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ABSTRACT

Target Date Funds have become very popular with investors saving for 

retirement. The main feature of these funds is that investors are automatically 

switched from high risk to low risk assets as retirement approaches. However, 

our analysis brings into question the rationale behind these funds. Based 

on a model with parameters fitted to historical returns, and also on model 

independent bootstrap resampling, we find that constant proportion strategies 

give virtually the same results for terminal wealth at the retirement date as target 

date strategies. This suggests that the vast majority of Target Date Funds are 

serving investors poorly. However, if we allow the asset allocation strategy to 

adapt to the current level of the total portfolio value, significantly lower risk of 

terminal wealth can be achieved, at no cost to its expected value. 
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1   Overview
This article analyzes the performance of Target Date Funds (TDFs) which follow glide path strategies in 

which the asset allocation depends only on the time remaining until the investor retires. We begin by 

calculating an optimal glide path strategy and compare the outcomes with a constant proportion equity 

allocation. Based on both simulated and historical markets, we find that the best possible glide path 

strategy offers virtually no improvement compared to constant proportion rebalancing. This confirms the 

observations in Westmacott (2016).

We next consider a new strategy, Target Wealth (TW). This strategy is adaptive, in that the fraction of 

the portfolio invested in equities depends on the achieved wealth compared to the target, as well as the 

time left until retirement. Significant improvements are observed with this enhanced strategy. Since the 

TW approach appears to be quite promising, we also discuss some practical issues associated with its 

implementation.

2  Saving for retirement
We first review the key objectives of saving for retirement and consider how well current offerings to retail 

investors are designed to meet those objectives. In particular, we consider the extent to which the increasing 

popularity of TDFs is related to the promise of simplicity rather than improved outcomes.

2.1  Target Date Funds: where’s the beef?
Defined Benefit (DB) pension plans offered investors saving for retirement a direct connection between 

savings today and income tomorrow. This connection has been lost with the general decline of DB plans, 

accompanied by the rise of Defined Contribution (DC) plans. Participants in DC plans are left to formulate 

their own portfolios, coupled with the hope that time in the market will build a nest egg to provide sufficient 

income in retirement.

One of the weaknesses of the DC approach is that it requires knowledge about asset diversification 

and long term market returns, coupled with a motivation to engage in the investment process. Extreme                                   

(0% or 100% equity positions) are common. Sun Life reports that one in four plan participants still hold 

extreme positions.1 TDFs tackle these behavioural shortcomings by offering a well-diversified fund of funds 

that starts with a high equity exposure and decreases with time until the retirement date.2

This changing asset allocation with age (or glide path) is the key differentiator from a conventional balanced 

fund with a constant proportion strategy. Vendors convey the idea that TDFs give better outcomes:

Don’t let the markets decide when you’ll retire...maximize growth opportunities early on, gradually 

becoming more conservative over time to protect capital and investment gains.3

1 Designed for Savings 2016: The Benchmark Report on Capital Accumulation Plans in Canada, SunLife Financial, https://www.SunLife.ca/Canada/
GRS+matters/GRS+matters+articles/2016/Bright+Papers/Designed+for+Savings+Industry+Reports?vgnLocale=en_CA.

2 According to Morningstar, assets under management for TDFs in the US reached over 700 billion (USD) at the end of 2015.
3 See https://www.fidelity.ca/cs/Satellite/en/public/products/managed_solutions/clearpath.

https://www.fidelity.ca/cs/Satellite/en/public/products/managed_solutions/clearpath
https://www.sunlife.ca/Canada/GRS+matters/GRS+matters+articles/2016/Bright+Papers/Designed+for+Savings+Industry+Reports?vgnLocale=en_CA.
https://www.sunlife.ca/Canada/GRS+matters/GRS+matters+articles/2016/Bright+Papers/Designed+for+Savings+Industry+Reports?vgnLocale=en_CA.
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The first part of this study compares TDFs with a fixed asset allocation (constant proportion) strategy and 

asks whether they achieve better outcomes. Our results indicate that generally, before fees, TDFs offer 

only a marginal improvement over a constant proportion strategy, even with the best possible glide path. 

In practice, since most TDFs use suboptimal glide paths, we can expect the typical TDF to perform worse 

than a constant proportion strategy, after fees.

2.2  Target Wealth (TW): a healthy alternative?
TDFs have some disadvantages:

•	 DC plan participants seek to build sufficient wealth to secure a comfortable retirement. What 

constitutes a comfortable retirement is subjective and depends to some extent on individual 

expectations. But being uncertain is not the same as being unimportant. A TDF makes no attempt 

to target a specific wealth outcome, but only to reach the target date with a diminished potential to 

grow. TDFs focus on time in the market, not the desired outcome. A target wealth (at retirement) is 

an important objective. However, there are tradeoffs. It is clear, for example, that a constant equity 

allocation of 100% would have a wide range of outcomes, after 20 or more years, from very high 

values to very low. Most plan participants would be willing to trade off a small possibility of achieving 

very large terminal wealth to avoid a significant probability of a shortfall that takes them below a 

comfortable (but not extravagant) level of income.

•	 Current wealth has no impact on future strategy with a TDF. If the plan participant has a great 

start and achieves her wealth target five years early, she could choose to lock in her comfortable 

retirement nest egg. Any surplus (i.e. not needed to fund her retirement) could be used to fund a 

charitable endowment, pay for the grandchildren’s education, or any other purpose. Conversely 

if the wealth accumulation process in the early years lags expectations, then is it rational for the 

investor to just throw in the towel and let the TDF take her to a lower equity asset allocation and a 

lower expected terminal wealth at retirement?

To be more confident about securing a target retirement wealth requires a process that allows the investor 

to tradeoff upside potential for downside risk protection. In addition, the strategy should adapt to the current 

value of the portfolio (the accumulated wealth). This is the goal of the target wealth (TW) formulation. One 

obvious consequence is that this approach has an asset allocation which changes with time. The crucial 

difference is that a TDF uses a prescribed asset allocation while with the TW approach, the asset allocation 

is an emergent property dependent upon the investor’s objectives and the investment returns over time.

A second difference is that the TW approach is a pre-commitment strategy: it is only effective if the investor 

is committed for the long term to a target level of wealth. Because TDFs have no particular goal, they can 

be stopped and started at will, with the general understanding that the longer the total savings period, the 

higher the expected final wealth.                                                  

The second part of this study proposes a TW strategy. Monte Carlo simulations and historical backtests 

show that this strategy is superior to glide path policies.
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3  The investment problem
In the most basic TDF, there are only two possible investments: a bond index and an equity index. Given a 

specified target date (the anticipated retirement date of the DC plan member), the allocation to stocks and 

bonds is determined by a glide path. A very simple example of a glide path is

The underlying logic is appealing: investors should take on more risk when they are young (with many years 

to retirement) and then reduce their exposure to risk when they are older, with less time to recover from 

market shocks. This sounds intuitively plausible. The investment portfolio is typically rebalanced at quarterly 

or yearly intervals, so that the equity fraction is reset back to the glide path value p(t). This idea is sufficiently 

attractive that TDFs have been designated as Qualified Default Investment Alternatives (QDIAs) in the US.  

If an employee has enrolled in an employer-managed DC plan, then the assets may be placed in a QDIA by 

default, absent any further instructions from the employee.

It is important to emphasize that the glide path p(t) in the age-based example above is only a function of 

time. We call this type of strategy a deterministic glide path: it does not adapt to market conditions or the 

investment goals of the DC plan member. 

Westmacott (2016) noted that the case for using TDFs compared to a constant equity proportion strategy 

appears to be rather weak, especially after fees are taken into account. We verify that conclusion here, using a 

parametric market model and bootstrap resampling of historical data. We then show that an optimal adaptive 

strategy (i.e. one where the asset allocation depends on the accumulated wealth) can result in the same 

expected final wealth as a deterministic glide path strategy, but with significantly smaller risk.

3.1  Modelling real equity returns
Using monthly US data, we construct two real (inflation adjusted) indexes: a real total return equity index and 

a real short term bond index. The data covers the period from 1926:1 to 2016:12. We fit the historical returns 

to a parametric jump diffusion model. This model allows for non-normal asset returns since it represents low 

probability events (“fat tails’’) more accurately than a Gaussian (i.e. normal) distribution. The model assumes 

that equity returns have a Gaussian distribution in typical times, punctuated by large drops in equity values 

during periods of market turmoil. Appendix A provides further details about both the data and the jump 

diffusion model.

Fraction invested in equities at time t = p(t) = .110 - your age at t
100
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4 “All models are wrong: some are useful” – G. Box.
5 Benjamin Graham, author of The Intelligent Investor, suggested that investors should ignore the day-to-day price swings of Mr. Market. Similarly, 

Charlie Munger (Vice-Chairman of Berkshire Hathaway) has observed that “if you are investing for 40 years in some pension fund, what difference 
does it make if the path from start to finish is a little more bumpy or a little different than everybody else’s so long as it is all going to work out well 
in the end? So what if there is a little extra volatility?”.

3.2  The synthetic market and the historical market
We test investment strategies using two markets. We refer to the market modelled by a parametric jump 

diffusion model, where the parameters are fitted to the entire 1926:1 to 2016:12 data, as the synthetic market. 

The historical market is the actual observed data set of real returns. We can view the synthetic market as a 

parametric model which captures the major statistical properties of the observed time series. Of course this 

is an imperfect representation.4 We use the synthetic market to determine optimal strategies and carry out 

Monte Carlo simulations. As more of an acid test, we also study the strategies using samples from the actual 

historical data. We do this using bootstrap resampling, rather than a parametric model. If we believe that 

historical returns are indicative of possible future returns, then this is a model-free way to test strategies. The 

bootstrap approach we use is described in Appendix B.

Let Wt be the value of the investor’s portfolio at time t. Given a retirement date T, the investor’s final portfolio 

wealth is WT. We evaluate strategies by considering characteristics of the probability distribution of WT 
such as the expected value (the mean) E[WT] and the standard deviation std[WT], as for the traditional risk-

reward tradeoff from mean-variance analysis. If two strategies have the same E[WT], we should prefer the 

one having lower risk (smaller std[WT]). Note that we only consider criteria based on final wealth WT. Some 

may object to this, believing that we should also be concerned with the volatility of the investment portfolio 

during the entire investment period. Our approach reflects the idea that investors should focus on long term 

goals, and not pay excessive attention to short term market fluctuations.5

3.3  An investment example with periodic rebalancing and 
regular contributions
We consider the prototypical DC investor example shown in Table 3.1. The investor’s retirement is in               

T = 30 years. She starts off with an initial wealth of W0 = $0, and contributes $10,000 per year (real) to the 

DC fund at the start of each year. We could make other assumptions, such as escalating the real amount 

contributed each year. The final results are similar to what we report here, and we make the assumption of 

a constant (real) contribution to keep things simple.

A common strategy is a constant proportion policy. For this example, we use a 60:40 equity-bond split. In other 

words, at each rebalancing date (yearly) we adjust the portfolio so that it has an equity fraction of 60% and a 

bond fraction of 40%. This is a special case of a glide path strategy with p(t) = .60 at all rebalancing times.
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Table 3.1:  Long term investment case. Cash is injected and rebalancing occurs at t = 0,1..., 29 years.

Figure 3.1: Optimal deterministic glide path based on the synthetic market model for the example in Table 3.1. The 
glide path minimizes std[WT] with E[WT] = $790,000. The parameters for the synthetic market model are determined 
by fitting to the entire historical data set from 1926:1 to 2016:12. Source: author calculations.                                                                                      

Next we determine the optimal deterministic glide path strategy. There are clearly many ways to define 

optimality. Our approach involves finding equity fractions p(0), p(1),..., p(29) at rebalancing times                                             

t = 0,1,..., 29 years such that 

•	 the expected value of the terminal wealth E[WT] is the same as for the constant proportion strategy; and 

•	 the standard deviation of the terminal wealth std[WT] is as small as possible.

We calculate the optimal equity fractions with a computational optimization method. We constrain the 

fractions so that 0 ≤ p(t) ≤ 1 (no shorting and no leverage). The resulting optimal deterministic glide path is 

shown in Figure 3.1, which indicates that the constraint p(t) ≤ 1 is active for t ≤ 3  years.6

Table 3.2 compares the results for the constant proportion ( p = .60) and optimal deterministic strategies. 

The optimal deterministic standard deviation is about 98% of the constant proportion strategy, a very 

small improvement. Investors may be more concerned with probability of shortfall, so we also show these 

results in Table 3.2. For example, the probability of achieving a final wealth WT < $800,000 is about 63% 

for each strategy.

6 Without this restriction, the strategy would use leverage to set p(t) > 1 during this initial phase.

Investment horizon T 30 years

Initial investment W0 $0

Real investment each year $10,000

Rebalancing interval 1 year
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Table 3.2:  Synthetic market results for the example in Table 3.1. The constant proportion strategy has p = .60 and the 
optimal deterministic glide path is from Figure 3.1. Source: author calculations.

Based on these synthetic market results, it is possible to come up with a deterministic glide path which beats 

a constant proportion strategy, but not by very much. We have repeated these tests with many different 

synthetic market parameters. As long as the investment horizon exceeds about 20 years, the differences 

in performance between the optimal deterministic glide path and the constant proportion strategy with the 

same expected final wealth are very small.

3.4  Bootstrap resampling results
The synthetic market results above are based on fitting the historical returns to a jump diffusion model. 

This model assumes that monthly equity returns are statistically independent, which is questionable. To 

get around artifacts introduced by our modelling assumptions, we test the two strategies (glide path and 

constant proportion) using a bootstrap resampling method (see Appendix B). We emphasize that the 

bootstrap approach to historical backtesting has greater statistical validity compared to the commonly 

used rolling month technique, as in, for example, by Bengen (1994).

The bootstrap results are shown in Table 3.3. The deterministic glide path is the optimal path from the 

synthetic market. It is interesting to observe that the expected values for both strategies are about 5% 

below the results for the synthetic market values, which is quite reasonable agreement. However, the 

standard deviations are about 30% smaller than the synthetic market results, which suggests that serial 

dependence effects exist in the real data. This also suggests that, in terms of variance, the synthetic market 

is riskier than the actual historical market. The shortfall probabilities for both the synthetic market and the 

bootstrap tests are quite similar.

We show the cumulative distribution functions from the bootstrap tests in Figure 3.2. There are actually 

two curves here, one for the constant proportion and one for the optimal deterministic glide path, but they 

are almost on top of each other. The cumulative distribution function shows the probability of shortfall 

for all values of terminal wealth WT. For example, we can see that the probability that WT < $600,000 is 

about 30%. This plot shows that the optimal deterministic glide path is virtually identical to the constant 

proportion strategy in terms of the distribution of WT.

Probability of Shortfall

Strategy E[WT] std[WT] WT < $500,000 WT < $650,000 WT < $800,000

Constant proportion $790,000 $464,000 .25 .46 .63

Deterministic glide path $790,000 $456,000 .24 .46 .63
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3.5  Why are glide paths ineffective?
We suggest that the attraction of TDFs is largely a manifestation of behavioural biases due to framing. 

Consider the following:

Option A: An investment strategy that has a high return potential early on and a move to safety in later years.

Option B: An investment strategy that has the same expected return throughout.

or

Option C: An investment strategy that has the greatest potential for losses early on, and a limited potential 

for gain in later years.

Option D: An investment strategy that has the same expected return throughout.

Table 3.3: Bootstrap resampling results for the example in Table 3.1. The constant proportion strategy has p = .60 and 
the optimal deterministic glide path is from Figure 3.1. Results are based on historical data from 1926:1 to 2016:12 
with 10,000 bootstrap resamples and a blocksize of 2 years. Source: author calculations. 

Figure 3.2: Cumulative distribution functions of WT for the example in Table 3.1. Units of wealth: thousand of dollars. 

The constant proportion strategy has p = .60 and the optimal deterministic glide path is from Figure 3.1. Results are 
based on historical data from 1926:1 to 2016:12 with 10,000 bootstrap resamples and a blocksize of 2 years. Source: 
author calculations.

Probability of Shortfall

Strategy E[WT] std[WT] WT < $500,000 WT < $650,000 WT < $800,000

Constant proportion $745,000 $327,000 .22 .46 .65

Deterministic glide path $743,000 $320,000 .22 .46 .65
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When framed in this way, most investors would choose

•	 Option A over Option B;

•	 Option D over Option C.

However, Options A and C are simply different descriptions of the same glide path strategy, while Options 

B and D are the same constant proportion strategy.

The typical glide path strategy has a high allocation to equities early on in the wealth building stage. As noted 

by Arnott et al. (2013), this is precisely the time when the portfolio is small, so the effect of high expected 

returns is small as well. Conversely, during later times when the portfolio is large, there is a high allocation to 

bonds, with low expected returns. At the end of the day, these two effects roughly cancel out, so that we get 

virtually no improvement compared to a constant proportion strategy with the same E[WT].

3.6  Shall we glide?
We have repeated the above tests for different choices of the bond index (e.g. 10-year US Treasuries) and 

other equity indexes (such as an equally-weighted market index). We have also used different techniques 

to estimate the synthetic market parameters and carried out Monte Carlo simulations where we randomly 

perturb the market parameters. We have used various bootstrap techniques and also experimented with 

different glide paths. The results of all these tests are consistent. By various criteria (standard deviation, 

probability of shortfall), an optimal deterministic glide path achieves virtually the same result as a constant 

proportion strategy if both strategies are constructed to have the same expected final wealth. This confirms 

the conclusions of Westmacott (2016). However, most deterministic glide paths suggested in the literature 

do not look like the optimal path in Figure 3.1. Typical glide paths are often noticeably worse than a constant 

proportion strategy.7 So, while there may be some intuitive appeal to a deterministic glide path strategy, the 

synthetic market tests and the bootstrap tests demonstrate that this intuition is misleading.

When faced with a choice between a deterministic glide path and a constant proportion strategy, we 

might as well stick with the constant proportion strategy. It is simpler, and the improvement compared with 

using the best possible deterministic strategy is marginal. Once fees are taken into account, the constant 

proportion strategy will almost always be a better choice. This might be useful information for the current 

investors holding TDFs.8

7 Examples can be found in Dang et al. (2017), Dang and Forsyth (2016), and Forsyth and Vetzal (2017).
8 We note that we are not the only ones to notice that TDFs based on deterministic glide paths do not seem to perform as advertised                                

(see, e.g. Basu et al., 2011; Arnott et al., 2013; Graf, 2017).
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4  A better solution: Target Wealth
So far we have restricted attention to deterministic glide paths which have rebalancing strategies that 

depend only on time. However, if we allow our strategies to adapt to the wealth accumulated so far, we 

can do much better.

We can use an analogy from the basketball world here. A player following a deterministic strategy would 

always shoot at the same angle and velocity, no matter where he was on the court in relation to the basket. 

This corresponds to using a fixed asset allocation (or a glide path). The player is following a deterministic 

process, not focused on an end goal (sinking a basket). In contrast, a player following an adaptive strategy 

will shoot at different angles and velocities, depending on where he is in relation to the basket, always 

keeping in mind that the goal is to sink the basket.

In the financial context, let’s consider a strategy whereby we allow the fraction invested in the risky asset to 

be a function of both time t and accumulated wealth at that time, Wt. In this case, p = p(Wt , t), so that this an 

adaptive strategy. We constrain the strategy so that no shorting or leverage is permitted, i.e. 0 ≤ p(Wt , t) ≤ 1.

We consider a target-based strategy. We choose p(Wt , t) to minimize

where E[.] denotes expected (mean) value, WT denotes final wealth at time T, and W* is a quantity related 

to target wealth (more on this below). We are finding the asset allocation strategy which minimizes the 

expected (mean) quadratic shortfall with respect to the quantity W*. Note that a large shortfall is penalized 

more than a small shortfall. We solve this problem using an optimal stochastic control approach (Dang and 

Forsyth, 2015).

So what is W*? As noted above, W* is related to the level of target wealth. However, it is important to 

understand that it is not the same as target wealth. W* is actually a little above the target. To achieve a 

particular target E[WT], we have to aim higher.9 Returning to our basketball analogy, we always have to aim 

higher than the basket in order to sink the shot, knowing that the trajectory of the ball will take it lower into 

the basket.

Once W* is specified, our strategy will have E[WT] < W*. But how should we pick W*? A reasonable 

approach is to enforce the constraint

in the synthetic market. In other words, we select W* so that the adaptive and the standard 60:40 

deterministic strategies have the same expected final wealth.

9 “We aim above the mark to hit the mark” – Ralph Waldo Emerson.

E[WT]             =              E[WT] 

} }optimal adaptive optimal deterministic

(4.2)

E[(WT – W*�)2], (4.1)
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Note that we are using the term adaptive here in a very specific sense. We allow the equity allocation to 

change so as to minimize the expected squared difference between final wealth and W*. This has nothing 

to do with adaptive portfolio strategies which change the asset allocation based on local properties such 

as price momentum, volatility or some valuation metric.

4.1  Mean-variance optimality
Our goal-based adaptive strategy looks like a reasonable idea, but how does it compare to our deterministic 

strategy? Recall that our deterministic strategy has the property that for a given value of E[WT], the standard 

deviation is as small as possible (amongst the class of deterministic strategies).

It is interesting to note that solving problem (4.1) subject to the constraint (4.2) turns out to be dynamically 

mean variance optimal (Li and Ng, 2000; Dang and Forsyth, 2016). Given the specified expected value of 

the terminal wealth, no other strategy has a smaller variance of terminal wealth. Since the standard deviation 

is just the square root of variance, this means that no other strategy has a smaller standard deviation.

Since we now allow p = p(Wt , t), the strategy is adaptive. This is a larger class of strategies compared with 

the deterministic strategies p = p(t). If we fix the mean value of the terminal wealth E[WT] to be the same for 

both deterministic and adaptive strategies, then we should expect to see that

In addition, the optimal adaptive strategy minimizes the expected quadratic shortfall (4.1). We actually 

minimize two measures of risk simultaneously: standard deviation (around the target) and quadratic shortfall 

(relative to W*). This makes this strategy quite appealing.

4.2  Overshooting
What if we are lucky and at some point before our target date our accumulated wealth Wt is sufficient to 

guarantee that an investment strategy with no equity risk exposure will result in final wealth that is larger than 

W*? To ensure that we penalize only losses below W* (and not gains above W*), we allow the investor to 

withdraw cash from the portfolio. We optimally de-risk at time t, using the following strategy. Suppose that

where PVt (.) indicates the present value as of time t. Then the optimal de-risking strategy is to withdraw 

cash in the amount of Wt – PVt (W* + future contributions) from the portfolio and switch the remainder of 

the portfolio (and all future contributions) entirely into the risk-free asset. Note that this is optimal since the 

quadratic shortfall is zero. We call the amount withdrawn a surplus cash flow.

Wt > PVt (W�*+ future contributions) , (4.4)

std[WT]              ≤           std[WT] 

} }optimal adaptive optimal deterministic

(4.3)
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4.3  You are lucky: don’t take on any more risk
There is a simple logic behind this strategy. If an investor is fortunate enough to be able to hit W* (which is 

larger than her goal – recall that to hit the mark it is necessary to aim above it) simply by investing in bonds, 

then she should cash out her chips and not take on any more risk. Of course, this requires investors to stick 

with their original target. The investor must pre-commit to being satisfied with the initial real target wealth.

Some would contend that this is difficult for most investors to do. This may be true, but we argue that the 

pre-committed target approach is an effective way to manage retirement investments.10 One interpretation 

is that the reason the adaptive strategy is so successful is that we are taking advantage of the fact that most 

investors will have difficulty pre-committing to it.11

What should be done with the surplus cash? Early retirement is one option, although the additional years of 

retirement would have to be funded. Other possibilities would include a nice vacation, an enhanced bequest, 

or a charitable donation. An investor could even choose to invest all of the surplus in equities, since her 

retirement wealth goal has already been reached. For the purposes of discussion, however, we will assume 

that the surplus cash is withdrawn from the investment portfolio and invested in a risk-free asset.

4.4  Synthetic market: deterministic vs. adaptive
We reconsider the problem in Table 3.1, with the synthetic market parameters determined from the historical 

data over 1926:1 to 2016:12. The results are given in Table 4.1. For the same E[WT], the adaptive strategy 

has a standard deviation that is about 50% lower. The probabilities of shortfall at various values of WT are 

also significantly smaller.

Another interesting statistic is that the median final wealth for the deterministic strategy is $681,000, while 

the median final wealth for the adaptive strategy is $893,000. The optimal adaptive strategy skews the 

distribution so that the median is always above the mean. In contrast, glide path strategies usually have the 

opposite skew, with the median outcome being below the mean. As a consequence, half of the final wealth 

outcomes are larger than the mean using the adaptive strategy, whereas half of the outcomes are less than 

the mean using the glide path strategy.

10 Perhaps a major problem in personal investing is that most investors always think that having more is better than less, even if a reasonable level of 
wealth has been amassed. We argue that this can be counterproductive when saving for retirement.

11 If it was easy for investors to pre-commit, many would and we would not have as favourable a tradeoff between risk and anticipated reward.
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4.5  Bootstrap resampling: deterministic vs. adaptive
We carry out a similar set of tests using bootstrap resampling from the actual historical market returns. 

The optimal strategies are those determined in the synthetic market. In other words, we use the synthetic 

market to determine our optimal strategy, but we test using the historical returns. The results are shown in 

Table 4.2. Again, the adaptive strategy appears to be superior to the deterministic strategy. In particular, 

the adaptive strategy has about a 35% chance of ending up with less than $800,000, while the corresponding 

chance for the glide path strategy is 65%. The median final wealth for the adaptive strategy is $869,000, 

compared to $682,000 for the deterministic strategy.

Table 4.1: Synthetic market results for the example in Table 3.1. The optimal deterministic glide path is from Figure 3.1. 
The optimal adaptive strategy sets W�* to give the same E[WT] as the glide path in the synthetic market. Source: author 
calculations.

Table 4.2: Bootstrap resampling results for the example in Table 3.1. The optimal deterministic glide path is from Figure 
3.1. The optimal adaptive strategy sets W�* to give the same E[WT] as the glide path in the synthetic market. Results 
are based on historical data from 1926:1 to 2016:12 with 10,000 bootstrap resamples and a blocksize of 2 years.                     
For the adaptive strategy, the expected surplus cash flow is $23,000. Source: author calculations.

4.6  The optimal adaptive strategy
To see how the adaptive strategy works, we plot the median fraction invested in stocks in Figure 4.1(b). For 

comparison, we also show the deterministic strategy (from Figure 3.1) in Figure 4.1(a). The median adaptive 

strategy maintains a high allocation to stocks for longer than the deterministic strategy, but de-risks faster 

and further as we near retirement. In Figure 4.1(b), we can see that in some cases (the upper quartile) the 

adaptive strategy may require a long term commitment to 100% equity exposure. During that time, it is 

possible that the cumulative wealth of a saver using the adaptive strategy may lag that of a fellow saver 

following a constant 60% equity allocation.

Probability of Shortfall

Strategy E[WT] Median WT std[WT] WT < $650,000 WT < $800,000

Deterministic glide path $790,000 $681,000 $456,000 .46 .63

Optimal adaptive $790,000 $893,000 $215,000 .22 .34

Probability of Shortfall

Strategy E[WT] Median WT std[WT] WT < $650,000 WT < $800,000

Deterministic glide path $743,000 $682,000 $320,000 .46 .65

Optimal adaptive $791,000 $869,000 $192,000 .20 .35
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The reward for this stoicism is apparent in Figure 4.2, which shows the cumulative distribution functions of 

terminal wealth for both cases. If we are primarily interested in probability of shortfall, it is useful to consider 

the cumulative distribution function which includes the surplus cash flow (after all, this is a benefit of the 

adaptive strategy).

Figure 4.2 shows that the adaptive strategy produces smaller expected shortfalls for $360,000 ≤ WT ≤ 

$1,000,000. The probability of very large gains is higher for the deterministic strategy compared to the 

adaptive strategy. However, this is the price we pay for lowering the risk of shortfall relative to our goal. There 

is also a small probability that the deterministic strategy will outperform the adaptive strategy at the left tail of 

the plot where WT < $360,000. A related statistic here is the conditional tail expectation (CTE). The 5% CTE 

is the mean of the worst 5% of the outcomes. The 5% CTE for the adaptive strategy is $270,000, while the 

CTE for the glide path is $310,000.

Figure 4.1: Optimal paths: deterministic and adaptive. For the adaptive case, we show the median value of the fraction 
p invested in the risky asset and its 25th and 75th percentiles. The adaptive case shown is based on bootstrap 
resampling. Source: author calculations.

A detailed examination of the results reveals that the left tail underperformance of the adaptive strategy 

occurs on resampled paths where we sample from the 1930s several times.12 In other words, we have a 

resampled path where the market trends downwards over the entire 30 year investment horizon. In this 

case, the optimal adaptive strategy will maintain a very high allocation to equities, over a much longer 

period than the glide path. Of course, if we knew that this was happening, we would never invest in stocks. 

The problem is that nobody can reliably predict this.
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5  Implementing an adaptive strategy
The statistics for using an optimal adaptive TW strategy are impressive. A useful measure of success can 

be phrased as “What is the probability of getting to within 10% of the (expected) wealth target?’’ Using the 

bootstrap tests, we find that the probability of achieving this result is about 45% for the deterministic glide 

path compared to 75% for the optimal adaptive strategy.

Another way to look at this is to imagine two pools of DC investors, with each pool having 1000 participants. 

One pool uses the deterministic glide path strategy, and the other pool uses the adaptive strategy. We 

choose a random month to start in the last 90 years, and pick one investor from each pool. Both of these 

investors accumulate wealth over the subsequent 30 years, using the glide path or adaptive TW strategy. 

During those 30 years, the market follows the bootstrapped historical returns. We repeat this process until 

we exhaust both pools. On average, 750 of the TW investors would reach their wealth goals, compared to 

just 450 of the glide path investors.

Of course there is no free lunch here. These gains in efficiency come at the cost of pre-commitment and 

the use of a contrarian investment strategy: the TW strategy can entail increasing the exposure to equity 

market risk after declines in portfolio wealth, at a time when large numbers of investors would be fleeing 

for safety. Applying these tactics generates the rewards for long term investors. This requires discipline 

over a very long term. Investor education is required to understand the value of pre-commitment and the 

contrarian nature of the strategy.

Figure 4.2: Cumulative distribution functions of WT for the example in Table 3.1. Units of wealth: thousands of dollars. 
The optimal deterministic and optimal adaptive strategies are from Figure 4.1. Results are based on historical data from 
1926:1 to 2016:12 with 10,000 bootstrap resamples and a blocksize of 2 years. Source: author calculations.

W

P
ro

b
(W

T
 <

 W
)

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal
Determin is ti c

Optimal Adapti ve
(with s urplus  cas h)

Optimal
Adapti ve

12 Since we sample with replacement, a 30 year resampled path can sample several times from any decade.



17Target Wealth: The Evolution of Target Date Funds

Some additional practical issues related to the implementation of TW strategies include:

•	 A common criticism of TDFs is their one size fits all approach to investing. With the TW methodology, 

each DC plan participant would have their own personalized asset allocation. Even participants 

with the same retirement date could have different time in the market, or different savings rates, 

and hence different accumulated wealth. Unexpected events (receiving an inheritance, skipping a 

contribution to pay off a mortgage) would be automatically reflected in the strategy.

•	 One could envisage a range of funds with, say 5% increments in equity allocation and participants 

migrated from one to another, in response to each investor’s individualized strategy. Such balanced 

funds already exist for globally diversified fixed income and equities. 

•	 TW options would ride alongside fixed allocation funds. They would initially be more appealing to 

younger participants with 20 or more years to go.                                                       
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6  Conclusion: to glide or not to glide?
We have looked at only one adaptive strategy, but there are many other possibilities. We argue that 

the adaptive strategy considered here is especially appealing because it simultaneously minimizes two 

measures of risk: expected quadratic shortfall (relative to W*) and standard deviation (around target wealth). 

This class of strategies is essentially contrarian, i.e. buy equities when stock prices fall, sell when they rise 

(provided that the investor has not been sufficiently lucky to have completely de-risked). This is also known 

as a concave strategy.

An essential feature of our strategy is the rules based de-risking which occurs as accumulated wealth 

increases. A different objective function such as minimizing the CTE can result in a strategy which sells 

when the market falls (to minimize the tail risk) and buys when the market rises (i.e. a momentum strategy). 

A common example of this sort of convex strategy is Constant Proportion Portfolio Insurance. These types 

of strategies increase risk as accumulated wealth increases.

We emphasize once again the considerable performance gains which can be obtained using adaptive 

strategies. Both Monte Carlo simulations and historical backtest simulations are consistent: compared with 

a glide path strategy, adaptive TW strategies reduce shortfall probabilities significantly, with the added bonus 

of a rules-based de-risking policy. Restricting attention to deterministic glide paths is clearly suboptimal. We 

can do much better by considering adaptive strategies. Since the vast majority of TDFs use deterministic 

strategies, they do not seem to be serving investors well.
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Figure A.1: Ten Monte Carlo realizations of possible random paths. For the Geometric Brownian Motion case, the 
expected return is 10 per cent per year, with a volatility of 20 per cent. For the jump diffusion case, the expected return 
and volatility are the same as for the GBM case, but in any given year there is a 10 per cent probability of a market 
crash. We can see this in Figure A.1(b): in any given year, we can expect a crash on one of the ten simulated paths. 
Source: author calculations.

Appendices

A  Data and models of equity returns

The data used in this work was obtained from Dimensional Returns 2.0 under licence from Dimensional 

Fund Advisors Canada. In particular, we use the Center for Research in Security Prices Deciles (1-10) index. 

This is a total return capitalization-weighted index of US stocks. We also use one month Treasury bill returns 

for the risk-free asset. Both the equity returns and the Treasury bill returns are in nominal terms, so we 

adjust them for inflation by using the US CPI index. We use real indexes since long term retirement saving 

should be attempting to achieve real (not nominal) wealth goals. All of the data used was at the monthly 

frequency, with a sample period of 1926:1 to 2016:12.

A common assumption is that logarithmic equity returns follow a normal (or Gaussian) distribution. This 

is embedded in the Black-Scholes option pricing model, for instance. It is generally referred to as the 

Geometric Brownian Motion (GBM) model. It has two parameters, one governing the expected level of 

returns and one describing the volatility or uncertainty associated with returns. However, this model does 

not account for the fact that market returns are only approximately Gaussian, and that markets tend to 

move sharply downward much more often than would be likely under GBM. This was all too apparent 

during the financial crisis of 2008.
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We can augment the GBM model using a jump diffusion model. This model assumes that equity returns 

have a Gaussian distribution during usual market conditions. However, in times of market turmoil, the index 

exhibits abrupt large movements in the form of non-Gaussian jumps. The jump diffusion model uses additional 

parameters to describe the uncertain timing and size of these sudden sharp changes. Some Monte Carlo 

simulations of GBM (Gaussian returns) and jump diffusion models are shown in Figure A.1.

Figure A.2(a) shows a histogram of the logarithmic monthly returns from the real total return CRSP equity index, 

scaled to unit standard deviation and zero mean. We superimpose a standard normal (Gaussian) density onto 

this histogram. The plot shows that the empirical data has a higher peak and the fat left tail of the historical 

than a normal distribution, consistent with previous empirical findings for virtually all financial time series. The 

fat left tails of the historical density function can be attributed to large downward equity price movements which 

are not well modelled assuming normally distributed returns. From a long term investment perspective, it is 

advisable to take into account these sudden downward price movements.

Figure A.2: Probability density of log returns for real CRSP Deciles (1-10) index. Monthly data, 1926:1 - 2016:12, scaled 
to unit standard deviation and zero mean. Standard normal density and fitted jump diffusion model also shown. Source: 
author calculations and CRSP data from Dimensional Returns 2.0 under licence from Dimensional Fund Advisors Canada.

We fit the data over the entire historical period using a jump diffusion model. The fitted distribution is shown in 

Figure A.2(a). To show the fat left tail of the jump diffusion model, we have zoomed in on a portion of the fitted 

distributions in Figure A.2(b). There is also a fat right tail as well, but this represents unexpected gains, which 

are not as worrisome as unexpected losses.

Another popular method to account for non-Gaussian returns is to use a stochastic volatility model. However, 

tests have shown that stochastic volatility has a negligible effect for long term investors (Ma and Forsyth, 2016). 

This is essentially because volatility reverts to average levels quite quickly in this type of model, so random 

changes in volatility have little consequence over the long haul.
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B  Bootstrap resampling
Bootstrap resampling has become the method of choice for historical backtesting (see, e.g. Dichtl et al., 2016).

Suppose our investment horizon is T years (T = 30 in our case). Each bootstrap path is determined as follows. 

We divide the total investment horizon T into k blocks of size b years, so that T = kb. We then select k blocks 

at random (with replacement) from the historical dataset. Each block starts at a random month. We then 

concatenate these blocks to form a single path. We repeat this procedure 10,000 times and generate statistics 

based on this resampling method.

In order to reduce the end effects in concatenating blocks, we use the stationary block bootstrap method 

(Politis and Romano, 1994). We randomly select blocks with a specified expected block size. Politis and White 

(2004) suggest that the block sizes should be selected from a geometric distribution.

We use a paired resampling technique, whereby we simultaneously draw the blocks from the historical bond and 

stock index data. This preserves the correlation between these asset classes. In addition, serial dependence 

in the real data will show up in the bootstrap resampling. Based on some econometric criteria, we use an 

expected blocksize of 2 years. We have experimented with expected blocksizes ranging from .50 to 10 years, 

and the results are qualitatively similar.
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