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Abstract1

We consider optimal asset allocation for an investor saving for retirement. The portfolio2

contains a bond index and a stock index. We use multi-period criteria and explore two types of3

strategies: deterministic strategies are based only on the time remaining until the anticipated4

retirement date, while adaptive strategies also consider the investor’s accumulated wealth. The5

vast majority of financial products designed for retirement saving use deterministic strategies6

(e.g. target date funds). In the deterministic case, we determine an optimal open loop control7

using mean-variance criteria. In the adaptive case, we use time consistent mean-variance and8

quadratic shortfall objectives. Tests based on both a synthetic market where the stock index is9

modeled by a jump diffusion process and also on bootstrap resampling of long-term historical10

data show that the optimal adaptive strategies significantly outperform the optimal deterministic11

strategy. This suggests that investors are not being well-served by the strategies currently12

dominating the marketplace.13

Keywords: finance, time consistent mean-variance, quadratic shortfall, dynamic asset alloca-14

tion, jump diffusion, resampled backtests, deterministic strategy15

JEL codes: G11, G2216

1 Introduction17

Saving for retirement is one of the most important financial tasks faced by individuals. The total18

value of retirement assets in the U.S. at the end of 2016 was about $25 trillion (ICI, 2017), exceeding19

U.S. GDP for that year by around 35%. More than 60% of these assets were held in individual20

retirement accounts and defined contribution (DC) pension plans, reflecting the long-term decline21

in traditional defined benefit (DB) plans. The fundamental reason underlying this trend is that DB22

plans are seen as a high risk liability for many organizations, and the risk is being transferred to23

employees through vehicles such as DC plans.24

In a DC plan, the employee contributes a fraction of her salary to a tax-advantaged account. This25

amount is often matched by the employer. The employee is responsible for managing the investments26

in the account. An accumulation period lasting 30 years would not be unusual, followed by a de-27

accumulation (retirement) phase of another 20 years, so the employee could end up managing a28

significant portfolio for 50-60 years. This makes participants in DC plans truly long-term investors.29
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This study deals with the accumulation phase. Several observers have expressed doubts about30

the ability of individuals to adequately save for retirement (e.g. Benartzi and Thaler, 2001; 2007;31

Choi et al., 2004). Three general concerns are (i) whether individuals enrol in savings plans, (ii)32

if they contribute enough, and (iii) whether they choose appropriate investments. With respect33

to the first two concerns, significant progress has been achieved through automatic enrolment and34

automatic escalation. Automatic enrolment exploits the tendency for individuals to stick with the35

status quo. Employees are put into a plan by default, while having the choice to easily opt out,36

instead of having to actively choose to participate. Firms adopting automatic enrolment have seen37

very strong increases in plan participation rates (Madrian and Shea, 2001; Benartzi and Thaler,38

2007). Automatic escalation involves increasing contribution rates over time, as the employee’s39

salary goes up. The Pension Protection Act of 2006 encouraged firms to adopt both automatic40

enrolment and automatic escalation, and by 2011 over half of firms offering 401(k) plans were doing41

so (Benartzi and Thaler, 2013).42

Offering automatic enrollment entails specifying a default investment option, the third concern43

noted above. This asset allocation issue is the focus of this study. More than a decade ago, it was44

common to offer a low-risk default choice such as a money market savings account (Choi et al.,45

2004). The obvious concern this raised was whether investors could realize high enough returns to46

accumulate sufficient retirement funds, without taking on more risk. Target date funds (TDFs, also47

known as lifecycle funds) have become a significant component of the industry’s response to doubts48

that individual investors would be capable of appropriately managing the risk of their retirement49

savings portfolios. The buyer of a TDF specifies a target date, normally the anticipated retirement50

date. The most basic TDF consists of a bond index and an equity index. A typical TDF specifies51

a glide path, which determines the fraction of the total portfolio that is invested in the equity index52

(with the remainder in the bond index) as a function of time. The Pension Protection Act of 200653

permitted TDFs to be used as default investment options in DC plans. Total assets invested in U.S.54

TDFs have increased dramatically over the past decade, reaching $887 billion at the end of 2016, up55

from $70 billion in 2005 (ICI, 2017, Figure 7.25). The single largest provider of TDFs is Vanguard,56

with total net assets of about $280 billion at the end of 2016.1 Vanguard reports that:57

Nine in 10 plan sponsors offered target-date funds at year-end 2016, up over 50% com-58

pared with year-end 2007. Nearly all Vanguard participants (97%) are in plans offering59

target-date funds. 72% of all participants use target-date funds. Two-thirds of partici-60

pants owning target-date funds have their entire account invested in a single target-date61

fund. 46% of all Vanguard participants are wholly invested in a single target-date fund,62

either by voluntary choice or by default (Vanguard, 2017, p. 3).63

Moreover, at the end of 2016 83% of Vanguard DC plans specified TDFs as the default investment64

choice (Vanguard, 2017, Figure 62). Given the propensity of participants to stay with default65

options, continued strong growth of TDFs appears very likely over the next few years.66

The prototypical TDF glide path has a high allocation to stocks during the early years of the67

accumulation phase. The equity allocation is decreased (and the bond allocation increased) as the68

time remaining to the target date declines. The underlying rationale is that with many years to69

retirement, the investor can take on more risk since there is time to recover from adverse market70

returns. However, as the target date nears, the portfolio is weighted more to bonds as protection71

against market downturns. This seems to be an intuitively appealing strategy.72

The vast majority of TDFs use a deterministic glide path. In other words, the bond-stock split is73

only a function of the time remaining until the target date. This contrasts with an adaptive strategy,74

1See http://news.morningstar.com/cover/videocenter.aspx?id=788811.
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where the asset allocation can be a function of the time remaining and the accumulated wealth so75

far. In control terminology, a deterministic strategy can be interpreted as open loop control, while76

an adaptive strategy is a closed loop control. Adaptive strategies have not received much attention77

to date. One exception is Basu et al. (2011), who consider a type of adaptive strategy using heuristic78

adjustments based on cumulative investment performance. In particular, they propose strategies79

that are 100% allocated to equities for a lengthy period, e.g. 20 years. Subsequently, the asset80

allocation can be switched to 80% equity and 20% in fixed income if overall performance has been81

satisfactory relative to a specified target; otherwise the portfolio remains completely invested in82

equities. Portfolio performance is then re-evaluated each year, with similar adjustments based on83

cumulative performance relative to target. While the adaptive strategies we consider here are similar84

in spirit, they are based on more robust methods of stochastic optimal control, in contrast to the85

ad hoc adjustments proposed by Basu et al. (2011).86

We restrict attention here to an investment portfolio containing a stock and bond index. We87

model the real (inflation-adjusted) stock index as following a jump diffusion, with the jumps having88

a double exponential distribution (Kou, 2002; Kou and Wang, 2004). The jump component allows89

for skewed and leptokurtic returns, and the double exponential distribution fits equity index returns90

better than a model with lognormally distributed jumps (Ramezani and Zeng, 2007). The diffusion91

component is simply geometric Brownian motion with constant volatility. An obvious extension92

would be to allow for random changes in volatility over time, but previous work has shown that93

mean-reverting stochastic volatility effects are negligible for long-term investors (Ma and Forsyth,94

2016), so we use the simpler formulation here. We fit the parameters of the jump diffusion model95

to 90 years of market data.96

We develop adaptive strategies based on two objective functions: time consistent dynamic (multi-97

period) mean-variance (MV) and expected quadratic shortfall. In the MV case, we consider strate-98

gies which minimize the variance of real terminal wealth for a given specified expected value of99

real terminal wealth, with the addition of a time consistent constraint. In the expected quadratic100

shortfall case, we base our strategy on minimizing the expected quadratic loss of the terminal wealth101

with respect to a fixed real target final wealth.102

This means we are concentrating on the risk of the outcome, rather than the risk of the process103

along the way. As an example of process risk, some would argue that we should be concerned with104

the volatility of the investment portfolio throughout the entire investment period. However, adding105

constraints on the local volatility will lead to sub-optimal results compared with fixing attention106

on the terminal wealth distribution. We contend that focusing on the long-term investment goal107

is appropriate for retirement savings. However, while we focus on outcome risk, we implicitly take108

process risk into account to some extent through constraints such as not allowing any use of leverage.109

Investors saving for retirement are primarily interested in accumulating assets in order to fund110

a reasonable standard of living post-retirement, at minimal risk. Hence a (real) target-based final111

wealth strategy seems appropriate in this context (Vigna, 2014; Menoncin and Vigna, 2017). Note112

that target final wealth based objective functions are entirely different from equilibrium-based,113

instantaneous return constrained objective functions such as those considered by He and Jiang114

(2017).115

We develop MV optimal deterministic strategies, as well as our two time consistent adaptive116

strategies. We provide two types of extensive comparisons between them. First, we use a synthetic117

market that relies on Monte Carlo simulations which assume that the stock and bond indexes follow118

the models with constant parameters fit from the entire historical time series. Second, we compare119

the strategies using bootstrap resampling of the actual historical data (Politis and Romano, 1994;120

Cogneau and Zakalmouline, 2013; Dichtl et al., 2016). We emphasize that all strategies enforce121

realistic constraints, e.g. no short sales or leverage, no trading if insolvent, discrete rebalancing,122
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etc. This is important because unconstrained dynamic MV strategies may involve the use of highly123

levered portfolios (Lioui and Poncet, 2016).124

Our main results are as follows:125

• For a lump sum investment in the synthetic market with continuous rebalancing, a constant126

proportion strategy is superior in the MV sense to any deterministic glide path.127

• For a discretely rebalanced long-term portfolio with regular periodic contributions, the optimal128

deterministic strategy gives only a very slight improvement (under MV criteria) over a constant129

proportion strategy.130

• The risk-reward tradeoff given by the optimal deterministic strategy for a portfolio with regular131

contributions does not improve much if the portfolio is rebalanced more often than annually.132

This implies that infrequent rebalancing is not costly in terms of MV criteria, while offering133

the benefits of lower trading costs.134

• The optimal adaptive strategies significantly outperform the deterministic strategies in terms135

of the median and standard deviation of final wealth compared to the optimal deterministic136

strategy having the same expected final wealth. The probabilities of shortfall for a wide range137

of terminal wealth values are also substantially reduced for the adaptive strategies compared138

to the deterministic strategies.139

• Our strategies are based on very parsimonious models for real (i.e. inflation-adjusted) stock140

and bond indexes. We test the strategy on bootstrapped resamples of the historical market141

returns, and we find that our adaptive strategies are robust in the real historical market.142

This is a rather satisfying result: for long-term investors, an adaptive strategy based on a143

parsimonious model of real stock and bond returns is superior to deterministic glide path144

strategies.145

Our overall conclusion is that the current deterministic strategies used in most TDFs are sub-146

optimal relative to adaptive strategies. While it is unrealistic to assume that individual investors147

could determine optimal adaptive strategies themselves, it certainly is possible for sophisticated148

financial intermediaries to provide them to their clients.149

2 Formulation150

For simplicity we assume that there are only two assets available in the financial market, namely a151

risky asset and a risk-free asset. In practice, the risky asset would be a broad market index fund.152

We believe that for long-term investors, the major asset allocation decision is the stock-bond split.153

We will use very parsimonious stochastic models, with a small number of parameters which are154

calibrated to long run historical data. This approach minimizes the problem of strongly varying155

asset allocations over time, due to calibration instability. We will verify that the strategies are156

robust by carrying out bootstrap resampling tests using the historical data.157

The investment horizon is T . St and Bt respectively denote the amounts invested in the risky and158

risk-free assets at time t, t ∈ [0, T ]. In general, these amounts will depend on the investor’s strategy159

over time, including contributions, withdrawals, and portfolio rebalances, as well as changes in the160

unit prices of the assets. The investor can control all of these factors except for the unit prices. To161

clarify our assumptions regarding asset price dynamics, suppose for the moment that the investor162

does not take any action with respect to the controllable factors. We refer to this as the absence of163

control. It implies that all changes in St and Bt result from changes in asset prices. In this case,164
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we assume that St follows a jump diffusion process. Let t− = t− ε, ε→ 0+, i.e. t− is the instant of165

time before t, and let ξ be a random number representing a jump multiplier. When a jump occurs,166

St = ξSt− . Allowing discontinuous jumps allows us to explore the effects of severe market crashes167

on the risky asset holding. We assume that ξ follows a double exponential distribution (Kou, 2002;168

Kou and Wang, 2004). If a jump occurs, pup is the probability of an upward jump, while 1− pup is169

the chance of a downward jump. The density function for y = log(ξ) is170

f(y) = pupη1e
−η1y1y≥0 + (1− pup)η2e

η2y1y<0. (2.1)

For future reference, note that

E[y = log ξ] =
pup

η1
− (1− pup)

η2
, E[(log ξ)2] =

2pup

η2
1

+
2(1− pup)

η2
2

E[ξ] =
pupη1

η1 − 1
+

(1− pup)η2

η2 + 1
,

E[(ξ − 1)2] =
pupη1

η1 − 2
+

(1− pup)η2

η2 + 2
− 2

(
pupη1

η1 − 1
+

(1− pup)η2

η2 + 1

)
+ 1. (2.2)

In the absence of control, St evolves according to171

dSt
St−

= (µ− λE[ξ − 1]) dt+ σ dZ + d

(
πt∑
i=1

(ξi − 1)

)
, (2.3)

where µ is the (uncompensated) drift rate, σ is the volatility, dZ is the increment of a Wiener process,172

πt is a Poisson process with positive intensity parameter λ, and ξi are i.i.d. positive random variables173

having distribution (2.1). Moreover, ξi, πt, and Z are assumed to all be mutually independent.174

As an aid to carrying out algebraic manipulations, we can write (2.3) more informally as175

dSt
St−

= (µ− λE[ξ − 1]) dt+ σ dZ + (ξ − 1) dQ, (2.4)

where dQ = 1 with probability λ dt and dQ = 0 with probability 1− λ dt.176

In the absence of control, we assume that the dynamics of the amount Bt invested in the risk-free177

asset are178

dBt = rBt dt, (2.5)

where r is the (constant) risk-free rate.179

180

Remark 2.1 (Parsimonious Model). Equations (2.4)-(2.5) are very simple specifications that as-181

sume both constant equity market volatility and constant real interest rate. In other contexts, these182

specifications would be overly simplistic. For example, if we were concerned with valuation or hedg-183

ing of contracts with embedded optionality, it would be important to incorporate stochastic volatility184

effects. However, our setting involves long-term asset allocation, with infrequent rebalancing. A185

typical mean-reverting stochastic volatility specification has little impact in this context, since the186

duration of volatility shocks is typically shorter than the rebalancing period (Ma and Forsyth, 2016).187

As for the constant interest rate assumption, recall that we are concerned with real bond indexes.188

Such indexes have quite low volatility, particularly if the underlying instrument is short-term in189

nature. We utilize equations (2.4)-(2.5) to determine the optimal strategy in the synthetic market.190

We apply this strategy to both the synthetic market and also to real bootstrapped data, with similar191

statistical results. In essence then, equations (2.4)-(2.5) seem sufficient for generating an adaptive192

strategy which is superior to a deterministic strategy.193
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194

We define the investor’s total wealth at time t as195

Total wealth ≡Wt = St +Bt. (2.6)

Given a specified expected value of terminal wealth E[WT ], the investor wants to minimize the risk196

of achieving this expected terminal wealth. We impose the constraints that shorting stock and using197

leverage (i.e. borrowing) are not permitted, which would be typical of a retirement savings account.198

3 Deterministic Glide Paths199

Let p denote the fraction of total wealth that is invested in the risky asset, i.e.200

p =
St

St +Bt
. (3.1)

A deterministic glide path restricts the admissible strategies to those with p = p(t), i.e. the optimal201

strategy cannot take into account the actual value ofWt at any time. Clearly this is a very restrictive202

assumption, but it is commonly used in TDFs. Although a constant proportion strategy can be seen203

as a special case of a deterministic glide path where p(t) = const., it is simpler here for expository204

reasons to reserve the label “deterministic glide path” for cases where p(t) is time-varying.205

3.1 Lump Sum Investment with Continuous Rebalancing206

To gain some intuition about deterministic strategies, we consider first a simple case with a lump207

sum initial investment and no further cash injections or withdrawals. We also assume here that the208

portfolio is continuously rebalanced. Under these conditions, we can derive:209

Proposition 3.1 (Inefficiency of glide path strategies for lump sum investments). Consider a210

market with two assets following the processes (2.4) and (2.5). Suppose we invest a lump sum W0211

at t = 0 in a continuously rebalanced portfolio using a deterministic glide path strategy p = p(t),212

where p is the fraction of total wealth invested in the risky asset. Also consider a strategy with a213

constant proportion p∗ invested in the risky asset, where214

p∗ =
1

T

∫ T

0
p(s) ds. (3.2)

Then:215

(i) the expected value of the terminal wealth is the same for both strategies; and216

(ii) the standard deviation of terminal wealth for the glide path strategy cannot be less than that217

of the constant proportion strategy.218

Proof. Equations (2.4) and (2.5) imply219

dWt

Wt−
= p(t)

(
dSt
St−

)
+ (1− p(t) )

(
dBt
Bt

)
= [p(t)(µ− r) + r] dt− λp(t)E[ξ − 1] dt+ p(t)σ dZ + p(t)(ξ − 1) dQ. (3.3)
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Letting W t = E[Wt] and noting that p(t) is deterministic, we have220

dW t = [p(t)(µ− r) + r]W t dt (3.4)

and221

W T = E[WT ] = W0e
[p∗(µ−r)+r]T , (3.5)

where p∗ is defined in equation (3.2). Write equation (3.3) as222

dWt

Wt−
= µ̂ dt+ p(t)σ dZ + p(t)(ξ − 1) dQ, (3.6)

where µ̂ = [p(t)(µ− r) + r] − λp(t)E[ξ − 1]. Let Gt = W 2
t . From equation (3.6) and Itô’s Lemma223

for jump processes,224

dGt
Gt−

=
[
2µ̂+ (p(t)σ)2

]
dt+ 2p(t)σ dZ +

[
p(t)2(ξ − 1)2 + 2p(t)(ξ − 1)

]
dQ. (3.7)

Let Gt = E[Gt] = E[W 2
t ]. Equation (3.7) and the fact that p(t) is deterministic imply

dGt

Gt
=
[
2µ̂+ (p(t)σ)2

]
dt+

(
λp(t)2E

[
(ξ − 1)2

]
+ 2λp(t)E [(ξ − 1)]

)
dt

=
(
2 [p(t)(µ− r) + r] + p(t)2σ2

e

)
dt (3.8)

where σ2
e = σ2 + λE

[
(ξ − 1)2

]
. This in turn gives225

GT = G0 exp

(
2 [p∗(µ− r) + r]T + σ2

e

∫ T

0
p(s)2 ds

)
, (3.9)

or226

E[W 2
T ] = (E[WT ])2 exp

[
σ2
e

∫ T

0
p(s)2 ds

]
. (3.10)

From Var [WT ] = E[W 2
T ]− (E[WT ])2, we obtain227

std [WT ] = E[WT ]

(
exp

[
σ2
e

∫ T

0
p(s)2 ds

]
− 1

)1/2

(3.11)

where std [ · ] denotes standard deviation. By the Cauchy-Schwartz inequality228

(p∗)2 T ≤
∫ T

0
p(s)2 ds, (3.12)

and Proposition 3.1 follows immediately.229

This proposition suggests that deterministic glide path strategies may have been oversold. A230

similar result for the geometric Brownian motion case (i.e. no jumps) was noted by Graf (2017).231

Furthermore, several authors have suggested that deterministic glide path strategies do not appear232

to offer many advantages based on Monte Carlo and historical simulations. For example, Poterba233

et al. (2009) simulate scenarios involving periodic contributions based on a sample of household234

earnings trajectories and investment returns based on resampled annual returns. They find that235

allocating wealth to assets based on age does not outperform a simple constant proportion strategy,236

noting that237
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The similarity of the retirement wealth distributions from the life-cycle portfolios, and238

from strategies that allocate a constant portfolio share to equities, is one of the central239

findings of our analysis. This result calls for further work to evaluate the extent to240

which life-cycle strategies offer unique opportunities for risk reduction relative to simpler241

strategies that allocate a constant fraction of portfolio assets to equities at all ages.242

(Poterba et al., 2009, p. 38)243

Basu et al. (2011) and Esch and Michaud (2014) also find that glide paths do not seem to provide244

significant benefits in comparison to simpler fixed proportion strategies. Under some simplified245

assumptions, Proposition 3.1 shows that this result must hold: for any glide path, there is an246

equivalent constant weight strategy that offers the same expected final wealth at equal or lower247

risk. It is not surprising, then, to find that this is approximately correct in more complex and248

realistic simulations.249

Along somewhat different lines, Arnott et al. (2013) simulate an inverse glide path which starts250

out with a low equity allocation that is increased over time. Their simulations show that this results251

in, if anything, better performance than the standard glide path which reduces equity exposure over252

time. Arnott et al. attribute this counterintuitive result to the effect of contributions on portfolio253

size over time. The standard glide path is most heavily invested in equities early on when the254

portfolio is fairly small. It does not benefit as much in monetary terms from high equity returns as255

the inverse glide path strategy, which has higher wealth when it is most exposed to equities. Basu256

et al. (2011) make a similar point, noting that the standard glide path approach can perform poorly257

because switching out of equities into bonds at a time when accumulated wealth (and possibly also258

contributions, if these are a fixed percentage of salary which has increased over time) is relatively259

large, “the investor may be foregoing the opportunity to earn higher returns on a larger sum of260

money invested” (Basu et al., 2011, p. 84). However, we point out that even in the case of a single261

lump sum contribution, the standard glide path intuition fails. Note that
∫ T

0 p(s)ds =
∫ T

0 p(T−s)ds262

and
∫ T

0 [p(s)]2 ds =
∫ T

0 [p(T − s)]2 ds, so by equations (3.5) and (3.11) the glide path results are the263

same in this case if we reverse the strategy. In other words, if our glide path starts with a high264

allocation to stocks and finishes with a low allocation to stocks, we can achieve exactly the same265

MV result in terms of final wealth by beginning with a low equity allocation and ending with a high266

equity allocation.267

3.2 Discrete Rebalancing and Periodic Contributions268

The results in Section 3.1 are useful for gaining some intuition about the performance of glide path269

strategies, but the assumptions of no cash injections and continuous rebalancing are unrealistic. We270

now consider the implications of periodic cash injections and discrete portfolio rebalancing.271

Let the inception time of the investment be t0 = 0. We consider a set T of pre-determined272

rebalancing times,273

T ≡ {t0 = 0 < t1 < · · · < tM = T}. (3.13)

For simplicity, we specify T to be equidistant with ti − ti−1 = ∆t = T/M , i = 1, . . . ,M . At each274

rebalancing time ti, i = 0, 1, . . . ,M − 1, the investor injects an amount of cash qi into the portfolio275

and then rebalances the portfolio. At tM = T , the portfolio is liquidated. Let t−i = ti − ε (ε→ 0+)276

be the instant before rebalancing time ti, and t+i = ti + ε be the instant after ti. Let p(t+i ) = pi277

be the fraction in the risky asset at t+i . This fraction is deterministic, so we can find some simple278

recursive expressions for the mean and variance of terminal wealth at t = tM .279
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Similarly, let S+
i = St+i

, S−i = St−i
, B+

i = Bt+i
, and B−i = Bt−i

. From equations (2.4) and (2.5)
we obtain

E
[
S−i+1

]
= E

[
S+
i

]
exp[µ∆t]

E
[
B−i+1

]
= E

[
B+
i

]
exp[r∆t]. (3.14)

Since W−i = S−i +B−i ,

W+
i = W−i + qi = S−i +B−i + qi

E
[
W+
i

]
= E

[
S−i
]

+ E
[
B−i
]

+ qi. (3.15)

Then

S+
i = piW

+
i

B+
i = (1− pi)W+

i

E
[
S+
i

]
= piE

[
W+
i

]
E
[
B+
i

]
= (1− pi)E

[
W+
i

]
, (3.16)

since pi is deterministic. Define

Gt = S2
t

Ft = B2
t

Ht = St ·Bt. (3.17)

Following similar steps as used to obtain equation (3.9), we can see that

E
[
G−i+1

]
= E

[
G+
i

]
exp[(2µ+ σ2

e)∆t]

E
[
F−i+1

]
= E

[
F+
i

]
exp[2r∆t]

E
[
H−i+1

]
= E

[
H+
i

]
exp[(r + µ)∆t]. (3.18)

Noting that (
W+
i

)2
=
(
S−i +B−i + qi

)2(
W−i

)2
=
(
S−i +B−i

)2
, (3.19)

we obtain

E
[(
W+
i

)2]
= E

[(
W−i

)2]
+ q2

i + 2E
[
S−i
]
qi + 2E

[
B−i
]
qi

E
[(
W−i

)2]
= E

[
G−i
]

+ E
[
F−i
]

+ 2E
[
H−i
]
. (3.20)

From equations (3.16), (3.17), and (3.19), we obtain (again noting that pi is deterministic)

E
[
G+
i

]
= p2

iE
[(
W+
i

)2]
E
[
F+
i

]
= (1− pi)2E

[(
W+
i

)2]
E
[
H+
i

]
= (1− pi)piE

[(
W+
i

)2]
. (3.21)
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input: {p0, p1, . . . , pM−1} {glide path};
{q0, q1, . . . , qM−1} {contributions};
{µ, r, σ2

e ,∆t} {parameters};
initialize: E

[
S−0
]

= E
[
B−0
]

= E
[
G−0
]

= E
[
F−0
]

= E
[
H−0
]

= 0;

for i = 0, 1, . . . ,M − 1 do {Timestep loop}
E
[
W+
i

]
= E

[
S−i
]

+ E
[
B−i
]

+ qi;

E
[(
W+
i

)2]
= E

[
G−i
]

+ E
[
F−i
]

+ q2
i + 2E

[
H−i
]

+ 2E
[
S−i
]
qi + 2E

[
B−i
]
qi;

E
[
S+
i

]
= piE

[
W+
i

]
; E

[
B+
i

]
= (1− pi)E

[
W+
i

]
;

E
[
G+
i

]
= p2

iE
[(
W+
i

)2]
; E

[
F+
i

]
= (1− pi)2E

[(
W+
i

)2]
; E

[
H+
i

]
= (1− pi)piE

[(
W+
i

)2];
E
[
S−i+1

]
= E

[
S+
i

]
e[µ∆t]; E

[
B−i+1

]
= E

[
B+
i

]
e[r∆t];

E
[
G−i+1

]
= E

[
G+
i

]
e[(2µ+σ2

e)∆t]; E
[
F−i+1

]
= E

[
F+
i

]
e[2r∆t] ;E

[
H−i+1

]
= E

[
H+
i

]
e[(r+µ)∆t]

end for {End Timestep loop}

{Determine mean and variance at tM}
E
[
W−M

]
= E

[
S−M
]

+ E
[
B−M

]
;

E
[(
W−M

)2]
= E

[
G−M
]

+ E
[
F−M

]
+ 2E

[
H−M

]
;

return mean = E
[
W−M

]
; variance = E

[(
W−M

)2]− (
E
[
W−M

])2
;

Algorithm 3.1: An algorithm for determining the mean and variance of terminal wealth for a
given deterministic discrete rebalancing strategy {p0, p1, . . . , pM−1} and a schedule of contributions
{q0, q1, . . . , qM−1}, assuming the stochastic processes (2.4) and (2.5).

Given a deterministic glide path {p0, . . . , pM−1}, the mean and variance of terminal wealth can be280

easily computed using Algorithm 3.1.281

For a given specified expected terminal wealth E
[
W−M

]
= d, the MV optimization problem to

determine the optimal (open loop) glide path can be stated as

min
{p0, p1, ..., pM−1}

Var
(
W−M

)
= E

[(
W−M

)2]− d2

subject to


E
[
W−M

]
= d

E
[
W−M

]
, E
[(
W−M

)2] given by Algorithm 3.1

pi = pi(t
+
i ); 0 ≤ pi ≤ 1

. (3.22)

Note that we impose no-shorting and no-borrowing constraints 0 ≤ pi ≤ 1, which would be typical282

in the context of an investor saving for retirement.283

Remark 3.1 (Glide Paths in Practice). It is not by any means clear what criteria are used to284

construct glide paths for commercial TDFs. We sidestep this problem by using objective function285

(3.22), which is the optimal deterministic control under MV criteria. In other words, there can be286

no better glide path, under these criteria.287

3.3 Numerical Solution for the Deterministic Strategy288

The objective function for Problem (3.22) can be evaluated very rapidly using Algorithm 3.1, so we289

can solve for the optimal controls {p0, p1, . . . , pM−1} using a numerical optimization technique. We290
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use a Sequential Quadratic Programming (SQP) algorithm (Nocedal and Wright, 2006). Problem291

(3.22) is not in standard convex optimization form, since the expected value equality constraint is292

a nonlinear function of the controls pi. If an SQP algorithm converges, it will converge to a local293

minimum, and there is no guarantee of convergence to the global minimum. In our numerical tests,294

we check for possible convergence to local minima by carrying out 10,000 tests, each starting with295

a different random initial starting guess for the optimal controls {p0, p1, . . . , pM−1}. In all cases296

reported here, the SQP algorithm converged to the same solution vector, to within the specified297

convergence tolerance. This obviously is not a guarantee of convergence to the global minimum,298

but it is strongly suggestive.299

3.4 Deterministic Strategy with Periodic Contributions and Continuous Rebal-300

ancing301

It is interesting to determine the loss of efficiency in the deterministic case due to discrete rebalancing302

compared to continuous rebalancing. Of course, in practice trading costs can make high frequency303

rebalancing very expensive. We consider continuously rebalanced strategies, but with periodic304

contributions. As in Section 3.2, we specify contributions qi at times ti, i = 0, . . . ,M − 1. There is305

no contribution at the terminal time tM = T . We assume that the contributions are evenly spaced,306

so that ti−ti−1 = ∆t. Let t−i = ti−ε, ε→ 0+, and t+i = ti+ε. Define the total wealthWt = St+Bt,307

and let Gt = W 2
t . Let308

W+
i = Wt+i

; W−i = Wt−i
; G+

i = Gt+i ; G−i = Gt−i . (3.23)

At each contribution date ti we have309

W+
i = W−i + qi; G+

i = G−i + 2qiW
−
i + q2

i , (3.24)

so that310

E
[
W+
i

]
= E

[
W−i

]
+ qi; E

[
G+
i

]
= E

[
G−i
]

+ 2qiE
[
W−i

]
+ q2

i . (3.25)

From the results in Section 3.1, it is easy to see that for a continuously rebalanced deterministic
strategy with equity fraction p(t)

E
[
W−i+1

]
= E

[
W+
i

]
e(p∗i (µ−r)+r)∆t

E
[
G−i+1

]
= E

[
G+
i

]
exp

[
2(p∗i (µ− r) + r )∆t+ σ2

e

∫ ti+1

ti

p(s)2 ds

]
, (3.26)

where311

p∗i = (1/∆t)

∫ ti+1

ti

p(s) ds . (3.27)

Note that we can consider the continuously rebalanced strategy as the limit of a discretely312

rebalanced strategy, where we divide the interval between contributions (ti, ti+1) into sub-timesteps,313

and let the size of the the sub-timesteps tend to zero. We allow different controls during each sub-314

timestep. Since the set of admissible controls for the limiting continuously rebalanced strategy is315

clearly larger than for the discretely rebalanced strategy, the variance of the continuously rebalanced316

strategy (for a fixed expected value) cannot exceed the variance of the discretely rebalanced strategy.317

Before proceeding with our computations, the following result will be useful:318
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input: {p∗0, p∗1, . . . , p∗M−1} {glide path};
{q0, q1, . . . , qM−1} {contributions};
{µ, r, σ2

e ,∆t} {parameters};
initialize: E

[
W−0

]
= E

[
G−0
]

= 0;

for i = 0, 1, . . . ,M − 1 do {Timestep loop}
E
[
W+
i

]
= E

[
W−i

]
+ qi;

E
[
G+
i

]
= E

[
G−i
]

+ 2qiE
[
W−i

]
+ q2

i ;
E
[
W−i+1

]
= E

[
W+
i

]
e(p∗i (µ−r)+r)∆t;

E
[
G−i+1

]
= E

[
G+
i

]
e(2∆t(p∗i (µ−r)+r)+(p∗i )2σ2

e∆t;
end for {End Timestep loop}

{Determine mean and variance at tM}
return mean = E

[
W−M

]
; variance = E

[
G−M
]
−
(
E
[
W−M

])2
;

Algorithm 3.2: An algorithm for determining the mean and variance of a given deterministic
continuously rebalanced strategy {p∗0, p∗1, . . . , p∗M−1} and a schedule of contributions {q0, q1, . . . , qM−1},
assuming the stochastic processes (2.4) and (2.5).

Proposition 3.2 (Optimal strategy: continuously rebalanced, deterministic case). Consider a mar-319

ket with two assets following the processes (2.4) and (2.5), with periodic contributions at discrete320

times ti. The MV optimal continuously rebalanced deterministic strategy is to rebalance to a constant321

equity fraction between contribution times.322

Proof. Consider any strategy p(t). Replace this strategy by the piecewise constant strategy323

p̂(t) = p∗i ; t ∈ (ti, ti+1] , (3.28)

with p∗i given in equation (3.27). Equations (3.26) now become

E
[
W−i+1

]∗
= E

[
W+
i

]∗
e(p∗i (µ−r)+r)∆t

E
[
G−i+1

]∗
= E

[
G+
i

]∗
exp

[
2(p∗i (µ− r) + r)∆t+ σ2

e(p
∗
i )

2∆t

]
, (3.29)

where E[·]∗ indicates that the strategy (3.28) is used. This new strategy has the same expected324

value as the original strategy, so that E
[
W±i

]∗
= E

[
W±i

]
,∀i. From Var [WT ] = E[W 2

T ]−(E[WT ])2,325

we need only to show that E
[
G−M
]∗ ≤ E

[
G−M
]
. Assume that E

[
G+
i

]∗ ≤ E
[
G+
i

]
. From equations326

(3.12), (3.26), (3.27), and (3.29), we have E
[
G−i+1

]∗ ≤ E [G−i+1

]
. From equation (3.25) and the fact327

that E
[
W−i

]∗
= E

[
W−i

]
, we have E

[
G+
i+1

]∗ ≤ E
[
G+
i+1

]
. Finally, noting that E

[
G+

0

]∗
= E

[
G+

0

]
,328

the result follows.329

From Proposition 3.2, we can use Algorithm 3.2 to calculate the mean and variance of terminal330

wealth for a given strategy {p∗0, p∗1, . . . , p∗M−1}. The optimal continuously rebalanced strategy can331

be found by using Algorithm 3.2 and solving the optimization problem (3.22), using the methods332

described in Section 3.3.333

4 Adaptive Strategies334

To avoid subscript clutter, in the following, we will occasionally use the notation St ≡ S(t), Bt ≡335

B(t) and Wt ≡ W (t), We now allow the admissible set of controls to depend on the state of the336
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investment portfolio, i.e. pi = p
(
S(t+i ), B(t+i ), t+i )

)
= p

(
S+
i , B

+
i ,t

+
i

)
, ti ∈ T , where T is the set of337

rebalancing times. We denote by X (t) = (S (t) ,B (t)), t ∈ [0,T ], the multi-dimensional controlled338

underlying process, and by x = (s, b) the state of the system.339

Let (Ft)t≥0 be the natural filtration associated with the wealth process340

Wt = W (t) = S(t) +B(t) : t ∈ [0,T ] .

We use pi(·) to denote the control, representing a strategy as a function of the underlying state,341

computed at time t+i , ti ∈ T , i.e. pi(·) : (X(t+i ),t+i ) 7→ pt+i
= p(X(t+i ),t+i ), for ti ∈ T . If we ignore342

transaction costs, then since we find the optimal strategy amongst all strategies with constant343

wealth, this is equivalent to p(X(t+i ), t+i ) = pi
(
W (t+i ), t+i

)
.344

Let Z represent the set of admissible values of the control pi(·). An admissible control P ∈ A,345

where A is the admissible control set, can be written as346

P = {pi ∈ Z : i = 0, . . . ,M − 1} (4.1)

We also define Pn ≡ Pt+n ⊂ P as the tail of the set of controls in [tn, tn+1, . . . , tM−1], i.e.347

Pn = {pn, . . . , pM−1} (4.2)

4.1 Time Consistent MV348

With these notational conventions, for a given scalarization parameter ρ > 0 and an intervention349

time tn, we define the scalarized time consistent MV problem (TCMVtn (ρ)) and the value function350

V (s,b,t): as follows:351

(TCMVtn (ρ)) : V
(
s,b,t−n

)
= sup

Pn∈A

{
EX

+
n ,t

+
n

Pn
[WT ]−

ρ(W+
n )V arX

+
n ,t

+
n

Pn
[WT ]

∣∣∣∣X(t−n ) = (s,b)

}
(4.3)

s.t. Pn =
{
pn,P∗n+1

}
:=
{
pn,p

∗
n+1, . . . ,p

∗
M−1

}
(4.4)

where P∗n+1 is optimal for problem
(
TCMV tn+1 (ρ)

)

subject to


(St, Bt) follow processes (2.4)-(2.5); t /∈ T
W+
n = s+ b+ qn ; X+

n = (S+
n , B

+
n )

S+
n = pnW

+
n ; B+

n = W+
n − S+

n

p` ∈ Z = [0,1] ; ` = n, . . . ,M − 1

(4.5)

Remark 4.1 (Time Consistent Constraint). Time consistency is enforced via the constraint (4.4).352

If this constraint is eliminated, we would obtain the pre-commitment MV solution (Basak and353

Chabakauri, 2010).354

The definition of time consistency with ρ = const. was originally suggested in Basak and355

Chabakauri (2010). We also consider the case of wealth-dependent parameter ρ suggested in Björk356

et al. (2014).357

Björk et al. (2014) note that the time consistent strategy for multi-period MV optimality (with358

no constraints) has the property that the amount invested in the risky asset is deterministic (i.e. not359

a function of Wt). Björk et al. argue that this is economically unreasonable, and suggest using a360

wealth-dependent risk aversion parameter to ameliorate this difficulty. However, Wang and Forsyth361

13



(2011) show that using a wealth-dependent risk aversion has strange effects. In particular, adding362

constraints to the strategy results in an efficient frontier which plots higher than the unconstrained363

efficient frontier.364

In this work, the cases considered for time consistent MV strategies are as follows:365

ρ(Wt, t) =

{
ρ̂ Case 1
ρ̂
Wt

Case 2
ρ̂ = const. > 0 . (4.6)

The time consistent constraint (4.4) for the discrete rebalancing case was also considered in Bjork366

and Murgoci (2014); Staden et al. (2018); Landriault et al. (2018).367

Remark 4.2 (Numerical Solution: Time Consistent MV). Due to the constraints on the control368

(equation (4.5)), a closed form solution is not possible. We formulate problem (TCMVtn (ρ)) as a369

dynamic programming problem, which requires solution of a system of nonlinear Hamilton-Jacobi-370

Bellman (HJB) Partial Integro Differential Equations (PIDEs), and use the techniques discussed371

in Wang and Forsyth (2011); Staden et al. (2018). In particular, we use the ε-monotone Fourier372

method discussed in Forsyth and Labahn (2018) to solve the PIDEs between rebalancing dates.373

Remark 4.3 (Specifying EX
+
0 ,t

+
0 [WT ]). In order to provide a fair comparison amongst different374

strategies, we will determine the parameter ρ̂ so that EX
+
0 ,t

+
0 [WT ] = d, where d is fixed. To be375

precise, let P(ρ̂) be the optimal control for problem (TCMVt0 (ρ̂)). Then, we determine the value of376

ρ̂∗ such that377

f(ρ̂∗) = E
X+

0 ,t
+
0

P(ρ̂∗) (WT )− d = 0 . (4.7)

We solve equation (4.7) by a Newton iteration. Each evaluation of f(ρ̂∗) requires solving a system378

of PIDEs. This can be done efficiently by determining an approximate value for ρ̂∗ on a coarse grid,379

and then using this as the initial estimate for the Newton iteration on a sequence of grids.380

4.2 Expected Quadratic Shortfall381

In the insurance literature, as noted by Vigna (2014) and Menoncin and Vigna (2017), a common382

investment objective function in the DC plan context is based on minimizing the expected quadratic383

shortfall with respect to a fixed target (real) terminal wealth W ∗. We define the time consistent384

quadratic shortfall problem (TCQStn(W ∗)) and value function V (s,b,t) as:385

(TCQStn (W ∗)) : V
(
s,b,t−n

)
= inf

Pn∈A

{
EX

+
n ,t

+
n

Pn

[
min(WT −W ∗, 0)2

] ∣∣∣∣X(t−n ) = (s,b)

}
(4.8)

s.t. Surplus cash invested in the bond (4.9)

subject to


(St, Bt) follow processes (2.4)-(2.5); t /∈ T
W+
n = s+ b+ qn ; X+

n = (S+
n , B

+
n )

S+
n = pnW

+
n ; B+

n = W+
n − S+

n

p` ∈ Z = [0,1] ; ` = n, . . . ,M − 1

(4.10)

Remark 4.4 (Dynamic Programming Solution). Since problem (TCQStn(W ∗)) is a simple expecta-386

tion, it can be formulated as a dynamic programming problem, and hence is trivially time consistent387

for fixed target W ∗. There is no need to enforce a time consistent constraint in this case.388
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Note that problem (TCQStn(W ∗)) penalizes shortfall with respect to W ∗. It is assumed that389

the sole concern of the DC plan investor is with a shortfall with respect to the target wealth W ∗.390

The investor is assumed to be indifferent to any terminal wealth WT > W ∗. This implies that we391

take the smallest risk possible to realize a terminal wealth close to W ∗. Vigna (2014) and Menoncin392

and Vigna (2017) suggest that this is a reasonable strategy for a DC plan investor.393

In fact, Vigna (2014) shows that for the case where the risky asset follows Geometric Brownian394

Motion and rebalancing is continuous, the optimally controlled wealth never exceeds W ∗ at any395

time. However, in our case (discrete rebalancing and jumps) this is no longer true. Constraint (4.9)396

is required in this case to fully specify the problem. Let397

Q` =

j=M−1∑
j=`+1

e−r(tj−t`)qj (4.11)

be the discounted future contributions as of time t`. If398

W+
i > W ∗e−r(T−ti) −Qi, (4.12)

then the optimal strategy is to (i) invest W ∗e−r(T−ti)−Qi in the risk-free bond and (ii) invest cash399

ci = W−i + qi−
(
W ∗e−r(T−ti) −Qi

)
with an arbitrary allocation to the stock index and bonds. This400

is optimal in this case since EX
+
i ,t

+
i

[
min(W ∗ −WT , 0)2

]
= 0, which is the minimum of Problem401

(4.8). Consistent with the terminology in the literature (Bauerle and Grether, 2015), we term the402

amount403

ci = max

(
W−i + qi −

(
W ∗e−r(T−ti) −Qi

)
, 0

)
(4.13)

as surplus cash. We can invest the surplus cash in the stock and bond in any proportion. In our404

case, we impose the constraint that the surplus cash is invested in the bond.405

Remark 4.5 (Numerical Solution: Quadratic Shortfall). The constrained problem (TCQStn(W ∗))406

has no closed form solution in general. We formulate problem (TCQStn(W ∗)) as a dynamic program,407

which requires solution of nonlinear Hamilton-Jacobi-Bellman PIDEs, which we solve using the408

techniques in Forsyth and Labahn (2018). In order to fix EX
+
0 ,t

+
0

P(W ∗)[WT ] = d, we solve for the value409

of W ∗ such that410

f(W ∗) = E
X+

0 ,t
+
0

P(W ∗)[WT ]− d = 0 (4.14)

using a Newton iteration, as in Remark 4.3.411

412
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4.3 Relation to Pre-commitment MV413

The pre-commitment MV problem (PCMVtn (λ)) for a fixed constant λ > 0, and the value function414

V (s,b,t) can be formally defined as:415

(PCMVtn (λ)) : V
(
s,b,t−n

)
= sup

Pn∈A

{
EX

+
n ,t

+
n

Pn
[WT ]−

λ V arX
+
n ,t

+
n

Pn
[WT ]

∣∣∣∣X(t−n ) = (s,b)

}
(4.15)

s.t. Surplus cash withdrawn (4.16)

subject to


(St, Bt) follow processes (2.4)-(2.5); t /∈ T
W+
n = s+ b+ qn ; X+

n = (S+
n , B

+
n )

S+
n = pnW

+
n ; B+

n = W+
n − S+

n

p` ∈ Z = [0,1] ; ` = n, . . . ,M − 1

(4.17)

Note that we have dropped the time consistent constraint from Problem (PCMVtn (λ)), but in-416

cluded the constraint that surplus cash is withdrawn. Let P∗tn = {p∗n, p∗n+1, . . . , p
∗
M−1} be the optimal417

controls for Problem (PCMVtn (λ)) and let P∗t` be the optimal controls for Problem (PCMVt` (λ))418

with t` > tn. Then, the pre-commitment strategy can be time inconsistent in the sense that in419

general420

p∗k ∈ P∗t` 6= p∗k ∈ P∗tn ; k > ` > n (4.18)

However, is interesting to note the following result proven in (Li and Ng, 2000; Zhou and Li,421

2000):422

Theorem 4.1 (Embedding Result). Let Ppcmvtn (λ) be the optimal control for problem (PCMVtn (λ)).423

Let Ptcqstn (W ∗) be the optimal control for problem (TCQStn(W ∗)). Suppose we fix λ for problem424

(PCMVtn (λ)). Then there exists a W ∗tn(λ) such that Ptcqstn (W ∗tn(λ)) = Ppcmvtn (λ), assuming surplus425

cash (defined in equation (4.13) ) is withdrawn for both problems.426

Remark 4.6 (Extension to surplus cash withdrawal). The optimality of withdrawing surplus cash427

in the pre-commitment case is discussed in Cui et al. (2012), Bauerle and Grether (2015), and Dang428

and Forsyth (2016).429

At first sight, it is difficult to reconcile this result with the fact that problem (TCQStn(W ∗tn(λ)))430

is obviously time consistent, while problem (PCMVtn(λ)) is not time consistent. However, it431

turns out that the equivalent target in Theorem 4.1 for fixed λ is such that in general, W ∗tn(λ) 6=432

W ∗t`(λ), ` 6= n. As noted by Cong and Oosterlee (2016a;b), the pre-commitment MV strategy is433

consistent with a fixed target, but not with a risk aversion attitude. Conversely, the time consistent434

MV strategy has a constant risk aversion, but is not consistent with a fixed investment target.435

Menoncin and Vigna (2017) and Vigna (2017) provide further insight into this issue.436

Other definitions of time consistent MV are also possible. For example, He and Jiang (2017)437

suggest using an expected value constraint, at each instant in time, based on current wealth and a438

desired growth rate. Note that this objective does not attempt to hit a fixed target. Instead, the439

target simply adjusts to current wealth. We will not pursue these ideas further in this work: all of440

the adaptive strategies that we consider are formally time consistent.441
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5 Data and Parameters442

The parameters of equations (2.4) and (2.5) are estimated using data from the Center for Research443

in Security Prices (CRSP) on a monthly basis over the 1926-2015 period.2 Our base case tests use444

the CRSP 3-month Treasury bill (T-bill) index for the risk-free asset and the CRSP value-weighted445

total return index for the risky asset. This latter index includes all distributions for all domestic446

stocks trading on major U.S. exchanges. As an alternative case for additional illustrations, we447

replace the above two indexes by a 10-year Treasury index and the CRSP equal-weighted total448

return index.3 All of these various indexes are in nominal terms, so we adjust them for inflation449

by using the U.S. CPI index, also supplied by CRSP. We use real indexes since investors saving for450

retirement should be focused on real (not nominal) wealth goals.451

Appendix A discusses the methods used to calibrate the model parameters to the historical452

data. We use both a threshold technique (Cont and Mancini, 2011) and maximum likelihood (ML)453

estimation. The threshold estimator requires a parameter α, described in Appendix A. Briefly,454

we identify a jump if the magnitude of the observed return in a month is greater than α standard455

deviations from the mean expected return assuming geometric Brownian motion. Given our data456

frequency, setting α = 3 is a sensible choice (Forsyth and Vetzal, 2017). Annualized estimated457

parameters using both the threshold method with α = 3 and ML for both the value-weighted and458

equal-weighted indexes are provided in Table 5.1. As might be expected due to the small firm459

effect, the equal-weighted index has slightly higher estimated diffusion parameters (µ and σ). It460

also has a higher estimated probability of an upward jump, and jumps that tend to be a little461

larger in magnitude. More importantly for our purposes, the ML parameter estimates imply much462

more frequent and smaller jumps on average for both indexes. From the perspective of a long-463

term investor, it is probably more appropriate to model infrequent larger jumps. Hence we have a464

preference for the threshold estimates, so we use them in the numerical examples below. We also465

note that Dang et al. (2017) and Forsyth and Vetzal (2017) conduct some tests using both ML and466

threshold techniques. A range of values for α are used to estimate the jump diffusion parameters. As467

one example, Forsyth and Vetzal (2017) compute the optimal adaptive strategy using ML estimates,468

and then apply this control in a synthetic market where the stochastic process follows parameters469

which are estimated by thresholding. The investment results are robust to this form of parameter470

misspecification.471

Table 5.2 shows the average annualized returns and volatilities for the real 3-month T-bill and472

10-year U.S. Treasury indexes over the entire sample period from 1926 to 2015. The 10-year index473

earned an average return of about 130 basis points per year over the 3-month index during this474

time. The volatility of the long-term index was more than three times higher than that of the475

short-term index, but still relatively small in comparison to the volatility of the equity market index476

from Table 5.1.4477

2More specifically, results presented here were calculated based on data from Historical Indexes, ©2015 Center for
Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data
Services was used in preparing this article. This service and the data available thereon constitute valuable intellectual
property and trade secrets of WRDS and/or its third-party suppliers.

3The 10-year Treasury index was constructed from monthly returns from CRSP back to 1941. The data for
1926-1941 were interpolated from annual returns in Homer and Sylla (2005).

4Note that the effective volatility of the equity market index reflects diffusive volatility σ as well as contributions
to volatility from jumps. The effective volatility is σeff = σ2 + λE[(ξ − 1)2].
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Method µ σ λ pup η1 η2

Real CRSP Value-Weighted Index
ML .08326 .12611 3.0881 0.09963 10.837 18.913

threshold (α = 3) .08889 .14771 .32222 0.27586 4.4273 5.2613

Real CRSP Equal-Weighted Index
ML .10735 .14256 2.8166 .14407 8.3486 14.963

threshold (α = 3) .11833 .16633 .40000 .33334 3.6912 4.5409

Table 5.1: Estimated annualized parameters for double exponential jump diffusion model. Value-
weighted and equal-weighted CRSP indexes, deflated by the CPI. Sample period 1926:1 to 2015:12.
“ML” refers to Maximum Likelihood estimation.

Real 3-month T-bill Index Real 10-year Treasury Index

Mean return .00827 .02160

Volatility .019 .065

Table 5.2: Mean annualized real rates of return for bond indexes (log[B(T )/B(0)]/T ). Volatilities
(annualized) computed using log returns. Sample period 1926:1 to 2015:12.

6 Numerical Examples478

6.1 Overview479

We consider the input data summarized in Table 6.1. An investor with a horizon of 30 years makes480

real contributions each year of $10, allocated between the stock index and the bond index.481

6.2 Deterministic Strategies: Discrete vs. Continuous Rebalancing482

We first compare the use of continuous and discrete rebalancing, for the deterministic strategies, with483

periodic contributions. Table 6.2 compares the MV optimal results for the deterministic strategies484

for both discretely and continuously rebalanced cases. In each case, E[WT ] is set equal to that485

for a discretely rebalanced constant proportion strategy, with p = .5. The constant proportion486

Base Case Alternative Case

Investment horizon (years) 30 30
Equity market index Value-weighted Equal-weighted
Risk-free asset index 3-month T-bill 10-year Treasury
Initial investment W0 ($) 0.0 0.0
Real investment each year ($) 10.0 10.0
Rebalancing interval (years) 1 1

Table 6.1: Input data for examples. Cash is invested at t = 0,1, . . . , 29 years. Market parameters
are provided in Tables 5.1 and 5.2.
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Base Case Alternative Case

Strategy E[WT ] std [WT ] E[WT ] std [WT ]

Optimal deterministic (discrete) 705.6 340.6 1085.2 846
Constant proportion (continuous) 705.6 337.6 1085.2 814
Optimal deterministic (continuous) 705.6 329.5 1085.2 802

Table 6.2: Comparison of discretely and continuously rebalanced strategies for input data given in
Table 6.1 and corresponding parameters from Table 5.1 (threshold) and 5.2.

(continuously rebalanced) weights which generate these expected values of terminal wealth are487

p = .510 (base case) and p = .512 (alternative case). As expected, the continuously rebalanced488

strategy is superior to the discretely rebalanced policy, but not by much. This has the practical489

implication that infrequent rebalancing does not reduce efficiency to a large degree, while reducing490

transaction costs. Based on these results, we will assume discrete rebalancing in the following.491

6.3 Base Case: CRSP Value-Weighted Index and 3-month T-bill Index492

We next focus attention on the base case input data summarized in Table 6.1. An investor with a493

horizon of 30 years makes real contributions each year of $10, allocated between the CRSP value-494

weighted and 3-month T-bill indexes and rebalanced annually.495

6.3.1 Synthetic Market - Base Case496

We refer to a market where the underlying stock and bond indexes follow processes (2.4) and (2.5),497

with fixed parameters given in Tables 5.1 and 5.2, as a synthetic market. In other words, this is498

a market based on the historical (constant) estimated parameters. We are careful to distinguish499

tests in a synthetic market with tests that use actual historical returns (bootstrap resampling), as500

discussed below in Section 6.3.2.501

We first use a constant proportion strategy (p = 0.5) and determine the expected value of502

the terminal real wealth for this strategy. We then use this expected value as a constraint and503

determine the optimal deterministic strategy, which is the solution of problem (3.22). We use the504

same expected value as a constraint and solve for the optimal adaptive strategies: time consistent505

MV (Section 4.1) and quadratic shortfall (Section 4.2).506

We evaluate the performance of the various strategies using Monte Carlo simulation in the507

synthetic market. This case constitutes the best possible context for both the optimal deterministic508

and the optimal adaptive strategies since the associated control parameters are based on perfect509

knowledge of the stochastic properties of the market.510

We will report various statistics of the final wealthWT for these strategies. We report the mean,511

median, probability of shortfall, and Conditional Value at Risk at the 5% level, which we denote512

by CVAR(5%). In the case of the quadratic shortfall strategy, we include the surplus cash (4.13) in513

all statistics except for the standard deviation. Along any path where surplus cash ( as defined in514

equation (4.13) ) is generated, the risk of shortfall is identically zero. However, including surplus515

cash will generally increase the standard deviation. Hence it seems non-informative in this case to516

include the surplus cash in this measure of risk.517
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Let f(WT ) be the probability density of the final wealth distribution. We define CVAR(α) as518

CVAR(α) =

∫ u∗
−∞ u f(u) du

α
, (6.1)

where u∗ is defined by519 ∫ u∗

∞
f(u) du = α . (6.2)

CVAR(α) has the convenient interpretation as the mean of the worst α fraction of outcomes. Note520

that we define CVAR(α) in terms of final wealth, not losses. Hence, larger CVAR(α) corresponds521

to smaller risk.522

We can get an idea of the accuracy of our numerical results by examining Table 6.3. We first523

compute the optimal control by solving the HJB equation using a set of increasing grid sizes.524

As a by-product of computing the strategy, we also compute an approximation to E[WT ] and525

std[WT ]. We store the control determined from the HJB equation solve, and then carry our Monte526

Carlo simulations, using varying number of simulations, Nsim. Note that the Monte Carlo method527

used exact timestepping between rebalancing dates. We can see that the Monte Carlo and PIDE528

computed values are in good agreement. In the following, for the synthetic market results, we529

will report E[WT ] and std[WT ] from the PIDE computations, using the 1024 × 609 grid. The530

other statistics will be determined by using Monte Carlo simulations (but using the HJB computed531

control) using Nsim = 160,000.532

The computational cost for computing the optimal strategy is fairly modest. As an example,533

computing the quadratic shortfall strategy with a specified E[WT ] requires 5 Newton iterations on534

the coarse 512×305 grid, followed by 2 Newton iterations on the fine 1024×609 grid. Each Newton535

iteration requires two HJB PIDE solves. The total CPU time for all of the Newton iterations was536

about 45 seconds on a standard desktop.537

Table 6.4 compares the results for the constant proportion, optimal deterministic, and optimal538

adaptive strategies. By design, all three strategies have the same expected real terminal wealth.539

The optimal deterministic standard deviation is about 0.98 times that of the constant proportion540

strategy, so the optimal deterministic strategy offers little improvement over a simpler constant541

proportion strategy with the same expected terminal wealth.542

Amongst the adaptive strategies, the performance of the time consistent MV (Case 2) strategy543

is quite poor. In contrast, the time consistent MV (Case 1) strategy outperforms the deterministic544

strategies by almost all risk measures. Quadratic shortfall is superior to the time consistent MV545

(Case 1) policy by all measures except CVAR (5%).546

Recall that Proposition 3.1 shows that a constant proportion strategy dominates any determin-547

istic glide path by MV criteria, assuming that the portfolio is continuously rebalanced and that548

there is a lump sum initial investment. That result clearly does not hold in current context with549

annual rebalancing and contributions. However, the results from Table 6.4 are not very encouraging550

for the optimal deterministic strategy as it gives just very slight improvement over the simpler con-551

stant proportion alternative. Moreover, this is in a context that is tailor made for the deterministic552

strategy because the market simulations here use parameters and stochastic processes that exactly553

match those assumed when determining the optimal controls.554

The intuition underlying the marginal improvement of the optimal deterministic strategy com-555

pared to the constant proportion strategy is as follows. As the time in the strategy becomes large,556

the marginal amount contributed is small compared to the accumulated wealth (on average), hence557

the optimal strategy tends to a constant proportion (i.e. this begins to resemble the lump sum case,558
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HJB Equation Monte Carlo

Grid E[WT ] std [WT ] E[WT ] std [WT ] CVAR (5%) Nsim

512× 305 705.6 153.1 704.9 (.99) 153.5 237.4 160,000
705.5 (.49) 153.0 238.1 640,000

1024× 609 705.6 152.9 704.9 (.99) 153.4 237.4 160,000
705.4 (.49) 153.0 238.0 640,000

2048× 1217 705.6 152.8 704.9 (.99) 153.4 237.3 160,000
705.5 (.49) 153.0 237.9 640,000

Table 6.3: Synthetic market results, for the Quadratic Shortfall strategy, tests of accuracy. Grid
refers to the grid used to solve the HJB PDE: nx × nb, where nx is the number of nodes in the logS
direction, and nb is the number of nodes in the B direction. Nsim is the number of Monte Carlo
simulations. The numbers in brackets are the standard errors at the 99% confidence level. Base case
input data given in Table 6.1 and corresponding parameters from Tables 5.1 (threshold) and 5.2.

Probability of Shortfall

Strategy E[WT ] Median[WT ] std [WT ] CVAR (5%) WT < 500 WT < 600

Constant proportion (p = 0.5) 705.6 628 349 291 .28 .45
Optimal deterministic 705.6 630 341 306 .27 .45
Time consistent MV (Case 1) 705.6 688 224 305 .17 .33
Time consistent MV (Case 2) 705.6 592 477 177 .38 .51
Quadratic Shortfall 705.6 776 153 237 .12 .17

Table 6.4: Synthetic market results from 160,000 Monte Carlo simulation runs for base case input
data given in Table 6.1 and corresponding parameters from Tables 5.1 (threshold) and 5.2.

and we know from Proposition 3.1 that a constant proportion strategy will be superior to any glide559

path in this case).560

Figures 6.1 and 6.2 show the optimal controls for both the deterministic and adaptive strategies.561

As a comparison, we show the deterministic control for T = 15, 30, 50 years in Figure 6.1(a). In562

each case, E[WT ] is set to the expected final wealth for the constant proportion p = 0.5 case. Note563

that p(t)→ 0.5 as (T, t) increase, consistent with the intuition given above. In the adaptive cases,564

the control is a function of the current wealth. For ease of illustration, we show the median and the565

20th and 80th percentiles of p(Wt, t) for the quadratic shortfall case with T = 30 years in Figure566

6.1(b), which we compute by Monte Carlo simulation. Although the median value of p corresponds567

in a general way to the standard glide path (starting with a high equity allocation and declining568

as the investment horizon is approached), the wide range of values between the two percentiles569

shown for values of t > 10 years shows that the quadratic shortfall strategy depends significantly570

on accumulated wealth.571

Figure 6.2 compares the controls for the time consistent MV (Case 1) and time consistent MV572

(Case 2) strategies (see equation (4.6)). The poor performance of the Case 2 strategy (wealth573

dependent risk aversion parameter) can be traced to the rather bizarre controls generated. The574

portfolio is essentially all bonds for the first 15 years, followed by a rapid transition to all equities.575

This result has also been observed in Staden et al. (2018), where this effect is explained on the576

basis of asymptotic analysis. Intuitively, Case 2 (see equation (4.6)) has a very large effective risk577
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(b) Quadratic shortfall adaptive control
for the case with T = 30 years.

Figure 6.1: Properties of optimal strategies using base case input data from Table 6.1 and corre-
sponding parameters from Tables 5.1 (threshold) and 5.2. Synthetic market. In each case, E[WT ] is
constrained to match that of a constant proportion strategy with p = 0.5. Figure 6.1(b) is based on
160,000 Monte Carlo simulation runs. Quadratic shortfall is discussed in Section 4.2.

aversion parameter when Wt is small, which is the case at early times. Hence the strategy is to578

invest the entire portfolio in bonds. At later times, after the wealth has increased (mainly due to579

contributions) the effective risk aversion parameter has decreased enough to permit investment in580

risky assets. However, by this time, in order to hit the specified expected value of the terminal581

wealth, the equity fraction is increased to the largest possible value. For a more rigorous analysis582

of this effect, we refer the reader to Staden et al. (2018). Further insight into the various adaptive583

strategies can be obtained by examining the strategy heat maps in Figure 6.3.584

6.3.2 Resampled Historical Data - Base Case585

Although it is useful to examine strategies for synthetic markets with parameters obtained from586

historical data, it is perhaps more convincing to see how the various strategies would have performed587

on actual historical data. We use bootstrap resampling to study this.588

A single bootstrap resampled path is constructed as follows. Suppose the investment horizon is589

T years. We divide this total time into k blocks of size b years, so that T = kb. We then select590

k blocks at random (with replacement) from the historical data (from both the deflated stock and591

bond indexes). Each block starts at a random month. We then form a single path by concatenating592

these blocks. Since we sample with replacement, the blocks can overlap. To avoid end effects,593

the historical data is wrapped around, as in the circular block bootstrap (Politis and White, 2004;594

Patton et al., 2009). We repeat this procedure for many paths. The sampling is done in blocks in595

order to account for possible serial dependence effects in the historical time series. The choice of596

blocksize is crucial and can have a large impact on the results (Cogneau and Zakalmouline, 2013).597

We simultaneously sample the real stock and bond returns from the historical data. This introduces598

random real interest rates in our samples, in contrast to the constant interest rates assumed in the599

synthetic market tests and in the determination of the optimal controls.600

To reduce the impact of a fixed blocksize and to mitigate the edge effects at each block end, we601

use the stationary block bootstrap (Politis and White, 2004; Patton et al., 2009). The blocksize is602

randomly sampled from a geometric distribution with an expected blocksize b̂. A precise pseudo-603
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(a) Time consistent MV: Case 1.
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(b) Time consistent MV: Case 2.

Figure 6.2: Time consistent MV controls (see Section 4.1) using base case input data from Table 6.1
and corresponding parameters from Tables 5.1 (threshold) and 5.2. Synthetic market. E[WT ] is
constrained to match that of a constant proportion strategy with p = 0.5. 160,000 Monte Carlo
simulation runs.

(a) TCMV: Case 1. (b) TCMV: Case 2. (c) Quadratic shortfall

Figure 6.3: Heat maps of controls using base case input data from Table 6.1 and corresponding
parameters from Tables 5.1 (threshold) and 5.2. Synthetic market. E[WT ] is constrained to match
that of a constant proportion strategy with p = 0.5. TCMV: time consistent MV, Section 4.1.

23



Data series Optimal expected
block size b̂ (months)

Real 3-month T-bill index 50.1
Real 10-year Treasury index 4.7
Real CRSP value-weighted index 1.8
Real CRSP equal-weighted index 10.4

Table 6.5: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric distribution
Pr(b = k) = (1− v)k−1v. The algorithm in Patton et al. (2009) is used to determine b̂.

code description of the block bootstrap sampling technique is given in Appendix B.604

The optimal choice for b̂ is determined using the algorithm described in Patton et al. (2009).605

This approach has also been used in other tests of portfolio allocation problems recently (e.g. Dichtl606

et al., 2016). Calculated optimal values for b̂ for the various indexes are given in Table 6.5.607

We compute and store the optimal strategies (deterministic and adaptive) for the base case input608

data from Table 6.1 and the corresponding market parameters from Tables 5.1 (threshold) and 5.2.609

All strategies are constrained to have E[WT ] = 705.6 (in the synthetic market). We then apply these610

strategies using bootstrap resampling, based on the historical monthly data from 1926:1-2015:12.611

Of course, the resampled means will not be precisely the same and equal to 705.6 for this test.612

To get some idea of the effect of the number of samples used in the resampling simulations, we613

report results in Table 6.6 for a blocksize of two years with increasing numbers of resamples. In the614

following, we will report results using 10,000 bootstrap resamples.615

The results for various blocksizes are shown in Table 6.7. We omit the results for time consistent616

MV (Case 2) due to their poor performance. Choosing a blocksize that is too large will result in617

artificially low standard deviations. Table 6.7 indicates that the results are not too sensitive to618

expected blocksizes in the range of 0.5 to 2 years. Generally, the results in Table 6.7 are quite619

comparable to those from the synthetic market reported in Table 6.4. Quadratic shortfall has620

the best statistics except for CVAR. Time consistent MV (Case 1) outperforms the deterministic621

strategies by all measures. In summary, quadratic shortfall is superior to the other strategies over622

a wide range of outcomes, except in the extreme left tail.623

Figure 6.4 shows the cumulative distribution functions for the various strategies computed using624

bootstrap resampling of the actual historical data. Again, the cumulative distribution function for625

the optimal deterministic strategy is very close to that for the constant proportion strategy. The626

adaptive strategies clearly reduce risk over a wide range of outcomes, but at the cost of reducing627

the probability of very large gains. We suggest that this is an appropriate trade off for retirement628

savings. Looking at Figure 6.4, we can see that the left tail risk of the quadratic shortfall strategy629

is slightly worse than the left tail risk for the time consistent MV (Case 1) strategy. This is, of630

course, consistent with the CVAR results in Table 6.7.631

Note that the median terminal wealth for the quadratic shortfall policy is significantly larger632

than for the other strategies, for all blocksizes. The probabilities of shortfall (for moderate values633

of the terminal wealth) are also much smaller than for the other strategies, for all blocksizes.634

6.4 Alternative Case: CRSP Equal-Weighted Index and 10-year Treasury Index635

As a check on the robustness of our results, we use alternative assets. In particular, as indicated636

in Table 6.1, we replace the CRSP value-weighted index with its equal-weighted counterpart, and637

we substitute the 10-year Treasury bond index for the 3-month Treasury bill index. See Tables 5.1638
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E[WT ] Median[WT ] std [WT ] CVAR (5%) Number of resamples

699.2 756.8 137.2 279.1 1× 104

699.6 758.7 138.1 275.2 1× 105

699.4 758.6 138.1 272.7 1× 106

Table 6.6: Stationary block bootstrap: effect of number of bootstrap resamples, for base case input
data given in Table 6.1 and corresponding parameters from Tables 5.1 (threshold) and 5.2. Quadratic
shortfall strategy, expected blocksize: 2 years. Rebalanced annually, based on the synthetic market with
E[WT ] = 705.6. Calculations based on bootstrap resamples of historical data for the period 1926:1 to
2015:12.
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Figure 6.4: Cumulative distribution functions using base case input data given in Table 6.1 and cor-
responding parameters from Tables 5.1 (threshold) and 5.2. “TimeCon MV” refers to time consistent
MV, Case 1, as in equation (4.6). Distributions are computed using 10,000 bootstrap resamples of the
historical data from 1926:1 to 2015:12. Expected blocksize b̂ = 2 years. Strategies are based on the
synthetic market with E[WT ] = 705.6 in all cases.
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Probability of Shortfall

Strategy E[WT ] Median[WT ] std [WT ] CVAR (5%) WT < 500 WT < 600

Expected Blocksize b̂ = 0.25 years
Constant proportion (p = .5) 677 621 276 298 .27 .46
Optimal deterministic 676 623 268 309 .27 .46
Time consistent MV (Case 1) 684 676 195 313 .17 .34
Quadratic shortfall 698 761 146 256 .11 .17

Expected Blocksize b̂ = 0.5 years
Constant proportion (p = .5) 680 627 278 295 .28 .46
Optimal deterministic 679 624 272 306 .28 .46
Time consistent MV (Case 1) 686 676 197 313 .17 .34
Quadratic shortfall 695 758 147 252 .12 .18

Expected Blocksize b̂ = 1.0 years
Constant proportion (p = .5) 680 626 278 296 .28 .45
Optimal deterministic 679 625 270 307 .27 .45
Time consistent MV (Case 1) 691 680 199 315 .17 .34
Quadratic shortfall 695 757 146 254 .12 .18

Expected Blocksize b̂ = 2.0 years
Constant proportion (p = .5) 677 628 264 304 .27 .46
Optimal deterministic 676 625 257 312 .26 .45
Time consistent MV (Case 1) 695 681 200 330 .17 .33
Quadratic shortfall 699 757 137 279 .10 .17

Expected Blocksize b̂ = 5.0 years
Constant proportion (p = .5) 675 636 250 313 .27 .44
Optimal deterministic 674 635 246 318 .26 .44
Time consistent MV (Case 1) 701 701 197 348 .15 .33
Quadratic shortfall 708 766 130 310 .09 .16

Table 6.7: Stationary moving block bootstrap resampling results for base case input data given in
Table 6.1 and corresponding parameters from Tables 5.1 (threshold) and 5.2. Strategies are rebalanced
annually and are based on the synthetic market with E[WT ] = 705.6 in all cases. Calculations based
on 10,000 bootstrap resamples of historical data for the period 1926:1 to 2015:12.
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Probability of Shortfall

Strategy E[WT ] Median[WT ] std [WT ] CVAR (5%) WT < 700 WT < 900

Constant proportion (p = 0.5) 1085.2 874 860 332 .33 .52
Optimal deterministic 1085.2 878 846 345 .32 .52
Time consistent (Case 1) 1085.2 1029 483 310 .20 .38
Time consistent (Case 2) 1085.2 781 1261 171 .44 .58
Quadratic shortfall 1085.2 1243 342 226 .17 .23

Table 6.8: Synthetic market results from 160,000 Monte Carlo simulation runs for alternative case
input data given in Table 6.1 and corresponding parameters from Tables 5.1 (threshold) and 5.2.

and 5.2 for relevant corresponding parameter estimates. We retain the same assumptions regarding639

investment horizon, rebalancing frequency, and real cash contributions as for the base case. Using640

the 10-year Treasury bond index provides a stress test for our assumption of bond process (2.5)641

with an average long-term rate. As we shall see, when tested on bootstrapped historical data642

with stochastic bond index returns, our strategy determined using the average long-term bond643

index return produces statistical results that are very similar to the synthetic market results. This644

indicates that our parsimonious model formulation is sufficient for generating an investment strategy645

which is superior to a deterministic strategy.646

6.4.1 Synthetic Market - Alternative Case647

Table 6.8 presents the results for the constant proportion, optimal deterministic, and adaptive648

strategies. The results are very similar in qualitative terms to those seen earlier for the base case in649

Table 6.4, though investing in these two assets leads to a terminal wealth distribution with a higher650

mean, median, and standard deviation relative to using the value-weighted index and 3-month T-651

bills. We continue to observe that the optimal deterministic strategy barely outperforms a simpler652

constant weight alternative. The quadratic shortfall strategy continues to be superior to the other653

strategies by all measures except for the 5% CVAR. Again, note the poor outcomes for the time654

consistent MV (Case 2) strategy.655

Figures 6.5 and 6.6 show the optimal controls for the various strategies. For the deterministic656

control in Figure 6.5(a), we focus only on the case with T = 30 years. In the case of the adaptive657

strategies, we show the median as well as the 20th and 80th percentiles of the optimal adaptive658

control p(Wt, t). In Figure 6.5(b), the quadratic shortfall strategy often departs from the median659

allocation after about the first decade, reflecting the accumulated wealth from realized returns. As660

with the value-weighted case, Figure 6.6(a) shows that the time consistent MV (Case 1) controls661

show a tighter spread about the median, compared with the quadratic shortfall strategy. The662

time consistent MV (Case 2) controls in Figure 6.6(b) are similar to the the base case, i.e. invest663

completely in bonds for the first 15 years, followed by a rapid increase to an all equity portfolio by664

year 20.665

6.4.2 Resampled Historical Data - Alternative Case666

We use similar bootstrap resampling procedures as described above in Section 6.3.2, but this time667

for the alternative case with the equal-weight equity and 10-year Treasury indexes. Table 6.9 shows668

the results for expected blocksizes ranging from 0.25 to 5.0 years. In all cases, the quadratic shortfall669
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Figure 6.5: Properties of the strategies using alternative case input data from Table 6.1 and cor-
responding parameters from Tables 5.1 (threshold) and 5.2. In each case, E[WT ] is constrained to
match that of a constant proportion strategy with p = 0.5. Figure 6.5(b) is based on 160,000 Monte
Carlo simulation runs.
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(a) Time consistent MV: Case 1.
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(b) Time consistent MV: Case 2.

Figure 6.6: Time consistent MV controls using alternative case input data from Table 6.1 and
corresponding parameters from Tables 5.1 (threshold) and 5.2. Synthetic market. E[WT ] is constrained
to match that of a constant proportion strategy with p = 0.5. 160,000 Monte Carlo simulation runs.
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Probability of Shortfall

Strategy E[WT ] Median[WT ] std [WT ] CVAR (5%) WT < 700 WT < 900

Expected Blocksize b̂ = 0.25 years
Constant proportion (p = .5) 1015 863 615 335 .34 .53
Optimal deterministic 1014 865 602 343 .33 .53
Time consistent MV (Case 1) 1040 988 429 329 .21 .41
Quadratic shortfall 1044 1171 316 255 .16 .25

Expected Blocksize b̂ = 0.5 years
Constant proportion (p = .5) 1005 868 585 337 .33 .53
Optimal deterministic 1004 869 582 346 .33 .53
Time consistent MV (Case 1) 1033 980 421 336 .21 .42
Quadratic shortfall 1041 1163 314 260 .16 .25

Expected Blocksize b̂ = 1.0 years
Constant proportion (p = .5) 984 864 526 348 .33 .54
Optimal deterministic 982 863 516 356 .32 .54
Time consistent MV (Case 1) 1030 980 402 360 .20 .41
Quadratic shortfall 1046 1155 305 277 .16 .25

Expected Blocksize b̂ = 2.0 years
Constant proportion (p = .5) 961 865 465 373 .31 .54
Optimal deterministic 959 861 457 379 .31 .54
Time consistent MV (Case 1) 1025 974 377 410 .18 .41
Quadratic shortfall 1064 1148 277 326 .13 .22

Expected Blocksize b̂ = 5.0 years
Constant proportion (p = .5) 936 869 382 394 .29 .54
Optimal deterministic 936 866 380 397 .29 .54
Time consistent MV (Case 1) 1024 978 340 469 .15 .40
Quadratic shortfall 1090 1155 241 414 .09 .19

Table 6.9: Stationary moving block bootstrap resampling results for alternative case input data
given in Table 6.1 and corresponding parameters from Tables 5.1 (threshold) and 5.2. Strategies
are rebalanced annually and are based on the synthetic market with E[WT ] = 1085.2 in all cases.
Calculations based on 10,000 bootstrap resamples of historical data for the period 1926:1 to 2015:12.

strategy has a higher median, and lower probabilities of shortfall for WT = 700 and WT = 900.670

However, the 5% CVAR for the quadratic shortfall strategy is worse than for the other strategies.671

Figure 6.7 shows the cumulative distribution functions for the various strategies computed using672

bootstrap resampling of the historical data. The quadratic shortfall strategy dominates the other673

strategies for final wealth values greater than about WT = 600 (i.e. about 90% of the time). How-674

ever, we can see that the other strategies perform better in the extreme left tail. The time consistent675

MV (Case 1) strategy dominates the deterministic strategies except for very low probability events676

(< 1%).677

7 Misspecified Parameters678

As a final robustness check, in Appendix C, we carry out Monte Carlo simulations using parameters679

different from the strategy generating parameters. This corresponds to computing the strategy based680
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Figure 6.7: Cumulative distribution functions using alternative case input data given in Table 6.1
and corresponding parameters from Tables 5.1 (threshold) and 5.2. “TimeCon MV” refers to time
consistent MV, Case 1, as in equation (4.6). Distributions are computed using 10,000 bootstrap
resamples historical data from 1926:1 to 2015:12. Expected blocksize b̂ = 2 years. Strategies based on
the synthetic market with E[WT ] = 1085.2 in all cases.
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on an incorrect estimate of the stochastic model parameters. In particular, we focus on misspecified681

values of the stock index drift rate, which is probably the most questionable parameter. The tests682

show that all methods perform worse under an actual drift rate lower than the assumed drift rate,683

but the relative rankings of the strategies are preserved.684

685

8 A Portfolio of Employees686

We have focused on examining the allocation strategy for a single investor. However, it is straightfor-687

ward to imagine using these strategies for a company managed DC plan having many heterogeneous688

employees. Each employee has a different salary (i.e. savings rate), retirement date, median target689

wealth, and risk attitude (perhaps determined by CVAR preferences). At cash flow dates (e.g.690

monthly) we can determine the optimal bond and stock amounts for each member of the DC plan,691

based on her parameters (e.g. current accumulated wealth, retirement date). We then total up all692

the stock and bond amounts for all members of the DC plan and pool all these amounts together693

to form a large fund. Each member of the DC plan is then allocated the correct number of units694

of the pooled stock and bond indexes. This total fund is then rebalanced if necessary. This allows695

for an efficient, low cost method which allows for a personalized asset allocation strategy for each696

member of the DC plan.697

9 Conclusion698

We compare optimal deterministic (open loop) strategies to simpler constant proportion alternatives,699

based on minimizing the variance of terminal wealth for fixed expected terminal wealth. We find that700

the best possible deterministic strategy (under MV criteria) gives at most very slight improvement701

over the simpler constant proportion strategy. Moreover, the efficiency of these strategies is not702

compromised in any significant way by relatively infrequent (i.e. annual) rebalancing, as opposed to703

being continuously rebalanced.704

We also compare optimal deterministic strategies to adaptive (closed loop) strategies, based on705

two common suggestions in the literature: time consistent MV and quadratic shortfall. Under both706

synthetic markets and bootstrap resampling of historical data, we observe that:707

• Consistent with the theory, optimal deterministic strategies offer virtually no improvement708

compared to constant proportion strategies.709

• By most measures, the adaptive strategies outperform the deterministic strategies.710

• The time consistent MV objective with wealth-dependent risk aversion performs poorly com-711

pared to the time-consistent MV objective with a constant parameter.712

• The time consistent MV (constant risk aversion parameter) strategy is superior to the deter-713

ministic strategies in terms of median, standard deviation and probability of shortfall. The714

time consistent MV strategy has a slight decrease in CVAR (5%) (i.e. more risk) compared to715

the deterministic strategies in some cases.5716

• Over a wide range of outcomes the quadratic shortfall strategy is superior to the time consistent717

MV strategy (constant risk aversion parameter), but at the expense of increased left tail risk.718

5Recall that our definition of CVAR is in terms of final wealth, not losses, so a larger CVAR has less risk.
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Figure A.1: Actual and fitted log returns for real CRSP value-weighted index. Monthly data, 1926:1-
2015:12, scaled to unit standard deviation and zero mean. Standard normal density and fitted double
exponential density (threshold, α = 3) also shown.

• The ranking of the strategies is robust to misspecification of the drift of the stock index.719

720

In short, over the past decade U.S. individuals have invested heavily in TDFs, which are now721

commonly offered as a default choice. This is a clear improvement over the situation around the turn722

of the century, where the default allocation was to a money market account. However, our results723

strongly suggest that TDFs themselves may be far from an optimal solution for investors saving for724

retirement. Time consistent MV strategies (with a constant risk aversion parameter) are clearly an725

improvement compared to deterministic strategies. Depending on the investors aversion to extreme726

tail events, quadratic shortfall is also a viable strategy which is superior to time consistent MV727

over a wide range of outcomes. Of course, our main conclusion that adaptive strategies are superior728

to deterministic strategies is based on statistical properties. It is not possible to conclude that an729

adaptive strategy will beat a deterministic strategy in all future states of the world. However, on730

average an adaptive strategy is a good bet.731

Appendix732

A Calibration of Model Parameters733

In this Appendix, we discuss the estimation of the parameters of the jump diffusion process given734

by equations (2.1) and (2.3). Consider a discrete series of index prices S(ti) = Si, i = 1, . . . ,N + 1735

that are observed at equally spaced time intervals ∆t = ti+1 − ti,∀i, with T = N∆t. We assume736

equal spacing for simplicity. Given log returns ∆Xi = log (Si+1/Si), define detrended log returns737

as ∆X̂i = ∆Xi − m̂∆t, where m̂ = [log (SN+1)− log (S1)] /T .738

Figure A.1(a) shows a histogram of the monthly log returns from the real value-weighted CRSP739

total return index, scaled to zero mean and unit standard deviation. We superimpose a standard740

normal density onto this histogram. We also superimpose the fitted density for the double exponen-741

tial jump diffusion model. The plot shows that the empirical data is leptokurtic, having a higher742

peak and fatter tails than a normal distribution, consistent with previous empirical findings for743

virtually all financial time series. Figure A.1(b) zooms in on these two densities, to better reveal744

the fat tails of the jump diffusion model.745

A standard technique for parameter estimation is maximum likelihood (ML). However, it is well-746

known that the use of ML estimation for a jump diffusion model is problematic, due to multiple747

local maxima and the ill-posedness of trying to distinguish high frequency small jumps from diffusion748
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(Honore, 1998). Alternative econometric techniques have been developed for detecting the presence749

of jumps in high frequency data, i.e. on a time scale of seconds (Aït-Sahalia and Jacod, 2012).750

However, from the perspective of a long-term investor, the most important feature of a jump diffusion751

model is that it allows modelling of infrequent large jumps in asset prices. Small and frequent752

jumps look like enhanced volatility when examined on a large scale, hence these effects are probably753

insignificant when constructing a long-term investment strategy. Consequently, as an alternative754

to ML estimation, we use the thresholding technique described in Mancini (2009) and Cont and755

Mancini (2011). This procedure is considered to be more efficient for low frequency data.756

Suppose we have an estimate for the diffusive volatility component σ̂. Then we detect a jump757

in period i if758 ∣∣∣∆X̂i

∣∣∣ > A σ̂ √∆t

(∆t)β
(A.1)

where β,A > 0 are tuning parameters (Shimizu, 2013), and σ̂ is our most recent estimate of759

volatility. An iterative method is used to determine the parameters (Clewlow and Strickland, 2000).760

The intuition behind equation (A.1) is simple. If we choose A = 3, say, and β � 1, then equation761

(A.1) identifies an observation as a jump if the observed log return exceeds a 3 standard deviation762

geometric Brownian motion change. Typically, β in equation (A.1) is quite small, β ' .01− .02. For763

details, we refer the reader to Dang and Forsyth (2016). As described in Dang and Forsyth (2016),764

we replace A/(∆t)β by the parameter α. Use of α = 3 for monthly data results in fairly infrequent,765

large jumps. Additional details concerning the ML and threshold estimators can be found in Dang766

and Forsyth (2016) and Forsyth and Vetzal (2017).767

768

B Bootstrap Resampling769

Suppose we are given a sequence of historical returns ∆Xi, i = 1, . . . , N . We wish to draw a770

sequence of Ns < N returns from this historical sequence, using a stationary block bootstrap771

resampling technique (Politis and Romano, 1994).772

Given an estimate of the expected blocksize (Patton et al., 2009), we use Algorithm B.1 to773

produce a sequence of returns of length Ns from the historical return sequence of length N . Note774

that we use a circular block bootstrap, i.e. the historical sequence is wrapped around if necessary.775

Algorithm B.1 produces a single sequence of returns of the required length. This algorithm is then776

called Nsim times to generate statistics based on Nsim bootstrap resamples.777

For ease of exposition, we have written Algorithm B.1 as taking as input a single sequence of778

historical returns and producing a single resampled sequence of output returns. In our application,779

we simultaneously sample from the two historical stock and bond sequences of returns, and output780

a paired set of stock and bond resampled returns.781

782

C Robustness to Misspecified Parameters783

In this Appendix, we test the robustness of the better performing strategies to misspecified pa-784

rameters. We compute and store the optimal controls as usual in the synthetic market, using the785

parameters in Tables 5.1 (threshold) and 5.2. We then carry out Monte Carlo simulations the using786

stored controls, except that in these simulations we reduce the drift rate µ (equation (2.3)) of the787

stock process by 200 basis points. This corresponds to using an incorrect (optimistic) estimate of788

the drift rate for stocks.789
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Require: Function geo( b̂ ) ; returns draw from a shifted geometric distribution with mean b̂
Require: Function rand_int( N ) ; returns a uniformly distributed draw from {1,2, . . . , N}

input: Vector of returns ∆Xi ; i = 1, . . . , N ; Expected block size b̂ ; Number of samples Ns

initialize: actual_block_size = 0 ; total_samples = 1 ; sub_block_total = N

while (total_samples ≤ Ns) do
if (sub_block_total > actual_block_size) then
actual_block_size = geo( b̂ ) {restart subblock}
index = rand_int( N ) {choose random starting index}
sub_block_total = 1

end if
index = mod( index, N) {circular bootstrap}
out_array( total_samples ) = ∆Xindex

index += 1 ; total_samples += 1 ; sub_block_total += 1
end while

return out_array(i) ; i = 1, . . . , Ns

Algorithm B.1: A single stationary block bootstrapped sequence of returns.

Probability of Shortfall

Strategy E[WT ] Median[WT ] std [WT ] CVAR (5%) WT < 500 WT < 600

Constant proportion (p = 0.5) 580 522 272 250 .46 .64
Time consistent MV (Case 1) 605 588 214 228 .32 .52
Quadratic shortfall 645 718 197 167 .24 .33

Table C.1: Synthetic market results from 160,000 Monte Carlo simulation runs. Strategy computed
using base case input data given in Table 6.1 and corresponding parameters from Tables 5.1 (threshold)
and 5.2. Monte Carlo simulations carried out reducing the stock asset drift µ (equation (2.3) ) by
200bps. Effective real stock index geometric return .045.

The results for the base case are shown in Table C.1 and for the alternate case in Table C.2790

Obviously, all the statistics for all strategies are worse than for the unreduced drift simulations.791

However, the relative rankings of all the strategies are preserved. The adaptive strategies perform792

better than the the constant weight strategy, with the exception of the CVAR (5%) statistic. In793

addition, the quadratic shortfall statistics are superior to the time consistent MV (case 1) strategy794

with the exception of CVAR.795

Recall that tests in Ma and Forsyth (2016) show that the effect of a mean reverting stochas-796

tic volatility process is negligible for a long-term investor, with typical historical mean reversion797

speeds. The tests were carried out using the pre-commitment mean variance objective function. It798

is interesting to see the effect of a more extreme situation, where we allow the volatility to be drawn799

from a uniform distribution in the range [σmin, σmax]. Table C.3 shows the Monte Carlo simulation800

results for the alternate case data. The simulation results are virtually indistinguishable from the801

constant volatility case.802
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Probability of Shortfall

Strategy E[WT ] Median[WT ] std [WT ] CVAR (5%) WT < 700 WT < 900

Constant proportion (p = 0.5) 876 716 647 283 .48 .67
Time consistent (Case 1) 927 870 458 212 .33 .53
Quadratic shortfall 953 1099 396 160 .29 .37

Table C.2: Synthetic market results from 160,000 Monte Carlo simulation runs. Strategy computed
using the alternative case input data given in Table 6.1 and corresponding parameters from Tables 5.1
(threshold) and 5.2. Monte Carlo simulations carried with stock asset drift µ (equation (2.3) ) reduced
by 200 bps. Effective real stock index geometric return .06.

Probability of Shortfall

Strategy E[WT ] Median[WT ] std [WT ] CVAR (5%) WT < 700 WT < 900

Constant proportion (p = 0.5) 1079 873 824 331 .34 .52
Time consistent (Case 1) 1082 1027 483 309 .20 .38
Quadratic shortfall 1082 1243 342 223 .17 .24

Table C.3: Synthetic market results from 160,000 Monte Carlo simulation runs. Strategy computed
using the alternative case input data given in Table 6.1 and corresponding parameters from Tables 5.1
(threshold) and 5.2. Monte Carlo simulations carried with volatility σ drawn from a uniform distri-
bution σ ∈ [.09256, .19256], at each rebalancing date.
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