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Abstract5

We present a data-driven neural network approach to �nd optimal dynamic (multi-period) factor investing6

strategies in the presence of transaction costs. The factor investing problem is formulated as a stochastic7

optimal control problem, which we solve and analyze using two objectives, namely a (i) one-sided quadratic8

target objective (closely related to dynamic mean-variance optimization), and a (ii) mean - conditional value-9

at-risk (CVaR) objective. The results are illustrated using a realistic factor investing scenario: we assume10

that the investor does not allow short-selling or leverage, considers only widely accepted equity factors that11

are directly and cost-e�ectively investable in practice, and wishes to allocate wealth to equity factors and12

bonds simultaneously. We �nd that a basic portfolio consisting of only a broad equity market index and13

bonds can be very competitive compared to the corresponding optimal factor portfolios. We also show that14

the optimal factor portfolios, the composition and performance of which can be very sensitive to the choice15

of the training data used by the neural network, can lead to out-of-sample investment outcomes that may16

easily disappoint the investor. Finally, if transaction costs are explicitly incorporated in the optimal strategy17

found by the neural network, the direct impact of transaction costs remains limited, while still o�ering the18

convenient indirect impact of avoiding marginal investments in certain factors without the need to impose19

additional constraints.20
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1 Introduction23

Factor investing has become increasingly fashionable as an investment approach (Cerniglia and Fabozzi (2018)),24

and has also been embraced by institutional investors such as pension funds (Arnott et al. (2019); Dopfel and25

Lester (2018)). While it has attracted considerable interest over the past decade, factor investing remains an26

area of active research (Aliaga-Diaz et al. (2020); Feng and He (2020); Fons et al. (2021); Gu et al. (2020); Hansen27

and Bonne-Kristiansen (2020); Lioui and Tarelli (2020), to name a few recent examples). Factor investing is28

also known as smart beta investing, strategic beta investing, or style investing (Asness (2016); Basilico and29

Johnsen (2019); Fitzgibbons et al. (2017); Fons et al. (2021); Melas (2016); Vincent et al. (2018)), though it30

should be noted that the term �smart beta investing� is occasionally reserved for the particular case of factor31

investing where short-selling is prohibited (Asness et al. (2017); Dopfel and Lester (2018); Peltomaki and Aijo32

(2017); White and Haghani (2020)).33

Observing that there is no universally accepted de�nition of what factor investing entails (Blitzer (2015);34

Malkiel (2014); Soupé et al. (2019)), we brie�y summarize the concept of factor investing as it is typically35

encountered in both the academic literature as well as in the popular investment literature (Du and Price36

(2018); Grim et al. (2017); HSBC (2015); Pappas and Dickson (2015); UBS (2016); Weil (2017); Weinberg37

(2015)).38

In the context of factor investing, a factor, or more accurately an equity style factor, is simply some mea-39

surable characteristic of stocks1 that contributes to an explanation of the cross-section of expected returns (see40
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1While we focus on equity factors in this paper, which is typical in the factor investing literature, the factor paradigm has been

extended to other markets, most notably the bond market (see for example Bai et al. (2019); Fama and French (1993)). We leave
consideration of factors in other markets for our future work.
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for example Fama and French (2015, 1992); Harvey et al. (2016)). Arguably the oldest and best-known formal41

equity factor is the aggregate market factor in the Capital Asset Pricing Model (CAPM, see Lintner (1965);42

Mossin (1966); Sharpe (1964); Treynor (1961)), according to which all stocks are, to a greater or lesser extent,43

exposed to aggregate market movements, i.e. the �market factor�. Once the idea of multiple factors driving44

returns was formalized by Ross (1976), the speci�cation of additional factors has become an area of signi�cant45

research interest. In addition to the market factor, the most established and popular factors today include Size46

(Banz (1981); Fama and French (1992)), Value (Basu (1977); Fama and French (1992)), Momentum (Carhart47

(1997); Jegadeesh and Titman (1993)), and Low Volatility (Ang et al. (2006); Frazzini and Pedersen (2014);48

Friend and Blume (1970)). As an example, consider the Size factor. Banz (1981) found that stocks with small49

market capitalization historically tended to outperform stocks with a large market capitalization, and therefore50

size (as measured by market capitalization) is viewed as one of the factors explaining stock returns.51

It should be noted that there is virtually no aspect of factor research that is not subject to some controversy,52

or at least vigorous debate among researchers and practitioners, arguably none more so than what constitutes53

the universe of factors. In fact, many consider the �zoo of new factors� (Cochrane (2011)) to be a development54

of questionable value, concluding that most of the factor research �ndings are likely false and potentially the55

result of data snooping (Feng et al. (2020); Harvey et al. (2016); Hou et al. (2020)). To complicate matters56

further, the recent interest in using machine learning tools to construct (non-linear) factor models have led to57

a proliferation of yet more factors, and/or resulted in novel ways to construct and combine factors aimed at58

capturing a particular characteristic (Gu et al. (2020); Uddin and Yu (2020)). There also appears to be no59

straightforward theoretical basis for preferring one particular combination of factors over another (Hou et al.60

(2019); Kogan and Tian (2015)).61

Even if agreement were to be reached regarding the critical set of factors, the underlying de�nition and62

construction of each individual factor is also the subject of research and debate. Factors in the academic63

literature typically consists of a �long leg� and a �short leg� (Blitz et al. (2020); Briere and Szafarz (2016)),64

the idea being to pro�t simultaneously from the expected outperformance of one group of stocks (e.g. small65

stocks) and the expected underperformance a related group of stocks (e.g. large stocks), all while maintaining66

zero exposure to the other included factors (e.g. the market). Since these academic factors are constructed for67

purposes other than for the goal of being realistically investable (Bender et al. (2013)), they are indeed very68

di�cult to replicate in practice (Arnott et al. (2017c); Dimson et al. (2017)). As a result, investment strategies69

implicitly assuming the liquidity of these academic factors (see for example Haddad et al. (2020); Laborda et al.70

(2016); Lioui and Tarelli (2020)), may be very challenging for investors to implement in a practical setting.71

However, research con�rms that exposure to only the long leg of a factor can be su�cient to get most of the72

bene�ts from the desired factor exposure (Asness et al. (2014); Blitz (2015); Israel and Moskowitz (2013)), with73

implementation costs (including borrowing costs and margin requirements associated with short-selling stocks)74

usually resulting in the long leg dominating the short leg in terms of risk-adjusted performance (Blitz et al.75

(2020, 2014)). In practice, factors are therefore often considered to be related to at least part of the long leg of76

a recognized academic factor (Amenc and Goltz (2016); Arnott et al. (2017a); Ghayur et al. (2018); Grim et al.77

(2017); Li et al. (2019); Li and Shim (2019); Malkiel (2014); Soupé et al. (2019)), so that the phrase �factor tilt�78

is sometimes employed to describe the resulting factor exposure.79

Factor investing is simply a practical application of the implications of factor models (Ang (2014)). Specif-80

ically, if one accepts the premise that stock returns can be explained by (and is driven by) factors, then the81

focus shifts from investing in individual stocks to �investing in factors�. Factor investing therefore consists of82

assigning portfolio weights to factors (Arnott et al. (2019)), with individual stocks serving a secondary role,83

namely as a means of obtaining the desired factor exposure. For example, the investor might make a portfolio84

allocation to small stocks with the intent of capturing the size premium to some desired extent. Consequently,85

instead of attributing portfolio performance to particular assets, the factor perspective attributes performance86

to the factor exposures of the portfolio (Ang et al. (2009)).87

Understandably, one of the major challenges for any factor investor, and indeed an area of active research,88

is factor portfolio construction (see for example Aliaga-Diaz et al. (2020); Briere and Szafarz (2020); Dopfel89

and Lester (2018); Fitzgibbons et al. (2017); Fons et al. (2021); Ghayur et al. (2018); Grim et al. (2017); Lester90

(2019); Lioui and Tarelli (2020); Soupé et al. (2019)). This typically involves solving for the optimal factor91

investing strategy with respect to some objective function, such as expected utility (Aliaga-Diaz et al. (2020);92

Hansen and Bonne-Kristiansen (2020); Laborda et al. (2016); Lioui and Tarelli (2020)) or more commonly, using93

single-period or �rolling-window� mean-variance (MV) or Sharpe ratio optimization (see for example Bender94

et al. (2019a); Briere and Szafarz (2017); Cazalet and Roncalli (2014); Clarke et al. (2016); DeMiguel et al.95

(2020, 2014); Feng and He (2020); Naik et al. (2016); Soupé et al. (2019)). While specifying utility functions96
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appropriate for the investor can be challenging, so is the use of variance as a risk measure: some factor return97

distributions are notorious for having large negative skewness and excess kurtosis (Arnott et al. (2019)), so98

factor investors are cautioned to consider the downside risk of their investment strategies (Arnott et al. (2019);99

Kartsakli and Schlumpf (2018); Naik et al. (2016)).100

Transaction costs, while often ignored in the factor investing literature (Arnott et al. (2019); Asness et al.101

(2014); Cerniglia and Fabozzi (2018)), can potentially destroy the excess pro�tability of an active factor investing102

strategy over a simple benchmark (Dichtl et al. (2019)). Furthermore, there is a trade-o� between maximally103

realizing factor premiums and reducing transaction costs (Arnott et al. (2017b); Cazalet and Roncalli (2014);104

DeMiguel et al. (2020); Hansen and Bonne-Kristiansen (2020); Hsu et al. (2015); Li and Shim (2019); Novy-Marx105

and Velikov (2016)), which contributes to the complexity of designing realistic factor investing strategies.106

Given these observations, the main objective of this paper is two-fold. First, we formulate and solve a data-107

driven, dynamic (multi-period) factor investing problem under realistic investment constraints and transaction108

costs. Second, we study the properties of the resulting dynamically-optimal factor investing strategies. Our109

main contributions are as follows:110

� We formulate the factor investing problem as a stochastic optimal control problem, and consider two ob-111

jectives: (i) the one-sided quadratic target objective (OSQ), and (ii) the mean- conditional value-at-risk112

objective (MCV). The OSQ problem formulation is closely related to dynamic MV portfolio optimization.113

Not only is MV optimization (though in a substantially simpler, one-period or �rolling window� formula-114

tion) popular in the factor investing literature (as noted above), but the resulting dynamic OSQ-optimal115

strategies are also fundamentally contrarian (Forsyth and Vetzal (2017b, 2019); Forsyth et al. (2019)),116

a quality that may be desirable in factor investing (Ang and Kjaer (2012); Arnott et al. (2016a); As-117

ness et al. (2017); Malkiel (2014)). In contrast, the MCV objective is explicitly aimed at managing the118

above-mentioned downside risks of factor investing, while simultaneously maximizing returns. As a result,119

both objectives are of key interest to institutional investors (e.g. pension funds) who may be required120

to generate su�cient returns to fund their obligations to clients (e.g. retirees), and thus wish to explore121

factor investing in terms of various popular and relevant risk and reward measures.122

� We solve for the OSQ- and MCV-optimal factor investing strategies by adapting the data-driven, neural123

network approach of Li and Forsyth (2019) to include the explicit consideration of transaction costs. The124

training data sets for the neural network, based on up to 56 years of historical factor data, are constructed125

using a stationary block bootstrap methodology. The neural network can therefore learn optimal factor126

investing strategies by implicitly taking into account the well-known qualities of historical factor returns127

time series, such as substantial deviation from normality and potentially time-varying correlations (Arnott128

et al. (2019); Briere and Szafarz (2020); Kalesnik and Linnainmaa (2018)), while discovering the optimal129

trade-o� between realizing factor premiums and managing transaction costs. In addition, we do not place130

reliance on attempts at predicting factor returns using �trading signals�, which are prone to over�tting131

(data snooping) and other problems (Arnott et al. (2016a); Asness (2016); Bender et al. (2018); Dichtl132

et al. (2019); Lee (2017); Van Gelderen et al. (2019)), but we instead simply aim to exploit exposures to133

the long-run factor premiums identi�ed in studies of the cross-sectional characteristics of stock returns.134

We emphasize that we do not specify parametric models for the dynamics of the underlying factors, as in135

for example Lioui and Tarelli (2020).136

� The results are illustrated using baskets of candidate assets that always include core assets (Treasury bonds137

and a broad market index) as well as various subsets of only those equity factors that enjoy mainstream138

acceptance in both the academic and promotional factor investing literature. Note that we consider the139

allocation of wealth to both traditional asset classes and equity factors simultaneously, as recommended140

recently by for example Aliaga-Diaz et al. (2020); Bender et al. (2019b); Bergeron et al. (2018).141

� In addition to transaction costs, realistic investment considerations and constraints are incorporated in142

deriving the optimal factor investing strategies. We assume that the investor permits no short-selling and143

no leverage, and intends to implement the factor investing strategy using low-cost, long-only, commercially144

available funds such as exchange traded funds (ETFs). This is a reasonable implementation assumption,145

since for example the majority of institutional investors consulted in a recent survey2 reported making146

use of ETFs when implementing factor investing strategies, an observation which is gaining recognition in147

the literature (Blitz (2016); Blitz and Vidojevic (2019); Briere and Szafarz (2020); Cerniglia and Fabozzi148

2Invesco Global Factor Investing Study, 2020, available at www.invesco.com.
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(2018); Easley et al. (2020); Hjulgren (2018); Melas (2016); Nes (2020)) and is also supported by the149

signi�cant �ow of funds into factor ETFs in recent years (Basilico and Johnsen (2019); Vincent et al.150

(2018)). These assumptions ensure that realistic conclusions can be drawn from our results.151

� Along with a detailed investigation of investment outcomes, we also discuss the structure of the resulting152

OSQ- and MCV-optimal factor investing strategies using two realistic combinations of training and testing153

data sets for the neural network. Considering results on the training data sets, we �nd that while optimal154

factor investing strategies yield very promising in-sample investment results, the underlying strategies often155

lack meaningful diversi�cation among factors. Considering results on the selected testing data sets, we156

�nd that the out-of-sample performance of the factor investing strategies can be very disappointing, with157

basic optimal portfolios consisting of only the broad market index and bonds potentially outperforming158

the corresponding optimal factor portfolios. Since the investment strategies and associated results are159

conditional on the training and testing data sets, we do not dismiss factor investing. However, we conclude160

that the performance of an OSQ- or MCV-optimal investment strategy consisting only of a broad market161

index and bonds can be very competitive against optimal factor investing strategies.162

The remainder of the paper is organized as follows. Section 2 presents the problem formulation and discusses163

how transaction costs are incorporated in the wealth dynamics. Section 3 discusses the realistic factor investing164

scenario assumptions in detail, the results of which are presented in Section 4. Finally, Section 5 concludes the165

paper and outlines possible future work.166

2 Formulation167

Suppose that the investor has initial wealth w0 ≥ 0 and a time horizon T > 0. We assume that the investor168

rebalances the portfolio over the time interval [0, T ] at each of Nrb rebalancing times, which we assume for169

convenience to be equally-spaced. Formally, we de�ne the set T of rebalancing times as170

T = { tn = n∆t|n = 0, ..., Nrb − 1} , ∆t = T/Nrb. (2.1)171

Note that the �rst rebalancing event occurs at time t0 = 0, while the �nal rebalancing event is at time tNrb−1 =172

T −∆t. As in Li and Forsyth (2019), we assume that the investor has an a priori speci�ed cash contribution173

schedule {q (tn) : n = 0, ..., Nrb − 1}, where q (tn) denotes the cash contribution to the portfolio at rebalancing174

time tn.175

Given any time-dependent function ϕ (t) , t ∈ [0, T ], we will use the notation ϕ (t−n ) and ϕ (t+n ) as shorthand176

for the following one-sided limits,177

ϕ
(
t−n
)

:= lim
ε↓0

ϕ (tn − ε) , ϕ
(
t+n
)

:= lim
ε↓0

ϕ (tn + ε) . (2.2)178

We assume that the investor considers a pre-de�ned set of Na ∈ N candidate assets for inclusion in the portfolio179

at any rebalancing time tn ∈ T . If Ai (t) speci�es the amount invested in asset i ∈ {1, ..., Na} at time t ∈ [0, T ],180

we de�ne the investor's total wealth at time t as W (t), given by181

W (t) =

Na∑
i=1

Ai (t) , t ∈ [0, T ] , (2.3)182

where W
(
t−0
)

= w0. The investment strategy or control is modelled in terms of the fraction or proportion of183

wealth to be invested in each asset at each rebalancing event. If pi (tn) denotes the proportion of wealth to be184

invested in asset i ∈ {1, ..., Na} immediately after rebalancing time tn, then185

pi (tn) =
Ai (t+n )

W
(
t+n
) , i ∈ {1, ..., Na} , tn ∈ T . (2.4)186

Let p (tn) denote the vector of proportions (2.4) for all assets i ∈ {1, ..., Na} at rebalancing time tn,187

p (tn) = [p1 (tn) , ..., pNa (tn)] ∈ RNa , tn ∈ T . (2.5)188

The control or investment strategy P over [0, T ] is de�ned as a collection of vectors of the form (2.5), one for189

each rebalancing event. In other words, P := {p (tn) : n = 0, ..., Nrb − 1} .190
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We de�ne A as the set of admissible controls, and Z as the set of admissible values of each vector p (tn), so191

that P ∈ A if and only if P = {p (tn) ∈ Z : n = 0, ..., Nrb − 1} .192

Since the factor investing problem is to be formulated from the perspective of an investor subject to the193

investment constraints of (i) no shorting and (ii) no leverage, Z is given by the (Na − 1)-dimensional probability194

simplex (Boyd et al. (2004)),195

Z =

{
(y1, ..., yNa) ∈ RNa :

Na∑
i=1

yi = 1 and yi ≥ 0 for all i = 1, ..., Na

}
. (2.6)196

Short-term borrowing of cash over a single period of length ∆t is permitted only for the purposes of funding197

transaction costs, as discussed in Subsection 2.2 below.198

2.1 Objective functions199

As mentioned in the Introduction, the factor portfolio allocation problem is an area of active research. Since this200

typically involves solving for an optimal investment strategy with respect to some objective function, choosing an201

appropriate objective function therefore plays a critical role in obtaining reasonable factor investing strategies.202

While expected utility is sometimes used as the objective in factor investing applications (Aliaga-Diaz et al.203

(2020); Hansen and Bonne-Kristiansen (2020); Laborda et al. (2016); Lioui and Tarelli (2020)), the use of204

single-period or �rolling-window� mean-variance/Sharpe-ratio optimization appears to be the most common in205

the factor investing literature (see for example Bender et al. (2019a); Briere and Szafarz (2017); Cazalet and206

Roncalli (2014); Clarke et al. (2016); DeMiguel et al. (2020, 2014); Feng and He (2020); Naik et al. (2016);207

Soupé et al. (2019)). Perhaps this is to be expected, since mean-variance (MV) optimization is intuitive, with208

results being easily interpretable in terms of the trade-o� between reward (expected return) and risk (variance).209

Furthermore, using MV optimization also avoids the di�cult issue of specifying and parameterizing a utility210

function.211

However, one challenge in using variance as a risk measure is that factor return distributions often deviate212

substantially from normality, with prominent characteristics being potentially large negative skewness and excess213

kurtosis values (Arnott et al. (2019)). As a result, it is often argued that factor investors, while maximizing214

returns, should also carefully consider managing or minimizing the downside or �tail� risk associated with factor215

investing strategies (Arnott et al. (2019); Kartsakli and Schlumpf (2018); Naik et al. (2016)).216

Based on these observations, we consider two objective functions in this paper, namely (i) the one-sided217

quadratic shortfall of terminal wealth with respect to a speci�ed target (abbreviated �OSQ�), and (ii) the mean218

- Conditional Value-at-Risk, or mean-CVaR, of terminal wealth (abbreviated �MCV�).219

While formal de�nitions are given below, here we note that the OSQ problem is closely related to dynamic220

MV portfolio optimization (see Dang and Forsyth (2016); Li and Forsyth (2019)), and is therefore clearly221

desirable as an objective function given the popularity of MV optimization in factor investing applications. In222

addition, the resulting OSQ-optimal investment strategies are fundamentally contrarian (Forsyth and Vetzal223

(2017b, 2019); Forsyth et al. (2019)), a potentially desirable quality of factor investing strategies (Ang and Kjaer224

(2012); Arnott et al. (2016a); Asness et al. (2017); Malkiel (2014)).225

In the case of the MCV objective, the use of the CVaR as a tail risk measure is well established in dynamic226

portfolio optimization settings (Forsyth (2020); Gao et al. (2017); Miller and Yang (2017); Strub et al. (2019)),227

therefore enabling the investor to obtain factor investing strategies explicitly aimed at managing the resulting228

downside risk while maximizing returns.229

Instead of single-period or rolling-window type optimization approaches common in the factor investing230

literature, we formulate the factor investing problem as a stochastic optimal control problem such as in for231

example Lioui and Tarelli (2020), which allows us to obtain dynamically-optimal factor investing strategies over232

the time horizon [0, T ]. However, the treatment in this paper di�ers from that of Lioui and Tarelli (2020) in233

a number of important ways: (i) We make no assumptions regarding the parametric models of the underlying234

factor return dynamics, and instead base our formulation on the data-driven approach of Li and Forsyth (2019).235

(ii) As noted above, we do not use an expected utility objective function. (iii) We incorporate transaction costs236

explicitly in the wealth dynamics (see Subsection 2.2). (iv) Finally, we limit the set of candidate assets to237

long-only, readily investable factors (see discussion in Section 3).238

Let Et0,w0

P [f (W (T ))] denote the expectation of the investor's objective function f : R→ R of the portfolio's239

terminal wealth W (T ), given initial wealth W
(
t−0
)

= w0 at time t0 = 0, and using control P ∈ A over [0, T ].240

We now discuss the speci�c form of the objective functions f for the OSQ and MCV problems.241
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First, the OSQ problem with respect to a speci�ed target γ ∈ R is de�ned as (Dang and Forsyth (2016); Li242

and Forsyth (2019))243 (
OSQ (γ)

)
: inf

P∈A
Et0,w0

P [fγ (W (T ))] , γ ∈ R, (2.7)244

where fγ (w) =
1

2
(min {w − γ, 0})2

+ λosqw. (2.8)245

In (2.8), λosq > 0 is a small constant (e.g. λosq = 10−6) introduced for regularization purposes (Li and Forsyth246

(2019)). Note that fγ in (2.8) is continuously di�erentiable.247

The CVaR at level α, or α-CVaR, is simply the expected value of the worst α percent of wealth outcomes248

(typically, α ∈ {1%, 5%}), and is therefore a measure of tail risk. Note that we follow the example of Forsyth249

(2020) and de�ne the α-CVaR in terms of the terminal wealth, not in terms of the loss. This means that in our250

setting, a larger value of the CVaR is preferable to smaller value.251

Informally, if the distribution of terminal wealth W (T ) is continuous with PDF φ̂, then given a �xed level252

α, the α-CVaR in our setting would be given by253

CVARα =
1

α

∫ w∗α

−∞
W (T ) · φ̂ (W (T )) · dW (T ) , (2.9)254

where w∗α is the corresponding Value-at-Risk (VaR) at level α de�ned such that
∫ w∗α
−∞ φ̂ (W (T )) dW (T ) = α.255

More formally, our MCV problem de�nition uses the mean-CVaR objective with scalarization parameter256

ρ > 0 given in Forsyth (2020),257

sup
P∈A

{
ρ · Et0,w0

P [W (T )] + CVARα
}
, ρ > 0. (2.10)258

Instead of the informal de�nition (2.9), we apply the more general de�nition of CVaR from Rockafellar and259

Uryasev (2002) to our setting, so that problem (2.10) is formulated in more detail as (see for example Forsyth260

(2020); Miller and Yang (2017))261

inf
ξ

inf
P∈A

Et0,w0

P

[
−ρ ·W (T )− ξ +

1

α
max (ξ −W (T ) , 0)

]
, ρ > 0. (2.11)262

The admissible set of values of ξ in (2.11) corresponds to the range of possible values of W (T ).263

Remark 2.1. (Pre-commitment mean-CVaR equivalence to an induced time-consistent strategy) Formally, the264

optimal control for the mean-CVaR objective ((2.10) or (2.11) is of the pre-commitment type (Forsyth (2020)),265

and hence is not time-consistent. Pre-commitment policies are often considered impractical to implement as266

investment strategies. However, the pre-commitment strategy determined at time t0 is identical to the strategy267

determined using an associated induced time-consistent objective function (Forsyth (2020); Strub et al. (2019)).268

Here, we assume that the actual investment strategy followed by the investor for t > t0 is the strategy determined269

using the induced time-consistent objective function, and hence is implementable in the sense that the investor270

has no incentive to deviate from the strategy determined at t0. In the following, we refer to this strategy as271

the mean-CVaR-optimal strategy, with the understanding that at any t > t0, the investor follows the induced272

time-consistent strategy. See Forsyth (2020) and Strub et al. (2019) for a detailed discussion of these issues.273

Since we intend to solve the portfolio optimization problems using a stochastic gradient descent (SGD)274

method (see Subsection 2.4 below), it is preferable to work with an objective function f which is at least275

continuously di�erentiable (see for example Shapiro and Wardi (1996)). As a result, to ensure the continuously276

di�erentiability of the mean-CVaR objective, we use the smoothing technique from Alexander et al. (2006)277

to replace the function max (x, 0) in (2.11) with the continuously di�erentiable piecewise quadratic function278

ψmcv (x;λmcv),279

ψmcv (x;λmcv) =


x, if x > λmcv,

1
4λmcv

x2 + 1
2x+ 1

4λmcv, if − λmcv ≤ x ≤ λmcv
0, otherwise,

, (2.12)280

where λmcv > 0 is a given, small resolution parameter (e.g. λmcv = 10−6). For subsequent use, we therefore281
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de�ne the MCV problem with scalarization parameter ρ > 0 as follows:282 (
MCV (ρ)

)
: inf

ξ∈R
inf
P∈A

Et0,w0

P [fρ (W (T ))] , γ ∈ R, (2.13)283

where fρ (w, ξ) = −ρ · w − ξ +
1

α
· ψmcv (ξ − w;λmcv) . (2.14)284

2.2 Transaction costs and wealth dynamics285

As observed by Arnott et al. (2019); Asness et al. (2014); Cerniglia and Fabozzi (2018), transaction costs286

are often not taken into account when factor investing strategies are designed or evaluated in the literature.287

However, it is widely acknowledged that transaction costs play an especially prominent role in the case of factor288

investing, since there is usually a trade-o� between enhancing returns by realizing factor premiums, while also289

keeping total transaction costs manageable (Arnott et al. (2017b); Cazalet and Roncalli (2014); Hansen and290

Bonne-Kristiansen (2020); Hsu et al. (2015); Li and Shim (2019); Novy-Marx and Velikov (2016)). In fact,291

transaction costs can e�ectively wipe out the excess pro�tability that an active factor investing strategy can292

achieve over a simple benchmark (Dichtl et al. (2019)).293

To address this challenge, we explicitly incorporate the transaction costs arising from trading, such as294

brokerage commissions, in our problem formulation. We focus on proportional transaction costs, as in for295

example DeMiguel et al. (2020); Lioui and Tarelli (2020)), since any �xed transaction costs are expected to296

have a comparatively limited impact in our factor investing scenario (see Section 3). We also assume that the297

investor's wealth is not so large as to warrant the consideration of the implicit transaction costs resulting from298

the market impact of their factor investing strategy - a treatment of this case can be found in Li et al. (2019).299

Fix a rebalancing time tn ∈ T . Since Ai (t−n ) and Ai (t+n ) respectively denote the amounts invested in asset300

i immediately before and after rebalancing at time tn, the change in the amount invested in asset i due to the301

rebalancing event is given by ∆Ai (tn) = Ai (t+n )−Ai (t−n ) .302

Let ci ∈ [0, 1) be the proportional transaction costs for trading in asset i ∈ {1, ..., Na}. We allow the303

transaction costs to be di�erent for di�erent underlying assets, since if for example cash is included as an asset,304

it might be the case that deposits or withdrawals from a cash account do not incur any transaction costs. The305

total proportional transaction costs due to the rebalancing of the portfolio at time tn is therefore given by306 ∑Na
i=1 ci · |∆Ai (tn)|.307

To ensure the continuous di�erentiability of the wealth dynamics derived below, we approximate the absolute308

value function in the transaction cost calculation by another piecewise quadratic approximation, ψtc, with309

resolution parameter λtc > 0 (e.g. λtc = 10−6):310

ψtc (x;λtc) =

{
1

2λtc
x2 + 1

2λtc, if x ∈ [−λtc, λtc] ,
|x| , otherwise.

(2.15)311

The total transaction costs due to trading in all assets at rebalancing time tn is then approximated by the312

continuously di�erentiable quantity C (tn), where313

C (tn) =

Na∑
i=1

ci · ψtc (∆Ai (tn) ;λtc) . (2.16)314

Incorporating transaction costs presents a challenge in multi-asset portfolio optimization problems. Speci�-315

cally, to calculate (2.16), we need the change in positions ∆Ai (tn), which depends (through the quantity Ai (t+n ))316

on the proportion (2.4) of wealth invested in each asset. However, calculating the proportions pi (tn) according317

to (2.4) requires knowledge of the total wealth available W (t+n ), which in turn depends on the transaction costs318

(2.16).319

To solve this problem, various approaches are implemented in the literature: (i) In the case of only two320

underlying assets and the assumption of parametric asset dynamics, transaction costs can be incorporated321

in the asset/wealth dynamics at every time step, since there is e�ectively only one proportion p (tn) to be322

determined (see for example Dang and Forsyth (2014); Liu and Zheng (2016); Van Staden et al. (2018)). (ii)323

The multi-asset investment strategy can be speci�ed or calculated without reference to transaction costs, then324

the impact of transaction costs on the given strategy's performance can be assessed (Lioui and Tarelli (2020);325

Novy-Marx and Velikov (2016)). (iii) The total transaction costs can be incorporated in the objective function326

essentially as a penalty term (DeMiguel et al. (2020); Perrin and Roncalli (2020)). (iv) The next period's327
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portfolio returns can be reduced by the transaction costs arising from the current period (Zhang et al. (2020)).328

To ensure transparency, we prefer to incorporate transaction costs explicitly in the wealth dynamics. The329

optimal trade-o� (with respect to a given objective function) between maximizing factor premiums and managing330

transaction costs can then be found by the neural network (see Subsection 2.3 below), while the investor can331

maintain a clear view of the accumulated transaction costs for the strategy.332

To solve the above-mentioned problem of jointly determining the asset allocation and transaction costs, we333

proceed as follows. Let rb > 0 be the continuously compounded rate at which comparatively small amounts of334

cash (for the purposes of funding transaction costs) can be borrowed. To model transaction costs, we assume335

that at each tn ∈ T , the investor borrows the amount C (tn) to pay the transaction costs (2.16) due at time tn,336

and repays the loan amount plus interest, erb∆t · C (tn), at the next rebalancing time, tn+1. The loan to pay the337

rebalancing costs of the �nal rebalancing event (at time tNrb−1 = T −∆t) is then repaid at the terminal time338

T .339

It should be noted that depending on the combination of values used for rb and ci, it might be optimal340

to retain some cash (i.e. a non-zero investment in the cash account) to fund future transaction costs rather341

than accomplish this through borrowing. However, numerical tests have shown that due to the relatively poor342

returns of cash relative to the other candidate assets considered (see Section 4), values of rb and ci have to be343

unrealistically high in our setting (for example, rb > 0.2 and ci > 0.5) in order for a cash retention strategy to be344

optimal. In the rest of this discussion, we therefore assume that transaction costs will be funded by borrowing345

as outlined above.346

In more detail, given some investment strategy P ∈ A, the following occurs at rebalancing time tn ∈ T :347

� The investor observes the value (amount) of the investment in each asset immediately prior to this rebal-348

ancing event, Ai (t−n ), i = 1, ..., Na, giving the total wealth by (2.3) as W (t−n ) =
∑Na
i=1Ai (t−n ). At the �rst349

rebalancing event t0 = 0, some assumption is made regarding the composition of the portfolio allocation350

of the initial wealth - see Section 3 below. At rebalancing times tn > 0, note that Ai (t−n ) is calculated351

using the amount Ai
(
t+n−1

)
in asset i immediately after the previous rebalancing event (at time tn−1),352

together with the observed return Ri (tn−1) of asset i over the time interval
[
t+n−1, t

−
n

]
,353

Ai
(
t−n
)

= Ai
(
t+n−1

)
· [1 +Ri (tn−1)] , i = 1, ..., Na. (2.17)354

� The investor contributes the speci�ed amount q (tn) into the portfolio. For all tn > t0 = 0, the loan of the355

transaction costs from the previous rebalancing event, C (tn−1), is repaid, leading to a portfolio out�ow of356

erb∆t · C (tn−1). The total portfolio wealth available for investment at time tn is then calculated as357

W
(
t+n
)

= W
(
t−n
)

+ q (tn)− erb∆t · C (tn−1) . (2.18)358

The given vector of investment proportions p (tn) ∈ P is used together with de�nition (2.4) to calculate359

the amount Ai (t+n ) in each asset after rebalancing,360

Ai
(
t+n
)

= W
(
t+n
)
· pi (tn) , i = 1, ..., Na. (2.19)361

Note that since p (tn) ∈ Z by assumption, (2.19) implies that
∑Na
i=1Ai (t+n ) = W (t+n ), as required by362

de�nition (2.3). The total transaction costs from this rebalancing event, C (tn), calculated using (2.16)363

and paid from borrowed funds (which in turn will be repaid at time tn+1), has a zero net cash impact at364

time tn and therefore plays no role in (2.18).365

Since the �nal rebalancing event occurs at time tNrb−1 = T −∆t, the wealth immediately before the terminal366

time T is obtained using (2.3) and (2.17) as367

W
(
T−
)

=

Na∑
i=1

Ai
(
t+Nrb−1

)
· [1 +Ri (tNrb−1)] . (2.20)368

Recalling the borrowed transaction costs from the �nal rebalancing event is to be repaid at the terminal369
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time T , the wealth dynamics over [0, T ] incorporating transaction costs can be summarized as follows:370

W
(
t+0
)

= w0 + q (t0) , (n = 0) ,371

W
(
t+n
)

= W
(
t−n
)

+ q (tn)− erb∆t · C (tn−1) , n = 1, ..., Nrb − 1,372

W (T ) = W
(
T−
)
− erb∆t · C (tNrb−1) . (2.21)373

2.3 Investment strategy374

We follow Li and Forsyth (2019) in using a neural network to model the control or investment strategy imple-375

mented by the investor over [0, T ]. In order to ensure that this discussion is reasonably self-contained, we give376

a brief overview of this methodology and introduce the necessary extensions in order to incorporate transaction377

costs. First, the following remark places our approach in the context of the machine learning (ML) literature.378

Remark 2.2. (Our approach in the context of the ML literature) Perhaps the most popular approach in the379

ML literature to solve dynamic programming problems of the form (2.7) or (2.13) is reinforcement learning (RL)380

- see for example Sutton and Barto (2018). RL cannot be classi�ed simply as either supervised or unsupervised381

learning (Barto and Dietterich (2004)), and this is also true for the approach of Li and Forsyth (2019), on which382

our approach is based. While RL and our approach are both data-driven, there are many di�erences between383

RL and our approach, with the key di�erence being that we solve a single optimization problem to obtain the384

optimal investment strategy (as a function of time) applicable at all rebalancing times tn ∈ T . This stands in385

contrast with the Q-learning algorithm, arguably the most popular data-driven RL algorithm (see for example386

Dixon et al. (2020); Gao et al. (2020); Lucarelli and Borrotti (2020); Park et al. (2020)), where the reliance on387

value iteration to obtain the optimal investment strategy e�ectively implies an optimization problem has to be388

solved to determine the value function at each rebalancing time tn ∈ T .389

Consider a fully-connected, feed-forward neural network with L hidden layers. Incorporating the input and390

output layers, the neural network therefore has L+ 2 layers in total, indexed by ` ∈ {0, ...,L+ 1}, where ` = 0391

and ` = L+ 1 denote the input and output layers, respectively. Let η` ∈ N denote the number of nodes in layer392

`. The number of nodes in the input layer, η0, corresponds to the number of elements in the feature vector393

φ ∈ Rη0 .394

With the exception of the input layer, each layer ` ∈ {1, ...,L+ 1} is associated with a weights matrix395

x[`] ∈ Rη`−1×η` into the layer, an optional bias vector b[`] ∈ Rη` , as well as an activation function σ[`] : Rη` → Rη`396

which is applied to the weighted inputs z[`] ∈ Rη` into the layer. The output of layer ` ∈ {1, ...,L+ 1} is therefore397

given by a[`] ∈ Rη` , where398

a[`] = σ[`]

(
z[`]
)
, where z

[`]
i =

(
η`−1∑
k=1

x
[`]
kia

[`−1]
k

)
+ b

[`]
i , ` ∈ {1, ...,L+ 1} . (2.22)399

Since no activation function is applied at the input layer (` = 0), we simply set a[0] ≡ φ for notational400

convenience. While any suitable activation functions (see for example Goodfellow et al. (2016)) can be used401

for the hidden layers ` ∈ {1, ...,L}, the methodology of Li and Forsyth (2019) places two requirements on the402

output layer ` = L+ 1. First, the number of nodes in the output layer should be equal to the number of assets,403

i.e. ηL+1 ≡ Na. Second, the output layer uses the softmax activation function, so that the output of the ith404

node in the output layer is given by405

a
[L+1]
i =

(
σ[L+1]

(
z[L+1]

))
i

=
exp

{
z

[L+1]
i

}
∑ηL+1

m=1 exp
{
z

[L+1]
m

} , i = 1, ..., ηL+1, with ηL+1 = Na. (2.23)406

Assume that we are given a set Y ∈ RNd×Nrb×Na of Nd ∈ N sample paths of (joint) returns of the Na407

candidate assets observed over Nrb time intervals of length ∆t = T/Nrb. The data set Y can be obtained408

through bootstrapping market data (see Li and Forsyth (2019) and Subsection 3.5 below), but in principle409

any market data generator (alternatively known as an economic scenario generator) can also be used. In this410

discussion, Y will serve as the training dataset of the neural network. To formalize the notion of sample path411

of returns, we �rst de�ne412

Y
(j)
i (tn) = 1 +R

(j)
i (tn) , j ∈ {1, ..., Nd} , n ∈ {0, ..., Nrb − 1} , i ∈ {1, ..., Na} , (2.24)413
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where R
(j)
i (tn) denotes the (possibly in�ation-adjusted) return along sample path j ∈ {1, ..., Nd} for asset414

i ∈ {1, ..., Na} over the time period [tn, tn+1], where n ∈ {0, ..., Nrb − 1}. Given (2.24), we associate a sample415

path j ∈ {1, ..., Nd} of joint returns with the subset Y (j) ⊂ Y , where416

Y (j) =
{
Y

(j)
i (tn) : n = 0, ..., Nrb − 1, i = 1, ..., Na

}
∈ RNrb×Na , j ∈ {1, ..., Nd} . (2.25)417

For illustrative purposes, we �x a sample path j ∈ {1, ..., Nd} and a rebalancing event n ∈ {0, ..., Nrb − 1},418

and use the superscript (j) and argument (tn) to highlight the dependence of the neural network inputs and419

outputs, as well as other quantities like the controlled wealth, on j and n. As discussed in Li and Forsyth420

(2019), the feature vector φ(j) (tn) for sample path j at rebalancing time tn includes at least (i) the wealth421

W (j) (t−n ) along sample path j immediately prior to rebalancing time tn, as well as (ii) the time-to-go (T − tn).422

The output of the ith node in the output layer, a
[L+1](j)
i (tn), is then interpreted as giving the proportion of423

wealth p
(j)
i (tn) to invest in the ith asset along sample path j at rebalancing time tn. In other words,424

a
[L+1](j)
i (tn) ≡ p(j)

i (tn) =
A

(j)
i (t+n )

W (j)
(
t+n
) , j ∈ {1, ..., Nd} , i ∈ {1, ..., Na} , tn ∈ T . (2.26)425

Note that the use of the softmax activation (2.23) at the output layer therefore guarantees the admissibility of426

the control, since by (2.23) and (2.26), p(j) (tn) ∈ Z without the need to impose further constraints.427

Along sample path j, we can therefore compute a terminal wealth value W (j) (T ) using the control (2.26)428

and wealth dynamics (2.21). For example, at some rebalancing time tn where n ∈ {1, ..., Nrb − 1}, the wealth429

along sample path j can be obtained using430

W (j)
(
t+n
)

= W (j)
(
t−n
)

+ q (tn)− erb∆t · C(j) (tn−1) , n = 1, ..., Nrb − 1, (2.27)431

where we emphasize that the transaction costs also depends on the sample path j through its dependence on the432

control (2.26). The total transaction costs (including interest) along any particular sample path can therefore433

be readily calculated as erb∆t ·
∑Nrb
n=1 C(j) (tn−1).434

As per the methodology of Li and Forsyth (2019), the neural network weights matrices x[`] and bias vectors435

b[`] do not depend on the sample path j or the rebalancing time tn. We de�ne ηθ ∈ N to be the total number436

of neural network parameters (all weights and biases), and θ ∈ Rηθ as the neural network parameter vector.437

For subsequent reference, we also de�ne ηx (≤ ηθ) as the total number of weights in the neural network, and438

θx ∈ Rηx as the subset θx ⊆ θ giving the vector of weights in the neural network.439

2.4 Training and testing the neural network440

Given that the neural network represents the investment strategy or control implemented by the investor over441

[0, T ], solving portfolio optimization problems such as (2.7) or (2.13) is equivalent to training the neural network442

(see Li and Forsyth (2019)).443

Speci�cally, �x a training dataset Y and a given neural network structure, including choices of features, num-444

ber of hidden layers and activation functions for the hidden layers. Since the neural network-based investment445

strategy automatically satis�es the investment constraints of no short-selling and no leverage (see Subsection446

2.3), the OSQ problem (2.7) and MCV problem (2.13) can be approximated by the following unconstrained447

optimization problems:448

(OSQ (γ)) : min
θ∈Rηθ

Fγ (θ) , where Fγ (θ) =
1

Nd

Nd∑
j=1

fγ

(
W (j) (T )

)
+ λrgΩrg (θx) , (2.28)449

(MCV (ρ)) : min
(θ,ξ)∈Rηθ+1

Fρ (θ, ξ) , where Fρ (θ, ξ) =
1

Nd

Nd∑
j=1

fρ

(
W (j) (T ) , ξ

)
+ λrgΩrg (θx) , (2.29)450

where fγ and fρ are the objective functions as per (2.8) and (2.14). In addition, to improve generalization per-451

formance, an L2 parameter norm penalty (Goodfellow et al. (2016)) has been incorporated as the regularization452

term Ωrg (θx) := 1
2 ‖θx‖

2
2 with hyperparameter λrg > 0.453

Using a shallow network with one hidden layer, two features and up to three assets, Li and Forsyth (2019)454

show that the neural network for the OSQ problem (2.28) can be trained very e�ciently using a trust region455
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method (Coleman and Li (1996)), which requires the computation of the Hessian matrix.456

However, from the perspective of this paper, there are three challenges with solving (2.28)-(2.29) using a457

trust region method: (i) Factor investing involves potentially far more than two or three underlying assets. (ii)458

Even in relatively simple cases where known (ground truth) solutions are available (see Appendix A.4), it is clear459

that the multi-asset MCV-optimal control is signi�cantly more complex than the corresponding OSQ-optimal460

control, requiring a deeper neural network (at least two layers) to obtain su�cient accuracy. (iii) Since CVaR is461

a tail risk measure, numerical experiments show that Nd needs to be fairly large (for example at least 1 million462

paths) in order to capture a su�cient number of tail outcomes to ensure reliable results.463

Taken together, these challenges imply that the training data set size and number of neural network pa-464

rameters ηθ considered in this paper are signi�cantly larger than the corresponding quantities considered in Li465

and Forsyth (2019). As a result, the function/gradient/Hessian calculation over the full training dataset for the466

trust region method is too computationally expensive for solving a realistic factor investing problem.467

It is therefore natural to use a stochastic gradient descent (SGD) algorithm instead to train the neural468

network. To this end, we use the Gadam algorithm proposed recently (Granziol et al. (2020)), which combines469

the Adam algorithm (Kingma and Ba (2015)) with tail iterate averaging for variance reduction and faster470

convergence (Mucke et al. (2019); Neu and Rosasco (2018); Polyak and Juditsky (1992)). More information,471

including the selected algorithm parameters, can be found in Appendix B.5.472

Gradients are calculated by backpropagation for each timestep tn ∈ T . As discussed in Li and Forsyth473

(2019), the gradient of the terminal wealth with respect to neural network parameters, ∇θW (j) (T ), can be474

obtained via iterative computation (timestepping) using dynamics (2.21).475

Following the training of the neural network, the resulting investment strategy can be tested by implementing476

the resulting optimal control (neural network) on a testing data set, Y test, consisting of N test
d sample paths of477

returns. While its contents di�er from that of the training data set Y , the testing data set Y test is assumed to478

have a similar structure (see Subsection 2.3 and Li and Forsyth (2019)).479

3 Dynamic factor investing scenario480

As noted in the Introduction, the concept of �factor investing� may be interpreted di�erently by di�erent481

investors. In this section, we discuss the assumptions underlying our factor investing scenario in detail.482

First, we assume that the investor is considering investing in the US market, does not permit short-selling483

or leverage, and wishes to rebalance the portfolio at reasonably-spaced, discrete time intervals. Note that these484

are realistic constraints in many asset allocation and factor investing scenarios (see for example Feng and He485

(2020)), including in the case of some institutional investors such as de�ned contribution pension funds (Forsyth486

et al. (2019)).487

We also assume that the investor has an initial wealth of w0 = 120, makes a total cash contribution to the488

portfolio of 12 units each year regardless of rebalancing frequency (speci�ed below), and has a relatively long489

time horizon of T = 10 years. As a result of the long time horizon, we will also assume that the investor is490

primarily interested in the real (or in�ation-adjusted) performance of the portfolio.491

In the case of factor investing, it is well-known that factor premiums not only take time to accrue, but492

also that individual factors can experience very poor short-term performance despite the existence of long-term493

factor premiums (Ang (2014); Ang et al. (2017); Fons et al. (2021); Kalesnik and Linnainmaa (2018)). However,494

the terminology �long term� as used in the literature might refer to a period of more than 50 years used in the495

analysis in some cases (e.g. Fama and French (2015)), while for some factors the periods of poor performance496

can extend to at least a decade (see for example Fama and French (2020); Israel et al. (2020)). This raises the497

question of whether an investor would remain committed to investing in a factor with poor performance for498

such an extended period of time. For the purposes of this paper, by choosing a time horizon of 10 years, we499

aim to strike a balance between (i) a su�ciently long time horizon to ensure factor premiums are harnessed,500

and (ii) not testing the investor's patience and resolve if the factor portfolio performance is disappointing over501

a period of a decade.502

In order to select/calibrate the parameters γ and ρ for the OSQ (γ) and MCV (ρ) problems, respectively,503

we assume that the investor targets a particular expected value of terminal wealth. Speci�cally, we assume that504

the investor targets an expected value of terminal wealth of 390 for the OSQ (γ) problem, and a somewhat505

lower expected value of 350 for the MCV (ρ) problem. Since the two di�erent objectives re�ect fundamentally506

di�erent investment philosophies, we set a more aggressive expected value target for the �target-chasing� OSQ507

problem than for the MCV problem whose main focus is downside protection. This also ensures that meaningful508
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investment results are obtained3.509

The expected value targets are assumed to remain the same for the corresponding investment objective,510

whether the underlying portfolio involves factors or only traditional asset classes (see Subsection 3.3 below).511

This ensures that the performance of di�erent portfolios can be compared on a fair and reasonable basis.512

Furthermore, instead of following a more abstract calibration process involving risk preferences and utility513

functions, the idea of choosing parameters such as γ and ρ based simply on some targeted level of return or risk514

is fairly common in the factor investing literature, even though di�erent objective functions are used from those515

implemented here (see for example Bender et al. (2019a); Dopfel and Lester (2018); Fitzgibbons et al. (2017);516

Soupé et al. (2019)).517

Finally, while the results presented in Section 4 are based on annual rebalancing of the portfolio, we also518

present results in Appendix A.4 under the assumption of quarterly rebalancing. Regardless of rebalancing519

frequency, the qualitative aspects of the conclusions remain unchanged, although the transaction costs increase520

(as expected) with more frequent rebalancing .521

With regards to transaction costs, we assume that immediately prior to the �rst rebalancing event (time522

t0 = 0), the given initial wealth w0 is invested in a cash account, and that making withdrawals and deposits523

from the cash account incur no transaction costs. For simplicity, we assume that the investor can borrow cash524

to fund transaction costs at a continuously-compounded, in�ation-adjusted rate of rb = 5%. Recalling that525

ci ∈ [0, 1) refers to the proportional transaction costs for trading in asset i ∈ {1, ..., Na}, we de�ne asset i = 1526

as the cash account, and set ci = 50 basis points for trading in non-cash assets,527

ci =

{
0, if i = 1 (cash account) ,

0.005, otherwise.
(3.1)528

For ease of reference, the key investment scenario assumptions are summarized in Table 3.1. The selection529

of factors for possible investment, as well as other considerations such as the underlying data, are discussed in530

the following sections.531

Table 3.1: Key investment scenario assumptions

Time horizon T = 10 years

Initial wealth w0 = 120, invested in cash account (i = 1)

Investment constraints No shorting and no leverage allowed

Transaction costs ci = 5 basis points (i = 2, ..., Na), c1 = 0; rb = 5%

Investment objectives One-sided quadratic (OSQ) Mean-CVaR (MCV)

Target expected value of W (T ) 390 350

Rebalancing frequencies Annual (∆t = 1) Quarterly (∆t = 3/12) Annual (∆t = 1)

Number of rebalancing events Nrb = 10 Nrb = 40 Nrb = 10

Cash contributions to portfolio at

n = 0, ..., Nrb − 1

q (tn) = 12, for each n q (tn) = 12, if n ∈
{0, 4, 8, ..., 36}, q (tn) = 0

otherwise

q (tn) = 12, for each n

532

3.1 Factor selection533

In the subsequent analysis, we distinguish two groups of assets: (i) �basic� or core assets such as US Treasury534

bills/bonds and a broad US stock market index, and (ii) �factors� which are portfolios aimed at capturing535

some factor premium (e.g. size, value). However, we emphasize that this distinction is merely for analysis and536

performance comparison purposes. In the asset allocation process (i.e. when training the neural network to537

obtain the OSQ- and MCV-optimal investment strategies), we do not make this distinction and consider the538

allocation of wealth to assets in both groups simultaneously, as advocated by for example Aliaga-Diaz et al.539

(2020).540

The basic assets are assumed to consist of the following: (i) the cash account, (ii) a 30-day US T-bill541

(abbreviated �T30�), commonly used as the �risk-free� asset in factor models (e.g. Fama and French (1993)),542

3For example, if the expected value target for the OSQ (γ) problem is too conservative (low), it might not be optimal given the
associated value of γ to invest in any factors at all, since the resulting OSQ-optimal strategy might require all wealth simply to be
placed in Treasury bills.
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(iii) a 10-year US Treasury bond (�B10�), and (iv) a broad US stock-market index (�Mkt�), which aligns closely543

to the de�nition of the �Market portfolio� in factor models (e.g. Fama and French (2015)).544

The selection of factors to include in the analysis obviously plays a critical role in the conclusions of this545

paper. However, there is no consensus in the academic literature as to which factors are critical in explaining546

the cross-section of expected returns (Harvey and Liu (2020)). Furthermore, meta analyses of hundreds of547

published factors lead to the unfortunate conclusion that most research �ndings are likely false and potentially548

the result of data snooping (see for example Feng et al. (2020); Harvey et al. (2016)), while the risk premiums549

associated with the remaining valid factors are smaller than previously reported (Hou et al. (2020)).550

In addition to the challenges associated with individual factors, there appears to be no straightforward551

theoretical basis for preferring one particular combination of factors over another. Hou et al. (2019) demonstrate552

that di�erent factor models can in fact give highly correlated aggregate results, while Kogan and Tian (2015)553

show that we can construct factor models with a small number of randomly-selected factors to obtain signi�cant554

explanatory power of the historical cross-section of returns.555

We avoid the controversial issues of factor selection and factor models by including only the most widely556

recognized factors in the analysis, namely (i) Size, (ii) Value, (iii) Low Volatility (�Vol�) and (iv) Momentum557

(�Mom�). These factors indeed enjoy mainstream acceptance in the academic and promotional factor investing558

literature - to name a few recent examples, see for example Amenc et al. (2015); Arnott et al. (2017a, 2019,559

2017c); Blitz et al. (2020); Blitz and Vidojevic (2019); Cazalet and Roncalli (2014); Dimson et al. (2017); Dopfel560

and Lester (2018); Fons et al. (2021); Li and Shim (2019); Melas (2016); Qontigo (2020); UBS (2016).561

Notable exclusions from our list of factors include the additional Fama and French (2015) factors, Pro�tability562

and Investment, which are considered more controversial (Blitz (2015); Briere and Szafarz (2017)). We also563

exclude ill-de�ned factors popular in promotional and trade literature such as the �Multi-factor� factor and the564

Quality factor (see for example Bender et al. (2013); Qontigo (2020); Waggoner (2018)), the performance of565

which can be very sensitive to the factor de�nition employed and/or which may be redundant if other factors are566

also considered in the analysis (Abergel (2019); Arnott et al. (2016b); Vincent et al. (2018)). The redundancy567

of these two latter factors in our setting is also con�rmed by the results presented in Appendix A.1.568

Having identi�ed the factors for potential investment, we observe that the underlying de�nition and construc-569

tion of even the most widely accepted factors are also subject of vigorous debate. As noted in the Introduction,570

factors are essentially portfolios of underlying assets constructed to gain exposure to a given characteristic, while571

possibly also minimizing exposure to other factors. As a result, factors in the academic literature typically con-572

sists of a �long leg� and a �short leg� (Blitz et al. (2020); Briere and Szafarz (2016)). For example, the Size573

factor in the Fama and French (2015, 1992) models (usually abbreviated SMB, or �Small Minus Big�) consists574

of a portfolio formed by buying small stocks (long leg) and simultaneously short-selling large stocks (short leg),575

therefore capturing both the expected outperformance of small stocks and the expected underperformance of576

large stocks, while maintaining zero exposure to the market factor.577

However, these academic factors used for explaining returns were never constructed with the aim of being578

actually investable (Bender et al. (2013)), and are therefore expected to be very di�cult to replicate (Arnott579

et al. (2017c); Dimson et al. (2017)). In practice, investors may not have access to the short leg of a factor580

through existing investment vehicles such as exchange-traded funds (ETFs), while short-selling di�culties or581

constraints might mean that the investor is not able or allowed to construct the short leg from �rst principles.582

Therefore, the success of the investment strategies based on the assumption of easy investment access to, and583

liquidity of, long-short academic �paper� portfolios (taken for granted in for example Haddad et al. (2020);584

Laborda et al. (2016); Lioui and Tarelli (2020)), may be very challenging for many investors to implement in585

practice.586

Fortunately, research con�rms that exposure to only the long leg of a factor can be su�cient to get most of587

the bene�ts from the desired factor exposure (Asness et al. (2014); Blitz (2015); Israel and Moskowitz (2013)).588

Speci�cally, once implementation costs are taken into account, which are not limited to just transaction costs,589

but also includes the borrowing costs and margin requirements associated with short-selling stocks, the long leg590

dominates the short leg in terms of risk-adjusted performance (Blitz et al. (2020, 2014)). It therefore comes as591

no surprise that when the practical implementation of factor investing strategies are discussed, the focus is often592

on long-only investment strategies, or �factor tilts�, which consists of increasing portfolio exposure to the assets593

that may typically constitute at least a part of the long leg of a recognized academic factor (Amenc and Goltz594

(2016); Arnott et al. (2017a); Ghayur et al. (2018); Grim et al. (2017); Li et al. (2019); Li and Shim (2019);595

Malkiel (2014); Soupé et al. (2019)).596

For the purposes of this paper, we assume that the investor will implement their factor investing strategy597

via low-cost, long-only ETFs, with a reasonable collection of funds being available for the popular factors we598
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selected. This allows us to treat the chosen factors simply as candidate assets (indices) available for investment.599

In particular, we assume that the investor is not going to construct their own underlying factors from potentially600

thousands of individual stocks (as in, for example, Amenc et al. (2015); Blitz and Vidojevic (2019); Clarke et al.601

(2016); Lester (2019)). This is a reasonable assumption, since many, if not most, factor investors use ETFs602

and other commercial funds to construct factor portfolios, an observation which is underscored not just by the603

signi�cant �ow of funds into factor ETFs recently (Basilico and Johnsen (2019); Vincent et al. (2018)), but is604

also gaining recognition in the literature (Blitz (2016); Blitz and Vidojevic (2019); Briere and Szafarz (2020);605

Cerniglia and Fabozzi (2018); Easley et al. (2020); Hjulgren (2018); Melas (2016); Nes (2020)). Note that the606

use of ETFs for factor investing is also not just limited to retail investors. As a recent survey4 reported, the607

majority of institutional investors actually make use of ETFs when implementing factor investing strategies.608

Taken together, the assumptions ensure that the resulting factor investment strategies we derive are reason-609

able and practical, which enables realistic conclusions to be drawn from the results.610

3.2 Factor data611

Historical nominal (dividend- and split-adjusted) monthly returns data for three of the basic assets (T30, B10612

and Mkt) were obtained from the CRSP5 for the period July 1963 to December 2019. In the case of Cash, we613

assumed zero nominal monthly returns on any (positive) cash balances. The time period for data extraction614

was selected to match the availability of factor returns data, which we now discuss in detail.615

Using ETFs to implement a factor investing strategy, while cost-e�ective and readily available to any investor,616

has one major associated problem if the investment strategy is to be obtained by training the neural network617

as outlined in Section 2: data availability. ETFs with a factor investing focus are, generally speaking, relatively618

new, with many existing for less than a decade. In order to obtain su�cient historical data for the training and619

testing of the neural network, we use proxy factor data that are su�ciently similar to the available ETF data620

over the time period when both are available. In di�erent problem settings and under di�erent assumptions,621

we note that the use of proxy factor data is also the approach followed by for example Li et al. (2019); Li and622

Shim (2019). In our case, we proceed as follows.623

First, we obtained a list of US-focused equity factor ETFs issued by the top 3 ETF issuers by assets under624

management6, which was expanded to the top 4 ETF issuers for factors where ETFs were launched even more625

recently (e.g. Low Volatility, or Vol). The investment objective from the prospectus of each ETF was consulted626

to classify the ETF as to whether it potentially provided clear exposure to one of our desired factors. ETFs with627

�mixed� factor exposures (for example small-cap low volatility ETFs, or multi-factor ETFs) were not included628

under any speci�c factor. For each factor ETF classi�ed as providing exposure to one of the factors on our list,629

we obtained (dividend- and split-adjusted) monthly returns since its inception.630

Second, we used Kenneth R. French's Data Library7 (subsequently abbreviated �KFDL�) to obtain historical631

data for portfolios which were deemed to provide the required �factor tilt� to each of our chosen factors.632

Speci�cally, the underlying portfolio is required to be long-only (the returns of the short leg is explicitly excluded,633

see Subsection 3.4), and is required to provide some qualitative characteristics similar to those mentioned in634

the investment objectives of the corresponding factor ETFs. Details regarding each of our chosen factors and635

its associated proxy data can be found in Table 3.2.636

For example, as a proxy for the �Value� factor portfolio, we consider the KFDL nominal returns data of a637

capitalization-weighted index of �rms listed on major US exchanges with book-to-market value of equity ratios638

at or above the 70th percentile, where the breakpoint is based on NYSE data. Of course, in this example, our639

proxy is not expected to align exactly to the (proprietary) de�nitions used by ETF issuers for each of their640

respective �Value ETFs�, but it clearly provides a �value tilt� factor exposure.641

Note that our de�nitions in Table 3.2 of the proxy data for the factor tilts to Value, Low Volatility (Vol) and642

Momentum (Mom) align closely to the corresponding factor tilt de�nitions used, in di�erent problem settings643

and under di�erent assumptions, in Asness et al. (2015), Li et al. (2019) and Cazalet and Roncalli (2014),644

respectively.645

4Invesco Global Factor Investing Study, 2020, available at www.invesco.com.
5Calculations were based on data from the Historical Indexes 2020©, Center for Research in Security Prices (CRSP), The

University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article. This service
and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third party suppliers.

6Assets under management (AUM) information obtained from https://etfdb.com/etfs. As at 30 September 2020, three ETF
issuers, namely iShares (Blackrock), Vanguard and State Street SPDR were responsible for a combined 80.7% of the total AUM of
all ETFs included in the database. Invesco, the fourth largest issuer by AUM, had just over 5% of the total AUM listed.

7Kenneth R. French's Data Library can be accessed at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

14



Using the KFDL proxy data for long-only factor exposures provide a number of clear bene�ts: (i) KFDL646

data is widely used in the factor investment literature to analyze and construct factor strategies - see for647

example Briere and Szafarz (2020); Feng and He (2020); Lioui and Tarelli (2020); Van Gelderen et al. (2019),648

to name a few recent examples. (ii) The de�nition and construction of each factor or factor tilt is well de�ned649

and transparent, and not subject to the results of a proprietary algorithm. (iii) Data availability signi�cantly650

exceeds that of even the most venerable ETFs, with data on all our chosen factors going back to at least July651

1963. (iv) Perhaps most importantly, a comparison analysis of factor ETF monthly return statistics (since652

fund inception) with the corresponding results from the proxy factors as per Table 3.2, which is presented in653

Appendix A.1, clearly shows that the proxy factors matches the associated factor ETFs' return/risk pro�les654

very closely, with monthly return correlations typically exceeding 0.9.655

Note that Appendix A.1 also shows that Multi-factor ETFs and Quality ETFs returns typically have a656

correlation of around 0.98 with the returns of the broad market index (Mkt), while often delivering a worse657

risk/return tradeo� than Mkt over the same period. Since Mkt is included as a candidate asset, this provides658

further support for the exclusion of Multi-factor and Quality factors from our analysis.659

As a result of these observations, we associate the proxy factor data as per Table 3.2 with each of our selected660

factors in the subsequent analysis, while remaining satis�ed that the resulting investment strategy we obtain661

can be implemented in a practical and cost-e�ective way using ETFs. As noted above, this also allows us to662

treat each factor simply as a candidate asset available for investment.663

Finally, since we are interested in comparing the real or in�ation-adjusted investment results, all return time664

series were in�ation-adjusted using CPI data from the US Bureau of Labor Statistics8 prior to being used in665

the bootstrapping algorithm to obtain the neural network training and testing data (see Subsection 3.5 below).666

667

3.3 Factor portfolios668

Following the identi�cation of the basic assets and factors to be included in the analysis, Table 3.3 presents the669

six combinations of the candidate assets that will be used for comparative analysis purposes. For simplicity,670

we refer to these combinations of assets as �portfolios�, even though it is possible that a zero weight may be671

ultimately assigned to any of the candidate assets in Table 3.3 under the optimal strategy. For example, even672

though Cash is included in all portfolios for consideration, the neural network-based optimal solutions assign673

Cash a zero weight in all of the numerical results presented in Section 4 below.674

With regards to the underlying rationale for the portfolios presented in Table 3.3, we observe the following.675

First, portfolio P1 serves as a simple benchmark portfolio, requiring no factors for investment. Note that in all676

portfolios, we do not consider the broad stock market index (Mkt) as merely a benchmark for the evaluation677

of factor investing strategy (as for example in Briere and Szafarz (2016)), but as an investable asset. In678

particular, the basic or core assets are included for consideration in all investment portfolios involving factors,679

as is advocated in both academic research and promotional factor investing advice (Bender et al. (2013, 2019b);680

Bergeron et al. (2018); Konstantinov et al. (2020); Malkiel (2014); Martellini and Milhau (2020); Melas (2016);681

Melas et al. (2019); Pappas and Dickson (2015); White and Haghani (2020)). Second, portfolio P6 includes all682

candidate assets as per Table 3.2 for investment. Finally, between the extremes of P1 and P6, we have selected683

4 portfolios with the aim of highlighting particular aspects of the factor investing results: Portfolio P2 focuses684

on including factor tilts to the classical Fama and French (1993) factors which enjoy enduring popularity (Size685

and Value). Portfolios P3 and P4 illustrate the impact of including Low Volatility (Vol) with and without the686

10-year Treasury bond (B10), while portfolios P5 and P6 highlights the role potentially played by Momentum687

(Mom) in factor investing strategies in conjunction with the e�ect of B10.688

689

3.4 Feature selection690

Employing the useful distinction between �factor timing� and �factor tilting� made in Dichtl et al. (2019), we691

note that this paper is not concerned with �factor timing�, which typically involves forecasting returns in order692

to �time� the various factors (including the broad market index).693

While some success has been reported with respect to the forecasting/timing of academic long-short portfolios694

(Haddad et al. (2020); Laborda et al. (2016); Lioui and Tarelli (2020)), the general consensus in the literature695

8The annual average CPI-U index, which is based on in�ation data for urban consumers, were used - see http://www.bls.gov.cpi
.
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Table 3.2: Candidate assets for investment: Labels, descriptions and data sources. All time series relate to the
US market only. CRSP refers to the Center for Research in Security Prices, and KFDL refers to Kenneth R.
French's Data Library.

Group Label Asset description Data source and de�nition

Basic Cash Cash account Assumed to have zero monthly (nominal) returns; no data sources used.

assets T30 30-day Treasury bill CRSP: Monthly returns for 30-day Treasury bill.

B10 10-year Treasury bond CRSP: Monthly returns for 10-year Treasury bond.

Mkt Market portfolio

(broad equity market

index)

CRSP: Monthly returns, including dividends and distributions, for a

capitalization-weighted index (the VWD index) consisting of all domestic stocks

trading on major US exchanges.

Factors Size Portfolio of small

stocks

KFDL, �Portfolios Formed on Size�: Monthly returns on a capitalization-weighted

index consisting of the �rms (listed on major US exchanges) with market value of

equity, or market capitalization, at or below the 30th percentile (i.e. smallest 30%)

of market capitalization values of NYSE-listed �rms. Underlying portfolio

reconstructed at the end of June each year.

Value Portfolio of value

stocks

KFDL, �Portfolios Formed on Book-to-Market�: Monthly returns on a

capitalization-weighted index of the �rms (listed on major US exchanges) consisting

of the �rms (listed on major US exchanges) with book-to-market value of equity

ratios at or above the 70th percentile (i.e. highest 30%) of book-to-market ratios of

NYSE-listed �rms. Underlying portfolio reconstructed at the end of June each year.

Vol Portfolio of low

volatility stocks

KFDL, �Portfolios Formed on Variance�: Monthly returns on a

capitalization-weighted portfolio formed at the end of each month, consisting of the

�rms (listed on major US exchanges) with daily return variance calculated over the

preceding 60 days at or below the 20th percentile (i.e. lowest 20%) of the same

quantity calculated for NYSE-listed �rms.

Mom Portfolio of stocks

with high past returns

(�winners�)

KFDL, �Sorts involving Prior Returns�: Monthly returns on the long portfolio

(�winners�) component of the Fama-French version of the long-short momentum

factor (see Fama and French (2010, 2012)). Speci�cally, this consists of the

equal-weighted average of the returns of two capitalization-weighted sub-indices,

named �Small High� and �Big High� as per the KFDL data description. For these

sub-indices, �rms listed on major US exchanges with market capitalization below

(resp. above) the monthly median NYSE market capitalization is classi�ed as

�small� (resp. �big�). Firms listed on major US exchanges with 2-12 month prior

returns above the 70th percentile (i.e. highest 30%) of the NYSE-listed �rms' prior

returns are classi�ed as having �high� prior returns. The �Small High� and �Big

High� sub-indices are formed at the end of each month as the intersection of the

�small� and �big� portfolios, respectively, with the portfolio of �rms with high prior

returns.

Table 3.3: Candidate portfolios considered in the analysis. For ease of reference, �Px�, x ∈ {1, ..., 6} indicates
the label/abbreviation used to identify the portfolio. For each asset, the tick mark �X� indicates the inclusion
of the asset in the set of candidate assets considered for investment. �Nr assets� indicates the total number of
candidate assets in each portfolio.

Portfolio Basic assets Factors Nr assets

label Cash T30 B10 Mkt Size Value Vol Mom (Na)

P1 X X X X 4

P2 X X X X X X 6

P3 X X X X X X 6

P4 X X X X X X X 7

P5 X X X X X X X 7

P6 X X X X X X X X 8

appears to be that in any practical factor investing scenario accessible to most investors (see discussion in696

Subsection 3.1 of some issues involved), the investor should aim to reduce their reliance on factor timing. The697

reasons are manifold, ranging from the prohibitive cost of executing a factor timing strategy, to the susceptibility698

of timing strategies to the over�tting of historical trends (data snooping), up to the fact that even just timing699

the broad market index is at best very challenging (Arnott et al. (2016a); Asness (2016); Bender et al. (2018);700
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Dichtl et al. (2019); Lee (2017); Van Gelderen et al. (2019)).701

Instead of attempting to �time� di�erent factors, we follow the �factor tilting� approach in the distinction of702

Dichtl et al. (2019), whereby we aim to exploit exposures to the long-run factor premiums identi�ed in studies703

of the cross-sectional characteristics of stock returns. This leads us to consider two features (inputs to the704

neural network) used in Li and Forsyth (2019), namely (i) wealth and (ii) time-to-go. Using features that do705

not attempt to �predict� asset returns therefore ensures that the neural network can learn strategies based on706

the long-run (joint) characteristics of the data used for training, while avoiding the problems of data snooping707

and the well-documented pitfalls of attempting to forecast factor returns (Arnott et al. (2017a)). In line with708

this underlying philosophy, we also do not retrain the neural network to update the investment strategy during709

the time horizon of T = 10 years of implementation considered in this analysis.710

Note that the methodology outlined in Section 2 can be applied using any number of desired features. Specif-711

ically, it can readily incorporate the use of additional information used to derive trading rules, such as historical712

moving averages, if the investor were indeed to pursue a �factor timing� approach. While initial numerical tests713

showed that expanding the feature set with trading signals did not result in a material improvement in out-of-714

sample investment outcomes (as expected, see discussion above regarding the challenges of factor timing), we715

leave a more systematic analysis of trading signals and factor timing for our future work.716

3.5 Training and testing data717

As in Li and Forsyth (2019), we obtain training and testing data for the neural network by means of bootstrap718

resampling of the historical data. Using the market data directly, without �rst specifying a set of parametric719

models for the candidate assets, is particularly useful in the case of factor investing.720

First, the block bootstrap resampling methodology (discussed below) allows for some serial dependence721

information to be retained in the data, which could potentially be exploited by the investor (DeMiguel et al.722

(2014); Tsang and Wong (2020)), and may also be useful for assessing the robustness of individual factor and723

factor portfolio performance (Arnott et al. (2019); Harvey and Liu (2020)). Second, not only do factor return724

distributions deviate substantially from the normal distribution (as mentioned before), but the correlations725

between di�erent factor returns time series are potentially time-varying (Arnott et al. (2019); Briere and Szafarz726

(2020); Kalesnik and Linnainmaa (2018)). This makes parametric model speci�cation for factor investing727

purposes as in, for example, Laborda et al. (2016); Lioui and Tarelli (2020), especially challenging.728

The bootstrap resampling approach followed by Li and Forsyth (2019) can be summarized as follows. To729

construct each of the Nd (resp. N test
d ) historical paths for the training (resp. testing) data set, we divide the730

time horizon T into k̃ blocks of size b̃ years (i.e. T = k̃b̃). Each of the k̃ blocks are then randomly sampled731

from the historical data, with replacement, and concatenated to form a single path that starts at some random732

month. The choice of the block size b̃ is crucial, since a su�ciently large size is required to capture the serial733

dependence possibly present in the data (Cogneau and Zakalmouline (2013)), while block sizes that are too734

large result in unreliable variance estimates.735

To reduce the reliance of the results on the crucial choice of �xed block size, the stationary block bootstrap736

methodology of Patton et al. (2009); Politis and White (2004) is employed, where the block size is randomly737

sampled from a geometric distribution with expected block size b. The optimal choice of b can then be determined738

using the algorithm of Patton et al. (2009), the results which are provided in Appendix A.2 for each of the739

in�ation-adjusted asset returns time series outlined in Table 3.2. However, as noted in Li and Forsyth (2019),740

the optimal blocksizes can vary widely among the di�erent underlying time series, while we are required to741

sample the same block size simultaneously from all the underlying historical time series to ensure the sampling742

remains sensible.743

Based on the results of the tests conducted in Li and Forsyth (2019), we select two expected block sizes for744

our analysis, namely b = 6 months and b = 18 months, since the results from using b = 6 months were generally745

found to be more conservative without destroying the serial correlation of returns entirely. Note that since we746

do not use trend-based trading signals for purposes of factor timing (see Subsection 3.4), there is e�ectively747

no risk of over�tting the neural network to historical data trends. The di�erent block sizes are simply used to748

assess the role of di�erent underlying (joint) return distributions on the investment outcomes.749

Table 3.4 provides details regarding the two data set combinations, labelled DS1 and DS2 for convenience,750

that will be used for the results provided in Section 4. The relatively large number of training data set paths751

(1 million) is used to ensure the accurate estimation of the tails of the terminal wealth distribution, which is752

crucial to obtain reliable MCV results (see discussion in Subsection 2.4). Historical data starting in July 1963753

has been used, since this is the �rst month in which the low volatility (Vol) data as per Table 3.2 is available754

17



(see Subsection 3.2). Note that data set combination DS1 uses the same data period but di�erent expected755

blocksizes for the training and testing data sets, whereas data set combination DS2 uses the same expected756

block sizes, but non-overlapping historical time periods for training and testing.757

Table 3.4: Data set combinations, labelled DS1 and DS2, used to obtain subsequent training and testing results.
The data sets are obtained using stationary block bootstrap resampling of historical data over the time period
speci�ed by the column �Data period�. The column �Sample size� speci�es the number of asset return paths
jointly sampled with expected blocksize given by the column �Exp. block�.

Label Training data set Testing data set

Data period Sample size Exp. block Data period Sample size Exp. block

DS1 Jul 1963 - Dec 2019 Nd = 106 6 months Jul 1963 - Dec 2019 Ntest
d = 105 18 months

DS2 Jul 1963 - Dec 2009 Nd = 106 6 months Jan 2010 - Dec 2019 Ntest
d = 105 6 months

758

4 Numerical results759

In this section, we present the numerical results from applying the methodology as outlined in Section 2 to the760

factor investing scenario described in Section 3.761

Note that there are a number of hyperparameters to be speci�ed when solving problems (2.28)-(2.29), ranging762

from the smoothing/regularization parameters (such as λosq, λmcv,λtc,λrg), to the number of neural network763

layers, nodes in each layer and gradient descent algorithm parameters. Details regarding the hyperparameters764

used to obtain the results in this section can be found in Appendix B.5. In relatively simple cases (such as765

a small number of underlying assets evolving according to known parametric models), solutions to problems766

(2.28)-(2.29) can be obtained by solving the associated Hamilton-Jacobi-Bellman (HJB) equations (Dang and767

Forsyth (2014); Forsyth (2020)). These solutions, provided in Appendix B.6, were used as the ground truth,768

assisting in hyperparameter selection and the validation of neural network solutions.769

We also note that all results presented in this section are based on the assumption of annual rebalancing. As770

illustrated by the quarterly rebalancing results provided in Appendix A.4, increasing the rebalancing frequency771

has the expected e�ect of increasing transaction costs while only slightly a�ecting terminal wealth outcomes.772

In general, however, the conclusions of this section remain qualitatively unchanged regardless of rebalancing773

frequency.774

4.1 Results: Data set combination DS1775

We �rst consider the results using data set combination DS1 (Table 3.4), where both training and testing data776

is based on the time period July 1963 to December 2009, but with di�erent expected block sizes.777

Figure 4.1 illustrates the estimated PDFs of the OSQ-optimal and MCV-optimal terminal wealth W (T ) on778

the training data set of DS1. For each problem, parameters γ and ρ were selected to ensure that W (T ) has the779

required expected value on the training data set (see Table 3.1), so that the subsequent comparison can proceed780

on a fair and practical basis.781

While Figure 4.1 only shows the results for portfolios P1, P4 and P6 (Table 3.3) for purposes of clarity,782

it is clear that including factors in the basket of candidate assets results in the substantial improvement of783

the desired investment outcomes as appropriate for each objective function. In the case of the OSQ problem,784

which as mentioned is closely related to mean-variance optimization, the investor achieves the same mean with785

signi�cantly lower variance by including factors in the portfolio (Figure 4.1(a)). In the case of the MCV problem,786

by including factors in the portfolio the investor can achieve a given target mean, but with signi�cantly improved787

left-tail risk (Figure 4.1(b)). For a discussion of the overall shape of these distributions, and in particular the788

negative and positive skew for the OSQ and MCV problems, respectively, the reader is referred to Forsyth789

(2020); Van Staden et al. (2021).790

791

Figure 4.1 only focused on the training data set (DS1). Table 4.1 and Table 4.2 provide signi�cantly more792

detail, summarizing outcomes with and without transaction costs on both the training and testing data sets of793

DS1 for all portfolios in Table 3.3.794

For both the OSQ-optimal results (Table 4.1) and MCV-optimal results (Table 4.2), the terminal wealth795

outcomes are overall very similar on both the training and testing data sets of DS1. This suggests that the796
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Figure 4.1: Estimated probability density functions (PDFs) of the optimal terminal wealthW (T ) on the training
data set of DS1, for portfolios P1, P4 and P6.

optimal factor investing strategies remain very robust to a signi�cant change in expected block size used for797

bootstrapping market data, a very encouraging result previously observed to hold in the case of the basic assets798

in Table 3.2 (Forsyth and Vetzal (2017a); Li and Forsyth (2019)).799

Furthermore, the inclusion of transaction costs in the optimization (i) do not substantially erode terminal800

wealth outcomes in the case of annual rebalancing, and (ii) results in larger expenditures on transaction costs801

if factors are included in the portfolio. It should be noted that these conclusions also remain robust to more802

frequent rebalancing assumptions (selected quarterly rebalancing results are shown in Appendix A.4), which803

is perhaps to be expected, since transaction costs have been explicitly incorporated in the wealth process804

(Subsection 2.2) and so its impact is therefore included as part of the derivation of the associated optimal805

investment strategy. Despite the small impact of transaction costs on wealth, the inclusion of transaction costs806

can a�ect the underlying investment strategies in some interesting ways, as discussed below.807

Considering the OSQ-optimal terminal wealth results presented in Table 4.1 in more detail, we observe808

the following. On data set DS1, the above-mentioned variance reduction e�ect of adding factors to the list of809

candidate assets (see portfolios P2 through P6) in the case of the OSQ objective results not only in improved810

(higher) downside outcomes, but also markedly reduced (lower) upside outcomes; this e�ect becomes more811

pronounced as more factors are included in the list of candidate assets (e.g. P2 vs. P6). Incorporating812

transaction costs, generally speaking, results in slightly worse downside outcomes and also marginally improved813

upside outcomes compared to the result with no transaction costs, since the presence of transaction costs requires814

a slightly more aggressive investment strategy to reach the required expected value of terminal wealth. Finally,815

adding the 10-year Treasury bond (B10) in the mix clearly plays an important role in improving the downside816

outcomes, especially the 5% CVaR, which can be seen by comparing P3 vs. P4, and P5 vs. P6, where P3 and817

P5 does not include B10 in the list of assets considered (Table 3.3).818

819

Considering the MCV-optimal terminal wealth results presented in Table 4.2 in more detail, it is clear that820

the MCV objective results in a signi�cantly higher variance and also in a signi�cantly better 5% CVaR than821

the OSQ objective (see Table 4.1), even though the results in Table 4.2 are based on a more conservative822

expected value target. However, of more importance is the result that the qualitative conclusions regarding823

the MCV results in Table 4.2 closely tracks the OSQ results in Table 4.1. In particular, the variance reduction824

e�ect of including factors in the portfolio hold not only for the OSQ problem, but also for the MCV problem.825

Furthermore, the inclusion of transaction costs also results unambiguously in a slightly worse (lower) 5% CVaR826

and other downside outcomes, as well similar or slightly improved upside outcomes. However, for the MCV827

problem, the impact of including transaction costs on standard deviation is more ambiguous, suggesting that828

transaction costs have a somewhat more nuanced distribution-shaping e�ect in the MCV case.829

830

At �rst glance, the reduction in the variance of terminal wealth when including factors, seen in both the831

OSQ and MCV cases, might be interpreted as a trivial consequence of diversi�cation. However, considering the832

underlying investment strategies in more detail, we show that this is in fact largely not the case.833

Focusing for the moment on portfolios P1, P4 and P6, Figures 4.2-4.4 and Figures 4.5-4.7 show the OSQ-834

and MCV-optimal investment strategies, respectively, where the heatmap color (same color scale for all �gures)835

indicates the optimal proportion of wealth invested in each asset. As per Subsection 3.4, the optimal investment836

strategy depends only on two neural network features (wealth and time).837

We make a number of observations regarding these heatmaps. First, as expected, the general OSQ- and838
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Table 4.1: OSQ objective, data set DS1, annual rebalancing: Terminal wealth W (T ) results, with and without
transaction costs (�TCs�). The target γ in 2.28 has been selected to ensure training dataset yields E [W (T )] =
390 under the OSQ-optimal strategies for all portfolios �Px� as per Table 3.3. The mean of the total transaction
costs are calculated over all rebalancing events and all sample paths.

Training data (DS1) Testing data (DS1)

Portfolio as per Table 3.3: P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

No TCs: Mean 390 390 390 390 390 390 391 392 392 392 392 393

W (T ) results Std 111 61 61 60 49 49 108 58 58 57 48 50

5% CVaR 162 212 202 212 234 243 165 228 216 226 247 254

5th pctile 195 263 251 263 295 299 197 278 268 277 309 311

20th pctile 285 357 362 357 369 367 290 360 366 360 370 366

Median 403 402 406 403 397 396 404 400 404 401 395 394

80th pctile 493 433 430 432 422 425 489 433 430 432 424 428

With TCs: Mean 390 390 390 390 390 390 390 392 393 392 393 392

W (T ) results Std 113 63 64 63 51 49 111 60 60 60 50 50

5% CVaR 161 209 199 209 228 238 163 224 213 224 240 249

5th pctile 193 258 247 257 288 293 196 273 263 273 301 303

20th pctile 282 353 359 353 369 368 286 357 364 357 370 368

Median 401 404 406 403 398 397 401 401 404 401 397 396

80th pctile 497 435 434 435 425 422 493 434 433 435 427 425

TCs, no interest Mean 3.1 4.4 4.1 4.4 4.3 4.7 3.0 4.4 4.1 4.4 4.3 4.7

TCs with interest Mean 3.2 4.6 4.3 4.6 4.5 5.0 3.2 4.6 4.3 4.6 4.5 5.0

Table 4.2: MCV objective, data set DS1, annual rebalancing: Terminal wealth W (T ) results, with and without
transaction costs (�TCs�). The scalarization parameter ρ in (2.29) has been selected to ensure training dataset
yields E [W (T )] = 350 under the MCV-optimal strategies for all portfolios �Px� as per Table 3.3. The mean of
the total transaction costs are calculated over all rebalancing events and all sample paths.

Training data (DS1) Testing data (DS1)

Portfolio as per Table 3.3: P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

No TCs: Mean 350 350 350 350 350 350 350 348 345 347 347 349

W (T ) results Std 135 115 139 116 113 107 132 110 121 111 92 94

5% CVaR 231 252 247 252 260 265 229 256 252 256 265 270

5th pctile 243 272 267 272 287 291 241 271 266 271 286 290

20th pctile 257 286 281 286 302 306 255 284 279 284 299 303

Median 294 308 302 306 321 325 295 307 303 306 321 324

80th pctile 425 383 377 377 386 382 436 385 379 381 388 387

With TCs: Mean 350 350 350 350 350 350 348 349 345 348 345 348

W (T ) results Std 136 119 140 119 111 98 131 113 122 113 88 87

5% CVaR 227 248 244 248 257 261 225 252 249 252 260 264

5th pctile 239 268 263 268 282 287 237 267 262 267 281 286

20th pctile 254 282 276 283 298 302 251 280 274 281 295 299

Median 296 304 299 305 318 323 297 304 299 305 317 322

80th pctile 428 390 388 386 386 387 434 392 389 387 383 388

TCs, no interest Mean 3.1 3.4 2.8 3.5 3.1 3.9 3.1 3.5 2.8 3.5 3.1 3.9

TCs with interest Mean 3.3 3.6 2.9 3.7 3.2 4.1 3.3 3.6 2.9 3.7 3.2 4.1

MCV-optimal strategy characteristics remain qualitatively similar to the results obtained using parametric839

models for a small number of underlying assets and solving the associated problems using PDE techniques.840

The reader is therefore referred to Forsyth (2020); Forsyth and Vetzal (2017a) for a detailed discussion. For841

the purposes of this discussion, we simply summarize some of the key qualitative aspects of the investment842

strategies.843

The �target-seeking� OSQ strategy is fundamentally contrarian, doubling down on an attempt to achieve844

the target as quickly as possible using the �riskiest� asset allowed in each portfolio (Mkt, Value or Mom, to be845

clari�ed in Table 4.4 and associated below), before de-risking the portfolio using B10 (as well as Value, in the846

case of P6) and ultimately just T30 to lock in the gains when the target has been reached or is comfortably847

within reach.848
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The MCV strategy also depends critically on the �riskiest� asset (again Mkt, Value or Mom) allowed in each849

portfolio, but in two scenarios where the goals are fundamentally di�erent: (i) when wealth is very low and850

the investor has e�ectively nothing to lose but to try and increase wealth, or (ii) when wealth is very high and851

the focus shifts away from protecting the lower tail of the wealth distribution to increasing its mean. Between852

these extremes, the MCV strategy focuses on downside wealth (5% CVaR) protection, which is achieved by �rst853

increasing exposure to B10 (as well as Value, in the case of P6), and if this fails and wealth decreases further,854

shifting entirely into T30 to protect the remaining wealth.855

(a) T30 (b) B10 (c) Mkt

Figure 4.2: Portfolio P1: OSQ-optimal investment strategy with transaction costs as a fraction of wealth
invested in each asset. Data set DS1. Zero investment in Cash.

856

(a) T30 (b) B10 (c) Value

Figure 4.3: Portfolio P4: OSQ-optimal investment strategy with transaction costs as a fraction of wealth
invested in each asset. Data set DS1. Zero investment in other candidate assets.

857

(a) T30 (b) B10 (c) Value (d) Momentum (Mom)

Figure 4.4: Portfolio P6: OSQ-optimal investment strategy with transaction costs as a fraction of wealth
invested in each asset. Data set DS1. Zero investment in other candidate assets.

858

859

860

861
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(a) T30 (b) B10 (c) Mkt

Figure 4.5: Portfolio P1: MCV-optimal investment strategy with transaction costs as a fraction of wealth
invested in each asset. Data set DS1. Zero investment in Cash.

(a) T30 (b) B10 (c) Value

Figure 4.6: Portfolio P4: MCV-optimal investment strategy with transaction costs as a fraction of wealth
invested in each asset. Data set DS1. Zero investment in other candidate assets.

(a) T30 (b) B10 (c) Value (d) Momentum (Mom)

Figure 4.7: Portfolio P6: MCV-optimal investment strategy with transaction costs as a fraction of wealth
invested in each asset. Data set DS1. Zero investment in other candidate assets.

Since not all the wealth levels shown in the heatmaps are realistically (i.e. with non-zero probabilities)862

attainable at all times during the investment time horizon, another perspective on the optimal investment863

strategies can be obtained by considering selected percentiles of the proportion of wealth invested in each asset864

over time. For example, consider the results for portfolio P6 from the OSQ-optimal investment strategy with865

transaction costs. While the corresponding heatmaps (Figure 4.4) show the investment strategy as a function866

of wealth and time, the percentiles in Figure 4.8 show the actual distribution of the proportion invested in each867

asset as both time and wealth varies along the paths in the training data set (DS1).868

869

The perspective o�ered by Figure 4.8 is particularly useful in that it allows us to present the reliance of each870

investment strategy on each asset as a single number, which we take to be the average of the 80th percentile of871

proportion (%) of wealth invested in each asset over time. Table 4.3 illustrates the resulting averages: �rst, the872

80th percentile values are calculated at each rebalancing event for each asset over all sample paths of training873

data set (DS1), and then the resulting set of percentile values are averaged over all rebalancing events. As a874

result, the proportions of wealth in Table 4.3 will not add up to 100%. Results on the testing data set (DS1)875

are not qualitatively di�erent, and thus omitted from Table 4.3 .876

22



0 2 4 6 8

Time (years)

0

20

40

60

80

100

P
ro

p
o

rt
io

n
 o

f 
w

e
a

lt
h

 (
%

)

80th percentile

(average = 48%)

20th

percentile

Median

(a) T30

0 2 4 6 8

Time (years)

0

20

40

60

80

100

P
ro

p
o

rt
io

n
 o

f 
w

e
a

lt
h

 (
%

) 80th percentile

(average = 30%)

20th

percentile

Median

(b) B10

0 2 4 6 8

Time (years)

0

20

40

60

80

100

P
ro

p
o

rt
io

n
 o

f 
w

e
a

lt
h

 (
%

)

80th percentile

(average = 8%)

(c) Value

0 2 4 6 8

Time (years)

0

20

40

60

80

100

P
ro

p
o

rt
io

n
 o

f 
w

e
a

lt
h

 (
%

)

80th percentile

(average = 57%)

Median

20th

percentile

(d) Momentum (Mom)

Figure 4.8: Portfolio P6, OSQ-optimal investment strategy with transaction costs: selected percentiles of the
proportion of wealth invested in each asset over time on the training data set (DS1). Zero investment in other
candidate assets. Note the same scale on the y-axis.

If the 80th percentile values average out to 0% of wealth invested in a particular asset, in the subsequent877

discussion we consider that asset to be e�ectively excluded from the optimal investment strategy.878

With regards to the results of Table 4.3, we make a number of observations. The most striking observation,879

namely the relatively limited diversi�cation among factors, is clearly not limited to the strategies for which880

heatmaps were displayed. Table 4.3 shows that for a given set of candidate assets from Table 3.3, the neural881

network favors the same assets regardless of objective (OSQ or MCV). In particular, the exposure to the broad882

market index (Mkt) drops to zero the moment any factors are included (regardless of objective), while Size is883

never included when factors are considered for investment (P2 through P6). No investment is made in the Cash884

asset, although this is to be expected given the assumption of zero nominal returns (Table 3.2). We return to885

the issue of diversi�cation, or lack thereof, below.886

Transaction costs, while not making a signi�cant �nancial impact on terminal wealth (Tables 4.1 and 4.2),887

clearly impacts the optimal asset allocation, although in some subtle ways. The most notable impact is that the888

small exposure to low volatility (Vol) for P3 is reduced to e�ectively zero when transaction costs are included.889

Generally speaking, transaction costs can lead to a small increase in exposure to the riskier assets and an890

associated small decrease in exposure to the lower risk assets, partly due to the slightly higher risk required to891

reach the expected value target in the presence of transaction costs.892

The interplay between the 10-year Treasury bond (B10) and low volatility (Vol) deserves special mention. In893

the absence of transaction costs, Vol is only included in the optimal investment strategy (regardless of objective)894

in the case of P3, where B10 is explicitly excluded. When all else remains the same but B10 is included as a895

candidate asset (P4), Vol drops out of the asset allocation (at the average 80th percentile level). Note that Vol896

is also not included when Momentum is allowed as a candidate asset (P5 and P6), regardless of whether B10 is897

included or not.898

This suggests that while long-only low volatility allocations might be bene�cial in the context of equity-899

speci�c factor portfolios in the absence of transaction costs, in the arguably more realistic asset allocation900

setting where both equity factors and bonds qualify as candidate assets for investment (and where transaction901

costs are applicable), relatively riskier bonds (e.g. the 10 year Treasury bond) might be su�ciently attractive902

to replace Vol altogether in the portfolio. To be more speci�c, Ang et al. (2017) observe that during market903

downturns (i.e. Mkt performing poorly), Vol typically declines by less than the broad market, and as a result904

Vol can be used to mitigate portfolio volatility. However, it should be intuitively clear that adding B10 to the905

portfolio should not only be able to qualitatively achieve these same objectives, but to quantitatively improve906

upon the corresponding results obtained using Vol. This is indeed what we observe in the neural network-907

based optimal strategies. Regardless, the generally insigni�cant reliance placed on Vol by the neural network is908

perhaps not altogether undesirable, since Blitz (2018) argues that hedge funds are in fact betting against the909

success of low volatility strategies.910

The combination of Value and Momentum (Mom) in the case of P6 is also notable, since for example Asness911

et al. (2017) argues (in a di�erent setting and using di�erent criteria) in favor of combining these factors.912

However, while the exceptional historical performance of Momentum both as a standalone factor and in factor913

portfolios is well documented (Arnott et al. (2017a); Asness et al. (2014); Dimson et al. (2017); Peltomaki and914

Aijo (2017)), investors might be understandably wary of Momentum due to its correspondingly well-known915

downside risks as a standalone factor (Ang (2014)). In a detailed study of these �momentum crashes� occurring916

over a time period of about 86 years, Daniel and Moskowitz (2016) �nd that it is the �short leg� of the usual917

long-short momentum factor (see for example Fama and French (2010, 2012)), i.e. the short-selling of past918
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�loser� stocks, which is largely responsible for the long-short momentum factor's historical �crashes�. In our919

case, since Momentum is implemented as a long-only strategy (see Table 3.2 and Appendix A.1), this particular920

challenge associated with including Momentum as a factor is much less of a concern.921

Table 4.3: OSQ and MCV optimal investment strategies, data set DS1, annual rebalancing: Average of the 80th
percentile of proportion (%) of wealth invested over time in each asset. Values of �-� indicate that the asset was
not included for consideration in the portfolio, while �0%� indicates that the asset was included, but received
zero investment on average, at the 80th percentile level.

Training data (DS1), no TCs Training data (DS1), with TCs

Portfolio as per Table 3.3: P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

OSQ objective: Cash 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

T30 7% 39% 56% 41% 66% 47% 6% 38% 55% 38% 63% 48%

Avg. of 80th pctile B10 23% 31% - 31% - 30% 19% 29% - 30% - 30%

of proportion of Mkt 100% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

wealth in each Size - 0% 0% 0% 0% 0% - 0% 0% 0% 0% 0%

asset Value - 76% 87% 76% 12% 9% - 77% 89% 77% 10% 8%

Vol - - 4% 0% 0% 0% - - 0% 0% 0% 0%

Mom - - - - 61% 56% - - - - 65% 57%

MCV objective: Cash 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

T30 51% 62% 77% 63% 78% 64% 45% 58% 77% 56% 77% 59%

Avg. of 80th pctile B10 48% 39% - 41% - 32% 44% 40% - 42% - 32%

of proportion of Mkt 73% 0% 0% 0% 0% 0% 75% 0% 0% 0% 0% 0%

wealth in each Size - 0% 0% 0% 0% 0% - 0% 2% 0% 0% 0%

asset Value - 48% 46% 47% 7% 9% - 48% 56% 50% 7% 7%

Vol - - 2% 0% 0% 0% - - 0% 0% 0% 0%

Mom - - - - 44% 36% - - - - 41% 38%

922

Returning to the issue of factor diversi�cation, how can we explain the neural network's preference for923

speci�c assets and factors, or the relative lack of diversi�cation, observed in Table 4.3? While explaining neural924

network-based investment strategies are generally challenging, a satisfying heuristic explanation can be provided925

using the monthly return statistics of the candidate assets provided Table 4.4.926

The most striking observation regarding Table 4.4 is that the long-only factor tilts provided by ETFs and927

mimicked by our proxy data has generally very high correlations with each other and with the broad market928

index. When taken together with the return/risk trade-o� as proxied by the mean/standard deviation ratios,929

this means the optimal investment strategies are expected to involve substitution rather than diversi�cation.930

For example, if the returns of the Size and Value tilts have a fairly high correlation (0.84) and roughly the931

same mean, but Size has a signi�cantly larger standard deviation, then any diversi�cation bene�ts arising from932

the inclusion of Size is overshadowed by the relatively worse risk/return trade-o� characteristics its inclusion933

would imply for the overall portfolio. As a result, Size is never included by the neural network in the optimal934

strategy. Note that the disappointing performance of Size relative to the other factors is not limited to the935

particular details of Table 4.4, but has also been observed and discussed in for example Arnott et al. (2017a);936

Blitz (2015); Dimson et al. (2017); Kalesnik and Beck (2014).937

Similar heuristic arguments using Table 4.4 can also help to explain why Mkt is never included by the neural938

network once factors are considered, and why Momentum (Mom) and Value potentially make such a pro�table939

combination in P5 and P6.940

941

The high correlations between long-only equity factor returns (and high correlations with the broad market942

index), illustrated in Table 4.4, as well as the resulting lack of portfolio diversi�cation bene�ts when allocating943

wealth using comparatively simple objectives such as one-period MV optimization, have been observed in the944

literature (Briere and Szafarz (2016); Cazalet and Roncalli (2014); Grim et al. (2017); Hjulgren (2018); Pappas945

and Dickson (2015); Tuokko (2017)).946

However, based on the results presented in Table 4.3, it is now also clear that a fairly sophisticated neural947

network-based factor investing strategy, explicitly formulated to be dynamically OSQ- or MCV-optimal, cannot948

avoid these challenges on data set combination DS1. While we could impose maximum exposure limits (see for949

example Perrin and Roncalli (2020)) for each factor to guarantee diversi�cation, this would simply create new950

challenges, including: (i) the speci�cation of the exposure limits, and (ii) the problem that the results are no951
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Table 4.4: Monthly real (in�ation-adjusted) returns, Jul 1963 - Dec 2019: mean, standard deviation (�Std�) and
correlation matrix (�Corr.�).

Asset Mean Std Mean /Std Corr. Cash T30 B10 Mkt Size Value Vol

Cash -0.31% 0.36% -0.88 Cash 1.00

T30 0.06% 0.33% 0.19 T30 0.71 1.00

B10 0.24% 2.25% 0.11 B10 0.26 0.30 1.00

Mkt 0.59% 4.39% 0.13 Mkt 0.15 0.11 0.13 1.00

Size 0.81% 6.08% 0.13 Size 0.12 0.07 0.02 0.85 1.00

Value 0.85% 4.83% 0.18 Value 0.11 0.10 0.08 0.89 0.84 1.00

Vol 0.61% 3.45% 0.18 Vol 0.20 0.17 0.25 0.88 0.66 0.83 1.00

Mom 1.03% 5.24% 0.20 Mom 0.12 0.09 0.09 0.92 0.91 0.83 0.77

longer OSQ- or MCV-optimal, which means that the investor would have to be willing to accept sub-optimal952

in-sample (training data) performance to achieve increased diversi�cation.953

Since the majority of investors, both institutional and retail, is likely to gain factor exposures through long-954

only factor funds for a number of practical reasons (see Subsection 3.1), the lack of diversi�cation observed in955

the case of data set combination DS1 is not an encouraging result. Speci�cally, while the lack of diversi�cation956

does not have adverse performance consequences on the out-of-sample (testing) data of DS1, subsequent sections957

show that this is not always the case.958

4.2 Results: Data set combination DS2959

We now consider the results using data set combination DS2 (Table 3.4), where the training data set and the960

testing data set use the same expected block size (6 months), but are based on non-overlapping historical time961

periods. Speci�cally, the training data set uses the data period of July 1963 to December 2009, while the testing962

data set uses the data period of January 2010 to December 2019 for bootstrapping purposes.963

Figure 4.9 illustrates the estimated PDFs of the OSQ-optimal and MCV-optimal terminal wealth W (T ) on964

the testing data set of DS2, for portfolios P1, P4 and P6. Note that as per Table 3.1, the terminal wealth965

is required to have the same expected value on the training data set of DS2, but is not expected to achieve966

the same expected value on the testing data. In fact, Figure 4.9 shows that including factors in the portfolio967

(P4, P6) can result in signi�cantly worse investment outcomes, regardless of objective, when implementing the968

resulting optimal strategies on this testing data set that is completely out-of-sample (i.e. data not to be found,969

even in bootstrapped form, in the training data set).970
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(a) OSQ-optimal W (T ), testing data (DS2)
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Figure 4.9: Estimated PDFs of the optimal terminal wealth W (T ) on the testing data set of DS2. In each case,
the distribution for P1 is plotted on the right-hand vertical axis to ensure visibility, thus especially the left tail
of P1 should not be compared directly with the corresponding tails of P4 and P6 using this �gure.

971

Table 4.5 and Table 4.6 provide a more detailed description of the terminal wealth outcomes associated with972

the OSQ- and MCV-optimal, respectively, on the training and testing data sets (DS2). We make a number973

of observations. First, terminal wealth outcomes on the training data of DS2 are qualitatively very similar974

to the results obtained on the training data (and testing data) of DS1 discussed in detail in Subsection 4.1.975

However, Tables 4.5 and 4.6 show that regardless of the choice of objective (OSQ or MCV) or the application976

of transaction costs, the performance of portfolio P1 (consisting of just the basic assets, including the broad977
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market index) signi�cantly outperforms any portfolio involving factors (P2 through P6) on the testing data of978

DS2.979

Table 4.5: OSQ objective, data set DS2, annual rebalancing: Terminal wealth W (T ) results, with and with-
out transaction costs (�TCs�). The target γ in (2.28) has been selected to ensure the training dataset yields
E [W (T )] = 390 under the OSQ-optimal strategies for all portfolios �Px� as per Table 3.3. The mean of the
total transaction costs with interest is calculated over all rebalancing events and all sample paths.

Training data (DS2) Testing data (DS2)

Portfolio as per Table 3.3: P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

No TCs: Mean 390 390 390 390 390 390 507 373 370 374 368 369

W (T ) results Std 148 62 63 63 52 51 78 32 38 32 20 15

5% CVaR 144 202 196 201 221 227 325 269 248 269 307 327

5th pctile 173 252 247 251 283 287 361 311 288 312 331 344

20th pctile 253 358 361 358 370 369 442 357 351 359 357 361

Median 376 406 407 407 400 398 518 381 382 383 373 372

80th pctile 526 431 431 433 423 423 573 395 397 396 382 380

With TCs: Mean 390 390 390 390 390 390 516 374 370 373 369 371

W (T ) results Std 153 65 66 65 54 54 88 34 39 34 21 16

5% CVaR 143 198 194 199 216 222 321 262 248 264 305 325

5th pctile 172 248 243 248 275 279 357 303 287 305 330 344

20th pctile 250 354 357 354 370 367 438 358 349 357 358 363

Median 370 406 406 405 401 399 527 383 382 383 374 374

80th pctile 531 436 435 434 426 425 593 397 398 396 384 382

TCs, mean 2.2 4.6 4.2 4.5 4.6 4.8 2.8 4.2 4.1 4.1 4.1 4.1
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Table 4.6: MCV objective, data set DS2, annual rebalancing: Terminal wealth W (T ) results, with and without
transaction costs (�TCs�). The scalarization parameter ρ in (2.29) has been selected to ensure training dataset
yields E [W (T )] = 350 under the MCV-optimal strategies for all portfolios �Px� as per Table 3.3. The mean of
the total transaction costs with interest is calculated over all rebalancing events and all sample paths.

Training data (DS2) Testing data (DS2)

Portfolio as per Table 3.3: P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

No TCs: Mean 350 350 350 350 350 350 472 277 283 279 281 281

W (T ) results Std 149 136 140 131 122 119 117 49 75 50 21 12

5% CVaR 224 251 249 251 259 260 290 248 240 248 261 268

5th pctile 233 269 267 269 281 283 320 254 251 254 267 271

20th pctile 246 282 281 282 295 297 372 261 259 261 273 276

Median 289 301 301 301 314 315 453 266 265 266 278 280

80th pctile 437 379 370 376 374 371 564 273 276 273 283 284

With TCs: Mean 350 350 350 350 350 350 474 280 281 278 277 277

W (T ) results Std 149 136 139 134 140 129 114 55 73 52 29 15

5% CVaR 219 248 246 247 255 256 298 246 237 245 256 264

5th pctile 228 264 263 264 276 277 321 251 247 251 262 267

20th pctile 242 278 276 278 290 292 374 258 255 258 268 271

Median 292 299 300 298 309 310 458 263 261 263 273 276

80th pctile 440 383 381 393 370 368 565 275 277 274 279 280

TCs, mean 3.4 3.4 2.6 3.6 3.0 3.7 2.3 2.8 2.5 2.8 2.7 2.9

981

Table 4.7 illustrates the averages across all rebalancing events of the 80th percentiles of the proportion of982

wealth invested in each asset; only results for the training data (DS2) are shown, with and without transaction983

costs, since the results on the testing data of DS2 are not qualitatively di�erent. Comparing Table 4.7 with984

the corresponding results obtained for the training data of DS 1 (see Table 4.3), results are quantitatively985

similar, albeit with some small changes. For example, the performance of low volatility (Vol) relative to the986

other assets over the training data time period of DS2 apparently does not warrant its inclusion in any of the987

optimal portfolios, whether B10 is included as a candidate asset or not. The OSQ-optimal strategy for P1 drops988
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exposure to T30 almost entirely in favor of B10, since a slightly more aggressive strategy is required to achieve989

the required expected value target in the case of P1 (see Table 4.5) given the characteristics of the underlying990

data in the training data set.991

Table 4.7: OSQ and MCV optimal investment strategies, data set DS2, annual rebalancing: Average of the 80th
percentile of proportion (%) of wealth invested over time in each asset. Values of �-� indicate that the asset was
not included for consideration in the portfolio, while �0%� indicates that the asset was included, but received
zero investment on average, at the 80th percentile level.

Training data (DS2), no TCs Training data (DS2), with TCs

Portfolio as per Table 3.3: P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

OSQ objective: Cash 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

T30 0% 52% 61% 52% 68% 58% 0% 46% 58% 48% 66% 54%

Avg. of 80th pctile B10 8% 21% - 20% - 21% 5% 20% - 19% - 21%

of proportion of Mkt 100% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

wealth in each Size - 0% 0% 0% 0% 0% - 0% 0% 0% 0% 0%

asset Value - 78% 85% 80% 17% 13% - 81% 87% 80% 16% 13%

Vol - - 0% 0% 0% 0% - - 0% 0% 0% 0%

Mom - - - - 55% 54% - - - - 59% 54%

MCV objective: Cash 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

T30 54% 72% 80% 74% 81% 75% 46% 71% 80% 69% 81% 71%

Avg. of 80th pctile B10 49% 30% - 30% - 26% 47% 28% - 31% - 23%

of proportion of Mkt 86% 0% 0% 0% 0% 0% 86% 0% 0% 0% 0% 0%

wealth in each Size - 0% 0% 0% 0% 0% - 0% 0% 0% 0% 0%

asset Value - 51% 44% 47% 8% 8% - 46% 52% 48% 8% 7%

Vol - - 0% 0% 0% 0% - - 0% 0% 0% 0%

Mom - - - - 33% 31% - - - - 33% 29%
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Since Tables 4.5, 4.6 and 4.7 clearly show that the OSQ- and MCV-optimal investment strategies are quali-993

tatively similar whether training data from DS1 or DS2 are used, the disappointing factor portfolio performance994

(P2 through P6) on the testing data set of DS2 could be considered surprising.995

To explain this, we �rst note that the monthly return statistics for the training data of DS2 corresponds996

closely to those reported for DS1 in Table 4.4, and are thus omitted here. The neural network-based optimal997

solution for DS2 is therefore trained on qualitatively similar data as in the case of DS1, which explains why the998

investment strategies (Table 4.7) results in qualitatively similar performance on the training data set of DS2999

(Tables 4.5 and 4.6), regardless of objective.1000

However, Table 4.8, which provides the monthly in�ation-adjusted return statistics for each of the underlying1001

assets over the testing time period of DS2 (January 2010 to December 2019), assists in providing a convincing1002

heuristic explanation of the poor out-of-sample factor portfolio performance on the testing data of DS2.1003

We observe that the 30-day T-bill (T30), playing a particularly important role in all the factor portfolios, has1004

negative in�ation-adjusted average return over this time period, while the 10-year Treasury bond (B10) delivered1005

roughly the same mean real return but with slightly lower volatility compared to previous time periods. The1006

broad market index (Mkt) is among the top-performing assets in terms of the risk/return trade-o�, closely1007

matched over this period by Momentum (as also observed by Nes (2020)).1008

While this explains the exceptional performance of P1, it should be noted that the strategies for P5 and P61009

rely signi�cantly less on Momentum than the extent to which P1 relies on Mkt (see Table 4.7), and relies com-1010

paratively far more on T30. Exposure to Value additionally impeded the performance of the factor strategies1011

(P2 through P6), since the relatively disappointing Value performance over this time period is well documented,1012

regardless of whether long-only and long-short portfolios are used to capture the Value premium (see for ex-1013

ample Arnott et al. (2017a, 2020); Fama and French (2020); Garvey (2020); Israel et al. (2020); Kalesnik and1014

Linnainmaa (2018); Nes (2020)). Low volatility (Vol) delivered exceptional results over this period (as noted1015

by D'Auria and McDermott (2017); Nes (2020)), but due to its comparatively disappointing performance in1016

the training dataset of DS2 (qualitatively similar to Table 4.4), Vol is not included in any of the OSQ- or1017

MCV-optimal investment strategies obtained from the DS2 training data, and therefore does not bene�t any of1018

the factor portfolios. Finally, while correlations between the factors returns remain very high, correlations with1019

both T10 and B10 turned negative during this time period.1020
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Table 4.8: Monthly real (in�ation-adjusted) returns, Jan 2010 - Dec 2019: mean, standard deviation (�Std�)
and correlation matrix (�Corr.�).

Asset Mean Std Mean /Std Corr. Cash T30 B10 Mkt Size Value Vol

Cash -0.14% 0.29% -0.50 Cash 1.00

T30 -0.10% 0.30% -0.35 T30 0.98 1.00

B10 0.21% 1.75% 0.12 B10 0.28 0.28 1.00

Mkt 0.88% 3.65% 0.24 Mkt -0.02 -0.02 -0.43 1.00

Size 0.92% 5.23% 0.18 Size -0.04 -0.05 -0.51 0.88 1.00

Value 0.86% 4.63% 0.19 Value -0.03 -0.04 -0.61 0.91 0.89 1.00

Vol 1.02% 2.97% 0.34 Vol 0.02 0.03 -0.33 0.92 0.74 0.81 1.00

Mom 1.07% 4.47% 0.24 Mom -0.03 -0.04 -0.42 0.94 0.93 0.85 0.83

As the results of Subsection 4.1 illustrated, the OSQ- and MCV-optimal investment strategies learned by the1022

neural network using data set DS1 typically lack broad diversi�cation among factors. This is understandable1023

given the demonstrably superior risk/return trade-o� of some factors in the historical data used to train the1024

neural network, coupled with the very high correlations between the returns of long-only factor indices.1025

The optimal investment strategies obtained in this way work well only as long as the factors have similar1026

risk/return trade-o� characteristics in the neural network's training data and testing data, which was evidently1027

the case for data set DS1 in the previous subsection. However, considering the results for data set DS2 in1028

this section, we see that once the out-of-sample (testing) data has signi�cantly di�erent characteristics (Table1029

4.8), very poor out-of-sample performance can result from both the OSQ- and MCV-optimal factor investing1030

strategies.1031

4.3 Historical path performance1032

Perhaps it was simply a coincidence that the time periods underlying the training and testing data sets of DS21033

resulted in the disappointing out-of-sample performance of the factor portfolios reported in Subsection 4.2.1034

It is therefore worth evaluating the OSQ- and MCV-optimal investment strategies on the actual historical1035

data path itself, which is another form of out-of-sample performance evaluation. This follows since regardless1036

of training data set time period (DS1 or DS2), the probability of observing the exact historical path in the1037

neural network's training data is e�ectively zero given the bootstrapping methodology (see Ni et al. (2020) for1038

a proof).1039

Table 4.9 illustrates the terminal wealth outcomes, after transaction costs, of implementing the OSQ- and1040

MCV-optimal investment strategies obtained using DS1 and DS2 training data on the actual historical path1041

over each of the past four decades. In general, it is clear that regardless of objective or neural network training1042

data, the optimal investment strategies based on the basic portfolio P1, consisting of only T30, B10 and the1043

broad market index (Mkt), often outperforms the corresponding optimal factor portfolios.1044

Exceptions exist, however, such as the decade January 2000 to December 2009, where P1 is not the winning1045

strategy. This is to be expected, since the decade started with the �dot-com� crash (2000-2001) and ended with1046

the Global Financial Crisis (GFC, 2007-2009), both periods where Mkt performs poorly by de�nition. However,1047

while Value performed well during the dot-com crash (Malkiel (2014)), it performed very poorly during the1048

GFC (Arnott et al. (2019)). This helps to explain why, over this decade, the OSQ-optimal winning strategy1049

is P4 (investing heavily in Value early in the decade), while the MCV-optimal winning strategy is P6 (which1050

requires investing in Momentum instead of Value late in the decade).1051

1052

Table 4.9 therefore serves to emphasize the conclusion of Subsection 4.2, namely that the OSQ- and MCV-1053

optimal basic portfolios (P1) can deliver very competitive out-of-sample performance compared to the corre-1054

sponding OSQ- and MCV-optimal factor portfolios. Table 4.9 shows that this observation is not just true in1055

the testing data set of DS2, but also roughly over three out of the past four decades when these strategies are1056

implemented on the historical data path. However, it should be noted that the historical data path is by de�ni-1057

tion only a single path, and therefore the results of this subsection only complements the more comprehensive1058

analysis obtained using bootstrapped results presented in the previous subsections.1059
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Table 4.9: Terminal wealth W (T ) for the single path of historical returns with annual rebalancing, after
transaction costs (�TCs�), obtained by implementing the OSQ- and MCV-optimal investment strategies with
stated target expectation values (�target exp.�) for selected portfolios (P1, P4 and P6). �Best� indicates the
portfolio with the highest terminal wealth.

Optimal terminal wealth W (T ) after TCs

Objective: OSQ-optimal (target exp. 390) MCV-optimal (target exp. 350)

Training data Period of investment P1 P4 P6 Best P1 P4 P6 Best

Data set DS1 Jan 1980 to Dec 1989 506 476 457 P1 528 574 550 P4

(with TCs) Jan 1990 to Dec 1999 533 442 442 P1 646 362 416 P1

Jan 2000 to Dec 2009 213 348 322 P4 250 283 294 P6

Jan 2010 to Dec 2019 476 392 382 P1 421 280 299 P1

Data set DS2 Jan 1980 to Dec 1989 549 458 451 P1 548 544 525 P1

(with TCs) Jan 1990 to Dec 1999 631 439 438 P1 703 350 381 P1

Jan 2000 to Dec 2009 213 344 319 P4 244 272 276 P6

Jan 2010 to Dec 2019 525 390 379 P1 465 268 279 P1

4.4 Comparison with equally-weighted benchmark portfolios1060

In a recent paper, Andre and Coqueret (2020) apply reinforcement learning (RL) to the factor investing problem.1061

Using similar constraints such as no short-selling, they �nd that the RL-optimal factor investing strategy closely1062

tracks the equally-weighted (1/Na) benchmark strategy popular in the factor investing literature (see for example1063

Dichtl et al. (2019); Hansen and Bonne-Kristiansen (2020)).1064

Given the OSQ- and MCV-optimal out-of-sample (testing) results reported in Subsections 4.2 and 4.3 above,1065

the RL-optimal results of Andre and Coqueret (2020), or alternatively just an equally-weighted benchmark1066

portfolio, certainly has some appeal: the 1/Na strategy expresses no preference for any factor over another, in1067

sharp contrast to the OSQ- and MCV-optimal strategies where all wealth might be invested in a factor which1068

might turn out to have poor performance in the out-of-sample (testing/implementation) period.1069

However, it should be noted that this does not necessarily imply that the 1/Na benchmark strategy should1070

always be preferred over the OSQ- or MCV-optimal strategies. For example, Figure 4.10 illustrates the resulting1071

PDFs of terminal wealth (after transaction costs) for the OSQ-optimal and the 1/Na benchmark strategy1072

obtained on the training and testing data set of DS2 for portfolio P6 (all candidate assets). Note that the target1073

γ for the OSQ problem has been selected to ensure the same mean wealth as that of the benchmark strategy is1074

achieved on the training data set, while the Cash asset has been excluded from the benchmark strategy due to1075

its negative real returns (so the benchmark strategy is technically a 1/ (Na − 1) strategy).1076

Based on both the training and testing results illustrated in Figure 4.10, it is clear that the investor's relative1077

preference for one strategy over another would depend on a number of considerations, such as the mean/variance1078

trade-o�, chosen downside risk measures and skewness preferences (see Van Staden et al. (2021) for a discussion).1079

Qualitatively similar observations also apply to the benchmark strategy applied to other portfolios in Table 3.3,1080

as well as to the training and testing results from data set DS1 - see Appendix A.3 for the detailed results.1081
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Figure 4.10: Estimated PDFs of the OSQ-optimal and benchmark terminal wealth W (T ) on the training and
testing data sets of DS2, for portfolio P6. OSQ-optimal target γ selected to have same mean value of W (T ) on
the training dataset as the benchmark portfolio.

1082

Finally, we note that instead of using the OSQ or MCV objective functions, we can formulate the factor1083
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investing problem with the explicit goal of outperforming the equally weighted benchmark strategy (see Ni et al.1084

(2020)), if that is indeed the investor's objective. We leave this for our future work.1085

5 Conclusion1086

In this paper, we presented a data-driven neural network approach for �nding the optimal dynamic factor1087

investing strategies in the presence of transaction costs, using two objective functions likely to be of key interest1088

to institutional investors such as pension funds: the one-sided quadratic (OSQ) objective and the mean-CVaR1089

(MCV) objective. In order to obtain meaningful results, we assumed a realistic factor investing scenario that1090

included the following assumptions: the investor (i) does not allow short-selling or leverage, (ii) is only interested1091

in considering widely accepted, long-only equity factors that are readily available for cost-e�ective investment,1092

and (iii) intends to allocate wealth simultaneously to both equity factors (including the broad market index) as1093

well as bonds.1094

Using two training and testing data set combinations, we found that the optimal factor investing strategies1095

yield very promising in-sample results (i.e. results on the neural network's training data), in line with the1096

recent results obtained using di�erent modelling assumptions found in Martellini and Milhau (2020); Melas1097

et al. (2019). Our results also show that if transaction costs are explicitly incorporated in the optimal strategy1098

found by the neural network, the direct impact of transaction costs remains limited. In addition, incorporating1099

transaction costs o�ers the the convenient indirect impact of avoiding marginal investments in certain factors1100

without the need to impose additional constraints.1101

However, considering the results obtained on the two training and testing data set combinations, a major1102

concern with the resulting optimal investment strategies is the relative lack of factor diversi�cation. This1103

challenge arises from using highly correlated, long-only equity factor indices (or ETFs) for factor investing1104

purposes, which are indeed the most likely vehicles for many (if not most) retail and institutional investors1105

for implementing factor investing strategies. While the high correlations of long-only factors are well known1106

(Briere and Szafarz (2016); Cazalet and Roncalli (2014); Grim et al. (2017); Pappas and Dickson (2015)), the1107

results obtained using the speci�ed data sets demonstrate that even fairly sophisticated, neural network-based1108

dynamic OSQ- and MCV-optimal investment strategies may have di�culty avoiding the resulting lack of factor1109

diversi�cation.1110

The OSQ- and MCV-optimal factor portfolio performance on out-of-sample data can be very disappointing,1111

echoing the concerns raised by Arnott et al. (2019) regarding the sensitivity of factor portfolios to the underlying1112

data and portfolio construction methodology. In fact, we �nd that the OSQ- or MCV-optimal basic portfolios1113

consisting of only the broad market index and bonds can often outperform the corresponding optimal factor1114

portfolios in the case of the historical data path as well as on one of the testing (out-of-sample) data sets.1115

However, as in the case of Arnott et al. (2019), we do not dismiss factor investing. This is especially relevant1116

when using the data-driven neural network methodology presented here, since the investment strategies and1117

associated results are conditional on the training and testing data sets. Instead, the aforementioned results1118

encourage us to enquire how an investor, insisting on engaging in factor investing subject to the stated realistic1119

investment constraints, should proceed. The standard advice o�ered in the literature is that the investor should1120

diversify the portfolio allocation across multiple factors (Amenc et al. (2015); Asness (2016); Melas (2016)), while1121

avoiding the temptation of basing the allocation on forecasted factor returns (Arnott et al. (2017a, 2019)). In1122

addition, as pointed out by Malkiel (2014), tilting the portfolio in the direction of any factor (Value, Momentum1123

etc.) necessarily implies less diversi�cation than that o�ered by the broad market index.1124

Taken together, this seems to suggest that potentially simpler factor investing strategies should be favored1125

over the dynamically optimal strategies derived here. However, using the approach of Ni et al. (2020), it is1126

also possible to formulate the factor investing problem with the explicit goal of dynamically outperforming for1127

example an equally-weighted benchmark factor investing strategy, which we leave for our future work.1128

Finally, we note that it is generally recognized that consistently outperforming the broad market index is very1129

challenging (Malkiel (2014); Melas (2016)), while a widespread adoption of particular factor tilts by investors1130

would e�ectively erase those factor premiums (Cochrane (1999)). In general, our results on the selected training1131

and testing data sets do support the advice of Cochrane (1999); White and Haghani (2020), and we conclude that1132

most investors (or at least the average investor) with the stated investment constraints should not underestimate1133

the competitiveness of a basic investment portfolio consisting of a broad market index and bonds.1134
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Appendix A: Additional numerical results1402

In this appendix, additional numerical results are provided which relate to the preceding sections as indicated.1403

A.1 Analysis: Factor ETF performance1404

This appendix complements the discussion in Subsection 3.2. We compare factor ETF performance since inception with1405

the proxy factor data (Table 3.2), used throughout this paper, over the same time period.1406

While the details for ETF selection are provided in Section 3.2, here we simply note that we focused on single-factor,1407

equity-focused, US-based ETFs, preferably issued by one of the top three ETF issuers by assets under management1408

(AUM). For factors with fewer ETFs or with shorter periods since ETF issuance (e.g. momentum and low volatility),1409

the top four ETF issuers by AUM were considered. Dividend- and split-adjusted monthly price data for the selected1410

ETFs were sourced from Yahoo Finance, from which monthly returns were calculated. Note that we did not include1411

ETFs explicitly marketed as �mixing� two factors, such as for example �small-capitalization low volatility� ETFs.1412

In Table A.1, we show that for each proxy factor as per Table 3.2, the two ETFs with the longest price history (i.e.1413

the earliest inception dates) that pursued the same qualitative objective according to the ETF's prospectus as the chosen1414

proxy factor, delivered return statistics which are very comparable with our proxy factor data.1415

1416

We explicitly avoided ETFs with vague factor mixes such as �Quality� and �Mixed-factor�, since there appears to be1417

no agreement as to how these �factors� should be de�ned. However, another reason for exclusion is illustrated by the1418

results in Table A.2. Speci�cally, Table A.2 compares the the monthly returns of the broad equity market index (Mkt)1419

with the Multi-factor ETFs and Quality ETFs issued prior to January 2019 (to ensure su�cient price history) by the1420

three top ETF issuers. Not only did the broad market index produce a very similar or even slightly better risk/return1421

trade-o� than some of these ETFs over the same time period, but the return correlations between the broad index and1422

these mixed factor ETFs are often nearly perfect. If the broad market index is included as a candidate asset (as per1423

Table 3.2), then there is no clear rationale for including �Quality� or �Mixed-factor� proxy factors mimicking these factor1424

ETF returns.1425

1426

A.2 Optimal expected blocksizes1427

This appendix complements the discussion in Subsection 3.5. Table A.3 provides the optimal expected block sizes in1428

months for each candidate asset as de�ned in Table 3.2. The calculations are based on monthly data from July 1963 to1429

December 2019 according to the algorithm in Patton et al. (2009), and assumes that the block size follows a geometric1430

distribution.1431

1432

A.3 Results: Equally-weighted benchmark portfolios1433

This appendix complements the discussion in Subsection 4.4.1434

Table A.4 illustrates the terminal wealth results, after transaction costs, for the OSQ-optimal and the equally-1435

weighted benchmark (�BM�) investment strategies on the training and testing data sets of DS1 and DS2. To ensure1436

that the comparison is reasonable and practical, the target γ in (2.28) has been chosen to ensure that the OSQ-optimal1437

35



Table A.1: ETFs vs. factors de�ned in Table 3.2: Comparison of monthly returns over the time period starting
with the �rst full month following the inception of the ETF (�Inception�) until the end of July 2020. For each
row, the ETF and proxy factor (listed in the column �Factor�) monthly return statistics has been calculated
over the same period, resulting in potentially di�erent statistics for the same factor. �Corr� gives the correlation
between monthly returns of the ETF and the factor, while �Mean� and �Std� reports its mean and standard
deviation, respectively. Only data for the two ETFs in each factor category with the longest data history (issued
by the top 4 US ETF issuers by AUM) are shown.

Factor ETF name (ticker) Inception
ETF monthly returns Factor monthly returns

Corr
Mean Std Mean

/Std

Mean Std Mean

/Std

Size
iShares Core S&P Small-Cap ETF

(IJR)

Jun 2000 0.85% 5.55% 0.15 0.90% 6.21% 0.14 0.95

Vanguard Small-Cap ETF (VB) Feb 2004 0.85% 5.48% 0.15 0.72% 5.96% 0.12 0.96

Value
iShares Core S&P U.S. Value ETF

(IUSV)

Aug 2000 0.62% 4.47% 0.14 0.67% 5.73% 0.12 0.95

SPDR Portfolio S&P 500 Value ETF

(SPYV)

Oct 2000 0.57% 4.38% 0.13 0.68% 5.79% 0.12 0.91

Vol
iShares MSCI USA Min Vol Factor

ETF (USMV)

Nov 2011 1.07% 3.10% 0.35 1.24% 3.31% 0.37 0.92

Invesco S&P 500 Low Volatility ETF

(SPLV)

Jun 2011 0.93% 3.18% 0.29 1.16% 3.36% 0.35 0.88

Mom
SPDR S&P 1500 Momentum Tilt ETF

(MMTM)

Nov 2012 1.15% 3.82% 0.30 1.19% 4.53% 0.26 0.90

Invesco DWA Momentum ETF (PDP) Mar 2007 0.84% 5.08% 0.17 0.85% 5.24% 0.16 0.93

Table A.2: Multi-factor ETFs and Quality ETFs vs. broad equity market index (�Mkt�) de�ned in Table 3.2:
Interpretation of columns is the same as in Table A.1, except that the comparison is with Mkt. Monthly return
statistics calculated over the time period starting with the �rst full month following the inception of the ETF
until the end of July 2020. Only data for ETFs launched (by the top 3 US ETF issuers by AUM) prior to
January 2019 are shown to ensure a meaningful history for comparison purposes.

ETF name (ticker) Inception
ETF monthly returns Mkt monthly returns

Corr
Mean Std Mean

/Std

Mean Std Mean

/Std

iShares MSCI USA Multifactor ETF (LRGF) May 2015 0.70% 4.57% 0.15 0.98% 4.41% 0.22 0.98

iShares MSCI USA Small-Cap Multifactor ETF

(SMLF)

May 2015 0.64% 5.48% 0.12 0.98% 4.41% 0.22 0.92

SPDR MSCI USA StrategicFactorsSM ETF

(QUS)

May 2015 0.95% 4.18% 0.23 0.98% 4.41% 0.22 0.96

Vanguard U.S. Multifactor ETF (VFMF) Mar 2018 0.08% 6.57% 0.01 0.96% 5.66% 0.17 0.98

iShares MSCI USA Quality Factor ETF (QUAL) Aug 2013 1.05% 3.91% 0.27 1.04% 4.06% 0.26 0.98

Vanguard U.S. Quality Factor ETF (VFQY) Mar 2018 0.54% 6.52% 0.08 0.96% 5.66% 0.17 0.98

Table A.3: Optimal expected blocksizes (months) for each candidate asset de�ned in Table 3.2.

Optimal expected blocksize (months)

Asset: Cash T30 B10 Mkt Size Value Vol Mom

# months 1.0 44.8 2.1 2.0 1.6 2.5 1.5 2.5

strategies result in the same mean of W (T ) as the corresponding BM strategy for the same portfolio. The Cash asset1438

is excluded from the BM strategy due to poor in�ation-adjusted performance. Note that the neural network strategy1439

requires signi�cantly more trading than the benchmark strategy, as evidenced by the higher transaction costs.1440

1441

A.4 Results: Quarterly rebalancing1442

This appendix complements the discussion in Subsection 4.1 and Subsection 4.2, where the results were shown under the1443

assumption of annual rebalancing of the portfolio.1444

In this appendix, we show results obtained from the assumption of the quarterly rebalancing of selected portfolios1445

36



Table A.4: OSQ-optimal (�NN�) vs. Equally-weighted benchmark (�BM �) portfolios, data sets DS1 and DS2,
annual rebalancing: Terminal wealth W (T ) results after transaction costs with interest (�TCs�).

Training data Testing data

Portfolio as per Table 3.3: P1 P4 P6 P1 P4 P6

Strategy NN BM NN BM NN BM NN BM NN BM NN BM

Data set DS1 Mean 318 318 397 397 427 427 318 319 400 394 430 423

(with TCs) Std 41 56 68 117 69 138 43 59 64 108 67 124

W (T ) results 5% CVaR 207 220 205 207 221 210 206 218 222 210 233 213

5th pctile 236 236 254 234 278 240 235 234 270 238 292 244

20th pctile 291 271 357 298 394 312 289 270 361 302 399 317

Median 325 313 414 381 441 408 323 312 411 383 440 410

80th pctile 348 362 447 486 475 530 350 365 446 478 476 520

TCs, mean 3.4 1.5 4.7 1.7 5.3 1.7 3.4 1.5 4.7 1.7 5.4 1.7

Data set DS2 Mean 317 317 389 389 420 420 323 326 373 435 407 461

(with TCs) Std 49 61 65 123 71 145 9 24 34 75 23 89

W (T ) results 5% CVaR 193 213 199 195 208 197 299 279 262 301 334 306

5th pctile 220 229 248 222 264 227 306 288 304 323 365 331

20th pctile 279 266 354 286 385 299 316 306 357 371 396 385

Median 327 310 405 372 437 398 324 325 383 429 412 453

80th pctile 356 364 434 481 469 528 331 346 395 495 422 532

TCs, mean 3.3 1.5 4.5 1.7 5.1 1.8 3.0 1.5 4.1 1.6 4.5 1.6

using the OSQ objective, since this is su�cient to illustrate that the conclusions of Subsections 4.1 and 4.2 remain1446

qualitatively una�ected by the choice of rebalancing frequency.1447

Table A.5 illustrates the terminal wealth results from quarterly rebalancing on the training and testing data sets1448

(DS1 and DS2) after transaction costs. This can be compared with the corresponding annual rebalancing results given1449

in Table 4.1 and Table 4.5.1450

Table A.5: OSQ objective, data sets DS1 and DS2, quarterly rebalancing: Terminal wealth W (T ) results,
with transaction costs (�TCs�). The target γ in (2.28) has been selected to ensure training dataset yields
E [W (T )] = 390 under the OSQ-optimal strategies for each portfolio. The mean of the total transaction costs
is calculated over all rebalancing events and all sample paths.

Training data Testing data

Portfolio as per Table 3.3: P1 P4 P6 P1 P4 P6

Data set DS1: Mean 390 390 390 391 391 391

(Quarterly rebalancing Std 117 64 51 115 60 50

with TCs) 5% CVaR 160 203 232 163 218 239

W (T ) results 5th pctile 191 250 288 194 265 296

20th pctile 276 355 367 279 358 369

Median 403 404 397 404 402 396

80th pctile 501 432 422 498 432 424

TCs with interest, mean 4.4 6.2 6.6 4.3 6.3 6.7

Data set DS2: Mean 390 390 390 521 377 375

(Quarterly rebalancing Std 154 67 54 92 37 16

with TCs) 5% CVaR 143 193 214 321 256 327

W (T ) results 5th pctile 172 240 271 356 297 347

20th pctile 250 355 368 435 360 367

Median 367 409 399 534 389 379

80th pctile 539 436 422 605 402 386

TCs with interest, mean 2.5 6.1 6.5 3.4 6.0 5.9

1451

Table A.6 provides the average over time of the 80th percentile of proportion of wealth invested in each asset, when the1452

neural network is trained under the assumption of quarterly rebalancing. This can be compared with the corresponding1453

annual rebalancing results given in the relevant sections of Table 4.3 and Table 4.7.1454

1455
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Table A.6: OSQ optimal investment strategies, data sets DS1 and DS2, quarterly rebalancing, with transaction
costs (�TCs�): Average of the 80th percentile of proportion (%) of wealth invested in each asset over time.
Values of �-� indicate that the asset was not included for consideration in the portfolio, while �0%� indicates
that the asset was included, but received zero investment on average, at the 80th percentile level. Results on
the testing data sets are not qualitatively di�erent, and thus omitted.

Training data (DS1), with TCs Training data (DS2), with TCs

Portfolio as per Table 3.3: P1 P4 P6 P1 P4 P6

OSQ objective: Cash 0% 0% 0% 0% 0% 0%

(Quarterly rebalancing T30 10% 38% 47% 1% 48% 55%

with TCs) B10 10% 23% 24% 5% 12% 16%

Avg. of 80th pctile Mkt 100% 0% 0% 100% 0% 0%

of proportion of Size - 0% 0% - 0% 0%

wealth in each Value - 79% 6% - 83% 11%

asset Vol - 0% 0% - 0% 0%

Mom - - 59% - - 59%

Appendix B: Hyperparameters and ground truth comparison1456

B.5 Hyperparameters1457

In this appendix, we discuss the hyperparameters used to produce the results presented throughout this paper. The1458

choices of hyperparameters were carefully tested, using both ground truth solutions (see Appendix B.6 below) and1459

by comparing solutions using di�erent hyperparameter combinations for similarities and di�erences. This appendix1460

complements the discussion in Subsection 2.4 and Section 4.1461

The results of Section 4 were obtained using neural networks with two hidden layers, each with (Na + 2) hidden1462

nodes, where Na is the number of assets in each portfolio as per Table 3.3. In other words, the number of neural network1463

parameters ηθ increased as the number of candidate assets, and therefore also the potential complexity of the resulting1464

investment strategy, increased. For the activation functions, we used logistic sigmoid activations as in Li and Forsyth1465

(2019) for the hidden layers. No biases were applied by any of the nodes. For the reasons outlined in Subsection 3.4,1466

the input layer consists of two nodes, while the output layer consists of Na nodes for each portfolio (as discussed in1467

Subsection 2.3).1468

Networks with more than two hidden layers, or networks with more hidden nodes in each layer but two hidden layers,1469

did not produce meaningfully di�erent results. However, one hidden layer was not su�cient to capture the complexities1470

of the investment strategy, especially in the case of the MCV objective.1471

For the smoothing hyperparameters, we used λosq = λmcv = λtc = 10−6 since results were not overly sensitive to1472

these parameters provided they were relatively small compared to the wealth and transaction cost values. For the weight1473

regularization parameter in (2.28)-(2.29), a value of λrg = 10−7 was used, since larger values could result in decreasing1474

the quality of the solution especially as the number of candidate assets (and therefore the number of neural network1475

parameters) increased.1476

Parameters for the chosen stochastic gradient descent (SGD) algorithm (the Gadam algorithm - see Granziol et al.1477

(2020)) used in the optimization can be found in Table B.7. The �number of iterations� row indicates the total number1478

of stochastic gradient descent steps, each using the number of paths given by the row �mini-batch size� to update the1479

gradient. Note that tail iterate averaging starts once the values given by the row �averaging starting point� is reached,1480

which was set at 90% of the total number of iterations. The default algorithm hyperparameters for Adam, given in1481

Kingma and Ba (2015), performed well in this application. All algorithm hyperparameters, including learning rates and1482

the starting point for (tail) iterate averaging, were subjected to extensive testing.1483

As is evident from Table B.7, compared to the OSQ problem, the MCV problem required more SGD iterations as1484

well as a larger mini-batch size on each iteration to reach a su�ciently accurate solution. If the batch size is too small1485

for the MCV problem, it was found that the SGD convergence is substantially slower with signi�cant noise in function1486

values from one iteration to the next. This might be due to a tail risk measure (CVaR) being used in the MCV problem,1487

so that a su�ciently large batch size is necessary for the SGD algorithm to be able to compute a descent direction that1488

is meaningful from a tail risk minimization perspective. This is also the reason why a fairly large training data set1489

(Nd = 106 paths) was used, to ensure that the tail of the wealth distribution can be estimated with su�cient accuracy.1490

1491

B.6 Ground truth comparison1492

In this appendix, we compare the neural network solutions obtained as outlined in Section 2 with the available numerical1493

solutions of the Hamilton-Jacobi-Bellman (HJB) partial di�erential equation (PDE) for the same investment problems1494

using the same parameters. In order to obtain the HJB PDE solution, we consider only two underlying assets, namely1495
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Table B.7: Parameters used for the Gadam algorithm (Granziol et al. (2020)), which combines the Adam
algorithm of Kingma and Ba (2015) with tail iterate averaging.

Quantity Problem: OSQ (2.28) Problem: MCV(2.29)

Number of iterations 64,000 82,000

Mini-batch size (paths) 100 1,000

Averaging starting point 57,600 73,800

the broad market index and a Treasury bill, and assume parametric models for the evolution of the prices of the assets.1496

By simulating Nd paths jointly using the parametric models for the asset dynamics, we obtain the corresponding training1497

data set for the neural network. If all else are equal, including investment assumptions/parameters and constraints, there1498

is expected to be a close correspondence between the neural network solution and the HJB PDE solution (Li and Forsyth1499

(2019)). This observation helps to validate the neural network solution and informs the choice of hyperparameters.1500

In the case of the MCV objective, the investment assumptions and model dynamics resulting in the HJB PDE1501

solution reported in Table 4 in Forsyth (2020) were used. For the OSQ problem, the corresponding assumptions and1502

HJB PDE solution reported in Table 7 in Li and Forsyth (2019) were used.1503

Table B.8 compares the neural network (�NN�) solution with the corresponding HJB PDE solution. The neural1504

network hyperparameters outlined in Appendix B.5 were used. We emphasize that the investment assumptions and1505

asset dynamics underlying the OSQ and MCV problems reported in Table B.8 are di�erent, so the OSQ and MCV1506

results are not directly comparable.1507

Table B.8: Ground truth comparison: Optimal terminal wealth W (T ) results.

Objective HJB PDE solution NN solution

OSQ
Source Mean Std Mean Std

Li and Forsyth (2019) 705 153 705 153

MCV
Source Mean 5% CVaR Mean 5% CVaR

Forsyth (2020) 2503 674.6 2527 674.4
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