nash equilibria. However
it is reasonable to ask whether the Stackelberg game is the most appropriate for
modelling climate change and other pollution games. The purpose of this paper is
to examine other types of games that might be of interest in studying a pollution
game. We focus, in particular on three alternatives and compare to the Stackel-
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berg game, which we refer to as the base case. First we consider a case where both
players act as leaders. In a normal Stackelberg game the leader chooses optimal
emissions with the knowledge of how the follower will respond (via the follower’s
best response function). However it seems reasonable to ask what would happen if
each player acts as a leader, mistakenly assuming the other player will respond ra-
tionally as a follower. We call this game the Leader-Leader or Trumpian scenario.
To preview results, we find that in the Trumpian game, the true leader (i.e. the one
choosing first at time zero) is worse off than the leader in the Stackelberg game.
The true follower (the player choosing second at time zero) in the Trumpian game
is worse off than in the Stackelberg over most values of the state variables, but for
certain low values of the carbon stock state variable, the follower can be better off
in a Trumpian game.

In our second game variation, we focus on the time lag between the leader
and follower decisions. In a case we refer to as the Interleaved game, we assume
that players take turns choosing their optimal control, and there is a significant
time interval between decisions. This reflects the reality that in the real world,
policy decisions to change carbon emissions may take time. Again to preview
our results, we find that for a medium size gap between decisions, total utility
improves compared to the Stackelberg game. However, when the gap between
decisions gets too large, all players are worse off.

Overall our results for the Trumpian and Interleaved games imply that if play-
ers could choose other games rather than the simple Stackelberg games, it may be
in their interests to do so. We hope these results will lead to further research on
decision timing and game type which will inform our understanding of strategic
interactions in real world pollution games.

As noted, a focus of the pollution game literature is the characterization of
Nash equilibria. To provide a comparison of the outcomes of Nash and Stack-
elberg controls, we examine a third game variation whereby players choose the
Nash equilibrium if it exists, and otherwise revert to the optimal controls from the
Stackelberg game. We refer to this case as Nash-if-Possible (or NIP). Note that
about 60 percent of optimal choices in the Stackelberg game represent Nash equi-
libria. Our results show that the NIP and base cases are in general quite close in
terms of utilities and strategies. The follower is better off in the NIP game than in
the base case (pure Stackelberg game). The leader may be better or worse off, de-
pending on the state variables (carbon stock and temperature). Overall, however,
total utility is higher under the NIP game given state variables in ranges closest to
current day values.

1. PROBLEM FORMULATION

This section provides an broad overview of the climate change game, which
will be modelled using three different depictions of the strategic interactions of
decision makers. Details of the specific games are provided in Section 2. Details
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of functional forms and parameter values are provided in Section 3. A summary
of variable names is given in Table 1. The problem formulation is similar to
that described in Insley, Snoddon and Forsyth (2019), but is repeated here for
completeness of the paper.

The climate change game comprises two players each of which generate in-
come by emitting carbon. Carbon emissions contribute to the global atmospheric
stock of green house gases, which causes rising average global temperatures. Each
player experiences damages from rising temperature which reduces income. Play-
ers seek to maximize their own utility through the optimal choice of per period
carbon emissions, balancing the benefits from emissions with the costs that come
from rising carbon stocks. And of course, the rate at which carbon stocks increase
depends in part on the actions of the other player.

TABLE 1

LIST OF MODEL VARIABLES

Variable Description
Ep(t) Emissions in region p
e1, e2 Particular realizations of Ep(t)
S(t) Stock of pollution at time t, a state variable
s A realization of S(t)
S̄ Preindustrial level of carbon
ρ(t) Rate of natural removal of the pollution stock
X(t) Average global temperature, a state variable
x A realization of X(t)
X̄ Long run equilibrium level of carbon temperature
Bp(t) Benefits from emissions to region (player) p
Cp(t) Damages from pollution to region (player) p
πp Flow of net benefits to region p
r Discount rate
ρ(X ,S, t) Removal rate of atmospheric carbon
σ Temperature volatility
η(t) Speed of mean reversion in temperature equation

For simplicity we assume that there is a one to one relation between emissions
and a player’s income. The two players are indexed by p = 1,2 and Ep refers to
carbon emissions from player p. The stock of atmospheric carbon, denoted by S,
is increased by emissions, but is also reduced by a natural cycle depicted by the
function ρ(X ,S, t) and referred to as the removal rate, where X refers to average
global temperature, measured in ◦C above preindustrial levels and t represents
time. As described in Section 3, we will drop the dependence on X and S, and
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assume that ρ is a function only of time. Carbon stock over time is described by
the stochastic differential equation:

dS(t)
dt

= E1 +E2 +(S̄−S(t))ρ(X ,S, t); S(0) = S0 S ∈ [smin, smax] . (1)

where S̄ is the pre-industrial equilibrium level of atmospheric carbon. Equation
(1) is stochastic, in general, since the emission levels E1,E2, as well as possibly
the decay factor ρ are functions of stochastic state variables.

Uncertainty in the evolution of the earth’s average temperature is described by
an Ornstein Uhlenbeck process:

dX(t) = η(t)
[

X̄(S, t)−X(t)
]

dt +σdZ. (2)

where η(t) represents the speed of mean reversion, X̄ represents the long run
mean of global average temperature, σ is the volatility parameter, and dZ is the
increment of a Wiener process.

The net benefits from carbon emissions for player p, represented by πp, are
composed of the direct benefits from emissions, Bp(Ep, t) and the damages from
increasing temperature due to a growing carbon stock, Cp(X , t):

πp = Bp(Ep, t)−Cp(X , t) p = 1,2; (3)

Benefits are specified in Equation (4) as a quadratic function of emissions,
which is a common assumption in the pollution game literature,

Bp(Ep) = aEp(t)−E2
p(t)/2, p = 1,2; Ep ∈ [0,a], (4)

where a is a constant. Costs of damages from climate change are specified in
Equation (5) as an exponential function of temperature,

Cp(t) = bpκ1eκ3X(t) p = 1,2, (5)

where κ1 and κ3 are constants.

It is assumed that the control (choice of emissions) is adjusted at fixed decision
times denoted by:

T = {t0 = 0 < t1 < ...tm... < tM = T}. (6)

Let t−m and t+m denote instants just before and after tm, with t−m = tm − ε and
t+m = tm + ε , ε → 0+, and where T is the time horizon of interest.
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e+1 (E1,E2,X ,S, tm) and e+2 (E1,E2,X ,S, tm) denote the controls implemented
by the players 1 and 2 respectively, which are contained within the set of admissi-
ble controls: e+1 ∈ Z1 and e+2 ∈ Z2. K denotes a control set of the optimal controls
for all tm.

K =
{
(e+1 ,e

+
2 )t0=0, (e+1 ,e

+
2 )t1=1, ... ,(e+1 ,e

+
2 )tM=T

}
. (7)

In this paper we will consider five possibilities for selection of the controls (e+1 ,e
+
2 )

at t ∈ T : which are referred to as Stackelberg, Social Planner, Trumpian (Leader-
Leader), Interleaved, and Nash-if-possible (NIP). We delay the precise specifica-
tion of how these controls are determined until Section 2.2.

For any control strategy, the value function for player p, Vp(e1,e2,x,s, t) is
defined as:

Vp(e1,e2,x,s, t) = EK

[∫ T

t ′=t
e−rt ′πp(E1(t ′),E2(t ′),X(t ′),S(t ′)) dt ′

+e−r(T−t)V (E1(T ),E2(T ), X̄(T ),S(T ),T )
∣∣∣

E1(t) = e1,E2(t) = e2,X(t) = x, S(t) = s
]
,

(8)

where EK [·] is the expectation under control set K. As per convention, lower case
letters e1,e2,x,s are used to denote realizations of the state variables E1,E2,X ,S.
The value in the final time period, T , is assumed to be the present value of a per-
petual stream of expected net benefits at a given carbon stock, S(T ), and the long
run mean temperature associated with that carbon stock level, X̄(S(T ),T ), with
the chosen level of emissions. This is reflected in the term V (E1(T ),E2(T ), X̄(T ),
S(T ),T ). The implicit assumption is that after 150 years the world has transi-
tioned to green energy sources and emissions no longer contribute to the stock of
carbon.

2. DYNAMIC PROGRAMMING SOLUTION

Equation (8) is solved backward in time according to the standard dynamic
programming algorithm. There are two phases to the solution – for t ∈ (t−m , t+m )
we determine the optimal controls, while for t ∈ (t+m , t−m+1), we solve the system
of PDE’s that describe how the value function changes with the evolving stock of
carbon and temperature, but for fixed values of the optimal controls. As a visual
aid, Equation (9) shows the noted time intervals going forward in time,

t−m → t+m → t−m+1 → t+m+1 . (9)
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2.1 Advancing the solution from t−m+1 → t+m

The solution proceeds going backward in time from t−m+1 → t+m . Define the
differential operator, L for player p, in Equation (10). The arguments in the Vp
function have been suppressed when there is no ambiguity.

LVp ≡
(σ)2

2
∂ 2Vp

∂x2 +η(X̄ − x)
∂Vp

∂x

+[(e1 + e2)+ρ(S̄− s)]
∂Vp

∂ s
− rVp; p = 1,2 .

(10)

where r is the discount rate. Consider a time interval h < (tm+1 − tm). For
t ∈ (t+m , t−m+1 −h), the dynamic programming principle states that (for small h),

V (e1,e2,s,x, t) = e−rhE
[
V (E1(t),E2(t),S(t +h),X(t +h), t +h)

∣∣∣
S(t) = s,X(t) = x,E1(t) = e1,E2(t) = e2

]

+πp(e1,e2,s,x, t)h

(11)

Letting h→ 0 and using Ito’s Lemma,1 the equation satisfied by the value function,
Vp is expressed as:

∂Vp

∂ t
+πp(e1,e2,x,s, t)+LVp = 0, p = 1,2 . (12)

The domain of Equation (12) is (e1,e2,x,s, t) ∈ Ω∞, where Ω∞ ≡ Z1 ×Z2 ×
[x0,∞]× [S̄,∞]× [0,∞]. In principle, x0 would be zero degrees Kelvin in our
units. For computational purposes, we truncate the domain Ω∞ to Ω, where
Ω ≡ Z1 × Z2 × [xmin,xmax]× [smin,smax]× [0,T ]. T , smin, smax, Z1, Z2, xmin, and
xmax are specified based on reasonable values for the climate change problem, and
are given in Section 3.

Remark 1 (Admissible sets Z1,Z2). We will assume in the following that Z1,Z2
are compact discrete sets, which would be the only realistic situation.

1. Dixit and Pindyck (1994) provide an introductory treatment of optimal decisions under uncer-
tainty characterized by an Ito process such as Equation (2). A more advanced treatment in a finance
context is given by Bjork (2009).
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Boundary conditions for the PDEs are specified below.

x → xmax ;
∂ 2Vp(e1,e2,xmax,s, t)

∂x2 = 0 (13a)

x → xmin ; σ → 0 (13b)

s → smax ;
∂VP

∂S
(e1 + e2)→ 0 (13c)

s → smin ; No boundary condition needed, outgoing characteristics (13d)
t = T ; Vp = πp(E1(T ),E2(T ), X̄ ,S(T ),T )/r (13e)

The boundary at t = T gives the terminal value as the the present value of an infi-
nite stream of benefits given the long run mean temperature, X̄ , associated with the
particular carbon stock and chosen emissions levels. As is described in Section
3.3, in the numerical example emissions are restricted to four possible choices.
Given that emissions are no longer damaging at time T (assuming complete car-
bon capture and storage), the maximum possible emission level is chosen for the
boundary condition. Further discussion regarding these boundary conditions can
be found in Insley, Snoddon and Forsyth (2019).

More details of the numerical solution of the system of PDEs are provided in
Appendix A. Suppose that the value function is decreasing in temperature at t−m+1,
and that the benefits from emissions are always decreasing as a function of the
temperature, then the exact value function (i.e. solution of Equation (12)) must be
non-increasing in temperature at t+m . However, in some of our tests with extreme
damage functions, this property was violated in the finite difference solution. In
order to ensure this property holds for the finite difference solution, we require a
mild timestep condition, as described in Appendix B.

2.2 Advancing the solution from t+m → t−m

Proceeding backwards in time, we find the optimal control in the interval be-
tween t+m → t−m . We consider several possibilities for selection of the controls
(e+1 ,e

+
2 ) at t ∈ T :

• Stackelberg;

• Social Planner;

• Leader-Leader (Trumpian);

• Interleave

• Nash-if-Possible

Recall that our controls are assumed to be feedback, i.e. a function of state.
However, to avoid notational clutter in the following, we will fix (e−1 ,e

−
2 ,s,x, t

−
m ),
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so that, if there is no ambiguity, we will write (e+1 ,e
+
2 ) which will be understood

to mean (e+1 (e
−
1 ,e

−
2 ,s,x, t

−
m ),e+2 (e

−
1 ,e

−
2 ,s,x, t

−
m )), where e−1 and e−2 are the state

values at t−m before the control is applied.

Given the optimal controls (e+1 ,e
+
2 ) at a point in the state space (e−1 ,e

−
2 ,s,x, t

−
m ),

the dynamic programming principle implies

V1(e−1 ,e
−
2 ,s,x, t

−
m ) = V1(e+1 (·),e

+
2 (·),s,x, t

+
m ) ,

V2(e−1 ,e
−
2 ,s,x, t

−
m ) = V2(e+1 (·),e

+
2 (·),s,x, t

+
m ) . (14)

Equation (14) is used to advance the solution backwards in time t+m → t−m , for all
types of games. We describe the specific rule for determining the optimal control
pair (e+1 ,e

+
2 ) for each type of game in the following.

2.2.1 Stackelberg Game

In the case of a Stackelberg game, suppose that, in forward time, player 1 goes
first, and then player 2. Conceptually, we can then think of the time intervals (in
forward time) as (t−m , tm], (tm, t+m ). Player 1 chooses control e+1 in (t−m , tm], then
player 2 chooses control e+2 in (tm, t+m ).

We suppose at t+m , we have the value functions V1(e1,e2,s,x, t+m ) and
V2(e1,e2,s,x, t+m ).

Definition 1 (Response set of player 2). The best response set of player 2,
R2(ω1;e2;s,x, tm) is defined to be the best response of player 2 to a control ω1
of player 1.

R2(ω1;e2;s,x, tm) = argmax
e′2∈Z2

V2(ω1,e′2,s,x, t
+
m ) ; ω1 ∈ Z1 . (15)

Remark 2 (Tie breaking). We break ties by (i) staying at the current emission
level if possible, or (ii) choosing the lowest emission level. Rule (i) has priority
over rule (ii). The notation R2(·;e2; ·) shows dependence on the state e2 due to the
tie breaking rule.

Similarly, we define the best response set of player 1.

Definition 2 (Response set of player 1). The best response set of player 1,
R1(ω2;e1;s,x, tm) is defined to be the best response of player 1 to a control ω2
of player 2.

R1(ω2;e1;s,x, tm) = argmax
e′1∈Z1

V1(e′1,ω2,s,x, t+m ) ; ω2 ∈ Z2 . (16)
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Ties are broken as in Remark 2. Again, to avoid notational clutter, we will fix
(e1,e2,s,x, tm) so that we can usually write without ambiguity
R1(ω2;e1) = R1(ω2;e1;s,x, tm) and R2(ω1;e2) = R2(ω1;e2;s,x, tm).

Definition 3 (Stackelberg Game: Player 1 first). The optimal controls (e+1 ,e
+
2 )

assuming player 1 goes first are given by

e+1 = argmax
ω ′

1∈Z1

V1(ω ′
1,R2(ω ′

1;e−2 ),s,x, t
+
m )

∣∣∣
break ties e−1

,

e+2 = R2(e+1 ;e−2 ) . (17)

2.2.2 Leader-Leader (Trumpian) Game

A leader-leader game is determined by assuming that each player (mistakenly)
assumes that they are the leader. Somewhat tongue-in-cheek, we refer to this as a
Trumpian game. The Trumpian controls are determined from

e+1 = argmax
ω ′

1∈Z1

V1(ω ′
1,R2(ω ′

1;e−2 ),s,x, t
+
m )

∣∣∣
break ties e−1

,

e+2 = argmax
ω ′

2∈Z2

V2(R1(ω ′
2;e−1 ),ω

′
2,s,x, t

+
m )

∣∣∣
break ties e−2

. (18)

2.2.3 Interleave Game

Suppose that at decision times t2m;m = 0,1, . . . player 1 chooses an optimal
control, while player 2’s control is fixed. At decision times t2m+1;m = 0,1, . . .
player 2 chooses an optimal control, while player 1’s control is fixed. More
precisely, at t2m

e(2m)+
1 = optimal control for player 1 ,

e(2m)+
2 = e(2m)−

2 ; player 2 control fixed . (19)

At time t(2m+1), we have

e(2m+1)+
1 = e(2m+1)−

1 ; player 1 control fixed ,

e(2m+1)+
2 = optimal control for player 2 . (20)

More details for the Interleaved game are given in Appendix D. Suppose we hold
player 1’s decision times t2m fixed, and move player 2’s decision times t2m+1 to be
just after t2m. More precisely,

t2m = fixed ; (t2m+1 − t2m)→ 0+ . (21)
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In this case, intuitively, we would expect that the result of this limiting process
is a Stackelberg game at times t2m, with player 1 being the leader, and player 2 the
follower. We confirm this intuition in Proposition 3, Appendix D.

2.2.4 Social Planner

For the Social Planner case, we have that an optimal pair (e+1 ,e
+
2 ) is given by

(e+1 ,e
+
2 ) = argmax

ω1∈Z1
ω2∈Z2

{
V1(ω1,ω2,s,x, t+m )+V2(ω1,ω2,s,x, t+m )

}
. (22)

Ties are broken by (i) minimizing |V1(e+1 ,e
+
2 ,s,x, t

+
m )−V2(e+1 ,e

+
2 ,s,x, t

+
m )|, (ii)

choosing the lowest emission level. Rule (i) has priority over rule (ii). In other
words, the Social Planner picks the emissions choices which give the most equal
distribution of welfare across the two players.

2.2.5 Nash-if-Possible

In Appendix C we describe the necessary and sufficient conditions for a Nash
equilibrium to exist. However, in general, we have no reason to believe that Nash
equilibria exist at all points in the state space, since the system of PDEs depicted
in Equation (10) is degenerate (i.e. there is no diffusion in the S direction). This
observation is confirmed in our numerical tests.

In this game for each possible combination of state variables e,e2,x,s, we
check to see whether controls e+1 and e+2 exist that represent a Nash equilibrium as
defined by the necessary and sufficient conditions in Equation (47) (see Appendix
C). In the event that more than one set of controls is a Nash equilibrium, then we
choose the one with the lowest total emissions level. If no Nash equilibrium exists
then we determine controls via a Stackelberg game as defined in Section 2.2.1.

3. DETAILED MODEL SPECIFICATION AND PARAMETER VALUES

The functional forms and parameter values used in this paper are the same as
in Insley, Snoddon and Forsyth (2019). For the convenience of the reader a brief
review is provided in this section. Assumed parameter values are summarized in
Table 2.

3.1 Carbon stock details

The evolution of the carbon stock is described in Equation (1). In our numer-
ical example, we use a simplified specification of the path of carbon stock, based
on Traeger (2014). We simplify the function describing the removal rate of car-
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TABLE 2

BASE CASE PARAMETER VALUES

Parameter Description Equation Assigned Value

S̄ Pre-industrial atmospheric carbon stock (1) 588 Gt carbon
smin Minimum carbon stock (1) 588 Gt carbon
smax Maximum carbon stock (1) 10000 Gt carbon
ρ̄ , ρ0, ρ∗ Parameters for carbon removal Equation (23) 0.0003, 0.01, 0.01
φ1, φ2, φ3 Parameters of temperature Equation (27) 0.02, 1.1817, 0.088
φ4 Forcings at CO2 doubling (25) 3.681
FEX (0) Parameters from forcing Equation (25) 0.5
FEX (100) 1
α1, α2 Ratio of the deep ocean to surface temp, 0.008, 0.0021

α(t) = α1 +α2 × t, (27)
t is time in years with 2015 set as year 0

σ Temperature volatility (27) 0.1

xmin, xmax
Upper and lower limits on average
temperature, ◦C (27) -3, 20

a1, a2 Parameter in benefit function, player p (4) 10
Z1, Z2 Admissible controls (7) 0, 3, 7, 10

b1,b2
Cost scaling parameter, players 1 & 2
respectively (5) 15, 15

κ1
Linear parameter in cost function for both
players (5) 0.05

κ3
Term in exponential cost function for both
players (5) 1

T Terminal time 150 years
r Discount rate (10) 0.01

bon to be a deterministic function of time, denoted by ρ(t), which approximates
removal rates from the DICE 2016 model.

ρ(t) = ρ̄ +(ρ0 − ρ̄)e−ρ∗t (23)

ρ0 is the initial removal rate per year of atmospheric carbon, ρ̄ is a long run equi-
librium rate of removal, and ρ∗ is the rate of change in the removal rate. Spe-
cific parameter assumptions for this Equation are given in Table 2. The resulting
removal rate starts at 0.01 per year and falls to 0.0003 per year within 100 years.

Assumptions for the preindustrial level of carbon stock, S̄, and the minimum
and maximum carbon stock levels, smin and smax, are provided in Table 2. S̄ is
based on estimates used in the DICE (2016)2 model for the year 1750. smax is set

2. The 2013 version of the DICE model is described in Nordhaus and Sztorc (2013). GAMS
and Excel versions for the updated 2016 version are available from William Nordhaus’s website:
http://www.econ.yale.edu/nordhaus/homepage/.
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at 10,000 Gt, which is well above the 6000 Gt carbon in Nordhaus (2013) and is
not found to be a binding constraint in the numerical examples. A 2014 estimate
of the atmospheric carbon level is 840 Gt.3

3.2 Stochastic process temperature: details

Equation (2) specifies the stochastic differential equation which describes tem-
perature, X(t), based on the parameters η(t) and X̄(t). To relate Equation (2) to
the climate change literature, we define these parameters as follows:

η(t)≡ φ1

(
φ2 +φ3(1−α(t))

)
(24)

X̄(t)≡ F(S,t)
(φ2+φ3(1−α(t)) .

where φ1, φ2, φ3 and σ are constants.4

F(S, t) refers to radiative forcing, where

F(S, t) = φ4

(
ln(S(t)/S̄)

ln(2)

)
+FEX (t) . (25)

φ4 indicates the forcing from doubling atmospheric carbon.5 FEX (t) is forcing
from causes other than carbon and is modelled as an exogenous function of time
as specified in Lemoine and Traeger (2014) as follows:

FEX (t) = FEX (0)+0.01
(
FEX (100)−FEX (0)

)
min{t,100} (26)

Substituting the definitions of η and X̄ into Equation (2) and rearranging gives

dX = φ1

[
F(S, t)−φ2X(t)−φ3[1−α(t)]X(t)

]
dt +σdZ (27)

The drift term in Equation (27) is a simplified version of temperature models
typical in Integrated Assessment Models, based on Lemoine and Traeger (2014).
α(t) represents the ratio of the deep ocean temperature to the mean surface tem-
perature and, for simplicity, is specified as a deterministic function of time.6

The values for the parameters in Equation (27) are taken from the DICE (2016)
model. Note that φ1 = 0.02 which is the value reported in Dice (2016) divided by

3. According to the Global Carbon Project, 2014 global atmospheric CO2 concentration was
397.15± 0.10 ppm on average over 2014. At 2.21 Gt carbon per 1 ppm CO2, this amounts to 840
Gt carbon.(www.globalcarbonproject.org)

4. φ1, φ2, φ3 are denoted as ξ1, ξ2, and ξ3 in Nordhaus (2013).

5. φ4 translates to Nordhaus’s η (Nordhaus and Sztorc, 2013).

6. We are able to get a good match to the DICE2016 results using a simple linear function of time.
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five to convert to an annual basis from the five year time steps used in the DICE
(2016) model. FEX (0) and FEX (100) (Equation (25)) are also from the DICE
(2016) model. The ratio of the deep ocean temperature to surface temperature,
α(t), is modelled as a linear function of time.

3.3 Benefits and Damages

Benefits are given as a quadratic function of emissions in Equation (4). In
the numerical example, there are four possible emissions levels for each player
Ep ∈ {0,3,7,10} in gigatonnes (Gt) of carbon and we set a1 = a2 = 10 in Equation
(4).

Damages are given as an exponential function of emissions in Equation (5).
Assumed values for κ2 and κ3 are given in Table 2. We note that with this func-
tional form, damages greatly exceed benefits from 3 ◦C onward. We view this
exponential specification of damages as an alternative approach to capturing dis-
astrous consequences, compared to adopting a Poisson jump process which is
sometimes used in the literature.

4. NUMERICAL RESULTS

4.1 Base case: the Stackelberg game

This section summarizes the results for the Stackelberg game which is used
as the base case for comparison with other games. In this case, the leader and
follower play a series of Stackelberg games at fixed decision times, set to be ev-
ery two years, with the first game occurring at time zero. It is challenging to get
a good sense of the results due to the numerous state variables including carbon
stock, temperature, and current emission levels of each player. For the Stackelberg
game, as noted in Section 2.2.1, the optimal control depends on current levels of
emissions e1 and e2 only in the event of a tie. However, in the Interleaved case,
discussed below, current emissions levels have an impact on results. We have
chosen to present results for state variables close to current levels (1 ◦C for tem-
perature and and 800 Gt for the atmospheric stock of carbon). We mention results
for other values of state variables when this provides additional useful insight. All
results are presented for time zero. For clarity when comparisons are made with
other games, we will consistently refer to the leader in the Stackelberg game as
Player 1 and the follower as Player 2.

Figure 1 shows utilities for the base case game versus the Social Planner.
These represent expected utility at time zero if optimal controls are followed from
time zero to time T, given the dependence of the stock of carbon on the choice of
emissions and given the evolution of temperature, which depends on the the car-
bon stock as well as a random component. Figure 2(a) plots utility versus carbon
stock for a temperature of 1 ◦C, and for fixed state variables e1 and e2 both set at
10 Gt. We observe, as expected, that utility declines with carbon stock. The Social
Planner case yields significantly higher utility, confirming a tragedy of the com-
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mons as an important feature of the Stackelberg game. Individual player utilities
are also depicted. The leader achieves higher utility than the follower, showing
that there is a benefit to being the first mover in this repeated game. At 1 ◦C the
first mover advantage is about 10 percent, falling to zero above 5 ◦C. Results are
depicted only for the state variable set at 1 ◦C, but a similar pattern emerges for
other temperature levels, except that higher temperatures shift the utility curves
downward.

Figure 2(b) depicts how utility changes with temperature, this time with the
state variable carbon stock set at 800 Gt. (e1 and e2 are again set at 10 Gt, but this
is immaterial in the Stackelberg case.) As expected, utility declines monotonically
with increasing temperature. Again, a similar pattern emerges for plots with the
stock of carbon set at different levels, but to reduce clutter we show these graphs
only for S = 800.

FIGURE 1

UTILITIES VERSUS CARBON STOCK AND TEMPERATURE FOR BASE
STACKELBERG GAME AND SOCIAL PLANNER, TIME = 0, STATE VARIABLES

E1 = 10, E2 = 10. TEMPERATURE IS IN ◦C ABOVE PREINDUSTRIAL LEVELS.
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(b) Utility versus temperature

Figure 2 compares emissions optimal choices at time zero over a range of
carbon stock levels when the temperature is fixed at 1 ◦C (upper two graphs)
and 4 ◦C (bottom two graphs). In Figure 3(a) and 3(c) we see that the Social
Planner chooses lower emissions over most carbon stock levels compared to the
total that results from the Stackelberg game. When the current temperature is
at the higher level (Figure 3(c)) emissions are cut back at a lower carbon stock
levels for both the game and the planner. The diagrams on the right side show
that the players have largely the same strategy at time zero. In Figure 3(b) there
is some see-sawing in player 1 emissions over the range S = 1700 to 1900. Over
this range, player utilities at emission levels of 7 or 3 GT of carbon are very close
together – within one percent. Given the accuracy of the numerical computation,
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player 1 is essentially indifferent between emissions of 3 or 7 at these points in
the state space.

FIGURE 2

COMPARING OPTIMAL CONTROLS FOR THE BASE STACKELBERG GAME AND
THE SOCIAL PLANNER, TIME = 0. STATE VARIABLES e1 = e2 = 10GT.

TEMPERATURE IS AT 1 ◦C AND 4 ◦C ABOVE PREINDUSTRIAL LEVELS. P1
REFERS TO PLAYER 1, P2 REFERS TO PLAYER 2.
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4.2 A Trumpian Game

We now contrast the Stackelberg game with the Leader-Leader (Trumpian)
game, in which both players consider themselves to be the leaders in the game.
Each chooses her actions assuming incorrectly that the other player will respond
according to a rational best response function. (See Section 2.2.2.) In the Trump
game both Player 1 and Player 2 act as leaders.
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A comparison of utilities of the Trumpian and Stackelberg (base) games, and
the Social Planner is given in Figure 3.

The comparison shows utility versus temperature at time zero, for a fixed car-
bon stock s = 800 Gt. We observe in Figure 4(a) that the Trump game yields
lower total utility than the base case Stackelberg game. The reduction is about 5%
at a temperature of 1 ◦C, declining to zero above 5 ◦C. Figure 4(b) presents the
results for individual players. Since players are identical and both are playing as
leaders, both receive the same utilities in the Trump game. We observe Player 1
loses in this game, experiencing a significant reduction in utility (about 10 percent
at 1 ◦C, falling to zero beyond 7 ◦C) compared to the Stackelberg game. Player
2 in the Trump game has a utility level that is fairly close to what is received in
the Stackelberg game (1.5 percent higher in the Trump case at 1 ◦C). At higher
temperature level, the relative benefit to Player 2 in the Trump case increases to
4 percent before declining to zero beyond 5 ◦C. Note that at higher levels of the
carbon stock (not shown), both players are worse off in the Trump game. Under
the Social Planner case both players receive higher utilities.

It may seem counter-intuitive that over some state variables Player 2 is better
off in the Trump game. This can be explained by the fact the leader is making an
error in strategy at each decision point by assuming Player 2 will act as a follower.
This hurts the leader and in some instances can help the follower.

FIGURE 3

COMPARING UTILITIES FOR BASE STACKELBERG GAME,TRUMP GAME, AND
SOCIAL PLANNER, TIME = 0. P1 REFERS TO PLAYER 1, P2 REFERS TO

PLAYER 2.
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Figure 4 compares the optimal controls for the Trump case with the Stackel-
berg game and the planner. Recall that these optimal controls hold only t = 0.
Future optimal controls depend on the evolution of the state variables. In Figure
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5(a), we observe that in the Trump game total optimal emissions are lower than
the base Stackelberg game for a window of carbon stock, s, between 1600 and
1800 Gt. This is reversed over a window of high carbon stock levels (2600 - 2800
Gt) where emissions under the Trump game are higher than under the Stackelberg
game. While we have not included graphs of other temperature levels, a similar
pattern is observed for temperatures ranging up to 4 degrees, although the range of
carbon stocks over which the Trump game has lower emissions is reduced. Figure
5(b) displays individual player optimal controls. Optimal controls for both play-
ers in the Trump game are identical. In the Stackelberg game we observe some
oscillation of controls at mid carbon stock levels, which as noted early indicates
the utility at these two control levels is nearly identical.

FIGURE 4

COMPARING OPTIMAL CONTROLS FOR BASE STACKELBERG GAME,TRUMP
GAME, AND SOCIAL PLANNER, TIME = 0. P1 REFERS TO PLAYER 1, P2

REFERS TO PLAYER 2.
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We conclude that when players are symmetric, over some levels of the state
variables (lower levels for carbon stock and temperature), it is worthwhile for
Player 2 (the Stackelberg follower) to be part of a Trump game. One might expect
that total emissions would be higher under a Trump game over all state variables,
but we can draw no such conclusion. In fact we observe that the optimal choice
of emissions at time zero under the Trump game is lower than for the Stackelberg
game for certain levels of the carbon stock.

4.3 Contrasting constraints on player decision times – An Interleaved Game

In the Stackelberg game, the follower makes a choice immediately after the
leader. In reality, national policies to change emissions take time to implement.
This section examines a case in which there are two years between the decisions
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of the leader and follower. This implies that each player must wait four years
before choosing a new optimal control. For example, the leader makes a decision
at time zero, the follower makes a decision at two years later (t = 2 years), and
the leader makes its next decision at two years after that (t = 4 years). As is
demonstrated in Section 2.2.3 and Appendix D, the Stackelberg game is the limit
of the Interleaved game as the time between the leader and follower decisions goes
to zero (with fixed leader decision times).

Figure 6(a) plots utility versus temperature for four different cases: the base
Stackelberg game, the Trump game, the Interleaved game (e1 = e2 = 10 Gt), and
the Social Planner. Interestingly the Interleaved case shows slightly higher total
utility (about 2 percent)7 than either the Trump case or the base game. It appears
that constraining each player to wait two years following the opposing player’s
decision before making their own choice has reduced the effect of the tragedy of
the commons. Intuitively this enforced delay implies that any individual player’s
actions will have a more lasting effect. As an extreme, suppose player 1 is able
to make decisions every two years, but player 2 is never able to take action to
reduce emissions. The entire burden for reducing emissions will fall to player 1.
Since player 2 has no control available, there is by definition no tragedy of the
commons.

As noted earlier, in the Interleaved game, the state variable representing cur-
rent emissions affects utility. This is because there is a significant time interval
before the follower (Player 2) is able to respond to the leader’s (Player 1) optimal
choices. At time zero, the leader goes immediately to its optimal choice, but the
follower must maintain her current emissions level until two years have passed.
Figure 6(b) contrasts total utility showing two different levels for player 2’s cur-
rent emissions, e2 = 0 and e2 = 10. (Player 1’s current emissions are immaterial
as she immediately goes to her optimal choice.) The state variable at e2 = 0 gives
a slightly higher total utility than when e2 = 10. Note that the optimal choice of
emissions for both leader and follower over this range of temperatures, and given
s = 800 Gt, is 7 Gt.

For contrast we also include a curve labelled ‘Interleave 4 year’ in Figure
6(b). In this case, the time between decisions is increased to four years, so that
each player can only make a choice every eight years. We see that in the four year
Interleaved case, total utility is now lower than in the base game. The ‘Interleave
4 year’ case also has slightly lower utility than a Stackelberg game played every
four years. (The ‘Stackelberg 4 year’ game is not shown on the graph to avoid
clutter.) It is interesting that the 2 year Interleaved case (4 years between an indi-
vidual player’s decisions) increased utility relative to the base Stackelberg game,
whereas the 4 year Interleaved case (8 years between an individual player’s deci-
sions) causes a reduction. There appears to be two countervailing effects going

7. This difference depends on the stock of carbon. At S = 1400 and X = 1 ◦C, total utility in the
interleaved game is higher by 5 percent compared to the base Stackelberg game. However for very
high carbon stock levels (S = 2200) the difference goes to zero.
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FIGURE 5

COMPARING UTILITIES FOR BASE STACKELBERG GAME AND INTERLEAVED
GAME, TIME = 0. P1 REFERS TO PLAYER 1, P2 REFERS TO PLAYER 2.
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on. The shorter delay between decisions reduces the tragedy of the commons and
increases utility, but with a longer delay this beneficial effect is overwhelmed by
the negative effects of not being able to respond promptly to changes in the key
state variables, temperature and carbon stock.

Figures 6(c) and 6(d) show the results for individual player utilities. There is
some variation depending on the starting value for Player 2. The graph on the left
(Figure 6(c)) shows the state variable e2 = 10. Here we see Player 2 (the follower)
gains from the Interleaved case relative to the base Stackelberg case, while Player
1 (the leader) is worse off. The graph on the right (Figure 6(d)) shows the state
variable e2 = 0. In this case, the both Player 1 and Player 2 are better off. It makes
sense that the leader benefits if the follower starts the game with a very low level
of emissions, which cannot be changed until 2 years later in this case.
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The optimal controls for the Interleaved and base cases are shown in Figure 6.
Total emissions at time zero (Figure 7(c)) are lower for the Interleaved case over
a range of carbon stock levels around S = 1800 and S = 2600 Gt. Both leader and
follower show different choices compared to the Stackelberg case. Compared to
the Social Planner the initial choice of emissions in both games is significantly
larger over a wide range of carbon stock levels.

FIGURE 6

COMPARING OPTIMAL CONTROLS FOR BASE STACKELBERG GAME,
INTERLEAVED GAME, AND SOCIAL PLANNER, TIME ZERO. P1 REFERS TO

PLAYER 1, P2 REFERS TO PLAYER 2.
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4.4 Nash-if-possible

Our numerical computations show that Nash equilibria exist at approximately
60% of possible values for state variables, over all time steps, for the Stackelberg
case. Since Nash equilibria do not always exist, we cannot do a direct comparison
of Nash versus Stackelberg equilibria. However we can investigate a case were for

	 308



CLIMATE GAMES: WHO’S ON FIRST? WHAT’S ON SECOND? 23

each combination of state variables, we choose the Nash equilibrium if it exists,
and if not revert to the Stackelberg game. We refer to this case as Nash-if-possible
or NIP. If a Nash equilibrium does not exist, we apply the base case rules whereby
player 1 goes first, and player 2 chooses immediately afterwards.

Figure 7 shows the results of this exercise. Figure 8(a) indicates that at S= 800
GT, total utility under NIP is slightly higher than under the base game. The differ-
ence in utility is largest at lower temperatures, and is eliminated at higher temper-
atures. The relative difference is 2 percent at a temperature of 0 ◦C, dropping to
0.5 percent at 3 ◦C. Figure 8(b) shows that the beneficiary of the NIP game is the
follower. The leader’s utility for S = 800 is either the same or lower than under
the Stackelberg game. Figures 8(c) and 8(d) compare optimal strategies for the
two games at time zero. Note that the planner chooses much lower emissions over
most carbon stocks than either the base or NIP cases

Of course the differences between the NIP and Stackelberg games change de-
pending on current state variables. The largest differences are seen for middling
carbon stock levels. For example if S = 1400 (not shown), total utility for NIP
is higher than the base game by 5 to 12 percent at temperature levels between 1
and 3 ◦C. The largest beneficiary is the follower, but the leader also sees some
improvement in utility.

CONCLUSION

Strategic actions by decision makers are a key factor in our ability to con-
front the causes of global warming. Economic models based on game theory
approaches have deepened our understanding of the consequences of strategic be-
haviour for the tragedy of the commons. This paper extends the pollution game lit-
erature by examining several different types of games not previously considered.
We take as a starting point the differential game model of Insley, Snoddon and
Forsyth (2019) which determines the closed loop optimal controls of two players
choosing emission levels in a repeated Stackelberg game, while facing damages
caused by rising temperatures in response to the build up of the atmospheric car-
bon stock. In the current paper we consider three alternative specifications of the
games, which we call the Trump game, the Interleaved game, and Nash-if-Possible
(NIP). These variations provide some interesting insights into the climate change
game.

In the Trump game, both players act as leaders, mistakenly assuming the other
player will respond rationally as a follower. Not surprisingly, total utility is lower
in this game. However it is Player 1 (the leader in the Stackelberg base game)
who suffers the most. At lower levels of carbon stock, Player 2 (the follower in
the Stackelberg base game) actually gains slightly from the Trump game. As the
carbon stock increases both players are worse off in the Trump game, but relatively
speaking the leader experiences the largest reduction in utility. We conclude that
in the Stackelberg game the follower might as well play like a leader, as she will
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FIGURE 7

COMPARING UTILITIES AND EMISSIONS FOR BASE CASE AND
NASH-IF-POSSIBLE, TIME = 0. P1 REFERS TO PLAYER 1, P2 REFERS TO

PLAYER 2.
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be no worse off and may be better off at lower levels of the carbon stock. However
the Trump game is not beneficial for the environment and total utility or welfare
suffers in this game, particularly at higher carbon stock levels.

In the Interleaved game, unlike the Stackelberg game, Player 2 does not make
a decision immediately after Player 1 makes her choice. Rather there is a gap
of several years between player decisions. This element is intended to add some
reality to the game, in that policy changes to reduce emissions do not happen
instantaneously in the real world. We prove that in the limit as the time inter-
val between player decisions goes to zero, the Interleaved game converges to the
Stackelberg game.
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We examined an Interleaved game of two years with a decision made by one
of the players every two years, implying each player must wait four years be-
tween their own decisions. In this Interleaved game, we found that total utility
increased compared to the basic Stackelberg game in which both players make
optimal choices at two year intervals, with the follower choosing instantaneously
after the leader. We found the follower does better in this Interleaved game com-
pared to the Stackelberg game. The repercussions for the leader are dependent on
the starting level of emissions for the follower. For low starting values for the fol-
lower, the leader also does better in the Interleaved game. However if the follower
starts at high emissions levels, the leader is worse off in this Interleaved game.
We interpret this result to mean that there is a benefit to a player in not reacting
immediately to the actions of the other player. The follower, in particular, benefits
from the fact that follower emissions cannot be changed for two years, forcing the
leader to undertake any needed emissions reduction. If the follower starts with a
high level of emissions, the leader is forced to react.

The relative benefits of the Interleaved game depend on the time interval be-
tween decisions. If the time between decisions is increased, eventually both play-
ers will be worse off in the Interleaved game as the extended wait between de-
cisions does not allow the players to adequately respond to the environmental
problem. We found this to be the case with an Interleaved game of four years,
when individual player make decisions every eight years.

In the NIP game, we found that for lower levels of carbon stock and tem-
perature, total utility is increased compared to the base Stackelberg game. The
Stackelberg follower is the main beneficiary when both players choose a Nash
equilibrium if it exists.

The Stackelberg game is convenient to apply in a differential pollution game
setting, since a solution can always be found, even if optimal choices at any given
time period may not be Nash. However the Stackelberg game may not be the
most appropriate for the analysis of strategic decisions in certain settings. We
have demonstrated three alternative games which result in improved welfare for
one or both players, implying that if given the choice the players would rather
participate in these alternative games. A key conclusion of our analysis is that
the timing between leader and follower decisions has a crucial impact on the out-
come of the game for the players, as well as for total welfare. Another interesting
take-away is that the differences between the various games in terms of utility and
optimal choices diminishes as temperature and/or carbon stock gets very high.
The interpretation here is that when the consequences of excessive carbon emis-
sions become dire, player strategy is no longer important as little can be done to
change the outcome for any individual player.
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APPENDIX

A. NUMERICAL METHODS

A.1 Advancing the solution from t−m+1 → t+m

Since we solve the PDEs backwards in time, it is convenient to define τ = T −t
and use the definition

V̂p(e1,e2,xi,s,τ) = Vp(e1,e2,xi,s,T − τ)
π̂p(e1,e2,xi,s,τ) = πp(e1,e2,xi,s,T − τ) . (28)

We rewrite Equation (12) in terms of backwards time τ = T − t

∂V̂p

∂τ
= L̂V̂p + π̂p +[(e1 + e2)+ρ(S̄− s)]

∂V̂p

∂ s

L̂V̂p ≡
(σ)2

2
∂ 2V̂p

∂x2 +η(X̄ − x)
∂V̂p

∂x
− rV̂p . (29)

Defining the Lagrangian derivative

DV̂p

Dτ
≡

∂V̂p

∂τ
+

(
ds
dτ

)
∂V̂p

∂ s
, (30)

then Equation (29) becomes

DV̂p

Dτ
= L̂V̂p +πp (31)

ds
dτ

= −[(e1 + e2)+ρ(S̄− s)] . (32)

Integrating Equation (32) from τ to τ −∆τ gives

sτ−∆τ = sτ exp(−ρ∆τ)+ S̄(1− exp(−ρ∆τ))

+
(e1 + e2

ρ
)
(1− exp(−ρ∆τ)) .

(33)

We now use a semi-Lagrangian timestepping method to discretize Equation
(29) in backwards time τ . We use a fully implicit method as described in Chen
and Forsyth (2007).

V̂p(e1,e2,x,sτ ,τ) = (∆τ)L̂V̂p(e1,e2,x,sτ ,τ)
+(∆τ)πp(e1,e2,x,sτ ,τ)+V̂p(e1,e2,x,sτ−∆τ ,τ −∆τ) .

(34)
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Equation (34) now represents a set of decoupled one-dimensional PDEs in the
variable x, with (e1,e2,s) as parameters. We use a finite difference method with
forward, backward, central differencing to discretize the L̂ operator, to ensure
a positive coefficient method. (See Forsyth and Labahn (2007/2008) for details.)
Linear interpolation is used to determine V̂p(e1,e2,x,sτ−∆τ ,τ−∆τ). We discretize
in the x direction using an unequally spaced grid with nx nodes and in the S direc-
tion using ns nodes. Between the time interval t−m+1, t

+
m we use nτ equally spaced

time steps. We use a coarse grid with (nτ ,nx,ns) = (2,27,21). We repeated the
computations with a fine grid doubling the number of nodes in each direction to
verify that the results are sufficiently accurate for our purposes.

A.2 Advancing the solution from t+m → t−m

We model the possible emission levels as four discrete states for each of e1,e2,
which gives 16 possible combinations of (e1,e2). We then determine the optimal
controls using the methods described in Section 2.2.1. We use exhaustive search
(among the finite number of possible states for (e1,e2) ) to determine the optimal
policies. This is, of course, guaranteed to obtain the optimal solution. Recall that
since we use a tie-breaking rule, the optimal controls are unique.

B. MONOTONICITY OF THE NUMERICAL SOLUTION

Economic reasoning dictates that if the value function is decreasing as a func-
tion of temperature x at t = t−m+1, and if the benefits are decreasing in temperature,
then the value function should be decreasing in temperature at t+m . This can be
shown to be an exact solution of PDE (12). In our numerical tests with extreme
damage functions, which resulted in rapidly changing functions πp, we sometimes
observed numerical solutions which did not have this property. In order to ensure
that this desirable property of the solution holds, we require a timestep restriction.
To the best of our knowledge, this restriction has not been reported previously.
In practice, this restriction is quite mild, but nevertheless important for extreme
cases.

We remind the reader that since we solve the PDEs backwards in time, it is
convenient to use the definitions

V̂p(e1,e2,xi,s,τ) = Vp(e1,e2,xi,s,T − τ)
π̂p(e1,e2,xi,s,τ) = πp(e1,e2,xi,s,T − τ) . (35)

Assuming that we discretize Equation (34) on a finite difference grid xi, i= 1, . . . ,nx,
we define

V n+1
i = V̂p(e1,e2,xi,sτn+1 ,τn+1)

ci ≡ c(xi) = π̂p(e1,e2,xi,sτn+1 ,τn+1)∆τ +V̂p(e1,e2,xi,sτn ,τn) (36)
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Using the methods in Forsyth and Labahn (2007/2008), we discretize Equation
(34) using the definitions (36) as follows

−αi∆τV n+1
i−1 +(1+(αi +βi + r)∆τ)V n+1

i −βi∆τV n+1
i+1 = ci , (37)

for i = 1, . . . ,nx. Note that the boundary conditions used (see Section 2.1) imply
that α1 = 0 and that βnx = 0, so that Equation (37) is well defined for all i =
1, . . . ,nx. See Forsyth and Labahn (2007/2008) for precise definitions of αi and
βi.

Note that by construction αi, βi satisfy the positive coefficient condition

αi ≥ 0 ; βi ≥ 0 ; i = 1, . . . ,nx . (38)

Assume that

V̂p(e1,e2,xi+1,sτn ,τn)−V̂p(e1,e2,xi,sτn ,τn) ≤ 0

π̂p(e1,e2,xi+1,sτn+1 ,τn+1)− π̂p(e1,e2,xi,sτn+1 ,τn+1) ≤ 0 , (39)

which then implies that

ci+1 − ci ≤ 0 . (40)

If Equation (40) holds, then we should have that V n+1
i+1 −V n+1

i ≤ 0 (this is a
property of the exact solution of Equation (34) if c(y)− c(x)≤ 0 if y > x).

Define Ui = V n+1
i+1 −V n+1

i , i = 1, . . . ,nx − 1. Writing Equation (37) at node i
and node i+1 and subtracting, we obtain the following Equation satisfied by Ui,

[1+∆τ(r+αi+1 +βi)]Ui

−∆ταiUi−1 −∆τβi+1Ui+1 = ∆τ(ci+1 − ci)

i = 1, . . . ,nx −1
α1 = 0 ; βnx = 0 . (41)

Let U = [U1,U2, . . . ,Unx−1]
′, Bi = ∆τ(ci+1 − ci), B = [B1,B2, . . . ,Bnx−1]

′. We can
then write Equation (41) in matrix form as

QU = B , (42)

where

[
QU

]
i = [1+∆τ(r+αi+1 +βi)]Ui −∆ταiUi−1 −∆τβi+1Ui+1 . (43)

Recall the definition of an M matrix (Varga, 2009),
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Definition 4 (Non-singular M-matrix). A square matrix Q is a non-singular M
matrix if (i) Q has non-positive off-diagonal elements (ii) Q is non-singular and
(iii) Q−1 ≥ 0.

A useful result is the following (Varga, 2009)

Theorem 1. A sufficient condition for a square matrix Q to be a non-singular M
matrix is that (i) Q has non-positive off-diagonal elements (ii) Q is strictly row
diagonally dominant.

From Theorem 1, and Equation (43), a sufficient condition for Q to be an M matrix
is that

1+∆τ[r+(αi+1 −αi)+(βi −βi+1)]> 0 , i = 1, ... nx−1 (44)

which for a fixed temperature grid, can be satisfied for a sufficiently small ∆τ . If
mini(xi+1−xi) = ∆x, then αi =O((∆x)−2), βi =O((∆x)−2). If αi,βi are smoothly
varying coefficients, then we can assume that

|αi+1 −αi|= O
(

1
∆x

)
; |βi −βi+1|= O

(
1

∆x

)
, (45)

and hence condition (44) is essentially a condition on ∆τ/∆x. In practice, for
smoothly varying coefficients, |αi+1 −αi| and |βi −βi+1| are normally small, so
the timestep condition (44) is quite mild.

Proposition 1 (Monotonicity result). Suppose that (i) condition (44) is satisfied
and (ii) Bi = ∆τ(ci+1 − ci)≤ 0, then Ui =V n+1

i+1 −V n+1
i ≤ 0.

Proof. From condition (44), Definition 4, and Theorem 1 we have that Q−1 ≥ 0,
hence from Equation (42)

U = Q−1B ≤ 0 . (46)

The practical implication of this result is that if conditions (39) hold at
τ = T − t−m+1, then V̂ (·,τ = T − t+m ) is a non increasing function of temperature.
However, this property may be destroyed after application of the optimal control
at τ = T − t+m → T − t−m . In other words, if we observe that the solution is increas-
ing in temperature, this can only be a result of applying the optimal control, and
is not a numerical artifact.
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C. NASH EQUILIBRIUM

We again fix (e1,e2,s,x, tm), so that we understand that e+p = e+p (e1,e2,s,x, tm),
Rp(ω;e−1 ) = Rp(ω;e−p ;s,x, tm).

Definition 5 (Nash Equilibrium). Given the best response sets R2(ω1;e−2 ),
R1(ω2;e−1 ) defined in Equations (15)-(16), then the pair (e+1 ,e

+
2 ) is a Nash equi-

librium point if and only if

e+1 = R1(e+2 ;e−1 ) ; e+2 = R2(e+1 ;e−2 ) . (47)

The following proposition is proven in Insley, Snoddon and Forsyth (2019).

Proposition 2 (Sufficient condition for a Nash Equilibrium). Suppose (ê+1 , ê
+
2 )

is the Stackelberg control if player 1 goes first and (ē+1 , ē
+
2 ) is the Stackelberg

control if player 2 goes first. A Nash equilibrium exists at a point (e1,e2,s,x, tm) if
(ê+1 , ê

+
2 ) = (ē+1 , ē

+
2 ).

Remark 3 (Checking for a Nash equilibrium). A necessary and sufficient con-
dition for a Nash Equilibrium is given by condition (47). However a sufficient
condition for a Nash equilibrium in the Stackelberg game is that optimal control
of either player is independent of who goes first.

D. INTERLEAVE GAME

In this appendix, we consider the situation where each player makes optimal
decisions alternatively. These decision times are separated by a finite time interval.

Suppose that player 1 chooses an optimal control at time tm, which we denote
by em+

1 . player 2’s control is fixed at the value em−
2 . At time tm+1, player 2 chooses

a control e(m+1)+
2 , while player 1’s control is fixed at e(m+1)−

1 . To avoid notational
clutter, we will fix the state variables (s,x) in the following, with the dependence
on (s,x) understood.

At time tm, we have, with player 2’s control fixed at em−
2 ,

V1(em−
1 ,em−

2 , t−m ) = V1(em+
1 ,em−

2 , t+m ) (48)
V2(em−

1 ,em−
2 , t−m ) = V2(em+

1 ,em−
2 , t+m ) . (49)

player 1’s control is determined from

V1(em−
1 ,em−

2 , t−m ) = max
e′1

V1(e′1,e
m−
2 , t+m )

∣∣
break ties: em−

1

= V1(em+
1 ,em−

2 , t+m ) (50)
em+

1 = argmax
e′1

V1(e′1,e
m−
2 , t+m )

∣∣
break ties: em+

1 =em−
1

. (51)
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We remind the reader that we break ties by staying at the current level (if that is
a maxima of equation (51) ) or preferring the lowest emission level (if the current
state is not a maxima). Consequently, em+

1 = em+
1 (em−

1 ,em−
2 , t+m ) since dependence

on em−
1 is induced by the tie-breaking rule.

At time tm+1, player 2 chooses a control, with player one’s control fixed at
e(m+1)−

1 ,

V1(e
(m+1)−
1 ,e(m+1)−

2 , t−m+1) = V1(e
(m+1)−
1 ,e(m+1)+

2 , t+m+1) (52)

V2(e
(m+1)−
1 ,e(m+1)−

2 , t−m+1) = V2(e
(m+1)−
1 ,e(m+1)+

2 , t+m+1) . (53)

player 2’s control is determined from

V2(e
(m+1)−
1 ,e(m+1)−

2 , t−m+1) =V2(e
(m+1)−
1 ,e(m+1)+

2 , t+m+1)

= max
e′2

V2(e
(m+1)−
1 ,e′2, t

+
m+1)

∣∣
break ties: e(m+1)−

2

(54)

e(m+1)+
2 = argmax

e′2

V2(e
(m+1)−
1 ,e′2, t

+
m+1)

∣∣
break ties: e(m+1)+

2 =e(m+1)−
2

= R2(e
(m+1)−
1 ;e(m+1)−

2 ; t+m+1) ,

(55)

where R2(e
(m+1)−
1 ;e(m+1)−

2 ; t+m+1) is the best response function of player 2 to player

1’s control e(m+1)−
1 . Note that the tie-breaking strategy induces a dependence on

the state e(m+1)−
2 in R2(·).

More generally, we can define player 2’s response function for arbitrary argu-
ments (ω1;ω2)

R2(ω1;ω2; t+m+1) = argmax
ω ′

2

V2(ω1,ω ′
2, t

+
m+1)

∣∣
break ties: R2=ω2

. (56)

Now, consider the limit where tm+1 → tm, so that

e(m+1)−
1 → em+

1 ; e(m+1)−
2 → em−

2 ; t−m+1 → t+m . (57)

Using Equation (57) in Equation (52) gives

V1(em+
1 ,em−

2 , t+m ) = V1(em+
1 ,e(m+1)+

2 , t+m+1) , (58)

while Equation (57) in Equations (54-55) gives

V2(em+
1 ,em−

2 , t+m ) = V2(em+
1 ,e(m+1)+

2 , t+m+1) (59)

e(m+1)+
2 = R2(em+

1 ;em−
2 ; t+m+1) . (60)

317



32 L’ACTUALITÉ ÉCONOMIQUE

From Equations (58) and (60) we have

V1(em+
1 ,em−

2 , t+m ) =V1(em+
1 ,R2(em+

1 ;em−
2 ; t+m+1), t

+
m+1) , (61)

and replacing em+
1 by e′1 in Equation (61) gives

V1(e′1,e
m−
2 , t+m ) =V1(e′1,R2(e′1;em−

2 ; t+m+1), t
+
m+1) . (62)

Recall that (from Equation (50))

V1(em−
1 ,em−

2 , t−m ) = max
e′1

V1(e′1,e
m−
2 , t+m )

∣∣
break ties: em−

1
, (63)

so that substituting Equation (62) into Equation (63) gives

V1(em−
1 ,em−

2 , t−m ) = max
e1′

V1(e′1,R2(e′1;em−
2 ; t+m+1), t

+
m+1)

∣∣
break ties: em−

1

= V1(em+
1 ,R2(em+

1 ;em−
2 ; t+m+1), t

+
m+1)

em+
1 = argmax

e′1

V1(e′1,R2(e′1;em−
2 ; t+m+1), t

+
m+1)

∣∣
break ties: em−

1

(64)

From Equations (49) and (59-60) we also have that

V2(em−
1 ,em−

2 , t−m ) = V2(em+
1 ,em−

2 , t+m )

= V2(em+
1 ,e(m+1)+

2 , t+m+1)

e(m+1)+
2 = R2(em+

1 ;em−
2 ; t+m+1) . (65)

In summary, Equations (64-65) give

V1(em−
1 ,em−

2 , t−m ) = V1(em+
1 ,e(m+1)+

2 , t+m+1)

V2(em−
1 ,em−

2 , t−m ) = V2(em+
1 ,e(m+1)+

2 , t+m+1)

em+
1 = argmax

e′1

V1(e′1,R2(e′1;em−
2 ; t+m+1), t

+
m+1)

∣∣
break ties: em−

1

e(m+1)+
2 = R2(em+

1 ;em−
2 , t+m+1) , (66)

which, from Definition 3, we recognize as a Stackelberg game if t+m+1 → t+m .
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FIGURE 8

COMPARING OPTIMAL CONTROLS FOR DIFFERENT TERMINAL TIMES, BASE
STACKELBERG GAME AND THE SOCIAL PLANNER, TIME = 0. STATE

VARIABLES e1 = e2 = 10GT. TEMPERATURE IS AT 1◦C ABOVE
PREINDUSTRIAL LEVELS. P1 REFERS TO PLAYER 1, P2 REFERS TO PLAYER 2.
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Proposition 3 follows immediately:

Proposition 3 (Limit of Interleaved game). Suppose we have an Interleaved game
at times tm, given by equations (48-55). Suppose tm+1 − tm = ∆t, and that player
1 makes decisions for m even, while player 2 acts optimally for m odd. Consider
fixing player one’s decision times t2i, i = 0,1, . . ., and moving player two decision
times t2i+1, i = 0,1, . . ., such that

(t2i+1 − t2i)→ 0+ ; i = 0,1,2, . . .
t2i − t2(i−1) = 2∆t ; i = 1,2, . . . (67)
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then the Interleaved game becomes a Stackelberg game.

E. ADDITIONAL RESULTS: CHANGING THE TERMINAL TIME

The terminal time for the analysis is set at 150 years. After 150 years it is
assumed that due to a technological breakthrough, emissions no longer contribute
to the stock of carbon, but do add benefits. We could imagine any carbon produced
by burning fossil fuels is immediately captured and stored. At the boundary t = T
the temperature is set to the long run mean implied by the particular stock of
carbon given by the state variable S. Utility at the boundary is set to be the present
value of an infinite stream of utility from emissions (now harmless) set to their
maximum level, and temperature remaining at the long run mean. This is an
arbitrary assumption. The logic is that even with a technological breakthrough the
earth will be left to bear the consequences of past carbon emissions for a long time
to come. As a check on the results we ran cases with T = 25 and T = 300.

Figure 8 compares the optimal controls for T = 150 (lower two diagrams)
with T = 25 (upper two diagrams) for the base Stackelberg game and the social
planner. We observe that in the T = 25 case, the optimal controls are cut back at a
lower carbon stock than when T = 150. This makes sense as with T = 25 there is
much less time to react and have an impact on the final stock of carbon, and hence
the terminal value of the temperature.

Optimal emissions for T = 300 versus T = 150 were also compared. These
two cases are very similar, indicating that utility beyond 150 years is not having a
large impact on results.
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