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Abstract4

A general methodology is described in which policyholder behaviour is decoupled from the5

pricing of a variable annuity based on the cost of hedging it, yielding two weakly coupled systems6

of partial differential equations (PDEs): the pricing and utility systems. The utility system is7

used to generate policyholder withdrawal behaviour, which is in turn fed into the pricing system8

as a means to determine the cost of hedging the contract. This approach allows us to incorporate9

the effects of utility-based pricing and factors such as taxation. As a case study, we consider10

the Guaranteed Lifelong Withdrawal and Death Benefits (GLWDB) contract. The pricing and11

utility systems for the GLWDB are derived under the assumption that the underlying asset12

follows a Markov regime-switching process. An implicit PDE method is used to solve both13

systems in tandem. We show that for a large class of utility functions, the pricing and utility14

systems preserve homogeneity, allowing us to decrease the dimensionality of the PDEs and thus15

to rapidly generate numerical solutions. It is shown that for a typical contract, the fee required16

to fund the cost of hedging calculated under the assumption that the policyholder withdraws17

at the contract rate is an appropriate approximation to the fee calculated assuming optimal18

consumption. The costly nature of the death benefit is documented. Results are presented19

which demonstrate the sensitivity of the hedging expense to various parameters.20

Keywords: Variable annuity, Guaranteed lifelong withdrawal and death benefits, regime-21

switching, hedging costs, optimal consumption, utility-based pricing22

1 Introduction23

Variable annuities are tax-deferred, unit-linked insurance products. These products are a class24

of insurance vehicles that provide the buyer with particular guarantees without requiring them25

to sacrifice full control over the funds invested. These funds are usually invested in a collective26

investment vehicle such as a mutual fund and the writer’s position is secured by the deduction of27

a proportional fee applied to each investors’ account.28
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We propose a method for pricing such contracts when the value of the underlying investment fol-29

lows a Markovian regime-switching process. Regime-switching was introduced by Hamilton (1989),30

while its application to long-term guarantees was popularized by Hardy (2001), who demonstrated31

its effectiveness by fitting to the S&P 500 and the Toronto Stock Exchange 300 indices. Regime-32

switching has thus been suggested as a sensible model for pricing variable annuities (Siu 2005, Lin33

et al. 2009, Bélanger et al. 2009, Yuen and Yang 2010, Ngai and Sherris 2011, Jin et al. 2011) due34

to their long-term nature. An alternative to this model is stochastic volatility (Hull and White35

1987). However, it could be argued that due to the long-term nature of these guarantees, it is more36

useful to choose a model which allows for the incorporation of a long-term economic perspective. A37

regime-switching process has parameters which are economically meaningful, and it is straightfor-38

ward to adjust these parameters to incorporate economic views. This is perhaps more difficult for a39

stochastic volatility model, which is typically calibrated to short term option prices. Furthermore,40

the adoption of stochastic volatility requires an additional dimension in the corresponding partial41

differential equation (PDE) while the regime-switching model adds complexity proportional to the42

number of regimes considered, and as a result is computationally less intensive. Moreover, it is43

straightforward (in the regime-switching framework) to allow for different levels of the risk-free44

interest rate across regimes. The alternative of incorporating an additional stochastic interest rate45

factor would add an extra dimension to the PDE, with the associated costs of complexity.46

We demonstrate our methodology by considering a specific variable annuity: the Guaranteed47

Lifelong Withdrawal and Death Benefits (GLWDB) contract. The GLWDB is a response to a gen-48

eral reduction in the availability of defined benefit pension plans, allowing the buyer to replicate49

the security of such a plan via a substitute. The GLWDB is bootstrapped via a lump sum payment50

to an insurer, S (0), which is invested in risky assets. We term this the investment account. Associ-51

ated with the GLWDB contract are the guaranteed withdrawal benefit account and the guaranteed52

death benefit account, hereafter referred to as the withdrawal and death benefits for brevity. We53

also refer to these as the auxiliary accounts. Both auxiliary accounts are initially set to S (0). At54

a finite set of withdrawal dates, the policyholder is entitled to withdraw a predetermined fraction55

of the withdrawal benefit (or any lesser amount), even if the investment account diminishes to56

zero. This predetermined fraction is referred to as the contract withdrawal rate. If the policyholder57

wishes to withdraw in excess of the contract withdrawal rate, they can do so upon the payment of58

a penalty. Typical GLWDB contracts include penalty rates that are decreasing functions of time.59

Upon death, the policyholder’s estate receives the maximum of the investment account and death60

benefit. These contracts are often bundled with ratchets (a.k.a. step-ups), a contract feature that61

periodically increases one or more of the auxiliary accounts to the investment account, provided62

that the investment account has grown larger than the respective auxiliary account. Moreover,63

bonus (a.k.a. roll-up) provisions are also often present, in which the withdrawal benefit is increased64

if the policyholder does not withdraw on a given withdrawal date.65

This contract can be considered as part of a greater family of insurance vehicles offering guar-66

anteed benefits that have emerged as a result of a recent trend away from defined benefits (Butrica67

et al. 2009). Our approach can easily be extended to include features present in an arbitrary mem-68

ber of this family. There exists a maturing body of work on pricing these contracts. Bauer et al.69

(2008) introduce a general framework for pricing various products in this family. Monte Carlo70

and numerical integration are employed, and loss-maximizing (from the perspective of the insurer)71

withdrawal strategies are considered. Holz et al. (2007) compute the fair fee for Guaranteed Life-72

long Withdrawal Benefit (GLWB) contracts via a Monte Carlo method. Milevsky and Salisbury73

2



(2006) employ a numerical PDE approach to price the Guaranteed Minimum Withdrawal Benefits74

(GMWB) contract. Shah and Bertsimas (2008) introduce a GLWB model with stochastic volatility75

and consider static strategies. Kling et al. (2011) provide an extension of the variable annuity76

model under stochastic volatility. Piscopo and Haberman (2011) consider a model with stochastic77

mortality risk.78

In the general area of financial derivatives, the traditional approach is to assume that the79

policyholder acts so as to maximize the value of owning the contract. The no-arbitrage price of the80

contract is then calculated as the cost to the writer of the contract of establishing a self-financing81

hedging strategy that is guaranteed to produce at least enough cash to pay off any future liabilities82

resulting from the policyholder’s future decisions with respect to the contract (in the context of83

the assumed pricing model). Since derivative payoffs are a zero sum game, this is equivalent to84

establishing a price on the basis of assuming a worst case scenario to the contract writer. We will85

refer to the assumption of such behaviour by policyholders here as loss-maximizing strategies, as86

they represent worst case outcomes for the insurer. Such strategies produce an upper bound on87

the fair price of the contract, but it is far from clear that policyholders actually behave in this88

manner. Instead, for any of a number of reasons, a policyholder may deviate from loss-maximizing89

behaviour.90

In order to account for this, we provide a new approach here in which we decouple policy-91

holder withdrawal behaviour from the contract pricing equations, and generate said behaviour by92

considering a policyholder’s utility. This general approach is applicable to any contract involving93

policyholder behaviour, and results in two weakly coupled systems of PDEs. In the context of94

GLWDBs, this allows for the easy modeling of complex phenomena such as risk aversion and tax-95

ation. Solving the PDEs backwards in time allows us to employ the Bellman principle to ensure96

that the policyholder is able to maximize his or her utility. Since our approach incorporates this97

added generality, we will generally avoid the use of the term “no-arbitrage” below, and instead98

refer to the cost of hedging. Of course, under the specific case of loss-maximizing behaviour by the99

policyholder, our cost of hedging coincides with the traditional no-arbitrage price.100

In §2, we introduce a system of regime-switching PDEs used to determine the hedging costs of101

the GLWDB contract. In §3, we introduce a system of regime-switching PDEs used to model a102

policyholder’s utility and describe how this system is used alongside the system introduced in §2 to103

determine the cost of hedging the guarantee assuming optimal consumption. In §4, we discuss our104

numerical methodology. In §5, we present results under both the assumption that the policyholder105

behaves so as to maximize the cost of the guarantee (i.e. the loss-maximizing strategy) and the106

assumption that the policyholder maximizes utility.107

Overall, the contributions of this work are:108

• We introduce a general methodology that allows for the decoupling of policyholder behaviour109

from the cost of hedging the contract.110

– This approach yields two weakly coupled systems of PDEs: the pricing and utility sys-111

tems.112

– This approach abandons the arguably flawed notion of a policyholder acting only so as113

to maximize the cost of a guarantee.114

• We model the long-term behaviour of the underlying stock index (or mutual fund) by a115

Markovian regime-switching process.116
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• We present the pricing and utility systems for the GLWDB contract.117

• We show sufficient conditions for the homogeneity of the systems. This result is computa-118

tionally significant, as it is used to reduce the dimensionality of the systems.119

• We find that assuming optimal consumption yields a hedging cost fee that is very close to120

the fee calculated by assuming that the policyholder follows the static strategy of always121

withdrawing at the contract rate. This is a result of particular practical importance as it122

suggests that policyholders will generally withdraw at the contract rate. This substantiates123

pricing contracts under this otherwise seemingly näıve assumption.124

• We find that the inclusion of a death benefit is often expensive. This may account for the125

failure to properly hedge this guarantee and the subsequent withdrawal of contracts including126

ratcheting death benefits from the Canadian market.127

• We demonstrate sensitivity to various parameters and we consider the adoption of exotic fee128

structures in which the proportional fee applies not just to the investment account but rather129

to the greater of this account and one or more of the auxiliary accounts.130

2 Hedging costs131

We begin by considering a basic model for pricing GLWDBs under which policyholder withdrawal132

behaviour is determined so as to maximize the value of the guarantee (i.e. the loss-maximizing133

strategy). We extend previous work by Forsyth and Vetzal (2013) via the introduction of a death134

benefit. For simplicity, we first consider the single-regime case and subsequently extend this model135

to include regime-switching.136

2.1 Derivation of the pricing equation137

Let M (t) be defined as the instantaneous rate of mortality per unit interval. The fraction of138

policyholders still alive at time t is139

R (t) = 1−
∫ t

0
M (s) ds,

where t = 0 is the time at which the contract is purchased. Let S (t) be the amount in the140

investment account of any policyholder of the GLWDB contract who is still alive at time t. Let141

W (t) and D (t) be the withdrawal and death benefits at time t. Assume that the underlying value142

of the investment account is described by143

dS = (µ− α)Sdt+ σSdZ

where Z is a Wiener process. The constant α represents the total fee structure of the contract. It144

is comprised of two terms. First, the underlying investment fund has a proportional management145

fee αM . Second, the insurer charges for the cost of hedging the contractual features through a146

proportional fee αR, which we will refer below to as the hedging cost fee. The total proportional147

deduction applied to the investor’s account is α = αM + αR. If we suppose that αM is fixed, the148

pricing problem becomes one of finding αR such that the insurer can follow a hedging strategy149
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which (in principle) can eliminate risk. This will be discussed further in §4.3. S tracks the index Ŝ150

which follows151

dŜ = µŜdt+ σŜdZ.

It is assumed that the insurer is unable to short S for fiduciary reasons.152

We proceed by a hedging argument ubiquitous in the literature (Windcliff et al. 2001, Chen153

et al. 2008, Bélanger et al. 2009). Let U (S,W,D, t) be the cost of funding the withdrawal and154

death benefits at time t years after purchase for investment account value S, withdrawal benefit155

W , and death benefit D. The value of U is adjusted to account for the effects of mortality. We156

assume that this contract was purchased at time zero by a buyer aged x0. Let T be the smallest157

time at which R (T ) = 0 (we assume that such a time exists; i.e. no policyholder lives forever). The158

insurer has no obligations at time T and hence159

U (S,W,D, T ) = 0. (2.1)

The writer creates a replicating portfolio Π by shorting one contract and taking a position of x160

units in the index Ŝ. That is,161

Π (S,W,D, t) = −U (S,W,D, t) + xŜ.

The contractually specified times at which withdrawals and ratchets occur are referred to as event162

times, gathered in the set T = {t1, t2, . . . , tN−1} and ordered by163

0 = t1 < t2 < . . . < tN−1 < tN = T.

Note that time zero (but not tN = T ) is also referred to as an event time even if no withdrawals or164

ratchets are prescribed to occur at time zero.165

Following standard portfolio dynamics arguments (see, e.g. Forsyth and Vetzal 2013) and noting166

that between event times, dU is a function solely of S and t, we can use Itô’s lemma to yield167

dΠ = −
[(

1

2
σ2S2∂

2U

∂S2
+ (µ− α)S

∂U

∂S
+
∂U

∂t

)
dt+ σS

∂U

∂S
dZ

]
+ x

[
µŜdt+ σŜdZ

]
+R (t)αRSdt−M (t) [0 ∨ (D − S)] dt,

where a ∨ b = max (a, b). The term R (t)αRSdt represents the fees collected by the hedger, while168

M (t) [0 ∨ (D − S)] dt represents the surplus generated by the death benefit as paid out to the169

estates of deceased policyholders. Taking x =
(
S/Ŝ

)
∂U
∂S yields170

dΠ =

(
−1

2
σ2S2∂

2U

∂S2
+ αS

∂U

∂S
− ∂U

∂t
+R (t)αRS −M (t) [0 ∨ (D − S)]

)
dt. (2.2)

As this increment is deterministic, by the principle of no-arbitrage, the corresponding portfolio171

process must grow at the risk-free rate. That is,172

dΠ = rΠdt = r

(
−U +

S

Ŝ

∂U

∂S
Ŝ

)
dt. (2.3)
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Substituting (2.3) into (2.2),173

1

2
σ2S2∂

2U

∂S2
+ (r − α)S

∂U

∂S
+
∂U

∂t
− rU −R (t)αRS +M (t) [0 ∨ (D − S)] = 0. (2.4)

Let174

V (S,W,D, t) = U (S,W,D, t) +R (t)S (2.5)

be the cost of funding the entire contract at time t. Substituting into (2.4), we arrive at175

1

2
σ2S2∂

2V

∂S2
+ (r − α)S

∂V

∂S
+
∂V

∂t
− rV +R (t)αMS +M (t) (S ∨D) = 0. (2.6)

We stress that V satisfies the above PDE only between a pair of adjacent event times tn and tn+1.176

We discuss the behaviour of V across event times (e.g. from t−n to t+n ) in §2.2.177

2.2 Events178

Remark 2.1 (Notation). In order to reduce clutter, we will sometimes refer to V (S,W,D, t) as179

V (x, t), where x = (S,W,D). We will often use this notation for other functions of (S,W,D) as180

well. We refer to a point x as a state.181

Event times. Across event times, V is not necessarily continuous as a function of t. We restrict V182

to be a càglàd function of t so that for all x, V (x, t) = lims↑t V (x, s) and V (x, t+) = lims↓t V (x, s)183

exist. Whenever t ∈ T , V (x, t) and V (x, t+) can be regarded as the price of the contract “imme-184

diately before” and “immediately after” the event time, respectively.185

Withdrawal strategy. We isolate the withdrawal strategy by introducing a function γ (x, t)186

describing the policyholder’s actions at state x and t ∈ T .187

• γ (x, t) = 0 indicates that the policyholder does not withdraw anything.188

• γ (x, t) ∈ (0, 1] indicates a nonzero withdrawal less than or equal to the contract withdrawal189

amount, the maximum amount one can withdraw without incurring a penalty.190

• γ (x, t) ∈ (1, 2] indicates withdrawal at more than the contract withdrawal amount.191

γ (x, t) = 2 is referred to as a full surrender, as it corresponds to the scenario in which the policy-192

holder withdraws the entirety of their investment account, while γ (x, t) ∈ (1, 2) is referred to as a193

partial surrender.194

Remark 2.2 (Abstract strategy). We stress that we have not yet made any assumptions about195

policyholder behaviour. The decoupling of policyholder behaviour from the hedging cost equations196

is the guiding philosophy of this work, and allows us to model complex phenomena visible to the197

policyholder, but not necessarily visible to the writer. To be more precise, we assume that the insurer198

can observe the policyholder’s strategy, though not the factors which determine that strategy. The199

robustness of this approach is made concrete via the model developed in §3, which considers the200

effects of taxation and nonlinear utility functions on a policyholder’s withdrawal strategy.201
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Denote the cost of funding the contract at state x and event time t ∈ T assuming the policy-202

holder performs action λ ∈ [0, 2] by203

v (x, t, λ) = V
(
f (x, t, λ) , t+

)
+R (t) f (x, t, λ) (2.7)

where f represents cash flow from the writer to the policyholder and f : R3 × T × [0, 2] → R3
204

describes the state of the contract after the event. The cash flow is adjusted to account only for the205

fraction of holders still alive at time t, R (t). The actual (observed) cost of funding the contract is206

obtained simply by passing the withdrawal strategy employed by the policyholder γ to v. That is,207

V (x, t) = v (x, t, γ (x, t)) . (2.8)

We cast a withdrawal event in the form (2.7) by considering the three cases enumerated above (i.e.208

λ = 0, λ ∈ (0, 1], and λ ∈ (1, 2]) separately.209

In the following, we refer to TWithdraw ⊂ T as the set times at which withdrawals are prescribed210

and TRatchet ⊂ T as the set of times at which ratchets are prescribed. We begin by assuming211

TWithdraw
⋂
TRatchet = ∅ (i.e. ratchets and withdrawals do not occur simultaneously) and subse-212

quently relax this assumption.213

Bonus. At a time t ∈ TWithdraw, nonwithdrawal is indicated by λ = 0. If the policyholder chooses214

not to withdraw, the withdrawal benefit is amplified by 1 + B (t), where B (t) is the bonus rate215

available at t. By the principle of no-arbitrage,216

v (S,W,D, t, 0) = V

S, W (1 +B (t)) , D︸ ︷︷ ︸
f(x,t,0)

, t+

 .

Withdrawal not exceeding the contract rate. At a time t ∈ TWithdraw, the contract with-217

drawal amount for withdrawal benefit W is G (t)W . G (t), the contract withdrawal rate at time t, is218

specified by the contract. The amount withdrawn by the policyholder when λ ∈ (0, 1] is λG (t)W .219

We express this type of withdrawal as220

v (S,W,D, t, λ) = V

(S − λG (t)W ) ∨ 0, W, (D − λG (t)W ) ∨ 0︸ ︷︷ ︸
f(x,t,λ)

, t+

+R (t)λG (t)W︸ ︷︷ ︸
f(x,t,λ)

.

For the particular contract that we are considering, the death benefit is reduced whenever any221

withdrawals are made.222

Partial or full surrender. At a time t ∈ TWithdraw, The amount withdrawn if λ ∈ (1, 2] is223

G (t)W + (λ− 1) (1− κ (t))S′

where S′ = (S −G (t)W ) ∨ 0 is the state of the investment account after a withdrawal at the224

contract withdrawal amount and κ (t) ∈ [0, 1] is the penalty rate incurred at t for withdrawing225
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above the contract withdrawal amount. For a typical contract, κ (t) is monotonically decreasing in226

time. We express this type of withdrawal as227

v (S,W,D, t, λ) = V

(2− λ)S′, (2− λ)W, (2− λ)D︸ ︷︷ ︸
f(x,t,λ)

, t+


+R (t)

(
G (t)W + (λ− 1) (1− κ (t))S′

)︸ ︷︷ ︸
f(x,t,λ)

.

Ratchets. At a time t ∈ TRatchet, the withdrawal benefit is increased to the investment account228

if the latter has grown larger than the former in value. Note that the value of the withdrawal229

benefit W can never decrease, unless a penalty has been incurred for withdrawing over the contract230

withdrawal rate. Although ratchets are not controlled by the policyholder, we can still write a231

ratchet event in the form (2.7) by232

v (S,W,D, t, λ) = V

S, S ∨W, D︸ ︷︷ ︸
f(x,t,λ)

, t+


irrespective of the value of λ. We also explore the possibility of a ratcheting death benefit.233

Simultaneous events. When multiple events are prescribed to occur at the same time, we simply234

apply them one after the other. Naturally, without a particular order, the pricing problem is not235

well-posed: the contract is ambiguous. If a withdrawal and a ratchet are prescribed to occur at the236

same time, we assume that the withdrawal occurs before the ratchet. As we are solving the PDE237

backwards in time in order to employ the Bellman principle, these events are applied in reverse238

order (in backwards time).239

2.3 Loss-maximizing strategies240

For all states x and event times t ∈ T , let241

Γ (x, t) = arg max
λ∈[0,2]

[v (x, t, λ)] (2.9)

Since we are maximizing (2.7), Γ (x, t) is simply the set of all actions that maximize the cost of the242

contract at x and t. If the writer is interested in computing the hedging cost for the contract in243

the worst-case scenario, the withdrawal strategy is assumed to satisfy244

γ (x, t) ∈ Γ (x, t) (2.10)

for all x and t ∈ T . Any such strategy is termed a loss-maximizing withdrawal strategy.245

Remark 2.3 (An unfortunate choice of terms). A loss-maximizing withdrawal strategy is often246

referred to as an optimal strategy in the literature. The adoption of the term optimal is an arguably247

unfortunate one, as an optimal strategy is not necessarily “optimal” for the policyholder. We stress248

that an optimal strategy as typically referred to in the literature is simply one that maximizes losses249

for the writer, and use instead the term “loss-maximizing” for the remainder of this work in order250

to avoid confusion.251
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2.4 Regime-switching252

We extend the formulation to include a regime-switching framework in which shifts between states253

are controlled by a continuous-time Markov chain. Letting S = {1, 2, . . . ,M} be the state-space254

consisting of M regimes, we assume that in regime i ∈ S, the underlying investment account evolves255

according to256

dS = (µi − α)S + σiSdZ +
M∑
j=1

S (Ji→j − 1) dXi→j

where257

dXi→j =

{
1 with probability δi,j + qi→jdt

0 with probability 1− (δi,j + qi→jdt)

and δi,j is the Kronecker delta. Here, qi→j is the objective (P measure) rate of transition from258

regime i to j whenever i 6= j and259

qi→i = −
M∑
j=1
j 6=i

qi→j .

Ji→j > 0 is the relative jump size in S associated with a transition from regime i to j. We take260

Ji→i = 1 for all i so that jumps in the underlying are not experienced unless there is a change in261

regime. Let Vi (S,W,D, t) be the cost of funding a GLWDB in regime i. Following a combination262

of the hedging arguments in §2.1 and §A, we arrive at the system of PDEs263

LiVi +

M∑
j=1
j 6=i

[
qQi→jVj (Ji→jS,W,D, t)

]
+
∂Vi
∂t

+R (t)αMS +M (t) (S ∨D) = 0 ∀i ∈ S (2.11)

where264

Li =
1

2
σ2i S

2 ∂
2

∂S2
+
(
ri − α− ρQi

)
S
∂

∂S
−
(
ri − qQi→i

)
.

qQi→j is the risk-neutral rate of transition from regime i to j whenever i 6= j and265

qQi→i = −
M∑
j=1
j 6=i

qQi→j .

Furthermore, ρQi is defined as266

ρQi =

M∑
j=1
j 6=i

[
qQi→j (Ji→j − 1)

]
=

M∑
j=1

[
qQi→jJi→j

]
.

(2.11) is referred to as the pricing system.267

The events introduced in the single-regime model are simply applied to each regime separately.268

That is, the regime-switching analogues of (2.7) and (2.8) are269

vi (x, t, λ) = Vi
(
f (x, t, λ) , t+

)
+R (t) f (x, t, λ) (2.12)
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and270

Vi (x, t) = vi (x, t, γi (x, t)) . (2.13)

Likewise, the withdrawal strategy becomes regime-dependent. The regime-switching analogue of271

(2.9) and (2.10) is272

γi (x, t) ∈ Γi (x, t) = arg max
λ∈[0,2]

[vi (x, t, λ)] . (2.14)

3 Optimal consumption273

Using a loss-maximizing strategy yields the largest hedging cost fee. Any other strategy will, by274

definition, yield a smaller fee. Using the fee generated by a loss-maximizing strategy ensures that the275

writer can, at least in theory, hedge a short position in the contract with no risk. However, insurers276

are often interested in using a less conservative method for pricing contracts so as to decrease277

the hedging cost fee while minimizing their exposure. We now extend the framework introduced278

in §2 to strategies based on optimal consumption from the perspective of the policyholder. As279

usual, we first consider the single-regime case and subsequently provide the extension to include280

regime-switching.281

3.1 Utility PDE282

Let V (S,W,D, t) be the mortality-adjusted utility of holding a GLWDB contract at t with invest-283

ment account value S, withdrawal benefit W and death benefit D. Following standard arguments,284

we express the evolution of a policyholder’s utility by285

1

2
σ2S2∂

2V

∂S2
+ (µ− α)S

∂V

∂S
+
∂V

∂t
− βV +M (t)uB (S ∨D) = 0. (3.1)

Here, uB (x) is the bequest utility, the utility received from bequeathing x, and β is the rate of time286

preference. Note that (3.1) depends on the real-world drift µ as opposed to the risk-free rate r. We287

represent the worthlessness of holding a GLWDB after all death benefits have been paid by288

V (S,W,D, T ) = 0. (3.2)

The drift-diffusion form (3.1) corresponds to a standard additive utility specification.289

3.2 Events290

As in (2.7) and (2.8), we parameterize an event occurring at t ∈ T by writing it in the form291

v (x, t, λ) = V
(
f (x, t, λ) , t+

)
+R (t) f (x, t, λ) (3.3)

along with292

V (x, t) = v (x, t, γ (x, t)) . (3.4)

f is defined implicitly for each event type in §2.2. It should be noted that the function f does not293

represent a cash flow, but rather an influx of utility to the holder. That is,294

f (x, t, λ) = uC (f (x, t, λ)) ,

where f is defined for each event type in §2.2 and uC (y) is the consumption utility, the utility295

received from consuming y.296
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Figure 3.1: A graph depicting the propagation of information in the pricing procedure.

3.3 Consumption-optimal withdrawal297

We refer to a withdrawal strategy that satisfies298

γ (x, t) ∈ Γ (x, t) = arg max
λ∈[0,2]

[v (x, t, λ)] (3.5)

(for all states x and event times t ∈ T ) as a consumption-optimal withdrawal strategy. Since we are299

maximizing (3.3), Γ (x, t) is simply the set of all actions that maximize the policyholder’s utility at300

x and t.301

It should be noted that we are not interested in the value of the numerical solution to the utility302

PDE but rather in the withdrawal strategy generated by it. Instead of adopting the optimal with-303

drawal strategy introduced in §2.3, we feed the withdrawal strategy generated by the policyholder’s304

utility into the pricing problem. Given the Cauchy data V (·, tn+1) and V (·, tn+1):305

1. Solve V (·, t+n ) using (2.6) and Cauchy data V (·, tn+1).306

2. Solve V (·, t+n ) using (3.1) and Cauchy data V (·, tn+1).307

3. Determine γ (·, tn) s.t. (3.5) is satisfied. In doing so, determine V (·, tn) by (3.3) and (3.4).308

4. Use γ (·, tn), (2.7) and (2.8) to determine V (·, tn).309

The propagation of information in this procedure is depicted in Figure 3.1.310

Remark 3.1 (Ensuring uniqueness). Step 3 requires that for each x, we determine γ (x, tn). The311

expression (3.5) suggests that γ (x, tn) need not be unique. To ensure the uniqueness of V , we need312

a way to break ties between consumption-optimal strategies. Formally, we substitute condition (3.5)313

for314

γ (x, t) = c
(
Γ (x, t)

)
where c is a choice function on the power set of [0, 2]. For example, a choice function c that selects315

the smallest element (e.g. c ({0, 1, 2}) = 0) corresponds to a policyholder who will always withdraw316

the least amount possible to break a tie.317
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3.4 Regime-switching318

Assuming the regime-switching model introduced in §2.4, define V i (S,W,D, t) as the mortality-319

adjusted utility of holding a GLWDB contract at time t years after purchase in regime i ∈ S.320

Following standard arguments, we arrive at321

∂V i

∂t
+ LiV i +

M∑
j=1
j 6=i

[
qi→jV j (Ji→jS,W,D, t)

]
+M (t)uBi (S ∨D) = 0 ∀i ∈ S (3.6)

where322

Li =
1

2
σ2i S

2 ∂
2

∂S2
+ (µi − α)S

∂

∂S
− (βi − qi→i) .

(3.6) is referred to as the utility system. Note that this system of PDEs does not depend on the323

risk-neutral rates of transition qQi→j as in §2.4, but instead on the objective (P measure) rates of324

transition qi→j . We use the symbols uBi and uCi to stress that the utility functions can, in general,325

be regime-dependent.326

As in §2.4, events and the corresponding withdrawal strategies become regime-dependent. The327

regime-switching analogue of (3.3) and (3.4) is328

vi (x, t, λ) = V i

(
f (x, t, λ) t+

)
+R (t)uCi (f (x, t, λ)) (3.7)

and329

V i (x, t) = vi (x, t, γi (x, t)) . (3.8)

Likewise, the regime-switching analogue of (3.5) is330

γi (x, t) ∈ Γi (x, t) = arg max
λ∈[0,2]

[vi (x, t, λ)] . (3.9)

In this way, at any event time, the policyholder’s utility in regime i (i.e. V i) is directly related to331

the price in regime i (i.e. Vi). In particular, the algorithm presented in §3.3 becomes:332

1. Solve 〈V1 (·, t+n ) , . . . , VM (·, t+n )〉 using (2.11) and Cauchy data 〈V1 (·, tn+1) , . . . , VM (·, tn+1)〉.333

2. Solve
〈
V 1 (·, t+n ) , . . . , VM (·, t+n )

〉
using (3.6) and Cauchy data

〈
V 1 (·, tn+1) , . . . , VM (·, tn+1)

〉
.334

3. For each regime i,335

(a) Determine γi (·, tn) such that (3.9) is satisfied. In doing so, determine V i (·, tn) by (3.7)336

and (3.8).337

(b) Use γi (·, tn), (2.12) and (2.13) to determine Vi (·, tn).338

3.5 Hyperbolic absolute risk-aversion339

We consider policyholder consumption to be governed by hyperbolic absolute risk-aversion (HARA)340

utility (Merton 1970):341

uCi (y; ai, bi, pi) = lim
p→pi

1− p
p

(
aiy

1− p
+ bi

)p
. (3.10)
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We take uBi (y) = hiu
C
i (y), where hi is termed the bequest motive. This is a fairly flexible and342

general class of utility functions that can be parameterized so that marginal utility is finite at343

a consumption level of zero. This is potentially of interest in our context since it allows for the344

possibility that the policyholder will decide to not withdraw any amount at a withdrawal date.345

Otherwise, with infinite marginal utility at a consumption level of zero, the policyholder will always346

withdraw some positive amount.347

4 Numerical method348

4.1 Homogeneity349

Let V denote the column vector consisting of V1, V2, . . ., VM . We define V similarly.350

Remark 4.1 (Technical assumptions). We assume that all regime-switching jumps are unity (i.e.351

Ji→j = 1 for all i and j), that V (resp. V) is a classical solution (i.e. twice differentiable in the352

investment account S and once in t on (tn, tn+1) for all 1 6 n < N) satisfying a growth condition to353

ensure uniqueness (recall that parabolic PDEs do not, in general, admit unique solutions (Friedman354

1964)) and that the functions σi, ri, α, qQi→j, µi, βi and qi→j are bounded and continuous. Under355

these assumptions, it is possible to use the parametrix method (Levi 1907) to construct a Green’s356

function (denoted F ) representation for V (resp. V) on t ∈ (tn, tn+1]. A more detailed list of these357

assumptions is provided by Azimzadeh (2013). We further assume that the functions σi, ri, α, and358

qQi→j, µi, βi and qi→j are independent of S, W and D and exploit this fact in Lemma 4.4.359

Definition 4.2 (Homogeneous function). A function s : X → Y between two cones is said to be360

homogeneous of order k ∈ Z if for all η > 0 and x ∈ X, ηks (x) = s (ηx) . We say V is homogeneous361

if for each i ∈ S, Vi is homogeneous.362

Theorem 4.3 (Price homogeneity under loss-maximizing strategy). Suppose that a loss-maximizing363

strategy is employed by the policyholder. Then, V (x, t) is homogeneous of order 1 in x.364

This fact is established via a series of lemmas. Namely, we show that if V (x, tn+1) is homoge-365

neous in x, so too is V (x, t+n ) (Lemma 4.4). That is, the system (2.11) composed of the operators366

L1, L2, . . ., LM preserves homogeneity. Then, we show that if V (x, t+n ) is homogeneous in x,367

so too is V (x, tn) (Lemma 4.6). That is, homogeneity is preserved across event times under a368

loss-maximizing strategy. By (2.1) and (2.5), we have V (x, tN = T ) = 0. Since this is trivially369

homogeneous, the desired result follows by induction.370

Lemma 4.4 (Pricing system homogeneity between event times). Suppose that for some n with371

1 6 n < N , V (x, tn+1) is homogeneous of order 1 in x. Then, for all t ∈ (tn, tn+1], V (x, t) is372

homogeneous of order 1 in x.373

Proof sketch. If we let τ = tn+1 − t and374

g (S,W,D, t) = R (t)αMS +M (t) (S ∨D) ,

we can write (Remark 4.1)375

V (S,W,D, t) =

∫ ∞
0

F

(
log

S′

S
, τ, 0

)
V
(
S′,W,D, tn+1

) 1

S′
dS′

+

∫ τ

0

∫ ∞
0

F

(
log

S′

S
, τ, τ ′

)(
g
(
S′,W,D, tn+1 − τ ′

)
1
) 1

S′
dS′dτ ′.
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where 1 is a column vector of ones. The fact that F depends on S′ and S only through log (S′/S)376

is discussed by Azimzadeh (2013) and stems from the assumption that σi, ri, α and qQi→j are377

independent of S, W and D (Remark 4.1). The substitution S′ = SS′′ yields378

V (S,W,D, t) =

∫ ∞
0

F
(
logS′′, τ, 0

)
V
(
SS′′,W,D, tn+1

) 1

S′′
dS′′

+

∫ τ

0

∫ ∞
0

F
(
logS′′, τ, τ ′

) (
g
(
SS′′,W,D, tn+1 − τ ′

)
1
) 1

S′′
dS′′dτ ′.

Since V (x, tn+1) and g (x, t) are both homogeneous in x, it is now straightforward to extend379

V (x, t)’s homogeneity to t ∈ (tn, tn+1].380

Remark 4.5. (Unit jump size assumption) The assumption that the jump sizes are unity Ji→j = 1381

is required in order to use the standard Green’s function form. However, Lemma 4.4 also holds for382

the case of non-unit jump sizes, but the proof is somewhat more lengthy.383

Lemma 4.6 (Loss-maximizing strategy preserves homogeneity). Suppose that for some regime384

i ∈ S and for some n with 1 6 n < N , Vi (x, t+n ) is homogeneous of order 1 in x and that the385

policyholder employs a loss-maximizing strategy γi (·, tn). Then, Vi (x, tn) is homogeneous of order386

1 in x.387

Proof. We leave it to the interested reader to show that f (x, tn, λ) and f (x, tn, λ) defined implicitly388

in §2.2 are homogeneous of order 1 in x. From this and the presumed homogeneity of Vi (x, t+n ),389

it follows that vi (x, tn, λ) defined by (2.12) is homogeneous of order 1 in x. Let η > 0 and x be390

arbitrary. By (2.14),391

γi (ηx, tn) ∈ Γi (ηx, tn)

= arg max
λ∈[0,2]

[vi (ηx, tn, λ)]

= arg max
λ∈[0,2]

η [vi ( x, tn, λ)]

= arg max
λ∈[0,2]

[vi ( x, tn, λ)]

= Γi (x, tn) 3 γi (x, tn) .

From this, it follows that vi (x, tn, γ (ηx, tn)) = vi (x, tn, γ (x, tn)). Specifically,392

Vi (ηx, tn) = vi (ηx, tn, γ (ηx, tn)) = ηvi (x, tn, γ (ηx, tn)) = ηvi (x, tn, γ (x, tn)) = ηVi (x, tn) .

393

The homogeneity of the pricing problem allows us to reduce it from a system of coupled three-394

dimensional PDEs to a system of coupled two-dimensional PDEs. By Theorem 4.3, for η > 0,395

Vi (S,W,D, t) =
1

η
Vi (ηS, ηW, ηD, t) .

Suppose W > 0. Choosing η = W ?/W with W ? > 0 yields396

Vi (S,W,D, t) =
W

W ?
Vi

(
W ?

W
S,W ?,

W ?

W
D, t

)
, (4.1)
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which reveals that we need only solve the problem for two values of the withdrawal benefit: W ?
397

and zero. We refer to this reduction in dimensionality as a similarity reduction.398

Theorem 4.7 (Utility homogeneity under consumption-optimal strategy). Suppose that a399

consumption-optimal strategy is employed by the policyholder, and that for all regimes i ∈ S, uBi400

and uCi are homogeneous of order p. Then, V (x, t) and V (x, t) are homogeneous of orders 1 and401

p, respectively, in x.402

The proof of this is almost identical to that of Theorem 4.3, and is hence left to the interested403

reader. It should be noted that the above assumes that ties in strategies are broken as in Remark404

3.1.405

Corollary 4.8 (Power law homogeneity). For all regimes i ∈ S, take bi = 0 and pi = p in (3.10) for406

some constant p 6= 0. Suppose that a consumption-optimal strategy is employed by the policyholder.407

Then, V (x, t) and V (x, t) are homogeneous of order 1 and p, respectively, in x.408

Proof. This follows directly from Theorem 4.7 and the fact that uCi (x; a, b, p) is homogeneous of409

order p in x and b.410

This encompasses a large family of economically relevant functions, namely the power law (a.k.a.411

isoelastic) utility functions. Under power law utility, we can reduce the system of three-dimensional412

PDEs to a system of two-dimensional PDEs. As before, we get413

V i (S,W,D, t) =

(
W

W ?

)p
V i

(
W ?

W
S,W ?,

W ?

W
D, t

)
,

along with (4.1) whenever W > 0 and W ? > 0.414

4.2 Localized problem and boundary conditions415

We approximate the original problem, posed on (S,W,D, t) ∈ R3
>0×[0, T ] , on the truncated domain416

(S,W,D, t) ∈ [0, SMax]×W × [0, DMax]× [0, T ] ,

where W = [0,∞) when a similarity reduction is applied and W = [0,WMax] otherwise. We clamp417

regime-switching jumps that drive the underlying above SMax. That is, we take min (Ji→jS, SMax)418

(instead of Ji→jS) to be the value of the investment account after a jump from regime i to j. No419

boundary conditions are needed at S = 0, W = 0, D = 0, W = WMax and D = DMax. That is, it420

is sufficient to substitute one of the aforementioned boundary values of S, W or D into (2.11) and421

(3.6) to retrieve the relevant behaviour. At S = SMax, for each W and D, we impose instead the422

linearity conditions (Windcliff et al. 2004)423

Vi (SMax,W,D, t) = Ci (t)SMax and V i (SMax,W,D, t) = Ci (t)SMax ∀i ∈ S

in an attempt to estimate the true asymptotic behaviour of the contract. Substituting the above424

into (2.11) and (3.6) yields two ordinary differential equations (ODEs) in which Ci and Ci are425

the dependent variables. These are solved numerically alongside the rest of the domain. Errors426

introduced by the above approximations are small in the region of interest, as verified by numerical427

experiments. At t = T , (2.1) and (3.2) suggest428

Vi (S,W,D, T ) = V i (S,W,D, T ) = 0 ∀i ∈ S.
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We use Crank-Nicolson time-stepping with Rannacher smoothing (Rannacher 1984). We dis-429

cretize the diffusive term using a second-order centered difference, while the convective term is430

discretized using a centered difference only when the corresponding backward Euler scheme is431

monotone. Otherwise, an upwind discretization is employed. Variable-size timestepping is used432

(see Johnson (2009) for an expository treatment). The resulting linear system is solved using fixed-433

point iteration. The details of this approach are described by d’Halluin et al. (2005) and Kennedy434

(2007).435

4.3 Determining the hedging cost fee436

At contract inception, the withdrawal and death benefits are set to the initial value of the investment437

account, S (0). That is, W (0) = S (0) and D (0) = S (0). If we overload our previous definition of438

Vi as parameterized by the fee, αR, the problem becomes one of determining αR such that439

VI (S (0) ,W (0) , D (0) , 0;αR)−R (0)︸ ︷︷ ︸
1

S (0) = 0, (4.2)

where I is the regime observed at time zero. This is a requirement stating that αR must be selected440

so as to compensate the writer for the hedging costs. We term such a value of αR the hedging cost441

fee. Equation (4.2) is solved numerically using Newton’s method.442

5 Results443

We begin by performing experiments under the assumptions (i) that the policyholder behaves so444

as to maximize the writer’s losses and (ii) that the policyholder always withdraws at the contract445

rate. We consider a handful of numerical tests based on perturbations to the base case data in446

Table 5.1. We subsequently move to considering consumption-optimal strategies, in which we use447

the base case data in Tables 5.1 and 5.3. Throughout this section, various rates are presented in448

basis points (bps).449

5.1 Loss-maximizing and contract rate withdrawal450

All tests in this section are performed on perturbations to the base case data in Table 5.1. Table451

5.2 documents wide variation in the hedging cost fee across different volatility and interest rate452

parameters for the two regimes considered, and for the cases with a ratcheting death benefit, with453

a nonratcheting death benefit, and without a death benefit. Of course, in any otherwise identical454

scenario, the loss-maximizing withdrawal assumption results in a higher fee since this represents455

the worst case scenario for the insurer. As we might expect, higher volatility is associated with an456

increase in the cost of hedging and thus a higher fee. The fee is also quite sensitive to the levels457

of the risk-free interest rate across the two regimes. The presence of a death benefit results in a458

notably increased fee, particularly if this feature is ratcheting.459

Withdrawal analysis. We now turn to a brief exploration of loss-maximizing withdrawal strate-460

gies by the policyholder. Figures 5.1 and 5.2 show these strategies under each regime (Table 5.1) at461

t = 1, 2, . . . , 6 assuming that the corresponding hedging cost fee is charged for hedging the contract462

and that D = 100. In either regime, if W is much bigger than S, the strategy always involves463
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Parameter Value

Volatility σ1 σ2 0.0832 0.2141

Risk-free rate r1 r2 0.0521 0.0521

Rate of transition qQ1→2 qQ2→1 0.0525 0.1364

Jump magnitude J1→2 J2→1 1 1

Initial regime I 1

Initial investment S (0) 100

Management rate αM 100 bps

Contract rate G 0.05

Bonus rate B 0.05

Initial age x0 65

Expiry time T 57

Mortality data Pasdika et al. (2005)

Ratchets Triennial

Withdrawals Annual

Time t Penalty κ (t)

1 0.03

2 0.02

3 0.01

> 4 0

Table 5.1: Pricing system base case data with regime-dependent parameters obtained from
O’Sullivan and Moloney (2010) by calibration to FTSE 100 options in January 2007.

Hedging cost fee αR (bps)

Parameters Ratcheting Nonratcheting No

Death Benefit Death Benefit Death Benefit

Base case (Table 5.1) 54 48 37 24 27 19

Initial regime = 2 158 113 139 75 86 52

(r1, r2) = (0.04, 0.06) 79 72 62 43 44 33

(r1, r2) = (0.03, 0.07) 124 114 106 76 73 57

(r1, r2) = (0.02, 0.08) 239 212 224 156 129 104

(σ1, σ2) = (0.10, 0.20) 62 56 45 29 31 22

(σ1, σ2) = (0.15, 0.25) 133 123 107 69 70 51

Table 5.2: The value of the hedging cost fee for perturbations to the data in Table 5.1. For
each perturbation, fees are calculated under the loss-maximizing (left) and contract rate withdrawal
(right) strategies. Values are reported to the nearest basis point.
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withdrawing at the contract rate, but the strategy in other regions can be quite complex. We note464

that in the less volatile regime (Figure 5.1), the withdrawal strategy does not involve surrender465

for t 6 3, prior to the vanishing of surrender charges at t > 3 (Table 5.1). However, in the more466

volatile regime (Figure 5.2), the policyholder is more willing to surrender the contract, despite467

the large penalties at times t = 1 and t = 2. Also note that in this regime, the policyholder’s468

willingness to surrender (for large values of S) vanishes at t = 3 in anticipation of the triennial469

ratchet. The complexity of these loss-maximizing strategies provides some further motivation for470

our consumption-based approach, since it may seem implausible that individual policyholders would471

actually implement such strategies.472

Management rate. Figure 5.3 shows the relationship between the hedging cost fee and the473

management rate (i.e. the proportional management expense fee αM ). As is to be expected, the fee474

grows superlinearly as a function of the management rate, since the management rate acts as a drag475

on the investment account. This confirms the observation by Forsyth and Vetzal (2013) that the476

use of mutual funds with high management fees as the underlying investment for variable annuities477

results in higher costs for the insurer compared to a policy written on funds with low management478

fees (e.g. exchange-traded index funds). We also see that for both the loss-maximizing and contract479

rate withdrawal strategy, the death benefit adds significant value to the contract, consistent with480

the results reported in Table 5.2. Again, the disparity between the ratcheting and nonratcheting481

death benefit is even more pronounced.482

Alternate fee structure. Some insurers have adopted alternate fee structures that are functions483

of the auxiliary accounts. In general, the risky account evolves according to484

dS = (µS − αF (S,W,D, t)) dt+ σSdZ.

A comparison of the usual fee structure F = S with F = S∨W on a contract without death benefits485

for various values of the management rate αM under the loss-maximizing strategy is shown in Figure486

5.4. We see that for sufficiently small management rates, the alternate fee structure reduces the487

hedging cost fee. However, as the management fee increases, the fee calculated under the alternate488

fee structure surpasses its vanilla counterpart. When the management rate is relatively low, it has489

a comparatively small impact in terms of decreasing the value of the investment account and hence490

exerts limited influence on the value of the guarantee. Moreover, since the total rate α = αM +αR491

applies to the greater of the investment account and the guarantee benefit, the size of the fee in492

such cases is comparatively small. However, as the management rate increases, the value of the493

guarantee rises and eventually a higher fee is needed to fund the cost of hedging.494

5.2 Consumption-optimal withdrawal495

All tests in this section are performed on perturbations to the base case data in Tables 5.1 and 5.3.496

Risk-aversion. Suppose the management rate, αM , is zero. If for all regimes i ∈ S we take497

the parameterization shown in Table 5.4, the consumption-optimal strategy reduces to the loss-498

maximizing strategy (this can be verified by direct substitution). Reflecting this, we refer to499

this parameterization as the degeneracy parameterization. Since the degeneracy parameterization500

corresponds to the loss-maximizing strategy, it is guaranteed to yield the highest possible hedging501
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No withdrawal Withdrawal at the 
ontra
t rate Full surrender

Figure 5.1: Observed loss-maximizing strategies at D = 100 under regime 1. The hedging cost
fee αR ≈ 37 bps is used (Table 5.2). The subfigures, from top-left to bottom-right, correspond to
t = 1, 2, . . . , 6.

Figure 5.2: Observed loss-maximizing strategies at D = 100 under regime 2. The hedging cost
fee αR ≈ 139 bps is used (Table 5.2). The subfigures, from top-left to bottom-right, correspond to
t = 1, 2, . . . , 6.
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Figure 5.3: Sensitivity of hedging cost fee to the management rate.
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Figure 5.4: Sensitivity of hedging cost fee to the management rate for different fee structures.

Parameter Value

Drift rate µ1 µ2 0.1 0.1

Time preference β1 β2 0.032 0.032

HARA scaling a1 a2 1 1

HARA offset b1 b2 0 0

Risk-aversion p1 p2 0.5 0.5

Bequest motive h1 h2 1 1

Rate of transition q1→2 q2→1 0.0525 0.1364

Table 5.3: Consumption system base case data with rate of time preference obtained from
Nishiyama and Smetters (2005).
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Parameter αM µi βi ai bi pi hi

Value 0 ri − ρQi ri 1 0 1 1

Table 5.4: Degeneracy parameterization.
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Figure 5.5: Effects of varying drift and risk-aversion on the hedging cost fee.

cost fee. We stress that this holds only when the management rate is zero, as in Table 5.4. The502

utility parameters under this parameterization uBi (x) = hiu
C
i (x; ai = 1, bi = 0, pi = 1) correspond503

to the case of risk-neutral utility: uBi (x) = uCi (x) = x.504

Although the above only holds under the degeneracy parameterization, we expect to see large505

hedging cost fees under parameterizations that are close to the degeneracy parameterization. Figure506

5.5 shows the effect of simultaneously varying the regime-dependent drifts µ1 and µ2 and risk-507

aversion parameters p1 and p2 on the hedging cost fee for the base case data in Tables 5.1 and 5.3508

for a contract without death benefits. When µ1 = µ2 = 0.0521 and p1 = p2 = 1, a global maximum509

appears on each surface. As expected, the parameterization µ1 = µ2 = 0.0521 and p1 = p2 = 1510

is close to the degeneracy parameterization (Tables 5.1 and 5.3 specify α = 100 bps ≈ 0 and511

βi = 0.032 ≈ 0.0521 = ri), and hence these maxima (27 bps and 84 bps, rounded to the nearest basis512

point) are very close to the hedging cost fees for each regime calculated under the loss-maximizing513

strategy (27 and 86 bps, rounded to the nearest basis point; see Table 5.2). Realistically, these514

maxima are not of great interest to the insurer as they occur where the drift of the investment515

account is equal to the risk-free rate of return. More interestingly, both surfaces exhibit a large516

“plateau” region (i.e. where the gradient is approximately zero) for which the consumption-optimal517

hedging cost fee is close to that calculated under the contract rate withdrawal strategy. This518

suggests that for a large family of parameters, the policyholder withdraws at nearly the contract519

rate. This can be verified by comparing the hedging cost fee here for the two regimes with those520

shown in Table 5.2 (19 bps and 52 bps, rounded to the nearest basis point).521

Taxation. It has been suggested by Moenig and Bauer (2011) that a policyholder’s strategy522

depends on the taxation of their withdrawals. We assume that withdrawals are taxed on the523

American last-in first-out (LIFO) basis and that earnings in the underlying investment account524
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0% 10% 20% 30% 40% 50%

Initial regime I = 1 18.0 18.9 19.2 18.7 17.7 16.3

Initial regime I = 2 54.7 55.8 56.3 56.7 57.0 57.2

Table 5.5: Sensitivity of the hedging cost fee to the tax rate. Values are reported to the nearest
tenth of a basis point.

grow on a tax-deferred basis.525

This requires the addition of another process Q (t), which is referred to as the tax base at time526

t. The tax base denotes what amount of the underlying investment account is nontaxable. Initially,527

Q (0) = S (0). Q is piecewise constant between withdrawals. When a withdrawal of size w is made528

at time t,529

Q
(
t+
)

= Q
(
t−
)
−
(
w −

[
S
(
t−
)
−Q

(
t−
)]
∨ 0
)
∨ 0︸ ︷︷ ︸

Nontaxable portion of the withdrawal

.

The introduction of the tax base variable introduces an additional dimension for which the PDEs530

must be solved. We assume that policyholders optimize their after-tax consumption. Table 5.5531

shows the effect of the tax rate on the hedging cost fee for the base case contract without death532

benefits. We find that for typical levels of risk-aversion, taxation has a small effect on the fee. Even533

for extreme tax rates of 50%, the fee changes by at most several basis points.534

6 Conclusion535

We have introduced a general methodology that allows for the decoupling of policyholder behaviour536

from the pricing (i.e. determining the cost of hedging) of a variable annuity. Assuming that the537

underlying investment follows a regime-switching process, this yields two weakly coupled systems of538

PDEs: the pricing and utility systems. When considering strategies contingent on the policyholder’s539

level of consumption, the utility system is used to generate policyholder withdrawal behaviour,540

which is in turn fed into the pricing system as a means to determine the cost of hedging the541

contract. Our methodology is general enough to allow us to consider any withdrawal strategy542

contingent on either the cost of hedging the contract or the policyholder’s level of consumption.543

We have adopted the GLWDB as a case study. A similarity reduction transforms our systems544

of three-dimensional PDEs to systems of two-dimensional PDEs, allowing us to generate numerical545

solutions with speed. In the absence of a death benefit, these systems further simplify into systems546

involving one-dimensional PDEs, which (for a reasonable number of regimes) can be solved with547

minimal computational effort.548

Since GLWDB contracts are held over long periods of time, regime-switching serves as a natural549

model for the process followed by the underlying asset. This process can incorporate stochastic550

interest rates and volatility in a simple and intuitive manner. It is also possible to have policy-551

holder preferences which differ between regimes. Results obtained under various regime-switching552

processes indicate that the hedging cost fee is extremely sensitive to the regime-dependent param-553

eters.554

We show that the inclusion of a death-benefit yields large fees for typical contract values under555

both the loss-maximizing strategy and the static strategy of always withdrawing at the contract556

rate. We observe an even more pronounced disparity between the no-arbitrage fee generated by a557
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contract with nonratcheting death benefits compared to a contract with ratcheting death benefits.558

These findings are consistent with the phasing out of products including ratcheting death benefits559

from the Canadian market.560

We find that for a large family of utility functions, the consumption-optimal strategy yields561

a hedging cost fee that is very close to the hedging cost fee calculated by assuming that the562

policyholder withdraws at the contract rate. This can be understood as substantiating the oth-563

erwise seemingly näıve assumption that the policyholder “generally” withdraws at the contract564

rate. Adopting the contract rate withdrawal strategy renders the pricing problem computationally565

simple, as this strategy is deterministic and can easily be implemented in either the PDE or an566

equivalent Monte Carlo formulation.567

Appendix568

In this Appendix, we derive the no-arbitrage regime-switching PDEs for general contingent claims.569

Following along the lines of this Appendix, the reader should have no difficulty combining these570

arguments with those in Section 2 to obtain the final equation (2.11).571

A Regime-switching model572

A.1 Regime-switching PDEs573

Consider the M -regime process S evolving according to574

dS (t) = ai (S (t) , t) dt+ bi (S (t) , t) dZ (t) +
M∑
j=1

S (t) (Ji→j − 1) dXi→j (t)

in which dS describes the increment of S assuming that the regime at time t is i. We restrict575

Ji→i = 1 for all i so that jumps in the underlying are not experienced unless there is a change in576

regime.577

In the relevant literature, it is often mentioned that the introduction of the regime-switching578

underlying S yields an incomplete market (Zhou and Yin 2003, Elliott et al. 2005), if the hedging579

portfolio contains only the underlying asset and the risk-free account. We consider instead a580

complete market consisting of the bond and M independent hedging instruments. Note that the581

assumption of the availability of M instruments is not farfetched; we need only find M instruments582

written on the regime-switching underlying S. Often, it is possible to take S itself as one of these583

instruments (this scenario is detailed in §A.2).584

We follow the formulation of a regime-switching framework as derived by Kennedy (2007).585

Consider a portfolio Π short an option V and with positions in instruments F (1), F (2), . . ., F (M).586

We assume that the trading instruments depend only on S (t) and t. Let B represent the money587

market process with risk-free rate r (i.e. dB = rBdt). Denote by Vi and F
(k)
i the values of the588

option and kth instrument in regime i. Assuming that regime i is observed at time t,589

Π (S (t) , t) = −Vi (S (t) , t) +
M∑
k=1

[
ω(k)F

(k)
i (S (t) , t)

]
+B (t) . (A.1)
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The increment of the above portfolio can be written as590

dΠ (S (t) , t) = −dVi (S (t) , t) +

M∑
k=1

[
ω(k)dF

(k)
i (S (t) , t)

]
+ dB (t) . (A.2)

where591

dVi = µ̂idt+ σ̂idZ +
M∑
j=1

∆Vi→jdXi→j

µ̂i =
1

2
b2i
∂2Vi
∂S2

+ ai
∂Vi
∂S

+
∂Vi
∂t

σ̂i = bi
∂Vi
∂S

∆Vi→j = Vj (Ji→jS, t)− Vi (S, t)

and592

dF
(k)
i = µ̄

(k)
i dt+ σ̄

(k)
i dZ +

M∑
j=1

∆F
(k)
i→jdXi→j

µ̄
(k)
i =

1

2
b2i
∂2F

(k)
i

∂S2
+ ai

∂F
(k)
i

∂S
+
∂F

(k)
i

∂t

σ̄
(k)
i = bi

∂F
(k)
i

∂S

∆F
(k)
i→j = F

(k)
j (Ji→jS, t)− F (k)

i (S, t) .

Substituting these expressions into (A.2) yields593

dΠ (t) =

[
M∑
k=1

[
ω(k)µ̄

(k)
i

]
+ rB − µ̂i

]
dt+

[
M∑
k=1

[
ω(k)σ̄

(k)
i

]
− σ̂i

]
dZ

+

M∑
j=1

[
M∑
k=1

[
ω(k)∆F

(k)
i→j

]
−∆Vi→j

]
dXi→j . (A.3)

To make the portfolio deterministic, we eliminate Brownian risk by594

M∑
k=1

ω(k)σ̄
(k)
i = σ̂i (A.4)

and jump risk by595

M∑
k=1

ω(k)∆F
(k)
i→j = ∆Vi→j ∀j ∈ S. (A.5)

Note that the jump risk equation corresponding to j = i relates a zero change in the hedging596

instruments to zero change in the option, so that to eliminate jump risk, we need only satisfy597

M − 1 equations.598
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Given that the portfolio is deterministic, the principle of no-arbitrage requires rΠdt = dΠ.599

Using the expressions (A.1) and (A.3), we write this as600

M∑
k=1

ω(k)
(
µ̄
(k)
i − rF

(k)
i

)
= µ̂i − rVi. (A.6)

Equations (A.4), (A.5) and (A.6) make for a total of M+1 equations in M unknowns. This system601

has a solution if and only if one of the equations is a linear combination of the others. We denote602

by ξi, q
Q
i→1, q

Q
i→2, . . ., q

Q
i→M the weights under which the linear dependence requirement603

ξi

(
M∑
k=1

[
ω(k)σ̄

(k)
i

]
− σ̂i

)
=

M∑
j=1
j 6=i

qQi→j

(
M∑
k=1

[
ω(k)∆F

(k)
i→j

]
− dVi→j

)

+

M∑
k=1

[
ω(k)

(
µ̄(k) − rF (k)

i

)]
− (µ̂i − rVi)

holds true. Rearranging this expression,604

M∑
k=1

ω(k)

ξiσ̄(k)i −
M∑
j=1
j 6=i

[
qQi,j∆F

(k)
i→j

]
−
(
µ̄i − rF (k)

i

)

− ξiσ̂i +

M∑
j=1
j 6=i

[
qQi→j∆Vi→j

]
+ µ̂i − rVi = 0.

Since this must hold for any position ω(1), ω(2), . . ., ω(M), we write the above as605

ξiσ̄
(k)
i −

M∑
j=1
j 6=i

qQi→j∆F
(k)
i→j =

(
µ̄
(k)
i − rF

(k)
i

)
∀k ∈ S (A.7)

and606

ξiσ̂i −
M∑
j=1
j 6=i

qQi→j∆Vi→j = µ̂i − rVi. (A.8)

This procedure effectively decouples the hedging instruments from the option V . Resolving the607

symbols µ̂i and σ̂i in (A.8) yields608

1

2
b2i
∂2Vi
∂S2

+ (ai − ξibi)
∂Vi
∂S
− rVi +

M∑
j=1
j 6=i

[
qQi→j∆Vi→j

]
+
∂Vi
∂t

= 0, (A.9)

which describes a system of M PDEs: one for each regime. The more familiar form above reveals609

ai − ξibi as the risk-neutral drift and the qQi→j terms as the risk-neutral transition intensities.610
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We express this more compactly by defining611

qQi→i = −
M∑
j=1
j 6=i

qQi→j

and noting that612

M∑
j=1
j 6=i

qQi→j∆Vi→j =
M∑
j=1
j 6=i

qQi→jVj (Ji→jS, t)− Vi
M∑
j=1
j 6=i

qQi→j =
M∑
j=1
j 6=i

qQi→jVj (Ji→jS, t) + qQi→iVi

so that (A.9) becomes613

1

2
b2i
∂2Vi
∂S2

+ (ai − ξibi)
∂Vi
∂S
−
(
r − qQi→i

)
Vi +

M∑
j=1
j 6=i

[
qQi→jVj (Ji→jS, t)

]
+
∂Vi
∂t

= 0. (A.10)

A.2 Eliminating the market price of risk614

It is often possible to eliminate the market price of risk ξibi from (A.10) (Kennedy 2007). For615

example, let616

ai (S (t) , t) = (µi − α)S (t)

and617

bi (S (t) , t) = σiS (t) .

Under these parameters, (A.10) becomes618

1

2
σ2i S

2∂
2Vi
∂S2

+ (µi − α− ξiσi)S
∂Vi
∂S
−
(
r − qQi→i

)
Vi +

M∑
j=1
j 6=i

[
qQi→jVj (Ji→jS, t)

]
+
∂Vi
∂t

= 0. (A.11)

Suppose further that S itself is not tradeable but tracks the tradeable index Ŝ with619

dŜ (t) = µiŜ (t) dt+ σiŜ (t) dZ (t) .

Take the 1st instrument, F (1), to be Ŝ so that620

µ̄
(1)
i = µiŜ

σ̄
(1)
i = σiŜ

∆F
(1)
i→j = Ŝ (Ji→j − 1) .

Substituting this into (A.7) for k = 1 yields621

ξiσiŜ −
M∑
j=1
j 6=i

qQi→jŜ (Ji→j − 1) = ξiσiŜ − ρQi Ŝ = µiŜ − rŜ.
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More compactly, we write this as622

ξiσiŜ =
(
ρQi + µi − r

)
Ŝ (A.12)

where623

ρQi =

M∑
j=1
j 6=i

qQi→j (Ji→j − 1) =

M∑
j=1

qQi→jJi→j .

Whenever Ŝ is equal to zero, S is necessarily zero so that the term associated with the market price624

of risk in (A.11) also vanishes. We are thus only interested in the case in which Ŝ 6= 0, under which625

(A.12) states that626

ξiσi = ρQi + µi − r.

Substituting the above into (A.11),627

1

2
σ2i S

2∂
2Vi
∂S2

+
(
r − α− ρQi

)
S
∂Vi
∂S
−
(
r − qQi→i

)
Vi +

M∑
j=1
j 6=i

[
qQi→jVj (Ji→jS, t)

]
+
∂Vi
∂t

= 0.
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