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Abstract

In practice, convertible bonds can often be called only if notice is given to the holders.
Most methods for valuing convertible bonds assume that the bond is continuously callable.
In this paper, we develop an accurate PDE method for valuing convertible bonds with a finite
notice period. Example computations are presented which illustrate the effect of varying notice
periods. The results are compared with a recently published approximation method.

1 Introduction

Convertible bonds (or convertibles) have become an important instrument in the financial markets.
Having properties of both stocks and bonds, convertible bonds can be an attractive alternative for
investors. Studies suggest that the average return of convertible bonds in the last few years were as
high as the returns of the stock market, although they incorporate a lower risk [vdHKL02, LR93].
There are different reasons for a company to issue convertible bonds. Tax considerations in some
countries lead to an advantage in issuing convertibles instead of bonds. Another possibility is that
a small, fast growing company needs a debt but has poor credit rating.

The convertible bond market is not as standardized as the exchange traded stock market. Con-
vertibles can incorporate a variety of features. The instrument might be convertible into shares of
the issuing company or in some cases into shares of a different company. Usually convertibles may
be converted by the holder at any time. Often, these bonds can be put to the issuer at specific dates
for a guaranteed price. In addition, the issuer may have the right to redeem the convertible at a call
price or force a conversion into stocks. To keep the convertibles attractive in this case, so called
soft and hard call constraints are devised. The hard call constraint prohibits a forced conversion in
the initial life of the contract. The soft call constraint can define a notice period before a forced
conversion can take place. As well, the stock may have to be above a trigger price for a specified
time before a call can take place.

Many authors have discussed the delayed call phenomena [LK03, GKK02, AB02, AKW01].
It seems that companies tend to call convertibles nonoptimally. The observed stock price at which
corporations issue a call notice is often well above the stock price which is optimal assuming
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the validity of the Ingersoll result [Ing77a]. Different explanations for this behavior have been
proposed including tax considerations and a preference for conversion into stock instead of leaving
the bond as a liability. Other authors suggest that the call notice period is not taken into account
properly. Empirical studies with such a model suggest that the notice period is indeed a possible
part of an explanation [Asq95].

Lau and Kwok [LK03] present a detailed lattice method for convertibles with notice periods.
Their results are similar to our findings but a precise implementation of a PDE method reveals
more details of the optimal call strategy. Further, the PDE method can use different techniques to
increase the rate of convergence for accurate solutions and a concise implementation of all cash
flows is possible.

In the following, a one factor model for convertible bonds is presented. The optimal call
and conversion strategy are determined by the PDE solution. These strategies are compared with
suboptimal approximate methods.

This work is organized as follows: we present the standard model for convertible bonds with
credit risk and we provide a short summary of new developments in this area. We derive the
equations which take into account, in a rigorous manner, the call notice period. An outline for the
numerical algorithm is presented, followed by a case study. Previously published approximations
for the optimal call policy are revisited and compared with results from our new model. Finally we
conclude and summarize.

2 Models for convertible bonds

Our main focus here is on modelling the call notice period. We will restrict attention to the case
where interest rates are deterministic. This is in line with current practice since it is commonly
believed that the effect of stochastic interest rates on convertible pricing and hedging is a small
effect, compared to stochastic stock prices. Dilution effects will also be ignored in the following.

2.1 No default risk

For ease of explanation, consider first the case where we ignore the credit risk of the issuer of the
convertible. We will assume that that the stock priceSevolve according to the process

dS= µSdt+σSdZ (2.1)

whereµ is the drift rate,σ is the volatility ofSanddZ is the increment of a Wiener process, then,
following the standard arguments, we get for the value of any contingent claim onS, denoted byV
satisfies

∂V
∂t

+
1
2

σ2S2∂2V
∂S2 + rS

∂V
∂S
− rV = 0. (2.2)

Consider the case of a convertible bond which has no put or call provisions, and can only be
converted at the terminal timeT. If the convertible has a face valueF , and can be converted into
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κ shares, then the value of the convertibleV is given from the solution to equation (2.2), with the
terminal condition

V(S, t = T) = max(F,κS) . (2.3)

2.2 Call and Put Provisions and cash flows

Assume that the convertible is continuously callable at call priceBc(t) and can be converted by the
holder into the put priceBp(t) or shares worthκS. Then, the pricing problem can be stated as

∂V
∂t

+
1
2

σ2S2∂2V
∂S2 + rS

∂V
∂S
− rV ≥ 0 (2.4)

V(S, t) ≥ max(Bp(t),κS) (2.5)

∂V
∂t

+
1
2

σ2S2∂2V
∂S2 + rS

∂V
∂S
− rV ≤ 0 (2.6)

V(S, t) ≤ max(Bc(t),κS) (2.7)

where at least one of equations (2.4)-(2.5) or (2.6)-(2.7) holds, and at least one of the inequalities
holds with equality at each point in the solution domain.

If a discrete dividendD is paid at timetd, then the usual no-arbitrage arguments imply that

V(S−D, t+d ) = V(S, t−d ). (2.8)

wheret−d is the time immediately before the dividend payment, andt+d is the time immediately
after the payment.

Consider coupon paymentsci paid at timestc,i . Denote the time immediately before the pay-
ment ast−c,i and immediately after the coupon payment ast+c,i . The price of the convertible then
drops according to

V(S, t+c,i) = V(S, t−c,i)−ci . (2.9)

2.3 Credit Risk

The above model ignores the credit risk of the issuer of the bond. Clearly, this is an important
effect.

2.3.1 Credit Risk: The T&F model

Tsiveriotis and Fernandes [TF98] proposed a model whereby the option component of the convert-
ible was discounted at the risk-free rate, and the bond component was discounted at a risky rate.
Let the spreads between a risk-free bond and a risky bond be given by

s= (1−R)p(S, t) (2.10)

whereR is the recovery rate, andp(S, t) is a function which can be calibrated to market data.
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Under theT&F model, the value of the convertible is given by

∂V
∂t

+
1
2

σ2S2∂2V
∂S2 + rS

∂V
∂S
− r(V−B)−sB ≥ 0 (2.11)

V(S, t) ≥ max(Bp(t),κS) (2.12)

∂V
∂t

+
1
2

σ2S2∂2V
∂S2 + rS

∂V
∂S
− r(V−B)−sB ≤ 0 (2.13)

V(S, t) ≤ max(Bc(t),κS) (2.14)

where at least one of equations (2.11)-(2.12) or (2.13)-(2.14) holds, and at least one of the inequal-
ities holds with equality at each point in the solution domain. The bond componentB in equations
(2.11)-(2.14) is given from the solution to

∂B
∂t

+
1
2

σ2S2∂2B
∂S2 + rS

∂B
∂S
−sB= 0 (2.15)

subject to the boundary conditions

B = 0 ; if V = max(Bc,κS)
B = V ; if V = Bp (2.16)

with terminal conditions

V(S,T) = max(F,κS)
B(S,T) = F ; F > κS

= 0 ; F ≤ κS (2.17)

2.3.2 Credit Risk: The AFV model

The T&F model was derived in a very heuristic manner, and, as pointed out in [AFV02], seems
to be inconsistent in some cases. Ayache, Vetzal and Forsyth derive a different model, based on a
hedging portfolio where the risk due to the normal diffusion process is eliminated, and assuming
a Poisson default process. [AFV02]. The probability of default in[t, t + dt], conditional on no-
default in[0, t] is p(S, t).

This model allows different scenarios in the case of default. Upon default, it is assumed that
the stock price jumps according

S+ = S−(1−η), 0≤ η≤ 1 (2.18)

whereS+ is the stock price after default, andS− is the stock price just before default. Further, the
holder of the convertible can choose upon default between:

1. RecoveringRX, where0≤ R≤ 1 is the recovery factor. There are various possible assump-
tions forX, e.g. face value of bond, discounted bond cash flows, or pre-default value of the
bond component of the convertible,
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2. shares worthκS(1−η).

For simplicity in the following, we will assume that the recovery rateR= 0.
This leads to the following partial differential inequality for the convertible valueV [AFV02]

∂V
∂t

+
σ2

2
S2∂2V

∂S2 +(r + pη)S
∂V
∂S
− (r + p)V + pκS(1−η) ≥ 0 (2.19)

V(S, t) ≥ max(Bp(t),κS) (2.20)

∂V
∂t

+
σ2

2
S2∂2V

∂S2 +(r + pη)S
∂V
∂S
− (r + p)V + pκS(1−η) ≤ 0 (2.21)

V(S, t) ≤ max(Bc(t),κS) (2.22)

where, as for theT&F model, either one of (2.19)-(2.20) or (2.21)-(2.22) hold, and one of the
inequalities holds with equality at each point in the solution domain. The terminal condition is
given in equation (2.3).

3 Notice periods

To make a convertible bond more attractive for investors, there are usually constraints on the call
provision. A common feature is a call with a notice period. If the issuer wants to call the convertible
and force a conversion, he has to notify the holder. The holder then hasTn time to decide to take
the face value or convert into shares. So, the issuer is effectively giving the holder a put option on
his shares plus the shares themselves. The longer the notice period, the more valuable is this put
option.

3.1 A Model for the valuation of CBs with a notice period

The value of the shares plus the put option can be described as the forward priceVc,t of a new
convertible bond with maturityt +Tn, and terminal value

Vc,t(S, t +Tn) = max(Bc(t +Tn),κS) (3.1)

Note that the call valueBc includes accrued interest. Based on the assumption that the issuer wants
to minimize the value of outstanding convertible bonds, he has to minimize the market value of
the convertible [Ing77a]. So, the issuer will call the convertible as soon as the forward priceVc,t

exceeds the price of the convertible. That means that in the model for convertibles (T&F or AFV)
we need to replace all conditions with a call priceBc by a condition with the forward priceVc,t .

In theT&F case, equations (2.11)-(2.14) become

∂V
∂t

+
1
2

σ2S2∂2V
∂S2 + rS

∂V
∂S
− r(V−B)−sB ≥ 0 (3.2)

V(S, t) ≥ max(Bp(t),κS) (3.3)

∂V
∂t

+
1
2

σ2S2∂2V
∂S2 + rS

∂V
∂S
− r(V−B)−sB ≤ 0 (3.4)

V(S, t) ≤ Vc,t(S, t̂ = t) (3.5)
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where the bond componentB is given from the solution to

∂B
∂t

+
1
2

σ2S2∂2B
∂S2 + rS

∂B
∂S
−sB= 0 (3.6)

subject to the boundary conditions

B = 0 ; if V = max(Vc,t ,κS)
B = V ; if V = Bp (3.7)

with terminal conditions

V(S,T) = max(F,κS)
B(S,T) = F ; F > κS

= 0 ; F ≤ κS (3.8)

Vc,t(S, t̂) satisfies

∂Vc,t

∂t̂
+

1
2

σ2S2∂2Vc,t

∂S2 + rS
∂Vc,t

∂S
− r(Vc,t − B̂)−sB̂ ≥ 0

Vc,t(S, t̂) ≥ max(Bp,κS) (3.9)

with terminal condition

Vc,t(S, t̂ = t +Tn) = max(Bc(t +Tn),κS) (3.10)

andB̂(S, t̂) satisfies

∂B̂
∂t̂

+
1
2

σ2S2∂2B̂
∂S2 + rS

∂B̂
∂S
−sB̂ = 0 (3.11)

with terminal conditions

B̂(S, t̂ = t +Tn) = Bc(t +Tn) ; Bc > κS

= 0 ; Bc≤ κS (3.12)

For the AFV model the following equations need to be solved for

∂V
∂t

+
σ2

2
S2∂2V

∂S2 +(r + pη)S
∂V
∂S
− (r + p)V + pκS(1−η) ≥ 0 (3.13)

V(S, t) ≥ max(Bp(t),κS) (3.14)

∂V
∂t

+
σ2

2
S2∂2V

∂S2 +(r + pη)S
∂V
∂S
− (r + p)V + pκS(1−η) ≤ 0 (3.15)

V(S, t) ≤ Vc,t(S, t̂ = t) (3.16)

with Vc,t(S, t̂) satisfying

∂Vc,t

∂t̂
+

σ2

2
S2∂2Vc,t

∂S2 +(r + pη)S
∂Vc,t

∂S
− (r + p)Vc,t + pκS(1−η) ≥ 0 (3.17)

Vc,t(S, t̂) ≥ max(Bp,κS) (3.18)

with terminal condition

Vc,t(S, t̂ = t +Tn) = max(Bc(t +Tn),κS) (3.19)
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4 Numerical Algorithm

The PDEs in the T&F and the AFV model are parabolic partial differential equations, similar to
the Black-Scholes equation which can only be solved analytically for special cases. In this general
setting with the inequality constraints, an analytical solution is not possible. However, it is possible
to solve the equations numerically.

In this paper, the solution of the PDEs in the T&F as well as the AFV case are computed
via a discretization in two dimensions:S and t. The solution is generated at discrete values
V(Si , tn) = Vn

i , S = S1, . . . ,Simax. As usual, the solution proceeds backwards in time. Given the
terminal (payoff) conditions attn = T, the solution attn−1 is generated using an implicit finite
difference scheme. Dividend and coupon payments are included as in equation (2.8)-(2.9).

The pseudo code in Listing 1 illustrates the solution process. We assume the existence of a
function discrete_timestep which, givenV (tn) = Vn

1 , . . . ,Vn
imax, does one time step of the

implicit solution method to returnV (tn−1) = Vn−1
1 , . . . ,Vn−1

imax .

An important detail in this implementation is the treatment of cash flows which occur within
the notice period. There are usually no details written in the convertible bond contracts about what
happens if the issuer calls and there is a coupon payment within the notice period. So, we assume
that there is no special treatment in this case and the coupon will be paid as usual. A similar
reasoning is valid for dividends. Both cash flows, coupon and dividend, which are paid at time
ti are applied att = ti to calculateV(t,S) and att̂ = ti to calculate the value for the constraint
Vc,t(S , t̂). This allows the holder to obtain the coupon after a call notice and then convert into share
before the end of the notice period to get the dividend. The algorithm in Listing 1 can be easily
adapted for a different treatment of these cash flows.

5 Case Study

The call priceBc and the put priceBp in the previous equations include accrued interest. Specifi-
cally, letBcl, Bpl be the clean call and put prices. The actual call price is computed by

Bc(t) = Bcl(t)+A(t), (5.1)

whereA(t) is the accrued interest, a fraction of the next coupon payment. If the last payment was
at ti−1 and the next payment worthci is paid atti , then be accrued interestA(t) is

A(t) =
ti− t

ti− ti−1
ci . (5.2)

In order to obtain comparable results for both T&F and AFV methods, we setR= 0 and assume
η = 1 (stock jumps to zero on default). Consequently in the T&F case,s= p. For the hazard rate
p, we use the model suggested by Muromachi [Mur99]

p(S) = p0

(
S
S0

)α
. (5.3)

The parametersp0, α can be calibrated to market data. In the following, we usep0 = 0.02, α =
−1.2 andS0 = 100, which are typical parameters found in market data [Mur99].
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Listing 1: Pseudo code for the numerical algorithm

function vector= discretetimestep (Vold , S , t , constraint ,. . . )
\\This function is a discrete version of the T&F or the AFV model.
\\It uses e.g. an implicit method to compute the valuesV (t−∆t) from
\\V (t) and returns the result as a vector. The” constraint ”on the values
\\V is implicitly applied e.g. with a penalty method [FV02].

function vector= convertiblewith notice (Vterminal, S , T , σ , r , . . . )
{
\\Computes the values of a convertible with a notice period
\\and returns the pricesV (Si)∀i at t = 0 as a vector

V =Vterminal;
for all timesteps fromt = T down tot = 0
{

if notice to call possible
{\\solve for the constraint

Bc=Bcl + accruedinterest att +Tn ;
Vc,t(Si)=max(Bc,κSi)∀i;\\the terminal condition
for all timesteps from̂t = t +Tn down to t̂ = t
{

constraint ={Vc,t(Si)≥max(Bp(t̂),κSi)∀i};
Vc,t= discretetimestep (Vc,t , S ,t̂ , constraint ,. . . );

if cash flow occurs between last timestep andt̂
apply cashflow ();

}\\end of inner time-stepping for loop
}\\end of constraint block

constraint ={(V (Si)≥max(Bp(t),κSi))∧ (V (Si)≤max(Vc,t(Si),κ Si))∀i};
V = discretetimestep (V , S , t , constraint ,. . . );

if cash flow occurs between last timestep andt
apply cashflow ();

}\\end of time-stepping for loop
return V ;

}\\end of function convertiblewith notice
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5.1 Example Data

The base case data is given in Table 5.1.

Table 5.1Specifications of a convertible bond.

general features
Conversion ratioκ 1

Face valueF 100
Coupon paymentci 2, semi annually

(4% per annum)
Maturity T 5 years

Risk free rater 5%
Volatility σ 20%

DividendsDi 2, paid once a year,
just after the coupon

call ability
Call period starting after 1.0 years

Call priceBcl 140
Notice periodTn 1/12 years

Some of these properties will be varied so that the effect on the model price can be evaluated.

5.2 Convergence Analysis

In Table 5.2 the values are displayed for a convertible using the base case data in Table 5.1.
Crank-Nickolson time stepping is used. To decrease oscillations, a method presented by Ran-
nacher [Ran84] is used at each non-smooth initial state.

Table 5.2 shows a numerical convergence analysis. At each refinement, the number of nodes
(in theSgrid) and the number of time steps is doubled. The number of substeps used to determine
Vc,t (inner time stepping in loop in pseudo code, Listing 1) is also shown. For both methods,
the numerical solutions appear to be converging, but the convergence rate is quite erratic. This
contrasts with the smooth quadratic convergence in [FV02] for simple American options. We
conjecture that the time dependent movement of the constraintVc,t in equation (3.5) respectively
equation (3.16) may cause some difficulties in obtaining smooth convergence, as well as the effect
of the accrued interest.

Each time step of the algorithm in Listing 1 requires about (#substeps+1) times the work re-
quired for a convertible bond with no notice period. In all presented cases, the constraintVc,t is
solved on a grid with the same spacing as the grid forV. From Table 5.2, we see that a grid with
400nodes has an error of about±0.02. All results in subsequent sections are reported using a400
node or finer grid.
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Table 5.2 Convergence study with the V&F and the AFV model extended for a notice period.
Substeps refer to the number of time steps used to determineVc,t , at each discrete time.

The T&F model
grid for V, Vc,t

S× t×substeps V(S= 100, t = 0) difference ratio
50×50×1 112.03151

100×100×2 112.17249 0.14098
200×200×4 112.23473 0.06224 2.27
400×400×7 112.25619 0.02146 2.90

800×800×14 112.26951 0.01332 1.61
1600×1600×27 112.27578 0.00627 2.12
3200×3200×54 112.27982 0.00404 1.55

The AFV model
grid for V, Vc,t

S× t×substeps V(S= 100, t = 0) difference ratio
50×50×1 112.4248

100×100×2 112.5104 0.08555
200×200×4 112.5453 0.03494 2.45
400×400×7 112.5485 0.00318 10.99

800×800×14 112.5513 0.00277 1.15
1600×1600×27 112.5504 -0.00084 -3.30
3200×3200×54 112.5508 0.00032 -2.63

5.3 Implications on the optimal call strategy

The call strategy of the issuer is an important factor for the price of the theoretical value of the
convertible bond. Earlier results from Ingersoll [Ing77a], Brennan and Schwarz [BS77] state the
optimal call strategy which an issuer should follow if he could call without notice. Butler [But02]
extends these results for notice periods and dilution.

The optimal call strategy for a continuously callable convertible without a notice period is [Ing77a]:

”A convertible security should be called as soon as its conversion value (i.e., the
value of the common stock which would be received in the conversion exchange)
rises to equal the prevailing effective call price (i.e., the stated call price plus accrued
interest). . . A sufficient condition for the optimal call to be exactly at the point of
equality between the conversion value and the call price is that the promised coupon
rate be less than the riskless rate of interest.”

Or more precisely:
S∗ = Bc (5.4)

with Bc, being the effective call price (including the accrued) interest andS∗ the optimal stock
price for a call of the issuer.

This is a special case for Butler’s result [But02]. His result is stated here for the case that the
dilution caused by the exercise of the warrant is infinitesimally small relative to the existing equity.
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Butler states that a good approximation for the optimal call strategy is to call the convertible bond
if

S
Bc

= e
√

Tn
√

T[r+ σ2
2 ] (5.5)

whereBc is the effective call price,Tn the time of the conversion period,T the maturity andr the
risk free rate.

Butler’s result based on the fact that the holder effectively gets the stock plus a put option upon
conversion. Butler formulates the problem as

min
S
{V(S, t,T)− [S(t)+P(S, t,Tn)]} , (5.6)

whereV(S, t,T) is the value of the convertible with maturityT and the stock priceS(t). P(S, t,Tn)
is the value of the put option with maturityTn. Further, we can decomposeV(S, t,T) = B(S, t,T)+
C(S, t,T) with B as the discounted value of the debt andC as the value of a call option with maturity
T.

The minimization problem can be solved by taking the partial derivative with respect toSwhich
gives the following first order condition:

∂C(S, t,T)
∂S

+
∂B(S, t,T)

∂S
− ∂P(S, t,Tn)

∂S
= 1. (5.7)

Now, Butler’s result implicitly assumes the following:

• The convertible bond can only be called once, at a predetermined point in time.

• The call price is equal to the face value of the bond (Bcl = F).

• The underlying stock is not paying any dividends.

• The term structure of the risk free rate is flat.

• The default risk of the issuer does not depend on the stock price.

Using these assumptions we can conclude thatB(t) does not depend onS, so that∂B(t)
∂S = 0.

Further we can use the Black-Scholes-Merton formula for European options to evaluate the partial
derivative of the call and the put option. After some algebra, we get that it is optimal to call the
convertible bond if the stock price reaches the levelS∗B whereS∗B is the solution to

ln(S∗B/Bc)+(r +σ2/2)Tn

σ
√

Tn
=

ln(S∗B/Bc)+(r +σ2/2)T
σ
√

T
. (5.8)

This can be simplified to
S∗B = Bce

√
Tn
√

T[r+(σ2/2)] (5.9)

which is the approximation of the optimal call policy presented by Butler [But02].
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Figure 5.1:A convertible using the data from Table 5.1: The level of stock priceS∗ for the optimal
call strategy versus timet approximated by the AFV model using a PDE solver. The solution on a
coarse grid (400 nodes inS, 400 time steps, 7 substeps) versus a fine grid (3200 nodes inS, 3200
time steps, 54 substeps) is shown.

A more sophisticated model that takes more of the complex features of the convertible bond
into account follows from the discretization of the PDE in the T&F model or the AFV model.

For each nodeVi at timet j of the discretization we check if

Vi(t j) = (Vc,t)i(t j) (5.10)

or in other words: We check if the maximum constraint in equation (3.5) respectively equation
(3.16) is active. At time stept j , letVi(Si , t j) be the node withSi the smallest value inS that results
in an active constraint. ThenSi gives a good approximation for the optimal stock price level:
S∗(ti)≈ Si(t j). This method is similar to a nearest neighbor approximation.

The error of approximating the optimal strategy by the PDE method is presented in Figure 5.1.
In this Figure,S∗ is approximated by a PDE solution a coarse grid and on a fine grid. The difference
between the two approximations is less then 1.0.

The PDE method is capable of a precise estimate ofS∗ for a sufficiently fine grid. Consequently,
the estimate from the PDE method can be a reference for the other approximations. In Figure 5.2,
the graph ”Ingersoll” shows the optimal stock price levelS∗ for a convertible described in Table 5.1
but without a notice period. The graph is generated by the PDE method. The value of the optimal
stock price level equals to the clean call price plus the accrued interest. This was predicted by
Ingersoll [Ing77a] and equation (5.4). Further studies show that the error of the PDE method is
small and decreases for a finer discretization grid.

Figure 5.2 shows the convertible bond without dividends. The holder is allowed to convert
any time and there are coupon payment ofci = 2. In this setting, the optimal stock price for a
call shows a complex behavior: The PDE method in the graph ”This work” shows that there is a
large drop inS∗ just before a coupon payment is within the notice period and a jump as soon as
the coupon payment is within the notice period. None of the other approximations shows such a
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Figure 5.2:A convertible using the data from Table 5.1 but without dividends: The level of stock
price S∗ for the optimal call strategy over timet approximated by the AFV model using a PDE
solver (Tn = 1/12), Butler’s method (Tn = 1/12) and by IngersollTn = 0 are shown.
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Figure 5.3:The levelS∗ for the optimal call strategy over timet for a convertible according to
Table 5.1, but callable through the entire lifetime and no dividends are paid: The solid line is
computed without a default model, the dotted line with the AFV model. The case without default
hasp(S) = 0.
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Figure 5.4:The optimal call strategyS∗ over timet computed with the extended AFV PDE method.
The data is given in Table 5.1. A fine grid is used: 3200 nodes, 3200 time steps, 57 substeps.

complex structure. The method from Butler (3) has approximately the correct value. But, instead
of rising with time, it decays.

Figure 5.3 shows the effect of the default model onS∗ for the AFV model. In this case, we alter
the base case data in Table 5.1, so that the convertible is callable for the entire lifetime of the bond
and no dividends are paid.

In the presence of dividends, the optimal conversion strategy changes, as presented in Fig-
ure 5.4. The calculations are based on the data in Table 5.1. The dividends result in the optimal
stock price being higher than without dividends. Also, the dividends make calling the bond non
optimal immediately prior to a dividend date (t = 2, t = 3, t = 4).

5.3.1 Properties of the optimal call strategy

An interesting property of the optimal call strategy (Figure 5.2) is that it does not seem to be
optimal to call after the last coupon before maturity is paid. To show, why this is true, consider
the issuer. He tries to minimize the value of the convertible bond. Consequently, the issuer tries
to avoid the possibility that the holder gets a coupon plus the opportunity to convert into shares.
Thus, the value forS∗ is relatively low just before a coupon payment takes place. But, at maturity,
the holder gets either the face value plus the last coupon orκ shares and no coupon. So, there is no
need for the issuer to call the convertible bond because the holder cannot get both.

From Figure 5.2, we can see that in the case of a notice period, the optimalS∗ at which the issuer
should call the convertible is most of the time higher thanBc (line labelled Ingersoll on Figure 5.2).
This is reasonable because the issuer effectively gives the holder a put on the underlying stock once
the CB is called. The issuer wants to avoid having this put in the money at maturity. But, there are
dips inS∗ before each coupon payment, with some of them dropping belowBc.

The dips inS∗ result from the treatment of coupon payments. The value ofS∗ drops signif-
icantly before each coupon, followed by a jump. To explain the situation, Figure 5.5 shows the
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value of the convertible before and after the jump. Since the PDE is solving backwards in time,
consider the values att = tc−Tn + ε: V(tc−Tn + ε) andVc,t(tc−Tn + ε). These are the values
of the convertible respectively of the maximum constraint. Note that there is a coupon payment
within the notice period. In this situation, the coupon is paid to the holder whether or not the issuer
gives a call notice. That is the reason why the value ofVc,t is relatively high compared with the
conversion priceκS. So, the issuer cannot avoid paying the coupon at timetc. The situation is
different for timet = tc−Tn− ε. Now, if the issuer gives a call notice, the holder will not receive
the coupon. However, once given the call notice, the holder will get the accrued interest if he elects
to receive the call price. But, he will not receive the accrued interest if he chooses to convert into
shares (this is known as the screw clause). Consequently, the value of the maximum constraint
Vc,t(S, t = tc−Tn−ε) drops by the coupon value forSÀ Bc (compared toVc,t(t = tc−Tn+ε)) and
stays unchanged forS¿ Bc. The result of this drop backwards in time is a jump forwards in time.
In some cases,S∗(t) < Bc(t) (see Figure 5.2), butV(t)≥ Bc.

Thus, we can see that if a coupon payment is received within the notice period,S∗ can be less
thanBc. However, there are other cases where this effect can be observed. IfBcl = F , S∗ < Bc for
large periods of time. Figure 5.6 shows a convertible with data in Table 5.1, butBcl = F = 100, T =
25 and no dividends. The optimal call strategy is significantly lower thanBcl for the convertible
without a default model. With the AFV default model, the optimal strategyS∗ is higher, but near
maturity,S∗ also drops below the effective call priceBc. This result is consistent with Ingersoll’s
findings for perpetual convertible bonds with notice periods [Ing77b]. The approximation by Butler
(Figure 5.6) is too high although one of the assumptions in the derivation of his result is that
Bcl = F .

5.4 Implications on the value

It is interesting to examine the effect of the call policies on the CB value. In Figure 5.7, we can see
the effect of different notice periods on the value of the convertible. These results are all obtained
using an accurate PDE method (AFV model). The premium for a notice period varies over the
stock priceS with a maximum between112 and 115. As predicted, the premium is larger for
a longer notice period. The premium for a typical notice period with30 days is about0.90, a
significant addition.

Another interesting subject is the effect of suboptimal call policies, especially the delayed call
phenomena. Assuming that issuers call their convertibles late, what is the effect on the value.
Consider the following strategy: The issuer calls only if it is beneficial for him to call. But, he
will not call until the stock price levelSK is reached. This strategy is implemented by altering the
model for valuation with notice periods. The maximum constraint in equation (3.4) respectively
(3.16) becomes

if S≥ SK V ≤max(Vc,t ,κS) (5.11)

The impact of this new call strategy is presented in Figure 5.8. The difference in value compared
with the optimal strategy for a convertible bond from Table 5.1 is shown over the stock price. This
premium is very little for a strategy withSK = 150 because the optimal strategy is close to this
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Figure 5.5:The priceV and the constraintVc,t of a convertible with data is given in Table 5.1, but
no dividends. The price is shown fort = tc−Tn− ε = 1.41666 and t = tc−Tn + ε = 1.41668,
together with the initial conditions for the constraintVc,t . The values are computed with the AFV
model.
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Figure 5.6:The optimal call strategyS∗ for a convertible with data in Table 5.1, but with maturity
T = 25, Bcl = 100and no dividends.
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Figure 5.7:The impact of different notice periods on the value: The difference in value compared
to a convertible withTn = 0 is shown over the stock price (t = 0). The AFV model with data in
Table 5.1 is used.

value (see Figure 5.4). But, forSK = 160, we have a maximal impact on the value of more than
0.60. ForSK = 170, the value of the convertible increases by a maximum of about0.60 compared
with SK = 160. That means that the optimality of the issuer’s behavior has also a significant impact
on the value of a convertible bond.

We now consider a more realistic scenario. Suppose the issuer uses an approximate method to
determine the optimal call policy which we denoteŜ. This strategy can be modelled by replacing
equation (3.5) (T&F model) or equation (3.16) (AFV model) by

if S≥ Ŝ∗

V(S, t) = Vc,t(S, t). (5.12)

Since this strategy is suboptimal, all values computed using equation (5.12) will be larger than
values obtained with the optimal method. This makes the resulting premium a good measure of
the error of approximating the optimal call strategy.
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Figure 5.9:The impact for suboptimal call strategies: Effect of Ingersoll’s and Butler’s policy on
the value of a convertible is shown versus the stock price(t = 0). An optimal call strategy has a
premium of0. The AFV model with data in Table 5.1 is used.

Figure 5.9 shows the premium (compared to the optimal strategy) att = 0 due to the different
approximations. One can see that the call policy from Ingersoll has a significant effect on the value
(about0.40). The strategy from Butler has much smaller premium.

However, Butler’s approximation depends critically on the call priceBc. In Figure 5.10 the call
price is varied, and the stock price is held fixed atS= 100. We can see that Butler’s approximation
for S∗ is poorer asBc tends to the face value. This is surprising because one of the assumptions in
the derivation of the approximation isBcl = F .

6 Conclusions

Convertible bonds are a popular instrument with complex behavior. The notice period which pre-
vents the issuer from an immediate call for conversion has a significant impact on the theoretical
value of a convertible bond and the optimal call strategy of the issuer. A mathematical model that
extends the existing model from Tsiveriotis and Fernandes (T&F model) and the model from Ay-
ache, Forsyth and Vetzal (AFV model) is presented. The implementation leads to precise estimate
for the value of the convertible and the optimal call strategy.

Various authors have analyzed the delayed call phenomena. They suggest that the issuers call
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Figure 5.10:The premium in value of convertibles with different call prices using Butler’s call
strategy. An optimal call strategy has a premium of0. The AFV model with data in Table 5.1 is
used, and the call price varied.

their convertibles above the optimal stock price level. If we assume such a delayed call, we find
that the value of the convertible is larger than the convertible without a notice period. For example
if the convertible is called13%above the optimal value, with a notice period of30days, the value
of the convertible increases by about 1% compared with the optimal strategy. A notice period of
30 days, assuming optimal issuer behavior, adds about1% to the value compared to a bond with
no notice period. Note that this effect is larger than the difference between T&F and AFV models.

Some authors argue that the introduction of a notice period results in a higher stock price level
which is optimal for the issuer to call. We find that the call price and the schedule of coupon
payments have a significant effect on this stock price level. In general, the optimal stock price
is higher than the call price for convertibles with notice periods, but in some cases, it is lower.
Especially just before a coupon payment is within the notice period, an optimal call by the issuer
can be at a considerable lower stock price than the call price.

Various approximation methods for determining the optimal call policy have been discussed.
Butler’s method generally gives crude approximations to the actual value of the convertible. Only
a full PDE method can provide accurate values, given the complex contractual details of typical
convertible bonds.
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