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We generalize the idea of semi-self-financing strategies, originally discussed in Ehrbar, Journal of9

Economic Theory (1990), and later formalized in Cui et al, Mathematical Finance 22 (2012), for10

the pre-commitment mean-variance (MV) optimal portfolio allocation problem. The proposed11
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Bellman equations, and can be readily employed in a very general setting, namely continuous13

or discrete re-balancing, jump-diffusions with finite activity, and realistic portfolio constraints.14

We show that if the portfolio wealth exceeds a threshold, an MV optimal strategy is to with-15

draw cash. These semi-self-financing strategies are generally non-unique. Numerical results16

confirming the superiority of the efficient frontiers produced by the strategies with positive cash17

withdrawals are presented. Tests based on estimation of parameters from historical time series18

show that the semi-self-financing strategy is robust to estimation ambiguities.19
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1 Introduction22

1.1 Motivation23

The mean-variance (MV) optimization criteria are popular for portfolio allocation problems, due to24

their intuitive nature (Basak and Chabakauri, 2010; Bielecki et al., 2005; Leippold et al., 2004; Li25

and Ng, 2000; Vigna, 2014; Wang and Forsyth, 2010; Zhou and Li, 2000). Under these criteria, risk26

is quantified by variance, so that investors aim to maximize the expected terminal wealth of their27

portfolios, given a risk level. Hence, the results can be easily interpreted in terms of the trade-off28

between the risk and the expected terminal portfolio wealth.29

∗This work was supported by Credit Suisse, New York and the Natural Sciences and Engineering Research Council
(NSERC) of Canada
†School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia

duyminh.dang@uq.edu.au
‡D. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1

paforsyt@uwaterloo.ca

1



Mean-variance optimization typically yields pre-commitment strategies, which are time incon-30

sistent (Basak and Chabakauri, 2010; Björk and Murgoci, 2010; Cui and Li, 2010; Cui et al., 2012;31

Wang and Forsyth, 2011, 2012). However, it has been shown in Vigna (2014) that pre-commitment32

strategies can also be viewed as a target-based optimization which involves minimizing a quadratic33

loss function. Hence, these strategies are appropriate in the context of pension plan investment34

and insurance applications (Bauerle, 2005; Delong and Gerrard, 2007; Delong et al., 2008; Jose-35

Fombellida and Rincon-Zapatero, 2008). In fact, this phenomenon has been also discussed in the36

literature of MV hedging (see, for example Schweizer (2010)). In addition, it has also been pointed37

out that, in the context of optimal trade execution, the pre-commitment strategy optimizes trading38

efficiency as measured in practice (Almgren, 2012).39

Previous work on pre-commitment MV optimal portfolio allocation has been dominated by40

the analytic (closed-form) approach. (See, for example, Bielecki et al. (2005); Li and Ng (2000);41

Øksendal and Sulem (2009); Zhou and Li (2000), among many others.) However, this approach42

is not feasible when realistic constraints, such as no trading if insolvent and limited leverage, are43

imposed. In addition, from a risk management point of view, it is useful to model jumps in asset44

prices. In this case, it is necessary to impose a liquidation condition if the portfolio wealth jumps45

into the insolvent region. As a result, in these general situations, a fully numerical approach must46

be employed. It is important to highlight that realistic portfolio constraints and jumps are found47

to have pronounced effects on the efficient frontiers (Dang and Forsyth, 2014; Wang and Forsyth,48

2010).49

It is standard that MV strategies for the optimal portfolio allocation problem are self-financing,50

i.e. no exogenous infusion or withdrawal of cash are allowed under any circumstances. Central to51

our discussion is the concept of semi-self-financing. The term semi-self-financing strategy is usually52

employed to refer to a strategy that exploits either exogenous infusion or withdrawal of cash, but53

not both. In our context, we strictly define a semi-self-financing strategy as a strategy that uses54

only non-negative cash withdrawals.55

Ehrbar (1990) is possibly the first published work that touches upon the idea of semi-self-56

financing in the context of MV optimal portfolio allocation. As illustrated in Ehrbar (1990), even57

for a single-period model, it is possible to achieve a superior portfolio, i.e. a portfolio having the58

same standard derivation, but higher expected portfolio wealth, by not investing all of the initial59

wealth. It is further argued in Ehrbar (1990) that the self-financing strategy is unrealistic in the60

sense that it requires the investors “to invest all their money, even if the additional investments do61

not add to their utility”. By withdrawing, part of the initial portfolio, the investors can achieve62

superior results. It is also emphasized in Ehrbar (1990) that semi-self-financing strategies are “not63

only more straightforward”, but also allow “investors to find better uses for the money they cannot64

invest”.65

Recently, the idea of semi-self-financing in the context of unconstrained pre-commitment MV66

optimal portfolio allocation is formalized in Cui and Li (2010); Cui et al. (2012). In these papers,67

it is shown that, if the portfolio wealth exceeds a threshold at a re-balancing time, by removing68

a certain amount of cash from the portfolio, one can obtain a portfolio having the same expected69

wealth and standard deviation as the portfolio obtained by a self-financing MV optimal strategy.70

In addition, the investor receives a bonus in terms of a free cash flow.71
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1.2 Background and contributions72

It is well-known that the MV optimal portfolio allocation problem is a multi-criteria optimiza-73

tion problem. Following a standard scalarization method for multi-criteria optimization, a single74

criterion can be formed by a positively weighted sum of the criteria (Yu, 1974). The resulting75

single-objective problem is referred to as the MV scalarization problem.76

However, for MV optimization in general, and MV optimal portfolio allocation in particular,77

dynamic programming is not directly applicable to the MV scalarization problem, due to the78

presence of the variance term. To overcome this difficulty, an embedding technique is proposed in79

Li and Ng (2000); Zhou and Li (2000) to embed the objective of the MV scalarization problem80

in a new single-objective optimization problem, namely the embedded MV optimization problem.81

Intuitively, this idea can be viewed as a quadratic target investment strategy (Vigna, 2014). Note82

that the embedding approach can be applied to general non-convex problems, in contrast to a83

Lagrange multiplier formulation (Li et al., 2002). Non-convex problems can arise if we consider84

non-linear effects, such as price impact (Tse et al., 2014).85

Optimal solutions with respect to the embedded MV optimization problem can be obtained by86

solving an associated Hamilton-Jacobi-Bellman (HJB) equation. It has been established in Li and87

Ng (2000); Zhou and Li (2000) that the MV scalarization optimal set is a subset of the embedded88

MV objective set. However, there may be points in the embedded MV objective set which are not89

in the MV scalarization optimal set. Methods for eliminating such spurious points are discussed90

in Dang et al. (2015); Tse et al. (2014). In the rest of the paper, to indicate the optimality of91

a strategy with respect to the MV scalarization problem and to the embedded MV optimization92

problem, we respectively use the terms scalarization MV optimal/optimality and embedded MV93

optimal/optimality.94

The main contributions of the paper can be summarized as follows.95

• In this paper, we generalize the idea of semi-self-financing strategies developed in Cui and96

Li (2010); Cui et al. (2012); Ehrbar (1990) for the pre-commitment MV optimal portfolio97

allocation problem. Using the results in Dang and Forsyth (2014); Dang et al. (2015); Tse98

et al. (2014), we formulate the embedded MV optimization problem in terms of the numerical99

solution of an HJB partial integro-differential equation (PIDE). Utilizing a fully numerical ap-100

proach, it is straightforward to consider continuous or discrete re-balancing, jump-diffusions101

with finite activity, and realistic portfolio constraints. We determine an embedded MV opti-102

mal strategy over all possible semi-self-financing strategies which satisfy the constraints.103

• We find certain cases where it can be proved that an embedded MV optimal semi-self-financing104

strategy involves withdrawing cash from the portfolio. These cases occur when the portfo-105

lio wealth exceeds the discounted optimal terminal wealth of the embedded problem. An106

embedded MV optimal strategy in this case is to (i) withdraw a specified amount of cash,107

and (ii) invest the remaining amount in the risk-free asset. However, embedded MV optimal108

semi-self-financing strategies are generally not unique.109

• Using the numerical schemes discussed in Dang and Forsyth (2014) for the solution of the HJB110

equation, and using the results in Dang et al. (2015); Tse et al. (2014), we can guarantee that111

scalarization MV optimal points, i.e. those that are on efficient frontiers, can be generated112

from embedded MV optimal points.113

• We include several numerical examples to illustrate the superiority of strategies with positive114

3



cash withdrawals in a general setting where continuous and discrete re-balancing, realistic115

constraints, and jump-diffusions (with finite activity) are allowed.116

• We estimate the jump diffusion parameters based on an 89 year time series of market return117

data. The jump parameter estimates are sensitive to the estimation method. However, the118

simulated investment results using the semi-self-financing mean-variance strategies are robust119

to estimated model parameter ambiguities.120

2 Preliminaries121

2.1 Underlying processes, allowable portfolios, and admissible sets122

Since the portfolio can be either continuously or discretely re-balanced, we denote the set of discrete123

re-balancing times by124

TM = {t0 = 0 < t1 < . . . < tM = T}.
Let125

T =

{
[0, T ] continuous re-balancing,

TM discrete re-balancing.

Define t− = t−ε, where ε→ 0+, i.e. t− is instant of time just before the (forward) time t, t ∈ [0, T ].126

For simplicity, we assume that there are only two assets available in the financial market, namely127

a risky asset and a risk-free asset. We denote by S(t) and B(t) the amounts invested in risky and128

risk-free assets, respectively, at time t, t ∈ [0, T ]. We denote by ξ the random number representing129

the jump multiplier. When a jump occurs, we have S(t) = ξS(t−). As a specific example, in this130

paper, we consider ξ following a log-normal distribution p(ξ) given by (Merton, 1976)131

p(ξ) =
1√

2πζξ
exp
(
−(log(ξ)− ν)2

2ζ2

)
, (2.1)

with mean ν and standard deviation ζ, with E[ξ] = exp(ν + ζ2/2), where E[·] denotes the expec-132

tation operator, and κ = E[ξ]− 1. In the absence of control, S follows the process133

dS(t)

S(t−)
= (µ− λκ)dt+ σdZ + d

( πt∑

i=1

(ξi − 1)

)
. (2.2)

Here, dZ is the increment of a Wiener process, µ is the real world drift rate, and σ is the volatility, πt134

is a Poisson process with positive intensity parameter λ, and ξi are i.i.d. positive random variables135

having distribution (2.1). Also, it is assumed that the dynamics of the risk-free asset B, in the136

absence of control, follows137

dB(t) = rB(t)dt,

where r is the (constant) risk-free rate. We make the standard assumption that the real world drift138

rate of S is strictly greater than r. Since there is only one risky asset, it is never optimal (in a MV139

setting) to short stock, i.e. S(t) ≥ 0, t ∈ [0, T ]. However, we allow short positions in the risk-free140

asset, i.e. it is possible that B(t) < 0, t ∈ [0, T ].141
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We denote by X(t) = (S(t), B(t)), t ∈ [0, T ], the multi-dimensional (controlled) underlying142

process. Let c(·) ≡ (d(·), B(·)) denote the control as a function of the current state at t ∈ T , i.e.143

c(·) : (X(t−), t−) 7→ c = c(X(t−), t−) ≡ (d(X(t−), t−), B(X(t−), t−)) ≡ (d(t), B(t)), t ∈ T .
(2.3)

Here, d(·) denotes the non-negative cash amount withdrawn from the portfolio before the re-144

balancing occurs at time t, and B(·) is the amount of portfolio wealth invested in the risk-free145

asset at the re-balancing time t ∈ T . Note that T ∈ T , i.e. cash withdrawals are allowed at T .146

For t ∈ T , we denote by x = (s, b) = (S(t−), B(t−)) the state of the system at time t−, and by147

(S(x, c), B(x, c)) the state of the system after the control c ≡ (d,B) is applied. We then have that148

S(s, b, c ≡ (d,B)) = (s+ b)− d−B . (2.4)

Let the controlled wealth of the portfolio at time t ∈ [0, T ] be denoted by149

Wc(t) ≡Wc(S(t), B(t)) = S(t) +B(t), t ∈ [0, T ].

We strictly enforce the solvency condition, i.e. the investor can continue trading at t ∈ T only if150

Wc(s, b) = s+ b > 0. (2.5)

In the event that insolvency (bankruptcy) occurs, we require that the investor immediately liquidate151

all investments in the risky asset, and cease trading. That is,152

S = 0 ; B = Wc(s, b) ; if Wc(s, b) ≤ 0 .

We also constrain the leverage ratio, i.e. the investor must select an allocation satisfying153

S

S +B
≤ qmax , (2.6)

where qmax is a known positive constant with typical value in [1.5, 2.0].154

Denote by Zself the usual self-financing admissible set (d ≡ 0)155

Zself =
{
c≡(d,B) ∈ {0} × (−∞,+∞) : S=(s+ b)−B, where S ≥ 0, and 0 ≤ S

S +B
≤ qmax

}
.

We denote by Zsemi the admissible set under a semi-self-financing strategy.156

Zsemi=
{
c≡(d,B) ∈ [0,+∞)×(−∞,+∞) : S=(s+ b)− d−B, where S ≥ 0,

and 0 ≤ S

S +B
≤qmax

}
.

Clearly157

Zself ⊆ Zsemi . (2.7)

In our subsequent discussions, when describing quantities relevant to the semi-self-financing158

and self-financing cases, the subscripts semi and self are used, respectively. However, to avoid159

repetitions, unless otherwise stated, we occasionally omit these subscripts, with the understanding160

that the discussion applies to both cases. For example, the admissible sets for both semi-self-161

financing and self-financing cases are collectively denoted as Z.162
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2.2 Efficient frontiers and embedding methods163

We respectively denote by Ex,tc(·)[Wc(T )] and V arx,tc(·)[Wc(T )] the expectation and the variance of164

the terminal portfolio wealth conditional on (x, t) and the control c(·), t ∈ T . We desire to find165

controls c(·) which generate Pareto optimal points. We use a standard scalarization method to com-166

bine the two conflicting criteria, namely maximizing Ex,tc(·)[Wc(T )] and simultaneously minimizing167

V arx,tc(·)[Wc(T )], into a single objective, by means of a positive weighting parameter ρ. Specifically,168

we desire to find the controls which solve169

P (x, t; ρ) = inf
c(·)∈Z

{
ρV arx,tc(·)[Wc(T )]− Ex,tc(·)[Wc(T )]

}
. (2.8)

More formally, we have the following definitions.170

Definition 2.1 (Achievable MV objective set). Let (x0, t0) = (X(t = 0), t = 0) denote the initial171

state. We denote by172

Y = {(V arx0,t0c(·) [Wc(T )], Ex0,t0c(·) [Wc(T )]) : c ∈ Z} (2.9)

the achievable MV objective set, and by Y its closure.173

Definition 2.2 (Scalarization MV optimal set/efficient frontier). For ρ > 0, let174

YP (ρ) =
{

(V∗, E∗) ∈ Ȳ : ρV∗ − E∗ = inf
(V,E)∈Y

ρV − E
}
, (2.10)

where Y denotes the closure of Y. We denote the scalarization MV optimal set w.r.t. Y as175

YP =
⋃

ρ>0

YP (ρ).

The scalarization MV optimal set YP is commonly known as the efficient frontier.176

Definition 2.3 (Dominating efficient set). The set Y ′ dominates the set Y ′′ if177

inf
(V,E)∈Y ′

ρV − E ≤ inf
(V,E)∈Y ′′

ρV − E ; ∀ρ > 0 , (2.11)

and if ∃ρ > 0 s.t. (2.11) is a strict inequality.178

Let Yself = {(V arx0,t0c(·) [Wc(T )], Ex0,t0c(·) [Wc(T )]) : c ∈ Zself}, with the obvious similar definition179

of Ysemi. Let YselfP (resp. YsemiP ) be the scalarization MV optimal set w.r.t. Yself (resp. Ysemi). It180

follows from (2.7) that Yself ⊆ Ysemi. Hence, we have the following obvious result.181

Proposition 2.1. YselfP cannot dominate YsemiP .182

In the context of MV optimal portfolio allocation, our objective is to determine the efficient183

frontier YP . We make use of the result in Li and Ng (2000); Zhou and Li (2000) on the embedding184

technique.185
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Definition 2.4 (Embedded MV objective set). Let Y be the achievable MV objective set defined186

in Definition 2.1. The embedded MV objective set, denoted by YQ, is defined by187

YQ =
⋃

−∞<γ<+∞
YQ(γ),

where188

YQ(γ) = {(V∗, E∗) ∈Y : V∗ + E2
∗ − γE∗ = inf

(V,E)∈Y
(V + E2 − γE)} .

The embedding result of Li and Ng (2000); Zhou and Li (2000) is summarized in Theorem 2.1.189

Theorem 2.1 (Embedding result). Let Y be the achievable MV objective set defined in Defini-190

tion 2.1. Assume (V0, E0) ∈ YP (ρ), ρ > 0, i.e.191

ρV0 − E0 = inf
(V,E)∈Y

ρV − E . (2.12)

Then192

V0 + E2
0 − γE0 = inf

(V,E)∈Y
V + E2 − γE , i.e. (V0, E0) ∈ YQ(γ), (2.13)

where193

γ =
1

ρ
+ 2E0. (2.14)

That is YP ⊆ YQ.194

In Appendix A we give a short proof of this, which shows that the embedding result is essentially195

a geometric property of Y, and hence is valid for any admissible control set, including that for a196

semi-self-financing strategy.197

The optimization problem arising from Theorem 2.1 is of the form198

V (x, t) = inf
c(·)∈Z

{
Ex,tc(·)[(Wc(T )− γ/2)2]

}
, (2.15)

where V (x, t) denotes the value function, and the parameter γ ∈ (−∞,+∞). Theorem 2.1 implies199

that there exists a γ ≡ γ(x, t, ρ), such that, for a given positive ρ, a control c∗ ≡ (d∗, B∗) which200

minimizes the objective function of (2.8) also minimizes that of (2.15).201

Remark 2.1 (Scalarization and embedded MV optimal). A scalarization (resp. embedded) MV202

optimal control is a control in Z which minimizes the objective function of (2.8) (resp. of (2.15)).203

A strategy which generates such a control is a scalarization (resp. embedded) MV optimal strategy.204

Remark 2.2 (Positive γ). Suppose (V0, E0) ∈ YP (ρ) and ∃γ ≤ 0, s.t. (V0, E0) ∈ YQ(γ). From205

equation (2.14) this implies that E0 < 0, and by definition V0 ≥ 0. But the strategy of investing206

all assets in the risk free bond has positive expectation and zero variance. Hence an embedded MV207

optimal point (V0, E0) with γ ≤ 0 cannot be scalarization MV optimal. In view of this, we will208

assume that γ > 0 in the remainder of this paper.209

From (2.15), the value γ/2 can essentially be viewed as the optimal value of the terminal210

portfolio wealth for the embedded problem. Note that γ/2 is not the expected terminal wealth (see211

(2.14)).212
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Definition 2.5 (Discounted optimal embedded terminal wealth). We define the discounted op-213

timal embedded terminal wealth at time t, t ∈ [0, T ], denoted by Wopt(t), as (with γ > 0 from214

Remark 2.2)215

Wopt(t) =
γ

2
e−r(T−t) > 0. (2.16)

3 Main result216

Theorem 3.1 (A scalarization MV optimal semi-self-financing strategy). For any γ > 0, if217

Wc(t
−) > Wopt(t

−), t ∈ T , then a scalarization MV optimal semi-self-financing strategy (i.e.218

Z=Zsemi) is to219

• Step 1: withdraw d = Wc(t
−)−Wopt(t

−) from the portfolio, and220

• Step 2: invest the remaining amount, i.e. Wopt(t
−), in the risk-free asset for the remainder221

of the investment horizon.222

Since the proof of this result requires a fair amount of machinery, we postpone it until Section 5,223

where we also discuss the non-uniqueness of this strategy.224

4 Numerical construction of efficient frontiers225

We first describe the computational process associated with the value function (2.15). For each226

fixed value of γ, 0 < γ < +∞, we determine the value function V (s, b, t) by solving the associated227

HJB equation backward in time (Dang and Forsyth, 2014; Wang and Forsyth, 2010, 2012). The228

HJB equations are given in Appendix B. The terminal condition at time T is229

V (s, b, T ) = (Wc(T )− γ/2)2 , (4.1)

where

Wc(T ) =

{
s+ b Z = Zself ,
min(γ/2, s+ b) Z = Zsemi .

(4.2a)

(4.2b)

(Note that equation (4.2b) assumes that the optimal withdrawal d(T ) = max(s+ b−γ/2, 0) occurs230

at T .) During this solution process, the optimal control c∗(·) can be determined. We then use231

this control to find the quantity U(s, b, t) = Ex,tc∗(·)[Wc(T )], since this information is needed in order232

to determine the corresponding embedded MV point (V arx0,t=0
c∗(·) [Wc(T )], Ex0,t=0

c∗(·) [Wc(T )]) ∈ YQ(γ).233

This last step primarily involves solving an associated linear PDE/PIDE. For details, see Dang and234

Forsyth (2014).235

The above computation is repeated for different values of γ, each of which give us an embedded236

MV point in the corresponding YQ(γ). However, since our objective is to determine the efficient237

frontier YP , the result that YP ⊆ YQ, as given in Theorem 2.1, is insufficient by itself. This is due238

to the fact that, in a general non-convex setting, there exist spurious points, i.e. points in YQ which239

are not in YP . The identification and elimination of spurious points from the set YQ is primarily240

based on the concept of scalarization optimal points (SOPs) with respect to a set.241
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Definition 4.1. Let X be a non-empty subset of Y. We define242

Aρ(X ) =
{

(V∗, E∗) ∈X : ρV∗ − E∗ = inf
(V,E)∈X

ρV − E
}
,

where X is the closure of X . We call a point in Aρ(X ) a scalarization optimal point (SOP) w.r.t.243

(X , ρ). We also define244

A(X ) =
{

(V∗, E∗) : (V∗, E∗) is an SOP w.r.t. (X , ρ) for some ρ > 0
}
.

We refer to (V0, E0) ∈ A(X ) as SOP w.r.t. X .245

We have the following result in Tse et al. (2014), which leads to a computational procedure246

that guarantees generation of points on the efficient frontier.247

Theorem 4.1 (Theorem 4.7 in Tse et al. (2014)). The SOPs w.r.t. YQ are the same as the SOPs248

w.r.t. Y, i.e.249

A(YQ) = YP = A(Y).

We also have the following useful result on uniqueness of points in YQ for fixed γ from (Tse250

et al., 2014).251

Theorem 4.2 (Theorem 4.8 in Tse et al. (2014)). If (V, E) ∈ A(YQ), then there exits a γ such252

that (V, E) ∈ YQ(γ), and YQ(γ) is a singleton.253

An issue associated with numerical construction of the set YQ is that, for each embedding pa-254

rameter γ, 0 < γ < +∞, a numerical algorithm applied to the embedded problem can generate255

only a single embedded MV point (V, E) ∈ YQ(γ), while the set YQ(γ) may contain multiple em-256

bedded MV points. Thus, in the context of computation, what available to us is the computed MV257

embedded objective set, denoted by Y†Q. This set is defined as follows.258

Definition 4.2 (Computed MV embedded objective set). Let Y†Q(γ) be a singleton subset of YQ(γ).259

Specifically, Y†Q(γ) contains either260

• the unique single point which is SOP w.r.t. YQ if YQ(γ) is the singleton set containing a point261

SOP w.r.t. YQ, or262

• an arbitrarily selected single point of YQ(γ) otherwise.263

The computed MV objective set is then defined as Y†Q =
⋃

0<γ<+∞
Y†Q(γ).264

Under some technical conditions, which are satisfied in the present case, it can be shown that265

YP can be generated from Y†Q.266

Theorem 4.3 (Theorem 5.4 in Tse et al. (2014)). A(Y†Q) = YP = A(Y) .267

Another issue is that Theorem 4.3, in principle, requires the entire set Y†Q to be available, but, in268

practice, we can only solve the embedded problem for a finite number of γ ∈ (0,+∞) values. More269

specifically, a sampling discretization for γ needs to be implemented. We denote by Γk the finite270

discrete set of sampled γ values at the sampling discretization level k. Examples of how Γk can be271
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refined are given in Dang et al. (2015). Denote by (Y†Q)k =
⋃

γ∈Γk

Y†Q(γ) the set of all computed MV272

embedded points using the sampling set Γk.273

For a fixed sampling discretization level k, we need to compute the set (Y†Q)k by repeating the274

computational process associated with the embedded problem outlined earlier for each γ ∈ Γk.275

Once the set (Y†Q)k has been computed, we need to construct its SOPs, i.e. A((Y†Q)k). This is276

easily done by determining the vertices of the upper left convex hull of (Y†Q)k (Tse et al., 2014).277

The following theorem captures the asymptotic convergence properties of the set A((Y†Q)k) with278

respect to the discretization of the embedding parameter γ.279

Theorem 4.4 (Theorem 3.1 of Dang et al. (2015)). Every limit point in A((Y†Q)k), k → +∞, is a280

point in A(Y†Q).281

Remark 4.1. Theorem 4.4 implies that a computational procedure which involves (i) discretizing282

the embedding parameter γ, (ii) constructing the upper left convex hull of the resulting set (Y†Q)k,283

and (iii) repeating for finer discretizations of the γ set, results in a set of limit points which are284

points on the efficient frontier.285

5 Proof of Theorem 3.1286

5.1 Preliminaries287

Since the value function V (s, b, t) (2.15) is defined as an expectation of a non-negative quantity, it288

immediately follows that V (s, b, t) ≥ 0. For use later in the paper, we define T≥α = {t ∈ T : t ≥ α}.289

Proposition 5.1. For both Z = Zsemi and Z = Zself , for all t ∈ [0, T ], the state (s, b) =290

(0,Wopt(t)), where Wopt(t) is defined in (2.16), is a (globally) minimum state of the value function291

V (s, b, t), i.e. V (0,Wopt(t), t) = 0, ∀t ∈ [0, T ].292

Proof. Consider the state x = (s, b) = (0,Wopt(t)), t ∈ [0, T ], and the strategy c∗(·) defined293

by neither withdrawing nor re-balancing in T≥t. Of course, this strategy is in Z. Under c∗(·),294

Wc(T ) = γ/2 with certainty, i.e. the optimal embedded terminal wealth γ/2 is achievable under295

c∗(·). By definition (2.15), we have, also with certainty, that296

V (0,Wopt(t), t) ≡ inf
c(·)∈Z

{
Ex,tc(·)[(Wc(T )− γ/2)2]

}
= Ex,tc∗(·)[(Wc(T )− γ/2)2] = 0.

This result holds for both the discrete and continuous re-balancing case.297

We are particularly interested in the case Z = Zsemi, and we summarize the important proper-298

ties of the state (s, b) = (0,Wopt(t)) in Property 5.1 for Z = Zsemi.299

Property 5.1. The following properties for the state (s, b) = (0,Wopt(t)), t ∈ [0, T ], where Wopt(t)300

is defined in (2.16), hold for both jump-diffusions and pure diffusions, for both discrete and contin-301

uous re-balancing, and for Z = Zsemi302

(a) The state (s, b) = (0,Wopt(t)) always satisfies the solvency condition (2.5) (see Remark 2.2)303

and the leverage constraint (2.6).304

(b) By Proposition 5.1 and (a), (s, b) = (0,Wopt(t)) is a (globally) minimum state of the value305

function V (s, b, t), ∀ t ∈ [0,T ] ⊇ T . Hence, a re-balancing at time t ∈ T to this state is306

embedded MV optimal, and remains embedded MV optimal.307
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5.2 Proof of Theorem 3.1308

We are now in a position to prove our main result, Theorem 3.1.309

Proof. For any γ > 0, when Wc(t
−) > Wopt(t

−), applying the strategy in Theorem 3.1 results310

in a re-balancing to the state (s, b) = (0,Wopt(t)). This state, by Proposition 5.1, is a (globally)311

minimum state of the value function, and remains a (globally) minimum for times in [t, T ] ⊇ T≥t.312

As a result, there exist no other strategies in Zsemi which can produce a smaller value function313

(2.15). Hence, the strategy in Theorem 3.1 is embedded MV optimal.314

Suppose (V∗, E∗) ∈ YsemiP . From Theorem 2.1, ∃γ∗ s.t. (V∗, E∗) ∈ YsemiQ(γ∗) ⊆ YsemiQ . But, as315

shown above, the strategy in Theorem 3.1 is embedded MV optimal for all γ > 0, which includes316

γ∗ corresponding to (V∗, E∗) ∈ YsemiP . Thus, this strategy is also scalarization MV optimal.317

We refer to the strategy described in Theorem 3.1 as the semi-self-financing MV strategy. If318

Wc(t
−) > Wopt(t

−), then the allocation (S(t−), B(t−)) → (S,B) ≡ (0,Wopt(t)) is illustrated in319

Figure 5.1.

0
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b
b(0, γ

2
)

V (0, γ/2, T ) = 0

b
(S,B) ≡ (0,Wopt(t))

V (0,Wopt(t), T − t) = 0

s + b = Wopt(t)

b
(S(t−), B(t−))

s + b = Wc(t
−)

bb

positive withdrawal

d = S(t−) +B(t−)
−Wopt(t)

an optimal

allocation

Figure 5.1: Pictorial illustration
of the “semi-self-financing MV”
strategy
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b
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)

�

� �

�

Figure 5.2: Non-uniqueness of
embedded MV optimal semi-self-
financing strategies.

320

5.3 Non-uniqueness of embedded MV optimal semi-self-financing strategies321

In this subsection, we show that, in general, embedded MV optimal semi-self-financing strategies322

are non-unique. Recall that T ∈ T , i.e. withdrawals are permitted at t = T .323

Proposition 5.2. For both continuous and discrete re-balancing cases, when Z = Zsemi, we have324

V (s, b, t) = 0 ;∀s ≥ 0, b ≥Wopt(t),∀t .

Proof. Consider the state x = (s, b), s ≥ 0, and b ≥ Wopt(t), t ∈ [0, T ]. Also consider the control325

c∗(·) defined by (i) neither withdrawing nor re-balancing in T≥t \ {T}, and (ii) applying steps of326
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the strategy in Theorem 3.1 at T . Then, under c∗(·), Wc(T ) = γ/2 with certainty, i.e. the optimal327

embedded terminal wealth γ/2 is achievable under c∗(·). Thus, we have, also with certainty, that328

V (s, b, t) ≡ inf
c(·)∈Z

{
Ex,tc(·)[(Wc(T )− γ/2)2]

}
= Ex,tc∗(·)[(Wc(T )− γ/2)2] = 0, ∀s ≥ 0, b ≥Wopt(t), ∀t .

329

If Wc(t
−) = S(t−) + B(t−) > Wopt(t

−), t ∈ T \ {T}, from Proposition 5.2, an embedded MV330

optimal strategy is331

• Step 1: if B(t−) < Wopt(t
−), re-balance the portfolio to a point (S,B) in the triangular region332

on the (s, b) plane defined by the three points (0,Wopt(t)), (Wc(t
−)−Wopt(t

−),Wopt(t
−)), and333

(0,Wc(t
−)). This step may involve a positive cash withdrawal.334

• Step 2: withdraw from the portfolio, at time t = T , the amount exceeding γ/2.335

Possible allocations in Step 1 are illustrated in Figure 5.2 (shaded region, including the boundaries).336

After Step 2, the optimal terminal wealth for the embedded problem γ/2 is hit exactly. Note that,337

if B(t−) ≥Wopt(t
−), then Step 1 can be omitted.338

An interesting strategy is the one which corresponds to re-balancing to the point (Wc(t
−) −339

Wopt(t
−),Wopt(t

−)), i.e. investing Wopt(t
−) in the bond, and allocating the remaining wealth to the340

risky asset. Another strategy is to re-balance to (0,Wc(t
−)), i.e. investing all the wealth in bond.341

No cash withdrawals are needed in these cases at t, t ∈ T \ {T}. The strategy in Theorem 3.1342

corresponds to re-balancing to the point (0,Wopt(t)). This strategy involves immediately removing343

d = Wc(t
−)−Wopt(t

−) in cash from the portfolio. This corresponds the concept of free cash flow as344

described in Bauerle and Grether (2015); Cui et al. (2012). All of the above strategies involve cash345

withdrawals of the amount exceeding γ/2 at t = T , and hence, produce the same points in YsemiQ .346

Different choices of strategies simply amount to different ways of handling portfolio wealth in347

excess of Wopt(t
−). Since the strategy in Theorem 3.1 corresponds to the idea of a pure free cash348

flow of Cui et al. (2012) and Bauerle and Grether (2015), we restrict our attention to this strategy349

for the remainder of this paper.350

Remark 5.1 (Non-uniqueness of optimal strategies: numerical issues). We do not compute YsemiQ351

but only Y†,semiQ (see Definition 4.2). However, if (V, E) ∈ Y†,semiQ(γ) ⊆ A(Y†,semiQ ), then from Theo-352

rem 4.3, (V, E) ∈ YP . In other words, even though the embedded MV optimal strategy may be non-353

unique, the computed point (V, E) is a unique point on the efficient frontier, if (V, E) ∈ A(Y†,semiQ ).354

Remark 5.2 (Theorem 3.1 strategy: optimality of withdrawing if Wc(t
−) > Wopt(t

−)). Consider355

an alternative strategy: invest all wealth in the risk-free bond if Wc(t
−) > Wopt(t

−), with no with-356

drawal at t = T . In this case, since the total wealth at t = T (with certainty) will be larger than357

γ/2, this will not be embedded MV optimal, hence cannot be scalerization MV optimal. Intuitively,358

in terms of mean variance, if the terminal wealth exceeds γ/2, then this increases the variance,359

which is unfavourable from the point of view of mean-variance optimality. Removing the cash from360

the investable wealth removes this upside penalty.361

5.4 Optimality of no withdrawal if Wc(t
−) ≤ Wopt(t

−), ∀t ∈ T : Z = Zsemi362

We have the following theorem regarding withdrawals when Wc(t
−) ≤ Wopt(t

−), which holds for363

cases described in Condition C.1, Appendix C.364
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Theorem 5.1. When Z = Zsemi and Wc(t
−) ≤Wopt(t

−), t ∈ T , an optimal embedded MV optimal365

policy is not to withdraw in the following cases:366

• continuous re-balancing and jump-diffusions of the form (2.1-2.2), qmax ≥ 1,367

• discrete re-balancing and jump-diffusions of the form (2.1-2.2), and no leverage possible (i.e.368

qmax = 1).369

• continuous or discrete re-balancing and pure diffusions (no jumps), qmax ≥ 1.370

Proof. See Appendix C, specifically Theorem C.2 and Remark C.3.371

Since YsemiP ⊆ YsemiQ , we have the following result.372

Corollary 5.1. When Z = Zsemi, for the cases of Theorem 5.1, an optimal scalarization MV373

policy is to not withdraw when Wc(t
−) ≤Wopt(t

−).374

Note that we have not been able to prove that Theorem 5.1 holds for the case of jump-diffusions,375

discrete rebalancing, and leverage permitted (i.e. qmax > 1). In fact, it is not clear that the376

optimality of no withdrawal for Wc(t
−) < Wopt(t

−) holds for this case in general. Nevertheless,377

in all our numerical tests, we have always observed that, for all cases, it is never embedded MV378

optimal to withdraw if Wc(t
−) ≤ Wopt(t

−). However, it remains an open question as to whether379

this is true in general for any jump processes.380

5.5 Non-attainability of Wc(t) > Wopt(t), ∀t381

It is interesting to note that in some cases, the portfolio wealth Wc(t) never exceeds Wopt(t) ∀t. in382

Vigna (2014), it is proven that, for the case of pure diffusions, continuous re-balancing, no leverage383

permitted and no solvency constraints, then Wc(t) < Wopt(t), i.e. the optimal terminal wealth for384

the embedded problem is always approached from below. The continuous re-balancing case was385

also discussed in Cui et al. (2012).386

From Bauerle and Grether (2015) we learn that in a complete market, it is never optimal387

to withdraw cash from the investment portfolio. However, this is a sufficient but not necessary388

condition. Consider an incomplete market with downward jumps and continuous rebalancing. In389

this case, an optimal control will always produce Wc(t) ≤ Wopt(t), hence it is never optimal to390

withdraw cash in this case.391

5.6 Free cash flow392

The positive cash withdrawal d certainly falls outside the scope of MV framework. However, this393

positive cash amount is an extra bonus for the investor that should be taken into account. To handle394

this free cash amount, we follow the concept of free cash flow in Bauerle and Grether (2015); Cui395

and Li (2010); Cui et al. (2012). Let396

Ex0,0c∗(·)[dtot] = E

[∫ T

0
d(s)er(T−s) ds

]
(5.1)

be the expected value of the cash withdrawals, under the control c∗(·), including interest. This397

expectation can added to the expected wealth of the portfolio. We refer to this strategy as the398
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semi-self-financing MV plus free cash strategy. Note that if we allow only a finite number of399

rebalancing times tα, then400

d(s) =
∑

α

δ(s− tα)d(tα) (5.2)

where δ(s − tα) is a Dirac function. In the continuous withdrawal case, we expect that it will be401

optimal to withdraw cash only once (see Section 5.4). In this case, we denote by t̂ the random402

variable representing the first time the cash withdrawal d(·) is positive. This random variable is403

defined as404

t̂ = inf{t ∈ T : d(t) > 0}. (5.3)

In this case, equation (5.2) becomes405

d(s) = δ(s− t̂)d(t̂) . (5.4)

To be clear in subsequent discussions, in Table 5.1, we summarize how the expectations and406

the variances of the terminal wealth are computed for different strategies. These expectations and407

variances are used to plot efficient frontiers in numerical examples presented in Section 6.

Strategy Exp. Val. Var.

self-financing MV Ex0,0c∗(·)[Wc(T )] V arx0,0c∗(·)[Wc(T )]

semi-self-financing MV Ex0,0c∗(·)[Wc(T )] V arx0,0c∗(·)[Wc(T )]

semi-self-financing MV

plus free cash Ex0,0c∗(·)[Wc(T )] + Ex0,0c∗(·)[dtot] V arx0,0c∗(·)[Wc(T )]

Table 5.1: Details as to how the expectation (Exp. Val) and the variance (Var.) of the portfolio
terminal wealth are computed for different strategies.408

6 Numerical results: representative parameters409

In this section, we present selected numerical results of our proposed strategies applied to the MV410

portfolio allocation problem. In the experiments, we assume process (2.2) in the jump diffusion411

case, and
dSt
S

= µdt+ σdZ, for the Geometric Brownian Motion (GBM) case.412

We solve the HJB equations in Appendix B using the finite difference method described in Dang413

and Forsyth (2014). For computational purposes, we localize the original domain to [0, smax) ×414

[−bmax, bmax] × [0, T ], where smax and bmax are positive and sufficiently large. Unless otherwise415

noted, the details of grid and timestep refinement levels used are given in Table 6.1. For the

Refinement Timesteps S Nodes B Nodes

0 60 70 137
1 120 139 273
2 240 277 545

Table 6.1: Grid and timestep refinement levels used during numerical tests. On each refinement, a
new grid point is placed halfway between all old grid points, and the number of timesteps is doubled.
Non-uniform grids are used for s and b, and a constant timestep size is employed. For the localized
domain, we use smax = 7× 106, bmax = 3.5× 106.
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416

construction of the efficient frontier, we also need to discretize γ. In our numerical experiments,417

when constructing efficient frontiers using refinement levels 1 and 2, we respectively use a total of418

30 and 60 values of γ. Theorem 4.4 guarantees that successive refinements of the γ discretization,419

and constructing the upper left convex hull of the these points, generates limit points which are on420

the efficient frontier. Details of the numerical scheme are given in Dang and Forsyth (2014).421

To illustrate the effect of our proposed strategies on the efficient frontiers, we carry out ex-422

periments where, in the case of jump diffusions, the mean jump size is upward (i.e. ν > 0, see423

equation (2.1)) and mean jump size downward (i.e. ν < 0 ), as well as with pure diffusions. Input424

parameters and data for these test cases are given in Table 6.2. (The parameters for the mean425

downward jump-diffusion and pure diffusion cases are used in Dang and Forsyth (2014).) Note

Parameters jump-diffusion pure
mean downward mean upward diffusion (GBM)

λ (jump intensity) 0.05851 0.05851 N/A
ν (jump multiplier mean) -0.78832 0.10000 N/A
ζ (jump multiplier std) 0.45050 0.45050 N/A
µ (drift) 0.07955 0.12168 0.07955
σ (volatility) 0.17650 0.17650 0.28175
κ (exp. rel. jump amplitude) -0.49684 0.22321 N/A
µ− λκ (effective drift) 0.10862 0.10862 N/A

initial wealth 100 100 100
qmax (leverage constraint) 1.5 1.5 1.5
r (risk-free interest rate) 0.04450 0.04450 0.04450
T (investment horizon) 20. (years) 20. (years) 20. (years)

ti+1 − ti (discrete re-balancing time period) 1.0 (years) 1.0 (years) 1.0 (years)

Table 6.2: Input parameters for mean downward/upward jump-diffusion and pure diffusion test
cases. The parameters for mean downward jump-diffusion and pure diffusion are used in Dang and
Forsyth (2014). See definitions of jump diffusion parameters in equation (2.1).

426

that, compared to the mean downward jump case, for the mean upward jump case, we increase the427

mean (ν) of the jump multiplier (ξ) from -0.78832 to 0.1, and the drift µ from 0.07955 to 0.12168,428

while keeping other parameters the same. Hence, both jump cases have the same compensated429

drift. As a result, the changes in the efficient frontiers observed in these two cases entirely come430

from the effect of the jump term, and not from the drift term. In this section, we will show the431

superiority of the efficient frontiers produced by the strategies with positive cash withdrawals.432

6.1 Effect of truncated boundaries and a discretization error check433

As we mentioned earlier, errors are introduced in truncating an infinite domain for the localized434

problem. However, we can make these errors small by choosing bmax and smax sufficiently large. As435

an illustrative example of this point, we carry out experiments with the semi-self-financing control436

with discrete re-balancing and upward jumps. Table 6.3 shows the expectation values (Exp. Val.)437

and the standard deviations (Std. Dev.) of the portfolio wealth obtained with various large438

boundary values for smax and bmax. It is observed that, as long as smax and bmax are sufficiently439

large, the values of the expectation and the variance are insensitive to the location of the truncated440

boundaries.441
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Strategy smax bmax Exp. Val. Std. Dev.

5× 106 2.5× 106 443.975 97.001
semi-self-financing MV 7× 106 3.5× 106 443.967 97.014

9× 106 4.5× 106 443.967 97.014

Table 6.3: Effect of the finite boundaries, “semi-self-financing MV” strategy with discrete re-
balancing and upward jumps. For this test, γ = 1000 and refinement level 2 are used.

Next, we numerically show that the differences between the efficient frontiers obtained by a442

semi-self-financing strategy and those obtained by its self-financing counterpart are much larger443

than the discretization errors of the numerical methods. As an illustrative example, we consider444

a self-financing MV strategy and the semi-self-financing MV strategy for the case of discrete re-445

balancing and upward jumps.446
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Figure 6.1: Efficient frontiers for different refinement levels,
self-financing MV’ and “semi-self-financing MV” strategies, dis-
crete re-balancing, upward jumps.

In Figure 6.1 we present the com-447

puted MV embedded objective sets448

(Y†Q)k, k = 1, 2, with spurious points449

removed, i.e. A((Y†Q)k), k = 1, 2.450

Note that the expected value is plot-451

ted versus standard deviation, which452

is a more practically meaningful dis-453

play of the results. For each strategy,454

the set A((Y†Q)k) for k = 2 visually455

coincides with that for k = 1. Fur-456

ther refinement steps show negligible457

changes. This suggests convergence458

of the numerical solution, as well as459

convergence of A((Y†Q)k) to the ef-460

ficient frontiers. Results from Fig-461

ure 6.1 indicate that the discretiza-462

tion errors of the numerical methods463

are negligibly small compared to the464

differences between the efficient fron-465

tiers obtained by different MV strate-466

gies. In the following, unless other-467

wise stated, refinement level 2 is used, and A((Y†Q)2) is considered to be the efficient frontier.468

6.2 Comparison of efficient frontiers469

In this subsection, we compare the efficient frontiers obtained using semi-self-financing MV strate-470

gies with those obtained using a self-financing MV strategy. We only discuss the continuous and471

discrete re-balancing with jump-diffusions. Findings in the discrete case under pure diffusions are472

similar, and hence, omitted.473

In Figure 6.2, we present plots of efficient frontiers for continuous and discrete re-balancing474

cases. Both mean downward and mean upward jumps are considered. In Figures 6.3-6.4, we475

present the close-up versions of these efficient frontiers for the mean upward jump case and mean476

downward jump case, respectively. We make the following observations:477

• Overall, for both upward and downward jump cases, the efficient frontiers produced by the478
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Figure 6.2: Efficient frontiers for different strategies - continuous and discrete re-balancing,
jumps. Level 2 refinement used.
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Figure 6.3: Zoomed-in efficient frontiers for different strategies - continuous and discrete
re-balancing, mean upward jumps. Level 2 refinement used.

semi-self-financing MV strategies dominate those produced by a self-financing MV strategy.479

• The effect on the MV efficient frontiers of the semi-self-financing MV strategies are more480

pronounced for mean upward jumps than with mean downward jumps. This is an expected481

result, since for mean downward jumps, the probability that the Wc(t) exceeds Wopt(t) is482

much smaller than that in the mean upward jump case.483
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Figure 6.4: Zoomed-in efficient frontiers for different strategies - continuous and discrete
re-balancing, mean downward jumps. Level 2 refinement used.

For mean downward jumps, the effect of our proposed MV strategies on the efficient frontiers484

is very small (see Figure 6.4).485

• The effect on the MV efficient frontiers of our proposed MV strategies appear to be more486

pronounced with discrete re-balancing than with continuous re-balancing, assuming the same487

dynamics for the risky asset. This behavior is also expected.488

We conclude that the semi-self-financing strategies are clearly more advantageous than self-489

financing strategies. From Proposition 2.1, we are ensured that the semi-self-financing strategies490

are never inferior to a self-financing strategy. But, in some cases, i.e. Wc(t) > Wopt(t), for some491

t ∈ T , which are likely to occur in a general setting, the semi-self-financing strategies are superior492

to those obtained by a self-financing strategy. This is because semi-self-financing efficient frontiers493

can be no worse than those obtained using a self-financing strategy, and the semi-self-financing494

strategies have the ability to generate a positive free cash flow during the investment.495

7 Empirical data analysis496

We assume that the SDE followed by a stock market index is given by equations (2.1) and (2.2).497

Recall that the log-normal distribution for the jump size density p(ξ) (from equation (2.1)) has498

mean ν and standard deviation ζ, with E[ξ] = exp(ν + ζ2/2), where E[·] denotes the expectation499

operator, and κ = E[ξ]− 1.500

In order to determine appropriate parameters for the jump diffusion model, we use the daily501

total return data from the Center for Research in Security Prices (CRSP)1 . The CRSP VWD index502

is a value (capitalization) weighted index of all securities traded on major US exchanges, dating503

from 1925. The returns include all dividends and distributions.504

1See http://www.crsp.com/
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We use the daily total return (including dividends) series from December 31, 1925 to December505

31, 2014, a span of 89 years. We also extract monthly returns from the same series. We convert506

the daily simple returns into index prices.507

Consider a discrete series of index prices S(ti) = Si, i = 1, . . . , N+1, observed at equally spaced508

time intervals ∆t = ti+1 − ti,∀i, with T = N∆t 2. Let509

∆Xi = log

(
Si+1

Si

)
, (7.1)

be the log return. We also define the detrended log returns ∆X̂i as510

∆X̂i = ∆Xi − m̂∆t

m̂ =
log(SN+1)− log(S1)

T
. (7.2)

7.1 GBM Estimates511

As a first example, we assume that there are no jumps (i.e. λ = 0 in equation (2.2)), so that512

the index is assumed to follow pure Geometric Brownian Motion (GBM). We determine the two513

parameters µ, σ by maximum likelihood estimation (MLE), which in this case are given by the514

simple expressions515

µ− σ2

2
= m̂ ( from equation (7.2) )

σ2 =
1

∆t
var

(
{∆Xi}

)
, (7.3)

where var is the variance.516

The results for both daily and monthly log returns are shown in Table 7.1. The estimates for µ517

and σ are insensitive to the choice of daily or monthly observations. Table 7.2 also shows the mean518

treasury rates for the entire period as well.519

Series µ σ

Daily .1119 .1862
Monthly .1121 .1874

Table 7.1: Data: CRSP VWD value weighted total return series, December 31, 1925 to December
31, 2014. GBM assumed, parameters estimated using maximum likelihood (MLE).

7.2 Jump Diffusion Estimates520

In order to determine the set of parameters for the full jump-diffusion model, use of maximum521

likelihood is well known to be problematic, due to multiple local maxima and the ill-posedness of522

attempting to distinguish high frequency small jumps from diffusion (Honore, 1998).523

From a long term investor perspective, the most important feature of a jump diffusion model is524

that it allows modelling of infrequent large jumps in asset prices. Small, frequent jumps look like525

2We assume equally spacing for ease of exposition
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Mean Treasury Rate

3-month 1-year

.0369 .0499

Table 7.2: Data: CRSP, December 31, 1925 to December 31, 2014. Mean treasury rates.

enhanced volatility, when examined on a large scale, hence these effects are probably not important526

in constructing a long term investment strategy.527

Ait-Sahalia and Jacod (2012) discuss many econometric techniques that have been developed528

for detecting the presence of jumps in high frequency data (i.e. with the time scale of seconds).529

However, these high frequency jumps are not of particular interest to the long-term investor, hence530

we will use the thresholding technique described in Mancini (2009) and Cont and Mancini (2011).531

This technique is considered to be more efficient for low frequency data.532

Suppose we have an estimate for the diffusive volatility component σ̂, then we detect a jump in533

period i if (Shimizu, 2013)534

|∆X̂i| > α σ̂

√
∆t

(∆t)β
(7.4)

where β, α > 0 are tuning parameters. The intuition behind equation (7.4) can be explained simply.535

If we choose α = 4, say, and β � 1, then equation (7.4) labels a return as a jump if the observed536

return is larger than a 4 standard deviation Brownian motion change, which would be extremely537

improbable. Hence we would consider this return to be due to a jump. If we choose a smaller538

time interval, i.e. reduce ∆t, keeping the total time T fixed, then equation (7.4) indicates that we539

should increase the threshold which filters out the Brownian motion increments. Intuitively, this is540

because we have increased the number of samples, and we expect to observe some large deviation541

events purely by chance. Typically, β in equation (7.4) is quite small, β ' .01− .02.542

In Figure 7.1 we show a histogram of the monthly and daily log returns from the CRSP index,543

scaled to unit standard deviation and zero mean. We also plot a standard normal density as well.544

Based on the monthly log returns in Figure 7.1 we set the jump detection indicator 1i as follows545

1i =

{
1 if ∆X̂i > αup σ̂

√
∆t or ∆X̂i < αlow σ̂

√
∆t

0 otherwise
(7.5)

Criteria (7.5) allows us to separate out the downward jumps and the upward jumps. From an546

investment risk management perspective, we may be more concerned with downward as opposed547

to upward jumps.548

Define549

N∑

i=1

1i = N jps ;

N∑

i=1

(1− 1i) = Ngbm (7.6)

where N jps is the number of jumps detected, and Ngbm is the number of GBM increments. Our550

estimate of the volatility is then551

σ̂2 =
1

∆t
var

(
{∆X̂i | 1i = 0}

)
. (7.7)
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Figure 7.1: Probability density of log returns, CRSP VWD value weighted total return series, De-
cember 31, 1925 to December 31, 2014. Scaled to unit standard deviation and zero mean. Standard
normal density also shown. Left: monthly sampling, Right: daily sampling.

Note that equations (7.5-7.7) constitute an implicit equation for σ̂, which must be solved by an552

iterative method (Clewlow and Strickland, 2000). Once we have an estimate for the Brownian553

Motion volatility σ̂, we can estimate the jump parameters, the jump intensity λ, the mean jump554

size ν and the jump size standard deviation ζ using the method suggested by Tauchen and Zhou555

(2011), assuming only one jump occurs in [ti, ti+1]556

λ =
N jps

T

ν = mean

(
{∆X̂i | 1i = 1}

)

ζ2 = var

(
{∆X̂i | 1i = 1}

)
(7.8)

Once we fix the estimates for σ, λ, ν, ζ, we estimate the drift term µ in two ways. The simplest557

method is to note that, then from equation (2.2) we have (X = logS)558

dX =

(
µ− λκ− σ2

2

)
dt+ σ dZ + d

( πt∑

i=1

log ξi

)
. (7.9)

Taking expectations of both sides of equation (7.9), and assuming only one jump takes place in559

[t, t+ dt] gives560

E[dX] =

(
µ− λκ− σ2

2

)
dt+ λE[log ξ] dt . (7.10)

Writing equation (7.10) in discrete time, gives561

mean

(
{∆Xi}

)

∆t
=

(
µ− λκ− σ2

2

)
+ λν

∆Xi = log(Si+1)− log(Si) . (7.11)
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Alternatively, we can determine an estimate for the drift rate µ using maximum likelihood (MLE)562

(Honore, 1998). Let fN (x;M,V2) be the normal density function with mean M and variance V2,563

evaluated at point x. The density function for the log return ∆X is then (assuming only one jump564

occurs in [ti, ti+1])565

P(∆X) = (1− λ∆t)fN (∆X; (µ− λκ− σ2/2)∆t, σ2∆t)

+λ∆tfN (∆X; (µ− λκ− σ2/2)∆t+ ν, σ2∆t+ ζ2) . (7.12)

Assuming σ, λ, ν, ζ are known, the MLE estimate for µ is determined from566

max
µ

(∑

i

logP(∆Xi)

)
. (7.13)

We will use both methods in the following.567

Table 7.3 shows the estimates for the jump diffusion parameters using various values of the cutoff568

thresholds αlow, αhigh. We can see from this table that as we increase |α|, we find smaller jump569

intensities with an increasing estimate for the Brownian volatility. In other words, the smaller more570

frequent jumps are now considered to modelled by a diffusion process. We can also see that use571

of a one sided downward jump detection threshold has larger, more infrequent jumps, as expected.572

From an investment perspective, we are mainly concerned with the downward jumps, since upward573

jumps are a pleasant surprise. Both maximum likelihood (MLE, as in equation (7.13)) and the574

expected value (EVal, as in equation (7.11) give consistent estimates of the drift rate µ.575

Cutoff Parameters Estimated Parameters

αlow αup µ (MLE) µ (EVal) σ λ ν ζ

-3 3 .1164 .1124 .1442 .3488 -.0755 .1988

-4 4 .1216 .1127 .1575 .1573 -.0664 .2674

-5 5 .1210 .1129 .1666 .0899 -.0646 .3131

-4 ∞ .1212 .1122 .1715 .0899 -.2631 .0476

-5 ∞ .1263 .1122 .1779 .0494 -.3000 .0351

Table 7.3: Jump diffusion parameter estimates, monthly log returns, CRSP VWD value weighted
total return series, December 31, 1925 to December 31, 2014. MLE (maximum likelihood, equa-
tion(7.13)), EVal (expected value, equation (7.11)).

Figure 7.2 shows a zoom of the right hand plot in Figure 7.1, the daily return CRSP index576

(1925-2015). As before, we have scaled the plot to have unit standard deviation and zero mean.577

The standard normal density is also shown. Now that we have a higher sampling frequency, the578

large jumps are much smaller in (relative) numbers, with a much wider range of jump sizes, in579

terms of standard deviations, compared to the monthly series. As we expect, our criteria for a580

jump has to become stricter compared to the monthly return series, otherwise we detect a very581

large number of (relatively) small jumps. It becomes more difficult now to separate the jumps from582

the diffusion increments. In fact, it is perhaps more desirable, for the long term investor, to use a583

coarser sampling (i.e. monthly) since in this case it is easy to differentiate the significant jumps. We584

can see from these plots, that in some sense, our idea of a jump for a long term investor, depends585

on the time scale of interest.586
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Figure 7.2: Daily log returns, CRSP VWD value weighted total return series, December 31, 1925
to December 31, 2014. Scaled to unit standard deviation and zero mean. Standard normal density
also shown. Zoom of right hand plot in Figure 7.1.

In Table 7.4, we show the results for the CRSP index, daily log returns. In this case, the MLE587

estimate for the drift rate µ and the expected value estimates differ considerably for strict jump588

threshold detection parameters. At all values of jump cutoff parameters, the jumps appear to occur589

with a high frequency compared to the monthly observations.590

Cutoff Parameters Estimated Parameters

αlow αup µ (MLE) µ (EVal) σ λ ν ζ

-4 4 .1240 .1121 .1505 3.787 -.0034 .0571

-5 5 .1169 .1120 .1631 1.528 -.00759 .0733

-6 6 .1242 .1120 .1702 .7640 -.00288 .0877

-5 ∞ .1400 .1119 .1746 .7416 -.0722 .0235

-6 ∞ .1478 .1119 .1784 .3483 -.0870 .0277

Table 7.4: Jump diffusion parameter estimates, daily log returns, CRSP VWD value weighted
total return series, December 31, 1925 to December 31, 2014. MLE (maximum likelihood, equa-
tion(7.13)), EVal (expected value, equation (7.11)).

8 Numerical results: empirical parameters591

We can see from Section 7 that the estimated parameters which model the SDE of a market index592

depend on several tuning parameters. We choose three possible sets of parameters, and we will593

compute the mean-variance results for each set.594

We select the following cases595

• Pure-diffusion model (GBM), i.e. λ = 0 in equation (2.2). Parameters obtained from daily596

log returns, Table 7.1.597
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• Jump-diffusion with parameters obtained from daily log returns. This is the case αlow = −5,598

and αup = +5, from Table 7.4. µ estimated using equation (7.11).599

• Jump-diffusion with parameters obtained from monthly log returns. This is the case αlow =600

−4, αup = +∞, in Table 7.3. µ estimated using equation (7.11).601

In all cases, we use the one year T-bill rate from Table 7.2. Note that the drift rates estimated from602

equation (7.11) are always lower than the drift rates obtained using MLE (maximum likelihood),603

hence we use these more conservative estimates. The parameters for the representative cases are604

summarized in Table 8.1. Note that the drift rates and volatilities are not too different for all605

cases, however the jump parameters are quite different for the jump diffusion cases. Since the606

jump parameters are difficult to estimate, we can examine the effect of differing estimates on the607

investment results.

Parameters jump-diffusion pure diffusion
daily monthly daily (GBM)

λ (jump intensity) 1.528 0.0899 N/A
ν (jump multiplier mean) -0.00759 -0.2631 N/A
ζ (jump multiplier std) 0.0733 0.0476 N/A
µ (drift) 0.1120 0.1122 0.1119
σ (volatility) 0.1631 0.1715 0.1862

initial wealth 100 100 100
qmax (leverage constraint) 1.5 1.5 1.5
r (risk-free interest rate) 0.0499 0.0499 0.0499
T (investment horizon) 30. (years) 30. (years) 30. (years)

ti+1 − ti (discrete re-balancing time period) 1.0 (years) 1.0 (years) 1.0 (years)

Table 8.1: Parameters for the empirical data tests for three cases: pure-diffusion (GBM) with
daily data, jump-diffusions with parameter estimates from daily and monthly log returns.

608

8.1 Sensitivity of efficient frontiers609

In this test, we use T = 30 (years), 360 timesteps, and the same numbers of S and B nodes as for610

refinement 2 in Table 6.1. In Figure 8.1, we present efficient frontiers obtained from three sets of611

parameters in Table 8.1. In all cases we use the semi-self-financing strategy. We do not include the612

free cash. We observe from Figure 8.1 that the efficient frontiers obtained from the three sets of613

parameters are essentially the same.614

As a further check on our results, we carry out the following tests. We assume that, for each615

set of parameters in Table 8.1, the real world dynamics for S follows the corresponding stochastic616

differential equations. We then we use the PDE method, described earlier, to find the optimal semi-617

self-financing strategy strategies for a given value of γ. These controls are stored for each discrete618

state value and timestep. We then carry out Monte-Carlo (MC) simulations from t = 0 to t = T619

following these stored PDE-computed optimal strategies. Finally, we compare the MC-computed620

means and variances with the PDE-computed counterparts. In Table 8.2, as an illustrative example,621

we present MC-computed means and standard deviations for the three cases when when γ = 1510.622

We observe that the MC-computed means and standard deviations of the three cases agree with623
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Figure 8.1: Sensitivity of the the semi-self-financing strategy with respect to various estimates of
market parameters. Parameters are from Table 8.1, with 360 timesteps, and the same numbers of
S and B nodes, refinement 2, Table 6.1.

samples timesteps pure-diffusion (GBM) jump-diffusion (daily) jump-diffusion (monthly)
size mean std. mean std. mean std.

1× 107 720 720.43 93.25 719.29 93.49 720.77 92.75

PDE-computed 720.24 93.76 720.38 93.87 720.35 93.68

Table 8.2: Monte-Carlo-computed mean and standard deviations. γ = 1510. The PDE results
are obtained with 720 timesteps, and the same numbers of S and B as for Level 2. Data in Table
8.1.

each other, and with the PDE-computed results, and that we obtain very similar mean and variance624

for each case.625

8.2 Robustness to misspecified parameters626

To study the method’s robustness with respect to parameter estimation ambiguity, we proceed627

as follows. First, using the PDE method, we compute and store the optimal strategies under a628

specific model assumption, for example, when the risky asset follows a pure-diffusion (GBM) model.629

We then carry out MC simulations for the portfolio from t = 0 to t = T following these stored630

PDE-computed optimal strategies, but assuming the real world’s dynamics of the risky asset follow631

a different model, for example jump-diffusion (daily). We then compare the MC-computed mean632

and variance for each pair of real world model and strategy computing model. In other words,633

we assume that the real world follows a jump diffusion process, but the investor assumes that the634

process is a GBM, and computes the optimal strategy based on GBM parameter estimates. This,635

then, is a test of strategy robustness in the face of model parameter mis-specification.636

Table 8.3 shows the results for all combinations of representative test cases.637

Table 8.3 demonstrates that the strategy appears to be insensitive to model mis-specification,638
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real world strategy computing models
model mean std. mean std.

pure-diffusion GBM jump-diffusion (daily) jump-diffusion (monthly)
719.38 92.93 720.06 92.84

jump-diffusion (daily) pure-diffusion (GBM) jump-diffusion (monthly)
720.46 94.05 720.08 93.94

jump-diffusion (monthly) pure-diffusion (GBM) jump-diffusion (daily)
721.02 93.08 719.97 92.30

Table 8.3: MC-computed mean and variance for each pair of different real world and computing
models. γ = 1510. Same level of refinement as in Table 8.2 is used. Data in Table 8.1.

which is, of course, a very desirable result. We should also mention that a test of model robustness639

for the case of a stochastic volatility model compared to GBM, also shows that the GBM strategy640

produces excellent results compared with the true stochastic volatility strategy (Ma and Forsyth,641

2015).642

9 Conclusions643

In this paper, we generalize the idea of semi-self-financing strategies developed in Ehrbar (1990),644

Cui et al. (2012), and Cui and Li (2010) for the MV optimal portfolio allocation problem, which645

can be re-formulated as an embedded MV optimization problem (Li and Ng, 2000; Zhou and Li,646

2000) in terms of the numerical solution of an HJB equation. Under this fully numerical approach,647

it is straightforward to determine an MV embedded optimal strategy over all possible semi-self-648

financing strategies, in a very general setting, namely continuous or discrete re-balancing, jump-649

diffusions with finite activity, and realistic portfolio constraints. If the portfolio wealth is above650

a critical threshold, then we prove that a scalarization MV optimal strategy is (i) to withdraw651

wealth exceeding this threshold, and (ii) to invest the remaining wealth in the risk-free asset for652

the remainder of the investment horizon.653

In certain cases, we can prove that an optimal scalarization MV strategy is to not withdraw654

cash if the portfolio wealth is below the critical threshold. However, it remains an open question as655

to whether or not this is true in general for the case of jump-diffusions and discrete re-balancing.656

Nonetheless, we always observe that it is non-optimal to withdraw below the threshold in all of our657

numerical experiments.658

We show that, in general, embedded MV optimal semi-self-financing strategies are not unique.659

However, in case of non-uniqueness, all embedded MV optimal semi-self-financing strategies produce660

the same embedded MV points. Using the results of Tse et al. (2014) and Dang et al. (2015), we661

show that all of these strategies generate the same set of points on the MV efficient frontier.662

Moreover, semi-self-financing strategies have the ability to produce a free cash flow during the663

investment, and can never be inferior, in terms of MV efficiency, to a self-financing strategy.664

We have carried out an empirical data analysis using historical long term market returns. We665

obtain estimates for a GBM model, as well as estimates for jump diffusion models. Jump diffusion666

models are probably the simplest models which account for the observed fat tails of market returns.667

Based on several representative test cases, we find that the semi-self-financing pre-commitment668

mean-variance strategies are robust to model parameter estimation errors.669
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Appendix670

A Proof of embedding result in Theorem 2.1671

We present a characterization of the main property of the embedding technique given in Li and672

Ng (2000); Zhou and Li (2000) in terms of the achievable objective set. This main property is673

summarized in Theorem 2.1. We follow along the lines of Li and Ng (2000); Zhou and Li (2000)674

to prove this result, although we use slightly different steps. We include this proof to illustrate675

the generality of the embedding result, i.e. it is essentially independent of the specification of the676

admissible set for the control c(·).677

Proof. Assume to the contrary that (2.13) does not hold. Then,678

inf
(V,E)∈Y

V + E2 − γE < V0 + E2
0 − γE0. (A.1)

Then there exists (V∗, E∗) ∈ Y such that679

V∗ + E2
∗ − γE∗ < V0 + E2

0 − γE0. (A.2)

Rearranging equation (A.2) and multiplying by ρ > 0 gives680

ρ(V∗ + E2
∗ )− ρ(V0 + E2

0 )− γρ(E∗ − E0) < 0 (A.3)

Substitute equation (2.14) into equation (A.3) to obtain681

ρ(V∗ + E2
∗ )− ρ(V0 + E2

0 ) − (1 + 2ρE0)(E∗ − E0) < 0 . (A.4)

Further manipulation gives682

(ρV∗ − E∗)− (ρV0 − E0) + ρ
(
E2
∗ − E2

0 − 2E0E∗ + 2E2
0

)
< 0 , (A.5)

and683

ρV∗ − E∗ < ρV0 − E0 − ρ(E∗ − E0)2 , (A.6)

and hence684

ρV∗ − E∗ < ρV0 − E0,

which contradicts equation (2.12). Hence (2.13) holds.685

Finally, we note that the embedded objective function can be written as686

V + E2 − γE = Ex0,t0c(·) [Wc(T )2]−
(
Ex0,t0c(·) [Wc(T )]

)2
+
(
Ex0,t0c(·) [Wc(T )]

)2 − γEx0,t0c(·) [Wc(T )]

= Ex0,t0c(·) [Wc(T )2 − γWc(T )]

= Ex0,t0c(·) [(Wc(T )− γ/2)2]− (γ/2)2 (A.7)

So minimizing the above embedded objective function is equivalent to (2.15).687
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B HJB PIDEs688

In this section, we briefly describe the HJB PIDEs for the case of continuous re-balancing and689

jump-diffusions. For brevity, we omit the PIDEs for the case of discrete re-balancing which can be690

found in Dang et al. (2015). For the case of continuous re-balancing with jump-diffusions, the MV691

optimal portfolio allocation problem can be formulated as the solution to a 2-dimensional (2-D)692

impulse control problem, in the form of a non-linear HJB PIDE. This approach is suggested in Dang693

and Forsyth (2014). We refer the reader to Dang and Forsyth (2014) for a complete discussion of694

the formulation. We define the solution domain as695

Ω = {(s, b, t) ∈ [0,∞)× (−∞,+∞)× [0, T ]}. (B.1)

We define the solvency region, denoted by S, as696

S = {(s, b) ∈ [0,∞)× (−∞,+∞) : Wc(s, b) > 0} , (B.2)

and the bankruptcy (insolvency) region B = Ω\S. Let Q = {(s, b) ∈ S : s/(s + b) > qmax} be697

the region where the leverage constraint is violated. We respectively denote by LV and J V the698

diffusion and jump operators, where699

LV ≡ σ2s2

2
Vss + (µ− λκ)sVs + rbVb − λV , (B.3)

J V ≡
∫ ∞

0
p(ξ)V (ξs, b, τ) dξ . (B.4)

Following standard arguments (Øksendal and Sulem, 2009; Pham, 2009), the value function V (s, b, t)700

is the viscosity solution of the HJB PIDE701

max

[
Vt + LV + J V, V − inf

c∈Z
(M(c) V )

]
= 0 ; if (s, b) ∈ S\Q , (B.5)

max

[
Vt + rbVb, V − inf

c∈Z
(M(c) V )

]
= 0 ; if s = 0 , (B.6)

V − inf
c∈Z

(M(c) V ) = 0 ; if (s, b) ∈ Q , (B.7)

V (s, b, t) = V (0,Wc(s, b), t) ; if (s, b) ∈ B , (B.8)

V (s, b, T ) =

{
(s+ b− γ/2)2 Z = Zself
(max(γ/2− (s+ b), 0))2 Z = Zsemi

, (B.9)

defined on the domain Ω. The intervention operator M(c) V (s, b, t) is defined as702

M(c) V (s, b, t) = V (S(s, b, c), B, t) + %. (B.10)

Here, % > 0 is an arbitrarily small switching cost required to ensure that the impulse control HJB703

PIDE problem is well-posed, the control c ≡ (d,B) is defined in (2.3), and S(s, b, c) is defined in704

(2.4).705

For computational purposes, we localize the original domain to706

Ωloc = {(s, b, t) ∈ [0, smax)× [−bmax, bmax]× [0, T ]}, (B.11)

where smax and bmax are positive and sufficiently large. We assume that the boundary conditions707

at smax, −bmax, and bmax used in this paper are the asymptotic forms of the HJB PDE/PIDE as708

s, |b| → ∞ (Dang and Forsyth, 2014).709

28



C Embedded MV optimal controls710

In general, Zsemi allows cash withdrawals at any time and any value of the state (s, b). In this711

Appendix, we show that only a subset of all possible withdrawal strategies is optimal.712

Our plan is the following. Using a specific discretization, we will prove certain properties of713

the optimal control set. This can be regarded as a reduction of the size of Zsemi to be used in714

an implementation using this particular discretization. However, this discretization method can be715

easily shown to satisfy all the requirements required for convergence to the optimal control problem716

(B.5-B.9) (see Dang and Forsyth (2014)). As a result, we then take the limit as h→ 0, and these717

properties of Zsemi must also be properties of the viscosity solution of problem (B.5-B.9). Hence,718

we can apply these results (concerning Zsemi) to any convergent discretization of (B.5-B.9).719

For ease of exposition, we consider only the continuously observed case in this appendix. We720

will indicate under what circumstances we can extend these results to the discretely observed case.721

We give a brief description of the discretization method used to solve equations (B.5-B.9) here. We722

refer the reader to Dang and Forsyth (2014) for details. We consider the localized problem defined723

on Ωloc = [0, smax] × [−bmax,+bmax] × [0, T ], as described in Dang and Forsyth (2014). Artificial724

boundary conditions are applied at s = smax and b = ±bmax. In the following, it will also be725

convenient to write726

LV = PV + rbVb ; where PV ≡ σ2s2

2
Vss + (µ− λκ)sVs − λV . (C.1)

When we analyze the PIDE solve, to avoid tedious algebraic manipulation, we will make ex-727

tensive use of the transformation z = log s. Let V̂ (z, b, τ) = V (ez, b, τ), where, with some abuse of728

notation τ = T − t. Then729

LzV̂ = PzV + rbV̂b ; where PzV̂ ≡ σ2

2
V̂zz + (µ− λκ)V̂z − λV.

In the transformed z = log s coordinates the jump term becomes730

J zV̂ =

∫ +∞

−∞
p̄(y)V̂ (z + y) dy, where p̄(y) = eyp(y) ; y = log J ,

where p(J) is the density of the jump size defined in equation (2.1).731

C.1 Discretization732

Let Sloc denote the localized solvency region Sloc = {(s, b) ∈ Ωloc | (s + b) > 0}. Define a set of733

nodes in the z-direction by {z0, z1, . . . , zimax} (z = log s), and in the b-direction {b0, . . . , bjmax}. Let734

zi = zmin + i∆z ; i = 0, . . . , imax, where ezmin ' 0 ,

bj = −bmax + j∆b .

Denote the nth discrete timestep by τn. For ease of notation, we assume constant timestep sizes,735

i.e. ∆τ = τn+1 − τn is constant, and that736

∆z = C1h ; ∆b = C2h ; ∆τ = C3∆τ , (C.2)
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where h is a positive discretization parameter, and Ci are positive constants. In order to simplify737

some of the technical analysis, we make the following assumptions:738

(er∆τ − 1) < ∆b ; bmax > γ/2 . (C.3)

These assumptions can be removed, but at the cost of considerable algebraic complication.739

We denote by V (s, b, τn) the exact solution to the non-linear value equations (B.5-B.9). Let740

Vh(s, b, τ) be the approximate solution at the point (s, b, τ) obtained using the discretization param-741

eter h. Similarly, let V̂h(zi, bj , τ
n) be the approximate solution at the reference node (zi, bj , τ

n). In742

the event that we need to evaluate Vh or V̂h at a point other than nodal values, linear interpolation743

is used. It will also be understood that the arguments of Vh are truncated if necessary to remain744

in Ωloc, i.e.745

Vh(s, b, τ) ≡ Vh(min(max(s, 0), smax),min(max(b,−bmax), bmax), τ) .

With some abuse of notation, will understand that the following definitions are overloaded746

log s ≡ log max(s, ezmin) ; ez ≡ ez − ezmin . (C.4)

Using equations (C.4) we also define si = ezi and zi = log si. We trust that this use of V̂h and Vh747

as well as the unconventional notation (C.4) will make the analysis less tedious for the reader.748

Let τn+ = T − t−, i.e the instant before rebalancing in forward time. As described in Dang and749

Forsyth (2014), the semi-Lagrangian timestepping method proceeds in the following two steps.750

1. The first step solves a local optimization problem751

Vh(si, bj , τ
n
+) = min

[
Vh(si,bje

r∆τ , τn), min
(d,B)∈Zsemi

Vh(S(si,bje
r∆τ , B, d), B, τn)

]
,

(si, bj) ∈ Sloc , (C.5)

where S(·) is given below, and Zsemi refers to the controls which satisfy752

S = (s+ b)−B − d, where d ≥ 0 ; S ≥ 0 ;
S

S +B
≤ qmax, (S,B) ∈ Sloc .

In equation (C.5, we adopt the notational convention that753

Vh(si, bje
r∆τ , τn) = +∞ ; if {(si, bjer∆τ ) ∈ Q. (C.6)

2. The second step consists of a time advance from τn+ to τn+1 with the initial condition obtained754

from the previous step. For this step, we will use the z = log s coordinate system. More755

specifically, we use V̂h(zi, bj , τ
n
+) as the initial condition. Denote the discrete forms of Pz,J z756

as Pzh,J zh . Using implicit-explicit timestepping, we have757

V̂h(zi, bj , τ
n+1)−∆τ(P)zhV̂h(zi, bj , τ

n+1)−∆τ(J )zhV̂h(zi, bj , τ
n) = V̂h(zi, bj , τ

n
+) . (C.7)

Note that in contrast to Dang and Forsyth (2014), we evaluate the jump term explicitly,758

which is unconditionally stable (d’Halluin et al., 2005). This scheme can also be shown be759

convergent to the viscosity solution of equations (B.5-B.9) using the techniques in(Dang and760

Forsyth, 2014).761
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Condition C.1. In this Appendix, we assume the following conditions762

(a) The volatility σ, jump intensity λ, and jump size probability denisty p(J) are independent of763

s.764

(b) The leverage ratio qmax ≥ 1.765

(c) The optimization step (C.5) is carried out every timestep. Hence, this converges to the con-766

tinuously re-balanced solution as h→ 0767

C.2 Preliminary results768

Proposition C.1 (Properties of value function at τ = 0). After applying the initial control, the769

value function is, from equation (B.9),770

Vh(s, b, 0) =

(
max(γ/2− (s+ b), 0)

)2

, (C.8)

which is non-increasing in s for fixed b, i.e.771

Vh(s, b, 0) ≥ Vh(s′, b, 0) ; s′ > s , ∀(s, b), (s′, b) ∈ Ωloc . (C.9)

Proposition C.2 (Insolvent region properties). In the insolvent region (s+ b) ≤ 0, the solution is772

Vh(s, b, τ) = (γ/2− (s+ b)erτ )2 . (C.10)

Hence,773

Vh(s, b, τ) ≥ Vh(s′, b, τ) ; s′ > s ; ∀(s, b), (s′, b) ∈ Ωloc\Sloc ,∀τ, (C.11)

and774

Vh(s, b, τ) = (γ/2)2 ; (s+ b) = 0

Vh(s, b, τ) ≥ (γ/2)2 ; ∀(s, b) ∈ Ωloc\Sloc . (C.12)

Proposition C.3. If (s, b) ∈ Sloc and (s, b) satisfies the leverage constraint775

s

s+ b
≤ qmax ; qmax ≥ 1 , (C.13)

then the point (s+ η, b) ∈ Sloc, η > 0, also satisfies the leverage constraint.776

Lemma C.1 (Embedded MV non-optimality of withdrawing). Let Gh(s, b, τ) be an arbitrary grid777

function (i.e. defined by linear interpolation of nodal values specified at (si, bj , τ
n)) defined on Ωloc.778

If qmax ≥ 1 and779

Gh(s, b, τn) ≥ Gh(s′, b, τn) ; s′ > s , ∀(s, b), (s′, b) ∈ Ωloc , (C.14)

then780

min
(d,B)∈Zsemi

Gh(s+ ber∆τ −B − d,B, τn) = min
B∈Zsemi

Gh(s+ ber∆τ −B,B, τn)

(C.15)
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Proof. Assume to the contrary that ∃(d∗, B∗) ∈ Zsemi with d∗ > 0, such that781

min
B∈Zsemi

Gh(s+ ber∆τ −B − d∗, B, τn) = Gh(s+ ber∆τ −B∗ − d∗, B∗, τn)

< min
B∈Zsemi

Gh(s+ ber∆τ −B,B, τn) . (C.16)

But, from Proposition C.3, we note that if (s+ber∆τ−B∗−d∗, B∗) satisfies the leverage constraint,782

then the point (s+ ber∆τ −B∗, B∗) is also admissible. That is,783

min
B∈Zsemi

Gh(s+ ber∆τ −B,B, τn) ≤ Gh(s+ ber∆τ −B∗, B∗, τn) . (C.17)

Consequently, from equations (C.16) and (C.17) we have that784

Gh(s+ ber∆τ −B∗ − d∗, B∗, τn) < Gh(s+ ber∆τ −B∗, B∗, τn) (C.18)

which contradicts equation (C.14).785

Remark C.1 (Non-uniqueness of embedded MV optimal strategy). Lemma C.1 does not imply786

that d = 0 is a unique embedded MV optimal strategy if equation (C.14) is satisfied.787

C.3 Properties of time advancement788

We refer the reader to d’Halluin et al. (2004, 2005); Huang et al. (2012) for details of the discretiza-789

tion of equation (C.7). Let790

p̂(yk) = p̂k =

∫ yk+∆J/2

yk−∆J/2
p(y) dy

∆J = ∆z ; zi = zmin + i∆z ; yk = k∆J ,

0 ≤ p̂k ≤ 1 ;

k=kmax∑

k=−kmax

p̂k ≤ 1 . (C.19)

Let V̂i,j(τ
n+1) = V̂h(zi, bj , τ

n+1), then the discrete form of equation (C.7) is then791

V̂i,j(τ
n+1) = V̂i,j(τ

n
+) + ∆τα(V̂i−1,j(τ

n+1)− V̂i,j(τn+1)) + ∆τβ(V̂i+1,j(τ
n+1)− V̂i,j(τn+1))

+λ∆τ

k=kmax∑

k=−kmax

p̂kV̂h(zi + yk, bj , τ
n
+)− λ∆τ V̂i,j(τ

n+1) (C.20)

i = imin(j), . . . , i∗

imin(j) =

{
1 if bj ≥ 0

min{i |(ezi + bj) > 0} if bj < 0

V̂i,j(τ
n+1) = V̂i,j(τ

n
+) = 0 ; i = i∗ + 1, . . . , imax

V̂0,j(τ
n+1) = V̂0,j(τ

n
+) ; bj > 0

V̂i,j(τ
n) = V̂i,j(τ

n
+) =

{
(γ/2− (ezi + bj)e

rτn)2 ; bj < 0 ; i = 0, . . . , imin(j)− 2 ,

(γ/2)2 ; bj ≤ 0 ; i = imin(j)− 1
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where we assume that the grid size is sufficiently small so that the positive coefficient condition is792

satisfied793

α ≥ 0 ; β ≥ 0 ; λ ≥ 0 , (C.21)

and that the grid is constructed so that794

simin(j)−1 + bj = 0 . (C.22)

The approximate Dirichlet condition at the points i = i∗ + 1, . . . , imax follows from equation (C.8).795

Since the jump term is computed using an FFT, i∗ and imax are selected so as to minimize wrap-796

around error (d’Halluin et al., 2005). Also, kmax is selected sufficiently large so that errors in the797

approximation of the integral are minimized (d’Halluin et al., 2005).798

Lemma C.2 (Bounds on the solution). If the discrete time advance equations are given by equation799

(C.20), and assuming that the positive coefficient conditions (C.19) and (C.21) are satisfied, then800

max
i∈[imin(j),i∗]

V̂i,j(τ
n+1) ≤ max

i∈[0,imax]
V̂i,j(τ

n
+) ,

min
i∈[imin(j),i∗]

V̂i,j(τ
n+1) ≥ min

i∈[0,imax]
V̂i,j(τ

n
+) . (C.23)

Proof. This follows from a maximum analysis of equation (C.20).801

Lemma C.3 (Upper bound for embedded MV optimal solution). If grid restrictions (C.3) and802

(C.22) hold, the initial condition is given as in Proposition C.1, and the conditions for Lemma C.2803

are satisfied, then804

Vh(s, b, τn+1
+ ) ≤ (γ/2)2 ; {(s, b) ∈ Ωloc | (s+ b) ≥ 0} ; ∀n ≥ 0 . (C.24)

Proof. Suppose805

Vh(s, b, τn+) ≤ (γ/2)2 {(s, b) ∈ Ωloc | b ≥ 0} . (C.25)

Since linear interpolation is used to move from Vh → V̂h806

V̂h(zi, bj , τ
n
+) ≤ (γ/2)2 ; i = 0, . . . , imax ; bj ≥ 0 . (C.26)

From Lemma C.2 and noting the boundary condition V̂0,j(τ
n+1) = V̂0,j(τ

n
+), bj > 0, and V̂0,0(τn+1) =807

(γ/2)2, we have808

V̂i,j(τ
n+1) ≤ (γ/2)2 ; i = 0, . . . , imax ; bj ≥ 0 , (C.27)

and in addition from equations (C.12), we have the boundary condition809

V̂i,j(τ
n+1) = V̂i,j(τ

n+1
+ ) = (γ/2)2 ; (ezimin(j)−1 + bj) = (simin(j)−1 + bj) = 0 ; bj ≤ 0 .(C.28)

Now, using linear interpolation to move from V̂h → Vh810

Vh(s, b, τn+1) ≤ (γ/2)2 ; b ≥ 0 . (C.29)
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Grid condition (C.3) ensures that if (si, bj) ∈ Sloc then (si,min[max(bje
r∆τ ,−bmax), bmax]) ∈ Sloc.811

In addition if (si, bj) ∈ Sloc, then ∃B ≥ 0 ∈ Zsemi such that (si+bje
r∆τ−B,B) ∈ Sloc. Consequently812

we can bound the solution by only examining the values of Vh(s, b, τn+1) for b ≥ 0. Noting these813

simplifications in (C.5) we have814

Vh(si, bj , τ
n+1
+ ) ≤ min

(d,B)∈Zsemi

Vh(si + bje
r∆τ −B − d,B, τn+1) , (si, bj) ∈ Sloc .

≤ max
(d,B)∈Zsemi

B≥0

Vh(si + bje
r∆τ −B − d,B, τn+1)

≤ (γ/2)2 (C.30)

where the last step follows from equation (C.29). Combining equation (C.30) with boundary815

condition (C.28), we obtain816

Vh(s, b, τn+1
+ ) ≤ (γ/2)2 ; {(s, b) ∈ Ωloc | (s+ b) ≥ 0} . (C.31)

The result follows ∀n since from equation (C.8)817

Vh(s, b, 0) ≤ (γ/2)2 ; {(s, b) ∈ Ωloc | (s+ b) ≥ 0} . (C.32)

818

We now proceed to verify the conditions required for Lemma C.1. Before beginning, we note819

the following, which we obtain by writing equation (C.20) for node i + 1 and subtracting from820

equation (C.20) for node i.821

(
V̂i+1,j(τ

n+1)− V̂i,j(τn+1)

)
(1 + λ∆τ + ∆τα+ ∆τβ)

−∆τβ

(
V̂i+2,j(τ

n+1)− V̂i+1,j(τ
n+1)

)
−∆τα

(
V̂i,j(τ

n+1)− V̂i−1,j(τ
n+1)

)

=

(
V̂i+1,j(τ

n
+)− V̂i,j(τn+)

)
+ λ∆τ

k=kmax∑

k=−kmax

p̂k

(
V̂h(zi+1 + yk, bj , τ

n
+)− V̂h(zi + yk, bj , τ

n
+)

)

; i = imin(j), . . . , i∗ − 1 . (C.33)

Lemma C.4. [Non-increasing value function in s: b ≥ 0] If Condition C.1 holds, the conditions822

required for Lemma C.3 are satisfied, with the discrete equations and boundary conditions as given823

in equation (C.20), and if bj ≥ 0 and824

V̂i+1,j(τ
n
+)− V̂i,j(τn+) ≤ 0 ; i = 0, . . . , imax − 1 ; bj ≥ 0 (C.34)

then825

V̂i+1,j(τ
n+1)− V̂i,j(τn+1) ≤ 0 ; i = 0, . . . , imax − 1 ; bj ≥ 0 (C.35)

Proof. From Lemma C.2, equation (C.23) and equation (C.34), along with V̂0,0(τ) = (γ/2)2,826

V̂i∗+1,j(τ
n+1) = 0 (see equation (C.20)), we obtain827

max
i
V̂i,j(τ

n+1) = V̂0,j(τ
n+1) = V̂0,j(τ

n
+) ; j ≥ 0

min
i
V̂i,j(τ

n+1) = V̂i∗+1,j(τ
n
+) = 0 ; ∀j, (C.36)
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hence828

(
V̂1,j(τ

n+1)− V̂0,j(τ
n+1)

)
≤ 0 ; j ≥ 0 (C.37)

(
V̂i∗+1,j(τ

n+1)− V̂i∗,j(τn+1)

)
≤ 0 ; j ≥ 0 . (C.38)

Hence, we can write equation (C.33) as829

MX = B, where Xi =

(
V̂i+1,j(τ

n+1)− V̂i,j(τn+1)

)
,

and whereM is a diagonally dominant M matrix, and from condition (C.34), boundary conditions830

(C.37 - C.38) and equation (C.33) we have that B ≤ 0, hence831

Xi =

(
V̂i+1,j(τ

n+1)− V̂i,j(τn+1)

)
≤ 0 , = imin(j), . . . , i∗ − 1 ; j ≥ 0 .

In view of the fact that V̂i,j(τ
n+1) ≡ 0, i = i∗ + 1, . . . , imax and that boundary condition (C.37)832

holds, we then have equation (C.35).833

For the case that bj < 0 we have to proceed in a different fashion. If we assume equation (C.34)834

holds for bj < 0, the problem is that the boundary condition at simin(j)−1 is, noting equations (C.12)835

and (C.22),836

V̂imin(j)−1,j(τ
n+1) = (γ/2− (simin(j)−1 + bj)e

rτn)2 = (γ/2)2 , (C.39)

while bound (C.23) gives us (using equation (C.10) and recalling that bj < 0)837

V̂imin(j),j(τ
n+1) ≤ (γ/2− bjerτ

n
)2 (C.40)

so that we cannot conclude that838

(
V̂imin(j),j(τ

n+1)− V̂imin(j)−1,j(τ
n+1)

)
≤ 0 . (C.41)

The problem can be traced to the nonlocal jump term. An intuitive explanation of this is that839

we can imagine a case where the investor has only a small positive amount of wealth and has a840

large amount of leverage. In this case, the probability of a jump into insolvency is large, and hence841

this is a worse situation than actually having zero wealth. One might suppose that this would be842

a situation where a withdrawal of wealth would be embedded MV optimal. But there is clearly843

a better strategy here. For example, the investor would be better off de-leveraging and simply844

investing the small positive wealth in the market. We will now formalize this argument in the845

following.846

Lemma C.5. Assume the discrete equations and boundary conditions are as given in equation847

(C.20). If bj < 0, then there exists a node î, imin(j)− 1 ≤ î ≤ i∗ + 1 such that848

(
V̂î+1,j(τ

n+1)− V̂î,j(τn+1)

)
≤ 0 , (C.42)

and there is no other node i < î having this property.849
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Proof. From equation (C.12) the boundary conditions are850

V̂imin(j)−1,j(τ
n+1) = (γ/2)2 > 0 ; (simin(j)−1,j + b) = 0 ,

V̂i∗+1,j(τ
n+1) = 0 , (C.43)

hence at least one node î satisfying condition (C.42) exists. If there is more than one such node,851

let î be the node with the smallest index.852

Lemma C.6. [Non-increasing value function in s: b < 0] Assume the conditions required for853

Lemma C.3 are satisfied, with the discrete equations and boundary conditions as given in equation854

(C.20). If bj < 0, and855

V̂i+1,j(τ
n
+)− V̂i,j(τn+) ≤ 0 ; i = 0, . . . , imax − 1 ; bj < 0 , (C.44)

then there exists a node î such that856

(a)

(
V̂i+1,j(τ

n+1)− V̂i,j(τn+1)

)
≤ 0 ; i = î, . . . , imax − 1 (C.45)

(b) Either î = imin(j)− 1 or V̂i,j(τ
n+1) > V̂imin(j)−1,j(τ

n+1) = (γ/2)2 ; i = imin(j), . . . , î857

Proof. From Lemma C.5, the node î exists and satisfies equation (C.42). Noting equation (C.44),858

(C.42) and following the same steps as used to prove Lemma C.4, we obtain (a). For (b), note that859

from Lemma C.5, î is smallest index node satisfying property (C.42). Assume î > imin − 1. Hence860

(
V̂i+1,j(τ

n+1)− V̂i,j(τn+1)

)
> 0 ; i = imin − 1, . . . , î− 1 (C.46)

and (b) follows.861

862

Lemma C.7 (Non-increasing value function). If the conditions required for Lemma C.3 are satis-863

fied, with the discrete equations and boundary conditions as given in equation (C.20), and864

V̂i+1,j(τ
n
+)− V̂i,j(τn+) ≤ 0 ; i = 0, . . . , imax − 1 ;∀j (C.47)

then the function865

Gh(s, b, τn+1) = min((γ/2)2, Vh(s, b, τn+1)) ; (s, b) ∈ Sloc
= Vh(s, b, τn+1) ; (s, b) ∈ Ωloc\Sloc (C.48)

has the property that866

Gh(s, b, τn+1) ≥ Gh(s′, b, τn+1); s′ > s ; ∀(s, b), (s′, b) ∈ Ωloc . (C.49)
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Proof. For bj ≥ 0, then from Lemma C.3, equation (C.27) we have867

min(V̂i,j(τ
n+1), (γ/2)2) = V̂i,j(τ

n+1) ; bj ≥ 0 , (C.50)

and from Lemma C.4 and the fact that Vh(si, bj , τ
n+1) = V̂h(log si, bj , τ

n+1), and the properties of868

linear interpolation, we then conclude that equation (C.49) holds for bj ≥ 0.869

For the case bj < 0, note that, from Proposition C.2 that for (s + b) ≤ 0, Vh(s, b, τn+1) is870

nonincreasing in s for fixed b, and Vh(·) = (γ/2)2 at (s + b) = 0, hence Gh(·) is continuous at871

s + b = 0 and nonincreasing for s > −b from Lemma C.6, equation (C.48), and the properties of872

linear interpolation.873

874

Lemma C.8 (Local embedded MV non-optimality of withdrawing). If conditions C.1 hold, and the875

conditions required for Lemma C.3 are satisfied, with the discrete equations and boundary conditions876

as given in equation (C.20), and if877

Vh(s, b, τn+) ≥ Vh(s′, b, τn+) ; s′ > s , ∀(s, b), (s′, b) ∈ Ωloc (C.51)

then there exist embedded MV optimal strategies which move Vh(·, τn+1) → Vh(·, τn+1
+ ) such that878

d ≡ 0, and879

Vh(s, b, τn+1
+ ) ≥ Vh(s′, b, τn+1

+ ) ; s′ > s . ; ∀(s, b), (s′, b) ∈ Ωloc (C.52)

Proof. Write equation (C.5) for τn+1
+880

Vh(si, bj , τ
n+1
+ ) = min

[
Vh(si, bje

r∆τ , τn+1), min
(d,B)∈Zsemi

Vh(S(si, bje
r∆τ , B, d), B, τn+1)

]

(si, bj) ∈ Sloc . (C.53)

From Lemma C.3, we can write, for (si, bj) ∈ Sloc,881

Vh(si, bj , τ
n+1
+ ) = min

(
Vh(si, bj , τ

n+1
+ ), (γ/2)2

)

= min

[
min

(
Vh(si, bje

r∆τ , τn+1), (γ/2)2
)
,

min
(d,B)∈Zsemi

(
min

(
Vh(S(si, bje

r∆τ , B, d), B, τn+1), (γ/2)2
))]

,

= min

[
Gh(si, bje

r∆τ , τn+1), min
(d,B)∈Zsemi

Gh(S(si, bje
r∆τ , B, d), B, τn+1)

]
,

(C.54)

where Gh(·) is defined in Lemma C.7. We have also used the fact that grid condition (C.3) ensures882

that if (si, bj) ∈ Sloc then (si,min[max(bje
r∆τ ,−bmax), bmax] ∈ Sloc, and that if (si, bj) ∈ Sloc, any883

B ∈ Zsemi is such that (si + bje
r∆τ −B,B) ∈ Sloc,884

From Lemma C.7 and equation (C.51), Gh(·) is a non-increasing function of s, it follows from885

Lemma C.1 that d = 0 is an embedded MV optimal strategy. We can then write equation (C.54)886

as887

Vh(si, bj , τ
n+1
+ ) = min

[
Gh(si, bje

r∆τ , τn+1), min
B∈Zsemi

Gh(s+ ber∆τ −B,B, τn+1)

]
,

(C.55)
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As a result ∀(s, b), (s′, b) ∈ Sloc, s′ > s888

Vh(s, b, τn+1
+ )− Vh(s′, b, τn+1

+ ) = min

[
Gh(s, ber∆τ , τn+1), min

B∈Zsemi

Gh(s+ ber∆τ −B,B, τn+1)

]

−min

[
Gh(s′, ber∆τ , τn+1), min

B∈Zsemi

Gh(s′ + ber∆τ −B,B, τn+1)

]

≥ min

[
Gh(s, ber∆τ , τn+1)− Gh(s′, ber∆τ , τn+1),

min
B∈Zsemi

Gh(s+ ber∆τ −B,B, τn+1)

− min
B∈Zsemi

Gh(s′ + ber∆τ −B,B, τn+1)

]
. (C.56)

From grid conditions (C.3) and (C.22) and Proposition C.3, ∃B∗ s.t. (s + ber∆τ − B∗, B∗) and889

(s′ + ber∆τ −B∗, B∗) are admissible, and890

min
B∈Zsemi

Gh(s+ ber∆τ −B,B, τn+1) = Gh(s+ ber∆τ −B∗, B∗, τn+1)

≥ Gh(s′ + ber∆τ −B∗, B∗, τn+1)

≥ min
B∈Zsemi

Gh(s′ + ber∆τ −B,B, τn+1) (C.57)

Combining equations (C.56) and (C.57), and using Lemma C.7 and equation (C.51), we obtain891

Vh(s, b, τn+1
+ )− Vh(s′, b, τn+1

+ ) ≥ 0 ; ∀(s, b), (s′, b) ∈ Sloc . (C.58)

From equation (C.10), we note that892

Vh(s, b, τn+1
+ ) = (γ/2− (s+ b)erτ

n+1
)2 ; (s, b) ∈ Ωloc\Sloc (C.59)

is nonincreasing in s for fixed b. Finally note that if (s, b) ∈ Ωloc\Sloc and (s′, b) ∈ Sloc then893

Vh(s, b, τn+1
+ ) ≥ (γ/2)2 ≥ Vh(s′, b, τn+1

+ ) , (C.60)

where we have used Lemma C.3, hence894

Vh(s, b, τn+1
+ ) ≥ Vh(s′, b, τn+1

+ ) ; s′ > s ; ∀(s, b), (s′, b) ∈ Ωloc. (C.61)

895

Theorem C.1 (Embedded MV non-optimal withdrawal). Assuming conditions C.1, and that the896

conditions required for Lemma C.3 are satisfied, with the discrete equations and boundary conditions897

as given in equation (C.20), and if the initial condition (C.8) is imposed, then there exist embedded898

MV optimal strategies which move Vh(·, τn+1)→ Vh(·, τn+1
+ ), ∀n such that d ≡ 0.899

Proof. Initial condition (C.8) satisfies condition (C.51) of Lemma C.8 at τ = 0, hence this follows900

from Lemma C.8.901
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Remark C.2 (Embedded MV non-optimality of withdrawing). Theorem C.1 states that an embed-902

ded MV optimal strategy has no withdrawal after the initial withdrawal at τ = 0. However, Theorem903

3.1 states that an embedded MV optimal strategy is to withdraw cash whenever Wc(t) > Wopt(t).904

There is no contradiction here. In terms of pre-commitment MV, the optimal strategies are non-905

unique. These different strategies amount to doing different things with the wealth which exceeds906

Wopt(t). See discussion in Section 5.3.907

Remark C.3 (Extension of Theorem C.1). Using similar steps, it is straightforward to extend the908

results of Theorem C.1. An optimal strategy is no withdrawal (after the initial withdrawal at τ = 0),909

for the cases910

• Continuous re-balancing, jumps and leverage possible (qmax ≥ 1)911

• Discrete re-balancing, jumps but no leverage (qmax = 1)912

• Discrete and continuous re-balancing, leverage possible (qmax ≥ 1), no jumps913

Note that the discrete re-balancing case with jump and leverage s is noticeably absent. In fact, it is914

not clear that Theorem C.1 can be extended for this case in general.915

Remark C.4 (A posteriori check of embedded MV non-optimal withdrawal). It is easy to check916

(computationally) if it is ever embedded MV optimal to withdraw if Wc(t) < Wopt(t). The first917

step is to compute Vh(si, bj , τ
n
+) assuming d = 0 if Wc(t) < Wopt(t). Then, if it is embedded MV918

non-optimal to withdraw, the following condition must hold919

Vh(0, bj+1, τ
n
+) ≤ Vh(0, bj , τ

n
+) ; 0 ≤ bj ≤Wopt(t) . (C.62)

In all our numerical experiments, even if we violate some of the conditions required for Theorem920

C.1, we have observed that condition (C.62) always holds.921

Theorem C.2. Provided Conditions C.1 are satisfied, and the initial condition is given by (C.8),922

for the cases listed in Remark C.4, then it an optimal strategy to not withdraw for equations (B.5-923

B.9), assuming equations (B.5-B.9) satisfy a strong comparison principle.924

Proof. From Dang and Forsyth (2014), the discretization (C.20) satisfies all the conditions required925

for convergence to the viscosity solution of equations (B.5-B.9). From Theorem C.1, the optimality926

of not withdrawing holds for any h, we take the limit as h→ 0.927
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