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Abstract1

We consider the late accumulation stage, followed by the full decumulation stage, of an2

investor in a defined contribution (DC) pension plan. The investor’s portfolio consists of a stock3

index and a bond index. As a measure of risk, we use conditional value at risk (CVAR) at the4

end of the decumulation stage. This is a measure of the risk of depleting the DC plan, which is5

primarily driven by sequence of return risk and asset allocation during the decumulation stage.6

As a measure of reward, we use Ambition, which we define to be the probability that the terminal7

wealth exceeds a specified level. We develop a method for computing the optimal dynamic8

asset allocation strategy which generates points on the efficient Ambition-CVAR frontier. By9

examining the Ambition-CVAR efficient frontier, we can determine points that are Median-10

CVAR optimal. We carry out numerical tests comparing the Median-CVAR optimal strategy11

to a benchmark constant proportion strategy. For a fixed median value (from the benchmark12

strategy) we find that the optimal Median-CVAR control significantly improves the CVAR.13

In addition, the median allocation to stocks at retirement is considerably smaller than the14

benchmark allocation to stocks.15

Keywords: optimal control, ambition-CVAR, asset allocation, DC plan, resampled backtests16
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1 Introduction19

In the pension benefit world, it is clear that the prevailing trend is towards the elimination of20

defined benefit (DB) plans, in favour of defined contribution (DC) plans.1 This is simply a result21

of the desire of many corporations (and government institutions) to de-risk their balance sheets. In22

some countries, including Australia and the United States, the majority of pension fund assets are23

currently held in DC plans rather than DB plans.224

aDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
paforsyt@uwaterloo.ca, +1 519 888 4567 ext. 34415.

1See, for example, “The extinction of defined-benefit plans is almost upon us,” Globe and Mail,
October 4, 2018. https://www.theglobeandmail.com/investing/personal-finance/retirement/
article-the-extinction-of-defined-benefit-pension-plans-is-almost-upon-us/

2See the Thinking Ahead Institute’s “Global Pension Assets Study 2018”, www.thinkingaheadinstitute.org/-/
media/Pdf/TAI/Research-Ideas/GPAS-2018.pdf
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A typical DC plan requires the employee and employer to contribute a fraction of the employee’s25

yearly salary into a tax-advantaged retirement account, during the accumulation phase. The em-26

ployee then determines how to invest the accumulated funds. Usually, there is a menu of choices27

available, primarily stock and bond index funds. Once the employee retires (the decumulation28

phase), the employee must select (i) a yearly withdrawal amount from the DC account and (ii)29

an asset allocation strategy. The risk faced by the retiree during the decumulation phase is that30

investment returns may be insufficient to fund the withdrawals, and the retiree may run out of31

savings.32

Although it is commonplace in the academic literature to suggest that DC plan holders should33

purchase an annuity upon retirement, this rarely occurs in practice (Peijnenburg et al., 2016).34

MacDonald et al. (2013) list a variety of reasons why investors do not purchase annuities, such as35

poor pricing, lack of true inflation protection, no possible legacy, and no access to capital in the36

event of emergencies.37

Target Date Funds (TDFs) (Basu et al., 2011) are popular products which have seen widespread38

adoption in recent years. To and through TDFs are suggested to be a possible method for han-39

dling asset allocation strategies for DC plan holders during accumulation and decumulation phases.40

These TDFs use deterministic, age dependent strategies, which typically have high equity weights41

during the early accumulation years, which decrease as the plan holder nears retirement. Some42

practitioners then advocate a gradual in increase in equity weights after retirement, to reduce the43

risk of exhausting savings (Kitces and Pfau, 2015). At the end of 2019, in the US, there was over44

$1.4 trillion of DC plan assets invested in TDFs.3.45

However, recent research has cast doubt on deterministic asset allocation strategies. Graf (2017);46

Forsyth and Vetzal (2019) find that deterministic strategies are no better than constant weight47

strategies with the constant weight selected as the time averaged deterministic equity weight. Em-48

pirical backtests support this conclusion (Poterba et al., 2009; Esch and Michaud, 2014).49

Another possible method for generating guaranteed cash flows during retirement is a variable50

annuity. As pointed out in Horneff et al. (2015), variable annuities with guaranteed cash flows are51

specifically designed to mitigate decumulation risk. A typical example of this sort of contract is52

a Guaranteed Lifelong Withdrawal Benefit (GLWB) (Piscopo and Haberman, 2011; Forsyth and53

Vetzal, 2014; Feng and Yi, 2019). This contract allows more investor control over assets compared54

with a traditional annuity, and provides a guaranteed lifelong cash flow which has some inflation55

protection, due to ratchet type guarantees based on market performance. However, after the finan-56

cial crisis, many insurance companies exited the variable annuity business, or reduced benefits and57

increased fees. Variable annuities are regarded as unattractive now by many financial advisors.458

A standard technique used in the literature for DC plan asset allocation involves the use of util-59

ity functions, see, for example Blake et al. (2014); Campanele et al. (2015); Michaelides and Zhang60

(2017). However, as noted by Vigna (2014), traditional utility functions used in the economic litera-61

ture often have obscure parameters, which would be difficult to interpret for retail investors. Based62

on objective functions and asset allocation strategies which are easily explainable, Forsyth et al.63

(2019) compare strategies based on such criteria as minimizing probability of ruin and quadratic64

shortfall.65

Another strand of literature is empirical, i.e. based on studying how people nearing retirement66

actually invest (Fagereng et al., 2017). There is, of course, no reason to suppose that current retail67

investors’ strategies are optimal in any sense.68

3https://www.investmentnews.com/target-date-sales-returns-up-2019-187835
4See, for example, “5 Reasons Why You Should Never Buy A Variable Annuity,” https://www.forbes.com/sites/

jrose/2015/03/28/5-reasons-why-you-should-never-buy-a-variable-annuity
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We should mention the recent literature on the use of modern tontines. Modern tontines69

(Milevsky and Salisbury, 2015; Braughtigam et al., 2017) allow investors to pool longevity risk70

without having to buy an annuity. There is, however, no guarantee of cash flows. Hence the71

expected return on a pure tontine is higher than that of an annuity.72

There is a standard rule-of-thumb advocated by financial planners for decumulation strategies,73

which relies on the 4 per cent rule. Based on historical backtests, Bengen (1994) suggests investing74

50% in bonds and 50% in stocks, and rebalancing annually. The backtests, based on rolling 3075

year periods, show that if the investor withdraws 4% of the initial value of the portfolio for 3076

years (the withdrawals are escalated to preserve real purchasing power) and rebalances annually,77

then the investor would have never depleted their portfolio over any historical rolling 30 year pe-78

riod. Increasing the withdrawal rate significantly resulted in depletion of the portfolio during some79

historical periods.80

A more recent spending rule strategy is based on an Annually Recalculated Virtual Annuity81

(ARVA). The ARVA strategy determines the yearly spending amount based on the current portfolio82

wealth, and the amount that would be generated by a virtual fixed term annuity, computed each83

year. Westmacott and Daley (2015) suggests using a fixed term, which is recomputed each year,84

based on outliving 80% of the retiree’s peers. This ARVA rule takes into account mortality effects,85

and is guaranteed never to exhaust the portfolio. However, this comes at the cost of possibly highly86

variable withdrawal amounts each year (Waring and Siegel, 2015; Westmacott and Daley, 2015;87

Forsyth et al., 2020). In fact, the withdrawal amount may become very small.88

For an extensive review of strategies during the decumulation phase, we refer the reader to89

(MacDonald et al., 2013). In addition, Bernhardt and Donnelly (2018) discuss a variety of concerns90

of DC plan investors, including bequest motives, the possibility of running out of savings, and91

maximizing real (inflation adjusted) withdrawals. The authors discuss the merits and demerits of92

the utility function approach, practitioner rules of thumb, target based approaches, minimizing the93

probability of ruin, and the use of tontines. The authors note that typical constant weight or glide94

path strategies often have non-negligible probabilities of both tail events, in which the investor runs95

out of savings, or ends up leaving a very large bequest. Neither of these outcomes is (presumably)96

desirable. The authors conclude97

“There are many ways of solving the problem of how much to withdraw as income and how98

to invest savings in retirement. There is no solution that is appropriate for everyone and99

neither is there a single solution for any individual.” (Bernhardt and Donnelly, 2018)100

A survey revealed the unexpected result that the majority of respondents feared outliving their101

assets more than dying.5 In view of this fact, our objective in this paper is to focus on conservative102

asset allocation strategies which minimize worst case scenario risk. Of course, it must be recognized103

that investing solely in low-risk assets (e.g. bonds) will result in a high probability of portfolio104

depletion, with any reasonable withdrawal rate.105

106

As a measure of risk, we will use the Conditional Value at Risk, denoted by CVARα, which is107

the mean of the worst α fraction of outcomes. Note that we have defined CVAR here in terms of108

terminal wealth, not losses. Hence a larger value of CVAR is desirable, i.e. has less risk. CVAR109

has the convenient intuitive interpretation as the dollar risk of depleting the DC plan account at110

the end of the decumulation stage. It is then possible for the DC plan holder to compare this risk111

with other possible assets (e.g. the retiree’s home).112

5“Reclaiming the future,” Allianz Life Insurance Company of North America, White paper, 2010
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Note that a major problem with a DC plan is sequence of return risk during the decumulation113

stage. A sequence of poor returns, during the initial decumulation stage, has a devastating impact114

on the portfolio at later times. Although a sequence of poor returns immediately after retirement is a115

fairly low probability event, this will lead to early depletion of the retirement account. Consequently,116

we consider the CVAR of the terminal wealth as an appropriate measure of the consequences of117

sequence of return risk.118

Let WT be the terminal wealth at time T . As a measure of reward, we will use Ambition Aβ ,119

which we define to be Pr[WT > β]. Using this definition of reward will ensure that rare events120

with large payoffs will not skew the results, consistent with our search for a conservative strategy.121

The multi-period Pareto optimal Ambition-CVAR strategies will form an Ambition-CVAR efficient122

frontier. The point on this frontier where Aβ = .50 is Median-CVAR optimal, in the sense that123

with this fixed value of median β, no other strategy has a larger (more desirable) CVAR.124

We remark that the CVAR above is determined at the initial time, with the consequence that125

this is a pre-commitment strategy. However, this strategy (at time zero) is identical to the optimal126

control for an induced time consistent objective function, hence is implementable. This is discussed127

at some length in Forsyth (2020). The concept of an induced time consistent strategy is also128

addressed in Strub et al. (2019).129

We first devise a method to compute points on the Ambition-CVAR efficient frontier. Then,130

given a benchmark strategy with generates a given median terminal wealthMedian[WT ], we search131

for the point on the Ambition-CVAR efficient frontier, which has the sameMedian[WT ]. This gives132

us the strategy which generates the largest possible CVAR, for this Median[WT ].133

In our numerical examples, we consider a two asset portfolio, consisting of a stock index and134

a constant maturity bond index. We consider an investor in the late accumulation stage, followed135

by the full decumulation stage. Consequently, this example will focus on the effects of sequence of136

return risk during the decumulation stage.137

We fit the stochastic process parameters to historical monthly real (i.e. inflation adjusted) return138

data in the range 1926:1-2018:12. We term the market where the assets follow the parametric model139

fit to the long term data the synthetic market. For our benchmark strategy, we consider a constant140

proportion policy, where rebalancing is carried out annually, in the synthetic market. We then141

determine (numerically) points which are Median-CVAR optimal, so that Median[WT ] is the same142

as given from the benchmark strategy.143

We examine two cases for the benchmark policy: a conservative investor and an aggressive144

investor. In both cases, the Median-CVAR optimal strategy has the same Median[WT ] as the145

benchmark strategy, but significantly improved CVARα.146

We compute and store optimal dynamic Median-CVAR controls in the synthetic market. Then,147

we use these controls in bootstrapped resampling tests based on historical market returns. In this148

historical market, we see once again that the Median-CVAR optimal control produces essentially149

the same Median[Wt] as the benchmark constant proportion strategy, but with much improved150

CVARα. This indicates that our conclusions are robust to parametric model misspecification.151

It is interesting to observe from the control heat maps for the Median-CVAR optimal strategy,152

that the regions of high bond weightings (as a function of wealth and time) are multiply connected.153

This is due to the objective function, which puts a high priority on protecting the CVARα. Only154

after we have a high probability of achieving the specified value of CVARα does the strategy switch155

to attempting to hit the Median[WT ] target. This is very unusual type of control, and contrasts156

to the controls observed in Forsyth et al. (2019), where the high bond control regions are singly157

connected.158

In summary, the choice of a dynamic Median-CVAR optimal strategy demonstrably outperforms159

a constant proportion strategy (in terms of median and CVAR). This result holds in both the160
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synthetic market and a bootstrapped historical market. In addition, the median allocation to stocks161

at retirement, for the Median-CVAR optimal strategy is considerably smaller than the constant162

proportion benchmark policy. This is a desirable characteristic for a DC plan strategy.163

However, directly targeting tail risk (as measured by CVAR) comes at a cost.164

• It is relatively expensive to reduce risk, in the sense that small improvements in CVAR are165

costly in terms of reduced Median values of terminal wealth.166

• The optimal Median-CVAR strategy is a complex function of wealth and time-to-go.167

These results show that it is difficult to reduce the tail-risk in the decumulation stage of a DC168

plan, even using an optimal strategy. This suggests that there is a need for a financial product169

(available at reasonable cost) to mitigate this remaining risk.170

2 Formulation171

We assume that the investor has access to two funds: a broad market stock index fund and a172

constant maturity bond index fund.173

The investment horizon is T . Let St and Bt respectively denote the real (inflation adjusted)174

amounts invested in the stock index and the bond index respectively. In general, these amounts175

will depend on the investor’s strategy over time, as well as changes in the real unit prices of the176

assets. In the absence of an investor determined control (i.e. cash injections or rebalancing), all177

changes in St and Bt result from changes in asset prices. We model the stock index as following a178

jump diffusion.179

In addition, we follow the usual practitioner approach and directly model the returns of the180

constant maturity bond index as a stochastic process, see for example Lin et al. (2015); MacMinn181

et al. (2014). This avoids the intermediate step of postulating a real interest rate process, and has182

the advantage that estimating model parameters is straightforward. As in MacMinn et al. (2014),183

we assume that the constant maturity bond index follows a jump diffusion process as well.184

Let St− = S(t − ε), ε → 0+, i.e. t− is the instant of time before t, and let ξs be a random185

number representing a jump multiplier. When a jump occurs, St = ξsSt− . Allowing for jumps186

permits modelling of non-normal asset returns. We assume that log(ξs) follows a double exponential187

distribution (Kou, 2002; Kou and Wang, 2004). If a jump occurs, psu is the probability of an upward188

jump, while 1− psu is the chance of a downward jump. The density function for y = log(ξs) is189

f s(y) = psuη
s
1e
−ηs1y1y≥0 + (1− psu)ηs2e

ηs2y1y<0 , (2.1)

where 1/ηs1 is the mean upward jump size, and 1/ηs2 is the mean downward jump size. We also190

define191

ζs = E[ξs − 1] =
psuη

s
1

ηs1 − 1
+

(1− psu)η
s
2

ηs2 + 1
− 1 . (2.2)

In the absence of control, St evolves according to192

dSt
St−

=
(
µs − λsξζs

)
dt+ σs dZs + d

 πst∑
i=1

(ξsi − 1)

 , (2.3)

where µs is the (uncompensated) drift rate, σs is the volatility, dZs is the increment of a Wiener193

process, πst is a Poisson process with positive intensity parameter λsξ, and ξsi are i.i.d. positive194
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random variables having distribution (2.1). Moreover, ξsi , π
s
t , and Zs are assumed to all be mutually195

independent.196

Similarly, let the amount in bonds be Bt− = B(t − ε), ε → 0+. In the absence of control, Bt197

evolves as198

dBt
Bt−

=
(
µb − λbξζb + µbc1{Bt−<0}

)
dt+ σb dZb + d

 πbt∑
i=1

(ξbi − 1)

 , (2.4)

where the terms in equation (2.4) are defined analogously to equation (2.3). In particular, πbt is a199

Poisson process with positive intensity parameter λbξ, and ξ
b
i has distribution200

f b(y = log ξb) = pbuη
b
1e
−ηb1y1y≥0 + (1− pbu)ηb2e

ηb2y1y<0 , (2.5)

and ζb = E[ξb−1]. ξbi , π
b
t , and Zb are assumed to all be mutually independent. The term µbc1{Bt−<0}201

in equation (2.4) represents the extra cost of borrowing (the spread).202

The diffusion processes are correlated, i.e. dZs ·dZb = ρsbdt. The stock and bond jump processes203

are assumed mutually independent.204

205

Remark 2.1 (Stock and Bond Processes). Equations (2.3) and (2.4) can be enhanced in many206

ways, such as including stochastic volatility effects. However, previous studies have shown that207

stochastic volatility appears to have little consequences for long term investors (Ma and Forsyth,208

2016).209

Note that we have also assumed that the stock and bond jump processes are independent, see210

Appendix A for an analysis of the historical data which suggests that this is a reasonable approxi-211

mation. At the other extreme, it is possible to assume that the jump processes are described by a212

common-shock structure (Xu, 2018). More generally, the jump process could be modelled using a213

full two factor jump process with general distributions (Clift and Forsyth, 2008), and all the methods214

described in this paper could be used in this case as well.215

As a robustness check, we will (i) determine the optimal controls using the parametric model216

based on equations (2.3) and (2.4) and (ii) use these controls on bootstrapped resampled historical217

data, which makes no assumptions about the underlying bond and stock stochastic processes.218

219

We define the investor’s total wealth at time t as220

Total wealth ≡Wt = St +Bt. (2.6)

We impose the constraints that (assuming solvency) shorting stock and using leverage (i.e. bor-221

rowing) are not permitted, which would be typical of a DC plan retirement savings account. In222

the event of insolvency (due to withdrawals), the portfolio is liquidated, trading ceases and debt223

accumulates at the borrowing rate.224

3 Notational Conventions225

To avoid subscript clutter, in the following, we will occasionally use the notation St ≡ S(t), Bt ≡226

B(t) and Wt ≡ W (t). Let the inception time of the investment be t0 = 0. We consider a set T of227

pre-determined rebalancing times,228

T ≡ {t0 = 0 < t1 < · · · < tM = T}. (3.1)229
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For simplicity, we specify T to be equidistant with ti − ti−1 = ∆t = T/M , i = 1, . . . ,M . At230

each rebalancing time ti, i = 0, 1, . . . ,M − 1, the investor (i) injects an amount of cash qi into the231

portfolio, and then (ii) rebalances the portfolio. At tM = T , the final cash flow qM occurs, and the232

portfolio is liquidated. Note that cash flows can be positive (injection) or negative (withdrawals).233

In the following, given a time dependent function f(t), then we will use the shorthand notation234

f(t+i ) ≡ lim
ε→0+

f(ti + ε) ; f(t−i ) ≡ lim
ε→0+

f(ti − ε) . (3.2)

We assume that there are no taxes or other transaction costs, so that the condition235

W (t+i ) = W (t−i ) + qi , (3.3)

holds. Typically, DC plan savings are held in a tax advantaged account, with no taxes triggered236

by rebalancing. With infrequent (e.g. yearly) rebalancing, we also expect transaction costs to be237

small, and hence can be ignored. It is possible to include transaction costs, but at the expense of238

increased computational cost (Staden et al., 2018).239

We denote by X (t) = (S (t) , B (t)), t ∈ [0,T ], the multi-dimensional controlled underlying240

process, and by x = (s, b) the realized state of the system.241

Let the rebalancing control pi(·) be the fraction invested in the stock index at the rebalancing242

date ti, after cash injection. Generally, pi(·) would be a function of all the state variables at t−i .243

However, since we search for the optimal strategy amongst all strategies with constant wealth, after244

cash flows, then245

pi(·) = p(S(t−i ) +B(t−i ) + qi, ti) = p(W (t+i ), ti)

W (t+i ) = S(t−i ) +B(t−i ) + qi

S(t+i ) = S+
i = pi(W

+
i ) W+

i ; B(t+i ) = B+
i = (1− pi(W+

i )) W+
i . (3.4)

Remark 3.1 (Functions of stochastic process or state.). In the following, we will regard the control246

pi(·) to be a function of the stochastic process variables, i.e. pi(·) = p(S(t−i ) +B(t−i ) + qi, ti) or the247

state variables pi(·) = p(s+ b+ qi, ti) depending on the context.248

249

Let Z represent the set of admissible values of the control pi(·). An admissible control P ∈ A,250

where A is the admissible control set, can be written as251

P = {pi(·) ∈ Z : i = 0, . . . ,M − 1} . (3.5)

As is typical for a DC plan savings account, we impose no-shorting, no-leverage constraints252

Z = [0,1] . (3.6)

We also apply the constraint that in the event of insolvency (W (t+i ) < 0), trading ceases and debt253

(negative wealth) accumulates at the appropriate bond rate of return (including a spread), i.e.254

p(W (t+i ), ti) = 0 ; if W (t+i ) < 0 . (3.7)

We also define Pn ≡ Ptn ⊂ P as the tail of the set of controls in [tn, tn+1, . . . , tM−1], i.e.255

Pn = {pn(·), . . . , pM−1(·)} . (3.8)
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4 A Measure of Risk: Definition of CVAR256

Let g(WT ) be the probability density function of wealth WT at t = T . Let257 ∫ W ∗α

−∞
g(WT ) dWT = α, (4.1)258

i.e. Pr [WT > W ∗α] = 1 − α. We can interpret W ∗α as the Value at Risk (VAR) at level α. The259

Conditional Value at Risk (CVAR) at level α is then260

CVARα =

∫W ∗α
−∞WT g(WT ) dWT

α
, (4.2)261

which is the mean of the worst α fraction of outcomes. Typically α ∈ {.01, .05}. Note that the262

definition of CVAR in equation (4.2) uses the probability density of the final wealth distribution,263

not the density of loss. Hence, in our case, a larger value of CVAR (i.e. a larger value of average264

worst case terminal wealth) is desired.265

Define X+
0 = X(t+0 ), X−0 = X(t−0 ). Given an expectation under control P, EP [·], as noted by266

Rockafellar and Uryasev (2000), CVARα can be alternatively written as267

CVARα(X−0 , t
−
0 ) = sup

W ∗
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

α
min(WT −W ∗, 0)

]
. (4.3)

The admissible set for W ∗ in equation (4.3) is over the set of possible values for WT .268

Note that the notation CVARα(X−0 , t
−
0 ) emphasizes that CVARα is as seen at (X−0 , t

−
0 ). In269

other words, this is the pre-commitment CVARα. A strategy based purely on optimizing the pre-270

commitment value of CVARα at time zero is time-inconsistent, hence has been termed by many271

as non-implementable, since the investor has an incentive to deviate from the the pre-commitment272

strategy at t > 0. However, in the following, we will consider the pre-commitment strategy merely273

as a device to determine an appropriate level of W ∗ in equation (4.3). If we fix W ∗ ∀t > 0, then274

this strategy is the induced time consistent strategy (Strub et al., 2019), hence is implementable.275

We delay further discussion of this subtle point to later sections.276

4.1 Bounds on CVAR277

From equation (4.2)278 ∣∣∣∣ 1α
∫ W ∗α

−∞
WT g(WT ) dWT

∣∣∣∣ =
1

α

∣∣∣∣ ∫ min(W ∗α,0)

−∞
WT g(WT ) dWT +

∫ max(W ∗α,0)

0
WT g(WT ) dWT

∣∣∣∣
≤ 1

α

∣∣∣∣ ∫ 0

−∞
WT g(WT ) dWT

∣∣∣∣+
1

α

∣∣∣∣ ∫ ∞
0

WT g(WT ) dWT

∣∣∣∣ . (4.4)

Define279

Q+ =

i=M∑
i=0

max(qi, 0) +W0 ; Q− =

i=M∑
i=0

min(qi, 0) , (4.5)

where W0 = S0 + B0 ≥ 0. Note that due to the form of the SDEs (2.3) and (2.4), and the no-280

shorting, no-leverage constraint (3.6), then WT < 0 can only be a result of withdrawals. Once281

insolvency occurs (i.e. Wt < 0), then trading ceases as in equation (3.7). Trading can resume only if282
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future cash injections restore solvency. Assuming that µs > µb (which would normally be the case),283

then the maximum expected value of terminal wealth occurs in the case of an all-stock portfolio.284

These facts allow us to determine the following bounds:285 ∣∣∣∣ ∫ 0

−∞
WT g(WT ) dWT

∣∣∣∣ ≤ |Q−|e(µb+µbc)T∣∣∣∣ ∫ ∞
0

WT g(WT ) dWT

∣∣∣∣ ≤ Q+eµ
sT . (4.6)

Putting together equations (4.4)-(4.6) give us the following result286

Proposition 4.1 (CVAR bound). Assuming that the stock and bond processes are given by equations287

(2.3) and (2.3), with no-shorting and no-leverage constraint (3.6), no trading if insolvent (3.7), and288

that µs > µb, we have that289 ∣∣∣∣CVARα(X−0 , t
−
0 )

∣∣∣∣ ≤ 1

α
|Q−|e(µb+µbc)T +

1

α
Q+eµ

sT = Cmax . (4.7)

5 A Measure of Reward: Ambition290

CVARα is a weighted measure of risk. A standard measure of reward is the expected value of final291

wealth, i.e. EP [WT ]. However, the expected value can be criticized as being too optimistic, since292

it overweights low-probability, large payout events. To avoid this, we define the Ambition measure293

of reward at level β, Aβ as294

Aβ = EP [1WT>β] , (5.1)

which we recognize as Pr[WT > β].295

6 Pareto Optimal Points296

Recall that X(t) denotes the multi-dimensional underlying controlled stochastic process, and x is297

the realized state of the stochastic system. P denotes the control, representing the strategy as298

function of the current state, i.e. P(·) : (X(t),t) 7→ P = P(X(t),t).299

We introduce some definitions.300

Definition 6.1. Fix a control P(·), CVAR parameter α, and Ambition level β, and let (x0, 0) ≡301

(X(t = 0−), t = 0−) denote the initial state, and define302

CVARx0,0P(·) = sup
W ∗

{
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

α
min(WT −W ∗,0)

∣∣∣∣X(t−0 ) = x0

]}
,

Ax0,0P(·) = E
X+

0 ,t
+
0

P0
[1WT>β

∣∣X(t−0 ) = x0] . (6.1)

Now, consider all admissible controls P and let303

Y(α,β) =

{(
Ax0,0P(·) , CVAR

x0,0
P(·)

)
: P(·) admissible

}
, (6.2)

denote the achievable Ambition-CVAR objective set, and Y(α,β) denote its closure.304
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Definition 6.2. A point (A∗,C∗) ∈Y(α,β) is a Pareto (optimal) point if there exists no admissible305

strategy P(·) such that306

Ax0,0P(·) ≥ A∗
CVARx0,0P(·) ≥ C∗ ,

and at least one of the inequalities in equation (6.3) is strict. We denote by P the set of Pareto307

(optimal) points. Note that P ⊆Y(α,β).308

We can determine points in P using a standard scalarization method. For arbitrary scalar κ > 0,309

we define Sκ(Y(α,β)) to be the set of scalarization optimal points for the parameter κ310

Sκ(Y(α,β)) = {(A∗,C∗) ∈Y(α,β) : C∗ + κA∗ = sup
(A,C)∈Y(α,β)

(C + κA)} . (6.3)

311

Remark 6.1 (Economic meaning of κ.). Mathematically, the scalar κ is simply a device to convert312

a multi-objective optimization problem into a single objective function. However, 1/κ has the con-313

venient interpretation as the investor’s aversion to CVAR risk. If κ → ∞, then the investor only314

desires to maximize Pr[WT > β]. On the other hand, if κ→ 0, the the investor desires to maximize315

CVAR above all else.316

We then define the Ambition-CVAR scalarization optimal set, denoted by S(Y(α,β)), as317

S(Y(α,β)) =
⋃
κ>0

Sκ(Y(α,β)) , (6.4)

where we note that it is possible for Sκ(Y(α,β)) to be empty for some κ > 0.318

We recognize the difference between the set of all Ambition-CVAR Pareto optimal points P319

and the set of Ambition-CVAR scalarization optimal points S(Y(α,β)) defined in equation (6.4). In320

general, S(Y(α,β)) ⊆ P. However, the converse may not hold, if the achievable Ambition-CVAR321

objective set Y(α,β) is not convex We restrict our attention to determining S(Y(α,β)).322

Definition 6.3 (Supporting Hyperplane). A supporting hyperplane w.r.t. Y(α,β) exists at (A0,C0) ∈323

Y(α,β) if there exists κ ≥ 0 such that, ∀(A,C) ∈ Y(α,β)324

C + κA ≤ C0 + κA0 . (6.5)

An alternative geometric characterization of S(Y(α,β)) is the following, which follows immediately325

from Definition 6.3 and equation (6.3)326

Proposition 6.1. A point (A0,C0) ∈ Y(α,β) is a point in S(Y(α,β)) if and only if (A0,C0) has a327

supporting hyperplane w.r.t. Y(α,β).328

Lemma 6.1 (Nonemptyness). Assuming the conditions for Proposition 4.1 are satisfied, then329

Sκ(Y(α,β)) is nonempty ∀κ > 0, i.e. ∃(A0,C0) ∈Y(α,β) such that330

C0 + κA0 = sup
(A,C)∈Y(α,β)

(C + κA) . (6.6)

Proof. Since κ > 0, 0 ≤ A ≤ 1, and C ≤ Cmax from Proposition 4.1, then the objective function331

C + κA is bounded from above.332
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Lemma 6.2 (Monotonicity properties). Let (A(κ),C(κ)) ∈ Sκ(Y(α,β)), and (A(κ′),C(κ′)) ∈ Sκ′(Y(α,β)).333

Then if κ′ > κ334

A(κ′) ≥ A(κ) and C(κ′) ≤ C(κ) . (6.7)

Proof. This proof is similar to that used in Dang et al. (2016). We include this for the reader’s335

convenience. Choose κ′ > κ. From Lemma 6.1, Sκ(Y(α,β)) and Sκ′(Y(α,β)) are non-empty. By336

definition337

C(κ) + κA(κ) ≥ C(κ′) + κA(κ′) (6.8)
C(κ′) + κ′A(κ′) ≥ C(κ) + κ′A(κ) . (6.9)

From equation (6.9)338

−(C(κ) + κ′A(κ)) ≥ −(C(κ′) + κ′A(κ′)) . (6.10)

Adding equations (6.8) and (6.10) gives339

(κ− κ′)(A(κ))− A(κ′)) ≥ 0 , (6.11)

which, noting that (κ− κ′) < 0, gives340

A(κ′) ≥ A(κ) . (6.12)

Multiply equation (6.8) by κ′ and equation (6.10) by κ gives341

κ′C(κ) + κ′κA(κ) ≥ κ′C(κ′) + κ′κA(κ′) , (6.13)
−(κC(κ) + κκ′A(κ)) ≥ −(κC(κ′) + κκ′A(κ′)) . (6.14)

Adding equations (6.13) and (6.14) gives342

(κ′ − κ)C(κ) ≥ (κ′ − κ)C(κ′) . (6.15)

Noting that (κ′ − κ) > 0, then equation (6.15) implies343

C(κ′) ≤ C(κ) . (6.16)

344

6.1 Outperforming a benchmark strategy345

Consider an arbitrary admissible benchmark strategy with control P∗ ∈ A, with initial state X−0 .346

This strategy generates CVARx0,0P∗(·). Now, choose β
∗ such that347

Ax0,0P∗(·) = E
X+

0 ,t
+
0

P∗0
[1WT>β∗ ] = 0.5 , (6.17)

so that β∗ is the median under the strategy P∗. Our objective is to determine a strategy which348

outperforms the benchmark strategy in the Pareto optimal sense.349
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Definition 6.4 (Outperformance). Given a benchmark strategy P∗ which generates (Â, Ĉ) such350

that351

(Â, Ĉ) =

(
Ax0,0P∗(·) = 0.5,CVARx0,0P∗(·)

)
∈Y(α,β∗) , (6.18)

then a strategy P(·) which generates (A,C) ∈Y(α,β∗) outperforms strategy P∗ if352

A ≥ Â
C ≥ Ĉ , (6.19)

where one of the inequalities in equation (6.19) is strict.353

Remark 6.2 (Other outperformance percentiles). We have restricted attention to Y(α,β∗) such that354

β∗ corresponds to the median of the benchmark strategy. We can obviously select other choices based355

on other percentiles, which are a result of any admissible strategy. However, the median would be a356

common choice.357

6.2 Candidate outperformance strategy358

In the following, we rely on Lemma 6.1, since we require that (A(κ),C(κ)) ∈ Sκ(Y(α,β∗)) exists359

∀κ > 0. We also use the shorthand notation360

(A(0+),C(0+)) = lim
κ→0+

(A(κ),C(κ))

(A(∞),C(∞)) = lim
κ→∞

(A(κ),C(κ)) . (6.20)

These limits both exist from Lemma 6.1 and Lemma 6.2. In the following, when we use the notation361

κ = 0+ or κ = ∞, it is to be understood in the sense of equation (6.20). We make the following362

assumption.363

Assumption 6.1. Given a benchmark strategy (Â, Ĉ) ∈ Y(α,β∗), then ∃κmax > 0 such that for a364

point (A(κmax),C(κmax)) ∈ Sκmax(Y(α,β∗)), A(κmax) ≥ Â.365

Remark 6.3. A value of κmax is usually easily found in practice by examining extreme values of366

κ. The existence of this point will allow us to restrict attention to κ ∈ (0, κmax] in our search for367

outperformance strategies. If Assumption 6.1 does not hold, then we have the degenerate case that368

the only possible outperformance point is (A(∞),C(∞)).369

We can now focus on a subset of P in our search for an outperformance strategy. Given κmax370

from Assumption 6.1, we define P̂,371

P̂ = {(A,C) ∈ P : A(0+) ≤ A ≤ A(κmax)} . (6.21)

Similarly, we can restrict attention to a subset of S(Yα,β∗), and Yα,β∗372

Ŝ(Yα,β∗) = {(A,C) ∈ S(Yα,β∗) : A(0+) ≤ A ≤ A(κmax)}
Ŷα,β∗ = {(A,C) ∈ Yα,β∗ : A(0+) ≤ A ≤ A(κmax)} . (6.22)

Given a benchmark strategy which generates (Â, Ĉ), Algorithm 6.1 is used to generate a candi-373

date point (A(κ∗),C(κ∗)) on the Ambition-CVAR frontier which potentially outperforms the bench-374

mark, in terms of Definition 6.4. Algorithm 6.1 uses bisection to find the smallest value of κ such375
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Require: Function which returns (A(κ),C(κ)) on Ambition-CVAR frontier.
1: input: (Â, Ĉ) from benchmark ; tol
2: input: κmax from Assumption 6.1
3: κmin = 0, κ∗ = κmax

4: loop
5: {Uses monotonicity Equation 6.7 }
6: κtest := (κ∗ + κmin)/2
7: if (A(κtest) < Â) ) then
8: κmin = κtest
9: else

10: κ∗ = κtest
11: end if
12: if (|κ∗ − κmin| < tol ) then
13: break
14: end if
15: end loop
16:

17: if
(

(C(κ∗) > Ĉ) or (A(κ∗) > Â)

)
and

(
(C(κ∗) ≥ Ĉ) and (A(κ∗) ≥ Â)

)
then

18: found := true
19: else
20: found := false
21: end if
22: Return ( (A(κ∗),C(κ∗)), found )

Algorithm 6.1: Candidate outperformance point on Ambition-CVAR efficient frontier.

that A(κ+) ≥ Â, to within a numerical tolerance. The bisection algorithm uses the monotonicity376

properties of Lemma 6.2, hence must terminate. This algorithm will generate a point satisfying the377

outperformance criteria in Definition 6.4 (to within a numerical tolerance), if such a point exists in378

Ŝ(Yα,β∗).379

Recall that S(Yα,β∗) ⊆ P where P is set of Pareto optimal points. Hence there may be points in380

P̂ /∈ Ŝ(Yα,β∗) which outperform the benchmark, but cannot be found by scalarization. For ease of381

exposition, we have the following geometric characterization of the case where all points in P̂ can382

be found by scalarization.383

Property 6.1 (P̂ = Ŝ(Yα,β∗)). If all points in P̂ have supporting hyperplanes w.r.t. Y(α,β∗), then384

P̂ = Ŝ(Yα,β∗).385

Remark 6.4 (Sufficient condition for Property 6.1). If Y(α,β∗) is convex, then all points in P (hence386

P̂) have supporting hyperplanes. However, Property 6.1 allows more general cases.387

Consider the case where the benchmark strategy is not Pareto optimal, i.e. (Â, Ĉ) /∈ P̂. Other-388

wise, outperformance is impossible by definition.389

Proposition 6.2 (Outperformance point and Algorithm 6.1). Suppose Property 6.1 holds, (Â, Ĉ) /∈390

P̂, and (Â, Ĉ) satisfies Assumption 6.1, then Algorithm 6.1 will generate κ∗, such that391

lim
κ↓κ∗

(A(κ),C(κ)) = (A(κ+∗ ),C(κ+∗ )) , (6.23)
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outperforms the benchmark (Â, Ĉ) as in Definition 6.4.392

Proof. Since (Â, Ĉ) /∈ P̂, then, from Property 6.1, and the definition of Pareto optimality, ∃κ̂ > 0,393

such that ((A(κ̂),C(κ̂)) ∈ S(Yα,β∗) outperforms the benchmark in the sense of Definition 6.4. From394

the monotonicity properties of Lemma 6.2 and Property 6.1, it follows that ∃κ′ ∈ [0, κmax], such395

that ((A(κ′),C(κ′)) ∈ Ŝ(Yα,β∗) satisfies one of396

(i) A(κ′) ≥ Â ; C(κ′) > Ĉ ,397

(ii) A(κ′) > Â ; C(κ′) ≥ Ĉ ,398

(iii) A(κ′) > Â ; C(κ′) > Ĉ .399

Noting that A(κmax) ≥ Â, (from Assumptions 6.1), the monotonicity properties of Lemma 6.2, and400

the fact that all points in P̂ have supporting hyperplanes, then the existence of this κ′ ∈ (0, κmax]401

implies the smallest κ∗ ∈ (0, κ′] such that A(κ+∗ ) ≥ Â has the property that (A(κ+∗ ),C(κ+∗ )) satisfies402

one of (i-iii) above.403

404

Remark 6.5 (Assumption that (Â, Ĉ) /∈ P̂.). In Proposition 6.2 we have assumed that (Â, Ĉ) /∈ P̂.405

If this is not the case, then if Property 6.1 holds, we have the trivial case that Algorithm 6.1 simply406

returns (Â, Ĉ), i.e. outperformance is impossible, since (Â, Ĉ) is already Pareto optimal under407

Ambition-CVAR criteria.408

409

Remark 6.6 (minκ∗ s.t. A(κ+∗ ) ≥ Â). Our objective is to find κ∗ s.t. A(κ+∗ ) = Â, since in this410

case we have411

(i) The optimal strategy has the same median value of terminal wealth.412

(ii) For this value of median terminal wealth, the optimal strategy has the largest possible value of413

CVARα.414

This point is then Median-CVAR optimal.415

Remark 6.7 (Possible failure of Algorithm 6.1). We have no guarantee that Property 6.1 holds,416

since it is not obvious that Y(α,β∗) satisfies the sufficient conditions which guarantee that Algorithm417

6.1 succeeds (i.e. finds an outperformance point). However, in practice, we have not observed failure.418

Figure 6.1 illustrates this concept. For an arbitrary fixed value of Ambition level β, by varying419

κ, we can trace out the Ambition-CVAR efficient frontier S(Yα,β). Suppose we choose β = β∗,420

which is the median of the benchmark strategy. If we can find a κ such that A(κ+∗ ) = Â = 0.5421

than the strategy which generates this point on the Ambition-CVAR frontier is also Median-CVAR422

optimal. In other words, for this fixed value of a benchmark median, there is no other strategy423

which generates a larger CVAR.424

Remark 6.8 (Median-CVAR efficiency). Suppose that Algorithm 6.1 succeeds, and A(κ+∗ ) = Â =425

0.5. Then, we have the case illustrated in Figure 6.1. This is a Median-CVAR optimal point (given426

this median value, no other strategy has a larger CVAR). However, this point is not necessarily427

Median-CVAR efficient, i.e. it may not be a Pareto optimal point, with criteria Median and CVAR.428

A sufficient condition for the Median-CVAR optimal point to be Median-CVAR efficient, is that the429

achievable Median-CVAR objective set is convex.430
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Figure 6.1: Conceptual diagram of an efficient Ambition-CVAR frontier. The point on the fron-
tier having Ambition = Pr[WT > β] = 0.5 corresponds to a Median-CVAR optimal point, with
Median[WT ] = β.

If the pre-conditions for Proposition 6.1 hold, then the point (A(κ+∗ ),C(κ+∗ )) outperforms the431

benchmark point (Â, Ĉ). Hence the strategy P(·) is to be preferred over the benchmark strategy.432

However, from Remark 6.8, we learn that it is possible that there may be another strategy, which433

generates a point on the Median-CVAR frontier, which dominates the point (A(κ+∗ ),C(κ+∗ )). In this434

case, this other strategy would be preferred over the strategy P(·).435

In principle, we could construct an approximate Median-CVAR efficient frontier in the following436

manner. As a first step, we need to generate a set of feasible Median values β̂. One way to do this437

would to use a constant proportion strategy, for a range of values of equity fraction p ∈ [0,1]. For438

each value of β ∈ β̂, we would run Algorithm 6.1, to generate point (A(κ+∗ ),C(κ+∗ )). If A(κ+∗ ) = .5,439

then this is a point in the achievable Median-CVAR objective set. The points on the Median-CVAR440

efficient frontier are then given by the upper right boundary of the convex hull of these points. This,441

of course, would be a computationally expensive exercise.442

We also note that if Property 6.1 holds, A(κ+∗ ) = 0.5 and the achievable Median-CVAR objective443

set is convex, then the point returned from Algorithm 6.1 is both Median-CVAR optimal and444

Median-CVAR efficient.445

Nevertheless, we remind the reader that, given the pre-conditions for Proposition 6.1, the strat-446

egy returned from Algorithm 6.1 outperforms the benchmark strategy, in terms of the Median-CVAR447

criteria. This was our original objective.448

7 Pre-commitment Ambition-CVAR449

We will now pose the problem of determining points in Sκ(Y(α,β)) in a form which is amenable to450

solution by optimal stochastic control techniques. Using the definitions in equation (6.1), we can451

rewrite equation (6.3) as a control problem. For a given scalarization parameter κ and intervention452

times tn, the pre-commitment Ambition-CVAR problem (PCACt0(κ)) is given in terms of the value453
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function J(s,b,t−0 ),454

(PCACt0 (κ)) : J
(
s,b, t−0

)
= sup

P0∈A
sup
W ∗

{
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

α
min(WT −W ∗, 0) + κ1WT>β∣∣∣∣X(t−0 ) = (s,b)

]}
(7.1)

subject to



(St, Bt) follow processes (2.3) and (2.4); t /∈ T
W+
` = S(t−` ) +B(t−` ) + q` ; X+

` = (S+
` , B

+
` )

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`

p`(·) ∈ Z = [0,1] ; if W+
` > 0

p` = 0 ; if W+
` ≤ 0

` = 0, . . . ,M − 1 ; t` ∈ T

. (7.2)

Interchange the sup sup in equation (7.1), so that value function J
(
s,b, t−0

)
can be written as455

J
(
s,b, t−0

)
= sup

W ∗
sup
P0∈A

{
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

α
min(WT −W ∗,0) + κ1WT>β

∣∣∣∣X(t−0 ) = (s,b)

]}
.

(7.3)

Noting that the inner supremum in equation (7.3) is a continuous function of W ∗, and assuming456

that the domain of W ∗ is compact, then define457

W∗(s,b) = arg max
W ∗

{
sup
P0∈A

{
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

α
min(WT −W ∗,0) + κ1WT>β

∣∣∣∣X(t−0 ) = (s,b)

]}}
.

(7.4)

Denote the investor’s initial wealth at t0 by W0. Then we have the following result.458

Proposition 7.1 (Pre-commitment strategy equivalence to a time consistent policy for an alterna-459

tive objective function). The pre-commitment Ambition-CVAR strategy P∗ determined by solving460

J(0,W0, t
−
0 ) (with W∗(0,W0) from equation (7.4)) is the time consistent strategy for the equivalent461

problem TCEQ (with fixed W∗(0,W0) and β), with value function J̃(s,b,t) defined by462

(TCEQtn (κα)) : J̃
(
s,b, t−n

)
= sup

Pn∈A

{
EX

+
n ,t

+
n

Pn

[
min(WT −W∗(0,W0),0) + (κα)1WT>β∣∣∣∣X(t−n ) = (s,b)

]}
. (7.5)

Proof. Combining equations (7.3) and (7.4) we have that463

J
(
0,W0, t

−
0

)
= sup

P0∈A

{
E
X+

0 ,t
+
0

P0

[
W∗(0,W0) +

1

α
min(WT −W∗(0,W0),0) + κ1WT>β∣∣∣∣X(t−0 ) = (0,W0)

]}
. (7.6)

while evaluating equation (7.5) at t0 with initial wealth W0 = B0 gives464

J̃
(
0,W0, t

−
0

)
= sup

P0∈A

{
E
X+

0 ,t
+
0

P0

[
min(WT −W∗(0,W0),0) + (κα)1WT>β

∣∣∣∣X(t−0 ) = (0,W0)

]}
.

(7.7)
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Since α > 0 and W∗(0,W0) can be regarded as a constant, then any control P∗ which maximizes465

equation (7.6) also maximizes equation (7.7). With a fixed value ofW∗(0,W0), the objective function466

(7.5) is a simple expectation, hence we can determine P∗n by dynamic programming, which is clearly467

time consistent.468

Remark 7.1 (An Implementable Strategy). Given an initial level of wealth W0 at t0, then the469

optimal control for the pre-commitment problem (7.1) is the same optimal control for the time470

consistent problem (TCEQtn (κα)) (7.5), ∀t > 0. Hence we can regard problem (TCEQtn (κα)) as471

the Ambition-CVAR induced time consistent strategy. See Strub et al. (2019) for a discussion of472

induced time consistent strategies.473

We can alternatively regard time consistent strategy (TCEQtn (κα)) as our basic objective func-474

tion. W∗(0,W0) is a fixed disaster level of terminal wealth, which is set at time zero. Solution of the475

pre-commitment Ambition-CVAR problem merely determines a reasonable value for the parameter476

W∗(0,W0). As a by-product of computing the optimal pre-commitment Ambition-CVAR strategy,477

we also determine the optimal control for the induced time consistent strategy. Hence the induced478

strategy is implementable, in the sense that the investor has no incentive to deviate from the strategy479

computed at time zero, at later times (Forsyth, 2020).480

8 Algorithm for Pre-commitment Ambition-CVAR481

8.1 Formulation482

In order to solve problem (PCACt0(κ)), our starting point is equation (7.3), where we have inter-483

changed the sup sup(·) in equation (7.1). We expand the state space to X̂ = (s,b,W ∗), and define484

the auxiliary function V (s, b,W ∗, t)485

V (s, b,W ∗, t−n ) = sup
Pn∈A

{
EX̂

+
n ,t

+
n

Pn

[
W ∗ +

1

α
min((WT −W ∗),0) + κ1WT>β

∣∣∣∣X̂(t−n ) = (s,b,W ∗)

]}
.

(8.1)

subject to



(St, Bt) follow processes (2.3) and (2.4); t /∈ T
w+
` = s+ b+ q` ; X̂+

` = (S+
` , B

+
` ,W

∗)

S+
` = p`(·)w+

` ; B+
` = (1− p`(·))w+

`

p`(·) ∈ Z = [0,1] ; if w+
` > 0

p` = 0 ; if w+
` ≤ 0

` = 0, . . . ,M − 1 ; t` ∈ T

. (8.2)

486

Equation (8.1) is a simple expectation. Hence we can solve this auxiliary problem using dynamic487

programming. The optimal control pn(w,W ∗) at time tn is then determined from488

pn(w,W ∗) =

{
arg max
p′∈Z

V (wp′, w(1− p′),W ∗, t+n ), w > 0

0, w ≤ 0
. (8.3)

The solution is advanced (backwards) across time tn by489

V (s, b,W ∗,t−n ) = V (w+pn(w+,W ∗), w+( 1− pn(w+,W ∗) ),W ∗, t+n )

w+ = s+ b+ qn . (8.4)
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At t = T , we have490

V (s, b,W ∗) = W ∗ +
min((s+ b−W ∗), 0)

α
+ κ1(s+b)>β . (8.5)

For t ∈ (tn−1,tn), there are no cash flows, discounting (all quantities are inflation adjusted), or491

controls applied. Hence the tower property gives for 0 < h < (tn − tn−1)492

V (s,b,W ∗, t) = E

[
V (S(t+ h), B(t+ h),W ∗, t+ h)

∣∣S(t) = s,B(t) = b

]
; t ∈ (tn−1, tn − h) .

(8.6)

Applying Ito’s Lemma for jump processes (Tankov and Cont, 2009), noting equations (2.3) and493

(2.4), and letting h→ 0 gives, for t ∈ (tn−1, tn)494

Vt +
(σs)2s2

2
Vss + (µs − λsξζs)sVs + λsξ

∫ +∞

−∞
V (eys, b, t)fs(y) dy

+
(σb)2b2

2
Vbb + (µb − λbξζb)bVb + λbξ

∫ +∞

−∞
V (s, eyb, t)f b(y) dy

− (λsξ + λbξ)V + ρsbσ
sσbsbVsb

= 0 . (8.7)

495

Proposition 8.1 (Equivalence of formulation (8.1-8.7) to problem (PCACt0(κ))). Define496

J(s,b,t−0 ) = sup
W ′

V (s,b,W ′,t−0 ) , (8.8)

then formulation (8.1-8.7) is equivalent to problem (PCACt0(κ)).497

Proof. Replace V (s,b,W ′,t−0 ) in equation (8.8) by the expressions in equations (8.1-8.7). Begin with498

equation (8.5), and recursively work backwards in time, then we obtain equations (7.1-7.2), by499

interchanging sup sup in the final step.500

8.2 Numerical Algorithm: (PCACt0(κ))501

8.2.1 Solution of Auxiliary Problem502

We begin by solving the auxiliary problem (8.1-8.2), with a fixed value of W ∗ and β. We do503

not allow shorting of stock, so the amount in the stocks S(t) ≥ 0. We discretize the state space504

in s > 0 using nx̂ equally spaced nodes in the x̂ = log s direction, on a finite localized domain505

s ∈ [ex̂min , ex̂max ]. The investor can become insolvent due to withdrawals, which means that short506

positions in the bond are mathematically possible. We consider two cases. We discretize the state507

space in b > 0 using ny equally spaced nodes in the y = log b direction, on a finite localized domain508

b ∈ [bmin, bmax] = [eymin , eymax ]. We also define a b′ > 0 grid, using nb equally spaced nodes in509

the y′ = log b′ direction, on the localized domain with b′ ∈ [b′min, b
′
max] = [eymin , eymax ]. The grid510

[smin, smax]× [bmin, bmax] represents cases where b ≥ 0. The grid [smin, smax]× [b′min, b
′
max] represents511

cases where b = −b′ < 0.512

Note that PIDE (8.7) has the same form on the b and b′ grids. The PIDE degenerates in the513

domain [smin, smax]× [b′min, b
′
max], due to the insolvency condition (3.7). In principle, we can use this514

auxiliary b′ grid to handle cases where we allow leverage, but we do not exploit this in this work.515
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We use the Fourier methods discussed in Forsyth and Labahn (2019) to solve PIDE (8.7) be-516

tween rebalancing times. To minimize localization errors and wrap-around errors, we extend the517

computational domain for s < smin, s > smax and assume a constant value for the solution in518

the extended domain as described in Forsyth and Labahn (2019). This effectively adds artificial519

boundary conditions on the localized domain boundary. This localization error can be made small520

by selecting |xmin|, xmax sufficiently large. A similar approach is used in the b direction.521

We choose the localized domain [x̂min, x̂max] = [log(102) − 8, log(102) + 8], with [ymin, ymax] =522

[x̂min, x̂max] (units thousands of dollars). In our numerical experiments, we carried out tests replacing523

[x̂min, x̂max] by [x̂min − 2, x̂max + 2] and similarly replacing [ymin, ymax] by [ymin − 2, ymax + 2]. In524

all cases, this resulted in changes to the summary statistics in at most the fifth digit, verifying that525

the localization error is small.526

At rebalancing times, we discretize the equity fraction p ∈ [0,1] using ny equally spaced nodes,527

and then evaluate the right hand side of equation (8.4) using linear interpolation. We then solve528

the optimization problem (8.4) using exhaustive search over the discretized p values.529

8.2.2 Outer Optimization over W ∗530

Given an approximate solution of the auxiliary problem (8.1-8.2) at t = 0, which we denote by531

V (s, b,W ∗, 0), we then determine the final solution for problem PCACt0(κ)) in equations (7.1-7.2)532

using equation (8.8). More specifically, we solve533

J(0,W0, 0
−) = sup

W ′
V (0,W0,W

′, 0−)

W0 = initial wealth . (8.9)

We solve the auxiliary problem on sequence of grids nx̂×ny. On the coarsest grid, we discretizeW ∗534

and solve problem (8.9) by exhaustive search. We use this optimal value of W ∗ as a starting point535

to a one dimensional optimization algorithm on a sequence of finer grids. Note that each iteration536

of the one dimensional optimization solver requires a complete solve of the auxiliary PIDE problem.537

This approach does not guarantee that we have the globally optimal solution to problem (8.9),538

since the problem is not guaranteed to be convex. However, we have made a few tests by carrying539

out a grid search on the finest grid, which suggest that we do indeed have the globally optimal540

solution.541

9 Median-CVAR Optimization542

We first determine a target median value β∗ from the benchmark strategy. We then fix β = β∗ for543

problem (PCACt0(κ)) in equation (7.1). We then use Algorithm 6.1 to determine κ such that544

A(κ+) ≥ Ax0,0P∗(·) = E
X+

0 ,t
+
0

P∗0
[1WT>β∗ ] = 0.5 . (9.1)

If Algorithm 6.1 succeeds, then we have determined the strategy which outperforms the benchmark545

strategy, in the sense of Definition 6.4. If, in addition, A(κ+) = Â = 0.5, then we have found the546

strategy which maximizes CVARα for this fixed value of the benchmark median. This is a point547

which is Median-CVAR optimal. However, this point may not be Median-CVAR efficient, as noted548

in Remark 6.8.549
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Method µs σs λs psup ηs1 ηs2 ρsb

Real CRSP Value-Weighted Index
threshold (θ = 3) .08607 .14600 .32258 0.23333 4.3578 5.5089 (see below)

GBM .08044 .18460 N/A N/A N/A N/A (see below)

Method µb σb λb pbup ηb1 ηb2 ρsb

Real 10-year Treasury
threshold (θ = 3) .0236 .05380 .3871 .6111 16.178 17.279 .0510

GBM .0228 .06528 N/A N/A N/A N/A .0823

30 day T-bill
threshold (θ = 3) .00454 .01301 .5161 0.3958 65.875 57.737 .08311

GBM .00448 .01814 N/A N/A N/A N/A .0587

Table 10.1: Estimated annualized parameters for double exponential jump diffusion model. Value-
weighted CRSP index, 10-year Treasury, 30 day T-bill, deflated by the CPI. Sample period 1926:1
to 2018:12. GBM refers to the assumption of a Geometric Brownian Motion model (no jumps).
Threshold method described in Appendix A.

9.1 Equivalent Time Consistent Strategy550

We remind the reader that our Median-CVAR optimal solution is actually a special case of the Pre-551

commitment Ambition-CVAR control from problem (PCACt0(κ)) described in Section 7, which is552

not time consistent. However, from Proposition 7.1, we learn that this control, as seen at time553

zero, is identical to the control for the time consistent problem (TCEQtn (κα)) given in equation554

(7.5). Hence we can view our optimal control as the time consistent control for objective function555

(7.5), as long as we fix the values of W ∗ and β for all times t > 0. Consequently, this strategy is556

implementable. We have argued in Forsyth (2020) that this approach does, in fact, lead to more557

reasonable strategies, compared to the naive approach of forcing time consistency, in the case of558

Mean-CVAR optimization.559

10 Data560

We use the threshold technique (Mancini, 2009; Cont and Mancini, 2011; Dang and Forsyth, 2016)561

to estimate the parameters for the parametric stochastic process models. A brief overview of this562

method is given in Appendix A. Note that the data is inflation adjusted, so that all parameters563

reflect real returns. Table 10.1 shows the results of calibrating the models to the historical data.564

Using the 10 year treasuries as the bond index, the algorithm identified 30 total jumps in the stock565

time series, and 36 jumps in the bond time series. Only one of the jump times was common to both566

series. The stock series had many jumps in the 1930s and the bond series had many jumps in the567

1980s. In the threshold case, the correlation ρsb is computed by removing any returns which occur568

at times corresponding to jumps in either series, and then using the sample covariance.569

As a point of comparison, we also show the estimated parameters for the time series assuming570

Geometric Brownian Motion (GBM) for both series. Maximum Likelihood was used to obtain the571

GBM estimates.572
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Investment horizon (years) 45
Equity market index Real CRSP US market index
Bond asset index Real 1-month T-bill

Real 10-year Treasury
Initial investment W0 500
Real investment each year 20.0 (0 ≤ ti ≤ 15), −40.0 (16 ≤ ti ≤ 45)
Rebalancing interval (years) 1

Table 11.1: Input data for examples. Cash is invested at ti = 0,1, . . . , 15 years, and withdrawn
at ti = 16,17, . . . , 45 years. Units for real investment: thousands of dollars. Parameters determined
from CRSP data, 1926:1-2018:12. Deflated using the US CPI.

11 Investment Scenario573

Table 11.1 shows our investment scenario. To give a concrete example of where this scenario applies,574

consider the following situation. We imagine a 50-year old investor, who has saved $500,000 in a575

defined contribution (DC) pension plan account. It is assumed that the DC pension plan account576

is tax advantaged, and no taxes are paid except on withdrawals.577

This investor is currently employed in a stable industry, and earns about $100,000 per year.578

The total employee-employer contributions to his DC plan are assumed to total 20% of his salary.579

We assume that the investor’s real salary will remain roughly constant in real terms over the next580

15 years, hence he can expect total contributions of $20,000 per year (real) until he retires at age581

65. The investor then plans to withdraw $40,000 per year (real) after retiring. This amount will be582

augmented from various government programs, which will generate $20,000 per year, hence the total583

pension will replace about 60% of pre-retirement salary. The investor plans to make withdrawals for584

30 years. In the case of a Canadian male of age 65, there is only a probability of 0.13 that this person585

will still be alive at age 95. Given that we have ruled out the use of annuities, is seems reasonable for586

the investor to assume a fixed, lengthy period of withdrawals. Hence the assumption of 30 years of587

withdrawals arguably provides a reasonable (but not perfect) buffer against unexpected longevity.588

As an additional longevity hedge, our investment strategy typically targets a significant median589

value of final wealth (at 30 years). Note that this scenario is based on both a late accumulation590

phase, and the decumulation phase, hence the optimal investment strategy will clearly be a function591

of time and wealth level.592

In the following, we will use thousands as our units of wealth, so that, for example, the investor593

injects 20.0 per year into the portfolio, and withdraws 40.0 per year.594

We ignore labour income risk. Many studies assume that real earnings are expected to follow a595

hump-shaped pattern, rising rapidly until about age 35, then more slowly until around age 45-50,596

and slowly declining thereafter (see, e.g. Cocco et al., 2005; Blake et al., 2014). It is common to597

add diffusive shocks to this trend, though Cocco et al. (2005) calculate that the utility costs of598

assuming labour income has no risk are not high. The hump-shaped pattern described above has599

been questioned recently by Rupert and Zanella (2015), who find wage rates do not decline prior to600

retirement. Average income does fall on average during those years, but this is due to a reduction601

in hours worked by some employees transitioning into retirement.602
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Data series Optimal expected
block size b̂ (months)

Real 10-year Treasury index 4.1
Real CRSP value-weighted index 3.0
Real 30 day T-bill 50.2

Table 11.2: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric distribution
Pr(b = k) = (1− v)k−1v. The algorithm in Patton et al. (2009) is used to determine b̂.

11.1 Synthetic Market603

We fit the parameters for the parametric stock and bond processes (2.3 - 2.4) as described in Section604

10 and Appendix A. We then compute and store the optimal controls based on the parametric605

market model. Finally, we compute various statistical quantities by using the stored control, and606

then carrying out Monte Carlo simulations, based on processes (2.3 - 2.4).607

11.2 Historical Market608

We compute and store the optimal controls based on the parametric model (2.3-2.4) as for the609

synthetic market case. However, we compute statistical quantities using the stored controls, but610

using bootstrapped historical return data directly. We remind the reader that all returns are inflation611

adjusted. We use the stationary block bootstrap method (Politis and Romano, 1994; Politis and612

White, 2004; Patton et al., 2009; Dichtl et al., 2016). A crucial parameter is the expected blocksize.613

Sampling the data in blocks accounts for serial correlation in the data series. We use the algorithm614

in (Patton et al., 2009) to determine the optimal blocksize for the bond and stock returns separately.615

The results are shown in Table 11.2.616

We use a paired sampling approach to simultaneously draw returns from both time series. In617

this case, it is not obvious as to the optimal expected blocksize when sampling in a paired fashion.618

A simple strategy is to set the paired expected blocksize to be the average of the optimal blocksize619

for each series. We will give results for a range of blocksizes as a check on the robustness of the620

bootstrap results. Detailed pseudo-code for block bootstrap resampling is given in Forsyth and621

Vetzal (2019).622

12 Numerical Results623

12.1 Stabilization624

In some of our initial tests, we observed that the control was not very stable for very large values625

of the wealth, near the terminal time. We deduced that this was due to the form of the objective626

function. If Wt � max(β,W ∗), and t → T , then Pr[WT < W ∗] ' 0 and Pr[WT > β] ' 1. In this627

fortuitous situation for the retiree, the control only weakly effects the objective function. To avoid628

this problem, when we plotted the heat maps of the optimal controls, we changed the objective629

function (7.1) to630

J
(
s,b, t−0

)
= sup

P0∈A
sup
W ∗

{
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

α
min(WT −W ∗, 0) + κ1WT>β

stabilization︷ ︸︸ ︷
+εWT

∣∣∣∣X(t−0 ) = (s,b)

]}
.

(12.1)
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Equity Weight Median[WT ] Mean[WT ] 5% CVAR

p = 0.2 268 359 (0.8) -357
p = 0.3 723 1495 (1.8) -359
p = 0.4 1323 1911 (3.1) -385
p = 0.5 2087 3299 (7.1) -428
p = 0.6 3031 5337 (13) -489

Table 12.1: Synthetic market results for constant proportion strategies, assuming the scenario given
in Table 11.1. Stock index: real CRSP stocks; bond index: real 30-day T-bills. Parameters from Table
10.1. Real wealth after 45 years, measured in thousands of dollars. Statistics based on 2.56 × 106

Monte Carlo simulation runs. Numbers in brackets are the standard error at the 99% confidence
level. The constant proportion strategies have equity fraction p.

We used the value ε = 10−6 in the following test cases. Note that using this small value of ε = 10−6631

gave the same results as ε = 0 for the summary statistics, to four digits. This is simply because the632

states with very large wealth have low probability. However, this stabilization procedure produced633

more smooth heat maps for large wealth values, without altering the summary statistics appreciably.634

12.2 Conservative Investor635

We assume that a conservative investor has a portfolio consisting of the CRSP stock index, and636

a 30-day T-bill index. The extra cost of borrowing is assumed to be µbc = .02 (see equation 2.4).637

Borrowing is required in the event of portfolio insolvency. We implicitly assume that, in a worst638

case scenario, the retiree can borrow with the spread µbc = .02, perhaps using residential real estate639

as collateral. The parameters for the stock and bond processes are fit to the historical data using640

the threshold method (see Table 10.1). The investment scenario is described in Table 11.1.641

Our benchmark strategy is to rebalance to a constant fraction in equities at each rebalancing642

time t ∈ T . Table 12.1 shows the summary statistics of Monte Carlo simulations for constant643

proportion strategies. We assume that the conservative investor wishes to meet (or exceed) the644

target median as determined for the p = 0.4 constant proportion in stocks, as given in Table 12.1.645

This gives a target median of 1323 (recall that we use thousands as units of wealth, so this actually646

refers to 1323× 103). We use α = .05 (5% CVAR), and a coarse tolerance in Algorithm 6.1, which647

gives an estimate of κ = 110 in equation (7.1). In our grid search we err on the side of selecting κ648

which generates a median larger than the target.649

Table 12.2 shows a convergence test for the solution of the HJB PIDE, for various grid sizes650

with fixed κ = 110. We computed and stored the optimal controls for a given grid size, and then651

used these controls in Monte Carlo simulations. These results indicate that the control on the finest652

grid is certainly accurate enough for practical purposes. Note that our target Median from the653

benchmark strategy (p = 0.4) was Median[WT ] = 1323. The Monte Carlo results indicate that the654

control actually produced Median[WT ] = 1340, which is slightly larger than the benchmark. Note655

from Table 12.2 that the 5% CVAR from the optimal strategy is −199, compared with −385 for656

the benchmark strategy, which is a considerable improvement.657

We should mention that we also ran the case with κ = 0, i.e. our sole objective was to maximize658

CVAR. The Monte Carlo results using the control computed on the finest grid in Table 12.2 were659

CVAR = −190 and Median[WT ] = 400. Compare this with the Monte Carlo results, finest grid, in660

Table 12.2, which have CVAR = −199 and Median[WT ] = 1340. This shows that the investor is661
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HJB Equation Monte Carlo

Grid Prob[WT > 1323] CVAR (5%) W ∗ E[WT ] CVAR (5%) Median[WT ]

512× 512 0.523 -229 200 1643 (1.6) -207 1368

1024× 1024 0.511 -210 191 1595 (1.6) -202 1345

2048× 2048 0.506 -203 182 1579 (1.6) -199 1340

Table 12.2: Convergence test, Ambition-CVAR, conservative investor, real stock index: deflated
CRSP, real bond index: deflated 30 day T-bills. The target median is 1323, which is the median for
the constant proportion strategy p = 0.4 from Table 12.1. Parameters in Table 10.1. The Monte
Carlo method used 2.56 × 106 simulations. The numbers in brackets are the standard errors at the
99% confidence level. κ = 110, α = .05. Grid refers to the grid used to solve the HJB PDE: nx × nb,
where nx is the number of nodes in the log s direction, and nb is the number of nodes in the log b
direction. Units: thousands of dollars (real).
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Figure 12.1: Scenario in Table 11.1. Optimal control computed from Median-CVAR optimization.
Parameters based on the conservative investor, CRSP stocks, 30 day T-bills (see Table 10.1). Finest
grid results from Table 12.2. Synthetic market, 2.56 × 106 MC simulations. κ determined so that
Median[WT ] is the same as for the p = 0.4 constant proportion strategy.

required to give up a large upside in terms of median, in order to obtain a rather small improvement662

in CVAR.663

Figure 12.1 shows the time evolution of the percentiles of the control and the percentiles of664

portfolio wealth. Note that upon retirement, t = 15 years, the median fraction in stocks is less than665

0.25, which is certainly a desirable outcome. The median fraction in stocks increases at later times.666

We will discuss this behaviour when we show the control heat maps. We can also see from Figure667

12.1(b) that the fifth percentile of the terminal wealth is positive.668

Figure 12.1(c) shows the cumulative distribution functions for the terminal wealth, for both the669

benchmark strategy and the optimal strategy. Both strategies have approximately the same median,670

hence both curves intersect at Prob[WT < W ] = 0.5. Note that the optimal strategy CDF drops671

rapidly below the benchmark CDF near W = 0.672

Another view of the distribution of wealth values is given in Figure 12.2, which shows the673

probability density function of the internal rate of return (IRR) for the Median-CVAR strategy.674

The break-even IRR is the rate of return which gives WT = 0. Consistent with the cumulative675
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Figure 12.2: Probability density of the Internal Rate of Return (IRR), Median CVAR objective.
Parameters based on the conservative investor, CRSP stocks, 30 day T-bills (see Table 10.1). κ
determined so thatMedian[WT ] is the same as for the p = 0.4 constant proportion strategy. Maximize
{E[(WT − 183)−] + κα Prob[WT > 1323]}. Synthetic market, 2.56× 106 MC simulations. Breakeven
IRR = .014.

distribution function in Figure 12.1(c), we can see that the IRR density is bimodal, with one peak676

centered near the breakeven IRR, and another peak centered near the median IRR.677

The Median-CVAR optimal control heat map is given in Figure 12.3. Note that the bond678

heavy control (blue portion of heat map) becomes multiply connected for times greater than 20679

years. The lower high bond region is a result of the fact that the control attempts to maximize680

E[min(WT −W ∗,0)], with W ∗ ' 182. Once Wt � 182, and t > 40, the strategy switches focus681

to maximizing Pr[1WT>β], where β = 1323. The strategy switches back to bonds again, once682

Wt > 1323. Finally, when Wt � 1323, the εWT term in equation (12.1) comes into effect, causing683

the strategy to switch back into stocks. This simply because at this point, Pr[WT < 182] ' 0 and684

Pr[WT > 1323] ' 1.685

We compute and store the optimal Median-CVAR strategy on the finest grid. We then use this686

control, but test the strategy in the bootstrapped historical market. Table 12.3 shows the results for687

various expected blocksizes. While there is some variability in the results for different blocksizes, we688

can see that the ranking of the strategies is always preserved. The median values for the benchmark689

strategy and for the Median-CVAR strategy are close for each blocksize, but the 5% CVAR and690

Pr[WT < 0] measures are significantly improved for the Median-CVAR policy. Note as well that691

the probability of ruin, i.e. Pr[WT < 0] for the Median-CVAR strategy is approximately one third692

of the ruin probability for the benchmark policy, for each blocksize. These tests indicate that the693

strategy is robust to model misspecification.694
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Figure 12.3: Optimal control heat map, Median-CVAR objective. Parameters based on the conser-
vative investor, CRSP stocks, 30 day T-bills (see Table 10.1). κ determined so that Median[WT ] is
the same as for the p = 0.4 constant proportion strategy. Maximize {E[(WT −183)−]+κα Prob[WT >
1323]} (wealth units thousands).

Strategy Median[WT ] 5% CVAR Prob[WT < 0]

b̂ = 1 year

p = 0.4 1315 -358 0.084
Median-CVAR 1304 -177 0.029

b̂ = 2 years

p = 0.4 1324 -334 0.078
Median-CVAR 1323 -96 0.023

b̂ = 5 years

p = 0.4 1336 -274 0.068
Median-CVAR 1346 +23 0.014

Table 12.3: Historical market results, conservative strategy, CRSP stock index, 30 day T-bills. WT

denotes real terminal wealth after 45 years, measured in thousands of dollars. Statistics based on
100,000 stationary block bootstrap resamples of the historical data from 1926:1 to 2018:12. b̂ is the
expected blocksize, measured in years. Estimated optimal blocksize from Table 11.2 is b̂ ' 2.0 years.
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Equity Weight Median[WT ] Mean[WT ] 5% CVAR

p = 0.3 1992 2659 (4.2) -167
p = 0.4 2780 3945 (7.0) -154
p = 0.5 3672 5670 (11.7) -203
p = 0.6 4647 7972 (19) -299
p = 0.7 5670 11032 (32) -423

Table 12.4: Synthetic market results for constant proportion strategies, assuming the scenario given
in Table 11.1. Stock index: real CRSP stocks; bond index: real 10 year treasuries. Parameters from
Table 10.1. wealth after 45 years, measured in thousands of dollars. Statistics based on 2.56 × 106

Monte Carlo simulation runs. Numbers in brackets are the standard error at the 99% confidence level.
The constant proportion strategies have equity fraction p.

12.3 Aggressive Investor695

We assume that an aggressive investor has a portfolio consisting of the CRSP stock index, and the696

10 year US treasuries index. The extra cost of borrowing is assumed to be µbc = 0.0 (see equation697

2.4), since the average return on a ten year treasury is already higher than the return on a 30-day698

T-bill. The parameters for the stock and bond processes are fit to the historical data using the699

threshold method (see Table 10.1). The investment scenario is described in Table 11.1.700

Table 12.4 shows the summary statistics of Monte Carlo simulations for constant proportion701

strategies. We assume that the investor targets the same median return as observed in the synthetic702

market case with a constant proportion of 0.60 in stocks. The median in this case is 4647 (again,703

recall that our wealth units are thousands, so this is actually 4647 × 103). We use α = .05 (5%704

CVAR) and a coarse grid search in Algorithm 6.1 gives an estimate of κ = 650 in equation (7.1).705

In our grid search we err on the side of selecting κ which generates a median larger than the target.706

Table 12.5 shows the convergence tests for the aggressive investor case. The finest grid Monte707

Carlo simulation hasMedian[WT ] = 4714, 5% CVAR = −25, compared with the benchmark p = 0.6708

strategy in Table 12.4, which gives Median[WT ] = 4647, 5% CVAR = −299.709

We compute and store the controls in the synthetic market, and then carry out bootstrap710

resampling tests, using these stored controls, in the historical market. Table 12.6 indicates once again711

that (i) for all blocksizes, the medians of the terminal wealth for the benchmark and Median-CVAR712

strategy are similar, (ii) the 5% CVAR for the Median-CVAR strategy is consistently significantly713

larger than for the benchmark strategy, and (iii) the Prob[WT < 0] for the Median-CVAR strategy714

is about one-half that of the benchmark solution.715

Figure 12.4 shows the percentiles of the fraction in equities and the percentiles of wealth as a716

function of time, for the bootstrapped historical market. Again we can see the rapid de-risking717

as retirement (t = 15) approaches, followed by a “risk-on” behaviour peaking at about 30 years.718

At retirement, the optimal Median-CVAR strategy has about 30% in equities, compared to the719

benchmark 60%. Figure 12.4(c) shows the cumulative distribution functions for the Median-CVAR720

strategy, and for the constant proportion benchmark, in the historical market. This curve is quali-721

tatively similar to the CDFs for the conservative investor case.722

Finally, the heat map of controls for the Median-CVAR strategy is plotted in Figure 12.5. Recall723

that the induced time consistent strategy TCEQ(κα) for this case is the policy which maximizes724

E
[
min(WT − 367, 0)

]
+ καProb[WT > 4647] + εE[WT ] . (12.2)

Note that we include the stabilization term (see equation (12.1)) to regularize the problem at large725
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HJB Equation Monte Carlo

Grid Prob[WT > 4647] CVAR (5%) W ∗ E[WT ] CVAR (5%) Median[WT ]

512× 512 .5132 -38.4 352 5518 (2) -25.4 4726

1024× 1024 .5076 -28.2 364 5514 (2) -24.8 4716

2048× 2048 .5061 -25.6 367 5512 (2) -24.7 4714

Table 12.5: Convergence test, Ambition-CVAR, aggressive investor, real stock index: deflated CRSP,
real bond index: deflated 10 year treasuries. The target median is 4646.6, which is the median for the
constant proportion strategy p = 0.6 from Table 12.4. Parameters in Table 10.1. The Monte Carlo
method used 2.56 × 106 simulations. The numbers in brackets are the standard errors at the 99%
confidence level. κ = 650, α = .05. Grid refers to the grid used to solve the HJB PDE: nx×nb, where
nx is the number of nodes in the logS direction, and nb is the number of nodes in the logB direction.
Units: thousands of dollars (real).
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Figure 12.4: Scenario in Table 11.1. Optimal control computed from Median-CVAR optimization.
Median[WT ] is the same as for the p = 0.6 constant proportion strategy. Parameters based on the
aggressive investor, CRSP stocks, 10 year US treasuries (see Table 10.1). Finest grid results from
Table 12.2. Stationary block bootstrap of historical data 1926:1-2018:12. Expected blocksize 0.25 years.
Median[WT ] is the same as for the p = 0.6 constant proportion strategy.

wealth levels.726

We can see that the heat map reflects this objective function as we near t = T . For example,727

consider fixing the time at t = 40 years. For very low values ofWt � 367, the investor has no choice728

but to invest heavily in stocks, in order to maximize the first term in equation (12.2). If Wt ' 367,729

then the investor switches to bonds, in order to preserve the downside risk. As wealth increases730

(t = 40), then the retiree re-risks, now to maximize Prob[WT > 4647]. Once Wt = 4647 is reached,731

the investor de-risks to preserve the gains in the objective function. Finally, when Wt � 4647, we732

have that (i) Prob[WT > 4647] ' 1 and (ii) Prob[WT < 367] ' 0, hence the small term εE[WT ]733

comes into play, the investor re-risks once again.734
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Strategy Median[WT ] 5% CVAR Prob[WT < 0]

b̂ = 0.25 year

p = 0.6 4360 -214 0.037
Median-CVAR 4277 +15 0.019

b̂ = 0.5 years

p = 0.6 4462 -250 0.039
Median-CVAR 4436 -18 0.021

b̂ = 1.0 years

p = 0.6 4564 -204 0.035
Median-CVAR 4586 +8.0 0.019

Table 12.6: Historical market results, aggressive strategy, CRSP stock index, ten year treasuries.
WT denotes real terminal wealth after 45 years, measured in thousands of dollars. Statistics based on
100,000 stationary block bootstrap resamples of the historical data from 1926:1 to 2018:12. b̂ is the
expected blocksize, measured in years. Estimated optimal blocksize from Table 11.2 is b̂ ' .25 years.

Figure 12.5: Optimal control heat map, Median-CVAR objective. Parameters based on the aggressive
investor, CRSP stocks, 10 year US treasuries (see Table 10.1). κ determined so that Median[WT ] is
the same as for the p = 0.6 constant proportion strategy. Maximize {E[(WT −367)−]+κα Prob[WT >
4647]} (wealth units thousands).

29



13 Conclusions735

Defining Ambition at level β as Prob[WT > β], where WT is the terminal wealth, we argue that736

an Ambition-CVAR strategy is appropriate for an investor in the late stages of DC plan accumu-737

lation, who is concerned with the risks of portfolio depletion in the decumulation stage. We use a738

scalarization method to determine points on the Ambition-CVAR frontier.739

Suppose we are given a benchmark strategy with Median[WT ] = β. Then, we can construct740

the Ambition-CVAR frontier, with Ambition level β. Provided that the Ambition-CVAR frontier741

has certain properties, we can find the point on the Ambition-CVAR frontier which corresponds742

to the specified Median[WT ] = β from a benchmark strategy (in our examples, a fixed equity743

proportion). This point is Median-CVAR optimal. Hence, we have found the strategy which has744

the same median as the benchmark policy, yet maximizes the CVAR (we remind the reader that we745

have defined CVAR in terms of terminal wealth, not losses, so a larger value is preferred).746

The Ambition-CVAR policy (hence also the Median-CVAR control) maximized at time zero is747

equivalent to an induced time consistent objective function. The induced strategy is (i) identical748

to the pre-commitment control at the initial time and (ii) the solution of a time consistent problem749

(under the induced objective function) at all later times. Hence this is an implementable strategy,750

i.e. the investor has no incentive to deviate from the policy computed at time zero at later times.751

Our numerical examples show that752

• The Median-CVAR optimal control significantly outperforms the benchmark constant pro-753

portion strategy, in terms of CVAR as seen at time zero, while preserving the same Median754

terminal wealth.755

• The Median-CVAR control results in a considerable reduction in the probability of ruin,756

compared to the constant proportion strategy.757

• The Median-CVAR median equity allocation at retirement is substantially less than the con-758

stant proportion benchmark.759

• Bootstrap resampled tests on historical data showed that this ranking of strategies is robust760

to stochastic process model misspecification.761

However, it is clear that the optimal control which minimizes tail risk during decumulation, is762

complex, as shown in the control heat maps. This illustrates the difficulty of reducing sequence of763

return risk during decumulation. It is costly, in terms of median return, to reduce tail risk. This764

suggests that there is a need for a financial product which can mitigate this risk at reasonable cost,765

while avoiding the use of annuities, which are not popular with retail investors.766

Finally, it is possible to incorporate other assets in the portfolio, e.g. trend following or smart767

beta indices. In the case of more than three underlying assets, the PIDE approach used here will768

become computationally infeasible. However, a machine learning approach for a high dimensional769

optimal Median-CVAR control problem would be feasible (Li and Forsyth, 2019).770
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Figure A.1: Actual and fitted log returns for real CRSP value-weighted index, and real 10-year
Treasuries. Monthly data, 1926:1-2018:12, scaled to unit standard deviation and zero mean. Standard
normal density and fitted double exponential jump diffusion density (threshold, θ = 3) also shown.

Appendix774

A Calibration of Model Parameters775

We will follow the common practitioner approach of treating both stock and bond returns as cor-776

related jump diffusion processes, see for example (MacMinn et al., 2014; Lin et al., 2015). In777

this Appendix, we discuss the estimation of the parameters of the jump diffusion process given by778

equations (2.1) and (2.3), and equations (2.5) and (2.4).779

The data was obtained from the Center for Research in Security Prices (CRSP) on a monthly780

basis over the 1926:1-2018:12 period.6 We use the CRSP US equities value weighted index, the781

one-month T-bill series, and the 10-year US treasury series. All of these various indexes are in782

nominal terms, so we adjust them for inflation by using the U.S. CPI index, also supplied by CRSP.783

Figure A.1(a) shows a histogram of the monthly log returns from the real value-weighted CRSP784

total return index, scaled to zero mean and unit standard deviation. We superimpose a standard785

normal density onto this histogram. We also superimpose the fitted density for the double expo-786

nential jump diffusion model. The plot shows that the empirical data is leptokurtic, consistent with787

previous empirical findings for virtually all financial time series. Figure A.1(b) shows the equivalent788

plot for a constant maturity ten year US treasury index.789

A standard technique for parameter estimation is maximum likelihood (ML). However, it is well-790

known that the use of ML estimation for a jump diffusion model is problematic, due to multiple791

local maxima and the ill-posedness of trying to distinguish high frequency small jumps from diffusion792

(Honore, 1998). Consequently, as an alternative to ML estimation, we use the thresholding technique793

described in Mancini (2009) and Cont and Mancini (2011).794

Let ∆X̂i be the detrended log return in period i, with period time interval ∆t. Suppose we have795

6More specifically, results presented here were calculated based on data from Historical Indexes, ©2019 Center for
Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data
Services was used in preparing this article. This service and the data available thereon constitute valuable intellectual
property and trade secrets of WRDS and/or its third-party suppliers.
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Data Stock jumps Bond jumps Joint jumps

CRSP, 10-year Treasury 30 36 1

CRSP, 30-day T-bill 30 48 5

Table A.1: Observed jump data, jump diffusion model. Value-weighted CRSP index, 10-year Trea-
sury, 30 day T-bill, deflated by the CPI. Sample period 1926:1 to 2018:12.

an estimate for the diffusive volatility component σ̂. Then we detect a jump in period i if796 ∣∣∣∆X̂i

∣∣∣ > A σ̂ √∆t

(∆t)ν
(A.1)

where ν,A > 0 are tuning parameters (Shimizu, 2013), and σ̂ is our most recent estimate of volatility.797

An iterative method is used to determine the parameters (Clewlow and Strickland, 2000). The798

intuition behind equation (A.1) is simple. If we choose A = 3, say, and ν � 1, then equation799

(A.1) identifies an observation as a jump if the observed log return exceeds a 3 standard deviation800

geometric Brownian motion change. Typically, ν in equation (A.1) is quite small, ν ' .01 − .02.801

For details, we refer the reader to Dang and Forsyth (2016). As described in Dang and Forsyth802

(2016), we replace A/(∆t)ν by the parameter θ. Use of θ = 3 for monthly data results in fairly803

infrequent, large jumps. Additional details concerning the threshold estimators can be found in804

Dang and Forsyth (2016) and Forsyth and Vetzal (2017).805

806

As noted in Remark 2.1, we have assumed that stock and bond jumps are independent. As a807

point of information, in Table A.1 we show some relevant statistics for the CRSP stock index and808

the 10-year Treasury series, as well as the CRSP index and the 30-day T-bill series, based on the809

threshold filtering technique for estimation of jumps. In the CRSP-10 year series, there is only one810

joint stock-bond jump out of 65 unique jump events. For the CRSP-30 day series, there are 5 joint811

stock-bond events, out of 73 unique jump events. This justifies (to a certain extent) the assumption812

that the stock-bond jumps are independent.813
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