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Abstract

This paper examines the strategic interactions of two large regions making choices
about greenhouse gas emissions in the face of rising global temperatures. Three central
features are highlighted: uncertainty, the incentive for free riding, and asymmetric char-
acteristics of decision makers. Optimal decisions are modelled in a fully dynamic, feed-
back Stackelberg pollution game. Global average temperature is modelled as a mean
reverting stochastic process. A numerical solution of a coupled system of Hamilton-
Jacobi-Bellman equations is implemented and the probability distribution of outcomes
is illustrated with Monte Carlo simulation. When players are identical, the outcome of
the game is much worse than the social planner’s outcome. An increase in temperature
volatility reduces player utility, making cooperative action through a social planner
more urgent. Asymmetric damages or asymmetric preferences for emissions reductions
are shown to have important effects on the strategic interactions of players.

Keywords: climate change, dynamic game, feedback Stackelberg equilibrium, feed-
back Nash equilibrium, uncertainty, asymmetric players, HJB equation
JEL codes: C63, C73, Q52, Q54

*Department of Economics, University of Waterloo, Waterloo, Ontario, Canada.
margaret.insley@uwaterloo.ca

�Department of Economics, Wilfrid Laurier University, Waterloo, Ontario, Canada. tsnoddon@wlu.ca
�Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

paforsyt@uwaterloo.ca

1



1 Introduction1

Climate change caused by human activity represents a particularly intractable tragedy of2

the commons, which calls for cooperative actions of individual decision makers at both na-3

tional and regional levels. The likely success of cooperative actions is hampered by the large4

incentives for free riding by decision makers who may delay making deep cuts in carbon5

emissions in hopes that others will do the “heavy lifting”. Further complicating the problem6

are the enormous uncertainties inherent in predicting climate responses to the buildup in7

atmospheric carbon stocks and resulting impacts on human welfare, including the prospects8

for adaptation and mitigation. These large uncertainties and the need for cooperative global9

action have been used by some as justification for delaying aggressive unilateral policy ac-10

tions. Nevertheless, many nations and sub-national jurisdictions have acted on their own to11

adopt policies to reduce carbon emissions even without national agreements or legislation in12

place. As a prominent example, since the Trump administration has reneged on the Paris13

Climate Accord, several states have vowed to go it alone and continue with aggressive cli-14

mate policies. Other examples of jurisdictions taking unilateral carbon pricing initiatives are15

given in Kossey et al. (2015).16

The observation that national or regional governments implement environmental regu-17

lations sooner or more aggressively than required by international agreements or national18

legislation has been studied by various researchers.1 Local circumstances, including voter19

preferences, local damages from emissions, and strategic considerations regarding the actions20

of other jurisdictions, may play a role. A nation or region may be motivated to act ahead21

of others if it experiences relatively more severe local damages from emissions. Differences22

in environmental preferences may prompt some jurisdictions to take early action (Bednar-23

Friedl 2012). California and British Columbia (B.C.) (a province in Canada), both early24

adopters of carbon pricing, appear to have residents who are more environmentally aware,25

implying these governments acted in accordance with the preferences of a large segment of26

their voters. A survey of stakeholders involved in the introduction of the B.C. carbon tax27

1Urpelainen (2009) and Williams (2012) examine the puzzle at a sub-regional level.
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concluded that a number of factors were at work. These factors include: (i) a high priority28

given to environmental stewardship by B.C. residents and (ii) the fact that several other29

regional jurisdictions appeared to be poised in 2008 to take climate change more seriously30

(Clean Energy Canada 2015). Governments may choose environmental policies strategically31

to gain a competitive advantage or to shift emissions to other regions (Barcena-Ruiz 2006).32

This paper examines the strategic interactions of decision makers responding to climate33

change, focusing on three central features of the problem: uncertainty, the incentive for free34

riding, and asymmetric characteristics of decision makers. We develop a dynamic model of a35

Stackelberg game involving two regions and solve for a feedback equilibrium. Each region is a36

large emitter of greenhouse gases and benefits from their own emissions, but faces costs from37

the impact on global temperature of the cumulative emissions of both players. The modelling38

of the linkage between carbon emissions and global temperature is based on the assumptions39

of the well-known DICE model2 (Nordhaus & Sztorc 2013). To capture uncertainty, average40

global temperature is modelled as a stochastic process. We solve the stochastic dynamic41

game using numerical techniques. We model temperature and carbon stock as evolving42

continuously in time as given by the solution of stochastic differential equations. Rather43

than assume continuously applied controls, we restrict the set of admissible controls to allow44

decisions only at fixed time intervals, which we view as a more realistic depiction of real45

world policy making. We allow for differing damages of climate change for each region as46

well as differing preferences for reducing greenhouse gas emissions. We explore the impact47

of these features on the optimal choice of emissions for each player and contrast with the48

choices made by a social planner. While our focus is on the outcome of a Stackelberg game,49

at each point in the state space, we can check if a feedback Nash equilibrium is possible, and50

if the feedback Stackelberg solution also represents a Nash equilibrium.51

There is a significant prior literature which examines the tragedy of the commons caused52

by polluting emissions in a differential game setting. The relevant differential game literature53

is reviewed in Section 2, but we note here two papers most closely related to our paper in their54

focus on asymmetry of players’ utilities. Both employ economic models in a deterministic55

2Dynamic Integrated Model of Climate and the Economy
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setting. Zagonari (1998) analyzes cooperative and non-cooperative games when the two56

players (countries) differ in the utility derived from a consumption good, the disutility caused57

by the pollution stock, and their concern for future generations as reflected in their discount58

rate. Interestingly, Zagonari finds equilibria for which the steady state pollution stock is59

lower than in the cooperative game. In particular, this result holds if the country with60

stronger environmental preferences (the “eco-country”) has sufficiently large disutility from61

pollution and either a relatively strong concern for future generations or relatively small62

utility from consumption goods.63

Wirl (2011) also examines whether differences in environmental sentiments can mitigate64

the tragedy of the commons associated with a problem such as global warming. The author65

characterizes a multi-player game with green and brown players. Green players are distin-66

guished from brown players by a penalty term in their objective function which depends on67

the extent to which their emissions exceed the social optimum. In the examples chosen, the68

effect of green players on total emissions is modest, as their actions increase the free riding of69

brown players. Wirl notes the possibility of a type of green paradox in which the increasing70

numbers of green players causes increased emissions, because brown players increase their71

emissions and more than offset the impact of green players’ decisions.72

We also note Insley & Forsyth (2019) which explores alternate forms of games between73

symmetric players, including a leader-leader game as well as an interleaved game in which74

there is a significant delay between player decisions.75

Our paper contributes to this literature is several ways. We develop a more general model76

which includes uncertainty and feedback strategies in a dynamic setting. The numerical77

results highlight the important influence of uncertainty in future temperature on optimal78

emissions choices and the evolution of the carbon stock. We study the effect of asymmetry in79

damages and environmental preferences on emissions choices, utility, and the implication for80

the evolution of global average temperature, contrasting the non-cooperative outcome with81

the outcome assuming a central planner empowered to make choices. Of interest is whether82

player asymmetries exacerbate free riding and the tragedy of the commons in a stochastic83
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dynamic setting. Finally, we make a contribution in terms of the numerical methodology for84

solving a dynamic Stackelberg game under uncertainty with feedback strategies and path85

dependent variables. We describe the method used to determine the optimal Stackelberg86

solution (which always exists) and then show how to determine if a feedback Nash equilibrium87

exists.3 Our numerical solution procedure involves use of a finite difference discretization of88

the system of Hamilton-Jacobi-Bellman (HJB) equations. In contrast to much of the previous89

literature, the choice of damage function can be any arbitrary function of state variables. In90

addition to providing the numerical solution of the HJB equations, which indicates optimal91

controls and expected utility at time zero for any chosen values of the state variables, we92

also undertake Monte Carlo simulation which allows us to depict the probability distribution93

of emissions, temperature and utility over the time frame of the analysis (150 years).94

To preview our results, we highlight the crucial role of the damage function which specifies95

the harm from rising temperature, as has been noted by others (Weitzman 2012, Pindyck96

2013). Very little reduction in carbon emissions occurs in the Stackelberg game or with97

the central planner using a conventional quadratic damage function. Exponentially increas-98

ing damages better reflect the catastrophic nature of damages anticipated if average global99

temperature should increase beyond 3◦C above pre-industrial levels. We also find that tem-100

perature uncertainty plays a key role. With a larger temperature volatility, optimal emissions101

are reduced for the players in the game as well as for the social planner. The social plan-102

ner’s response is relatively large compared to the game for key values of the state variables103

(carbon stock and temperature), implying the benefit of cooperative action through a social104

planner increases at higher volatility. Monte Carlo analysis demonstrates the much higher105

risk of the game, relative to the social planner. Asymmetric costs are also found to have106

an important effect on strategic interactions of players. Higher damage experienced by one107

player may cause the other player to increase or decrease emissions relative to the symmetric108

3It is well known that for differential games with feedback strategies, only special classes of models result
in well-posed mathematical problems for which it is possible to characterize Nash equilibria. See Bressan
(2011). These include linear-quadratic games where the feedback controls depend linearly on the state
variable, as well as certain forms of stochastic differential games where the state evolves according to an Ito
process.
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case depending on the values of the state variables. As with increased volatility, we highlight109

the greater advantage provided by a social planner in this case. Finally, we observe that110

an increase in green preferences by one player has an impact on the optimal actions of the111

other player, but again, the direction of this effect varies depending on current values of112

state variables - and in particular the stock of atmospheric carbon. We identify both a green113

paradox and a green bandwagon effect.114

The remainder of the paper proceeds as follows. In Section 2, we provide a more detailed115

literature review. The formulation of the climate change decision problem is described in116

Section 3. Section 4 provides a detailed description of the dynamic programming solution.117

Section 5 describes the detailed modelling assumptions and parameter values. Numerical118

results are described in Section 6, while Section 7 provides concluding comments.119

2 Literature120

This paper contributes to the literature on differential games dealing with trans-boundary121

pollution problems as well as to the developing literature on accounting for uncertainty in122

optimal policies to address climate change.123

Economic models of climate change have long been criticized for arbitrary assumptions124

regarding functional forms and key parameter values as well as unsatisfactory treatment of125

key uncertainties including the possibility of catastrophic events.4 Of course, this is not126

surprising given the intractable nature of the climate change problem. Policies to address127

climate change have been extensively studied using the DICE model, a deterministic model128

developed in the 1990s, which has been revised and updated several times since then (Nord-129

haus 2013). Initially uncertainty was addressed through sensitivities or Monte Carlo analysis,130

but there has since been a significant research effort to address uncertainty using more robust131

methodologies. We mention only a sample of that literature. Kelly & Kolstad (1999) and132

Leach (2007) embed a model of learning into the DICE model to examine active learning133

by a social planner about key climate change parameters. More recent papers which incor-134

4See Pindyck (2013) for a harsh critique.
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porate stochastic components into one or more state variables in the DICE model include135

Crost & Traeger (2014), Ackerman et al. (2013) and Traeger (2014). Lemoine & Traeger136

(2014) extend the work of Traeger (2014) by incorporating the possibility of sudden shifts in137

system dynamics once parameters cross certain thresholds. Policy makers learn about the138

thresholds by observing the evolution of the climate system over time. Hambel et al. (2017)139

present a stochastic equilibrium model for optimal carbon emissions with key state variables,140

including carbon concentration, temperature and GDP, modelled as stochastic differential141

equations. Chesney et al. (2017) examine optimal climate polices using a model in which142

global temperature is stochastic and assuming there is a known temperature threshold which143

will result in disastrous consequences if it is exceeded for a sustained period of time.144

Differential game models have been used extensively to examine strategic interactions145

between players who benefit individually from polluting emissions but are also harmed by146

the cumulative emissions of all players. Key assumptions, such as the information known to147

each player, determine whether the game can be described by a closed form mathematical148

solution.5 For example, open loop strategies, which depend solely on time, result when149

players know only the initial state of the system. Nash and Stackelberg equilibria for open150

loop strategies are well understood. In contrast, when players can directly observe the state of151

the system at every instant in time, feedback strategies (also called closed-loop or Markovian152

strategies) which depend on the state of the system may be employed. The resulting value153

functions satisfy a system of highly non-linear HJB partial differential equations (PDEs).154

From the theory of partial differential equations it is known that if the system is non-155

stochastic, it should be hyperbolic in order for it to be well posed, in that it admits a unique156

solution depending continuously on the initial data (Bressan & Shen 2004). Our system of157

HJB equations is degenerate parabolic, which further complicates matters.158

In games with feedback strategies only special classes of models are known to result159

in well-posed mathematical problems. These include zero-sum games, as well as linear-160

quadratic games. Linear-quadratic games have been used extensively in the economics liter-161

5See Bressan (2011) for a discussion of the challenges of finding appropriate mathematical models which
result in closed form solutions.
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ature to study pollution games, and some relevant papers, which admit closed form solutions,162

are detailed below. In this class of games, utility is a quadratic function of the state variable,163

while the state variable is linear in the control. Robust game models are also found with164

Nash feedback equilibria for stochastic differential games where the state evolves according165

to an Ito process such as166

dx = f(t, x, u1, u2)dt+ σ(t, x)dZ (1)

where x represents the state variable, t is time, u1 and u2 represent the controls of players167

1 and 2, f and σ are known functions, and dZ is the increment of a Wiener process. As168

noted by Bressan (2011), for this case the value functions can be found by solving a Cauchy169

problem for a system of parabolic equations. The Cauchy problem is well posed if the170

diffusion tensor σ has full rank. In our case, the diffusion tensor is not of full rank (i.e. the171

system of partial differential equations is degenerate), hence we cannot expect that a Nash172

equilibrium will always exist. Additional discussion of the complexities of solving problems173

involving differential games can be found in Salo & Tahvonen (2001), Ludkovski & Sircar174

(2015), Harris et al. (2010), Cacace et al. (2013), Amarala (2015), and Ledvina & Sircar175

(2011).176

Long (2010), Long (2011), Dockner et al. (2000) and Jorgensen et al. (2010) provide177

surveys of the sizable literature addressing strategic interactions in the optimal control of178

pollution or natural resource exploitation using games, much of it in a deterministic setting.179

This literature focuses on the questions: (i) are players are better off with cooperative180

behaviour and (ii) how do the steady state levels of pollution compare under cooperative181

versus non-cooperative games.182

Examples of dynamic differential pollution games in a non-stochastic setting include183

Dockner & Long (1993), Zagonari (1998), Benchekroun & van Long (1998), List & Ma-184

son (2001), Wirl (2011), and Benchekroun & Chaudhuri (2014). Under certain conditions,185

closed-form solutions are found for linear and non-linear Nash strategies. In a recent paper,186

Colombo & Labrecciosa (2019) contrast Stackelberg and Cournot equilibria in a determin-187
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istic setting and derive a “feedback-generalized-Stackelberg-Nash-Cournot equilibrium” for188

the exploitation of a common pool renewable resource. A few papers derive analytical so-189

lutions to differential pollution models in stochastic settings. These include Xepapadeas190

(1998), Wirl (2008), and Nkuiya (2015).191

There is a developing literature on the numerical solution of dynamic games in the context192

of non-renewable resource markets. Some earlier papers developed models where two or more193

players extract from a common stock of resource. Examples include van der Ploeg (1987) and194

Dockner et al. (1996). Salo & Tahvonen (2001) were among the first to explore oligopolistic195

natural resource markets in a differential Cournot game using feedback strategies. Prior to196

that, the focus had been on open-loop strategies, because of their tractability. Harris et al.197

(2010), Ludkovski & Sircar (2012), and Ludkovski & Yang (2015) study the extraction of198

an exhaustible resource as an N-player continuous time Cournot game when players have199

heterogeneous costs.200

3 Problem Formulation201

This section provides an overview of the climate change decision model. Details of functional202

forms and parameter values are provided in Section 5. A summary of variable names is given203

in Table 1. We model the optimal timing and stringency of environmental regulations (in204

terms of the reduction of greenhouse gas emissions) as a stochastic optimal control problem.205

Our two main cases are for a Stackelberg game and a social planner. In Appendix B we206

describe the controls for a Nash equilibrium, which is used to contrast with the Stackelberg207

game. The players in the Stackelberg game are two regions, each contributing to the at-208

mospheric stock of greenhouse gases - which, for simplicity, we will refer to as the carbon209

stock. These regions may be thought of as single nations or groups of nations acting to-210

gether, but each is a major contributor to the global carbon stock. Each region seeks to211

maximize discounted expected utility by making emission choices taking into account the212

optimal actions of the other region. The social planner chooses emission levels in each region213

so as to maximize the expected sum of utilities from both regions.214
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Table 1: List of Model Variables

Variable Description

Ep(t) Emissions in region p

Ēp benchmark emissions for player p

e1, e2 Particular realizations of state variable Ep(t)

ω, ω2 any possible control choice by players 1 and 2

e+
1 , e+

2 particular controls chosen by players 1 and 2

S(t) Stock of pollution at time t, a state variable

s A realization of S(t)

S̄ preindustrial level of carbon

ρ(X,S, t) Rate of natural removal of the pollution stock

σ temperature volatility

η(t) speed of mean reversion in temperature equation

X(t) Average global temperature, a state variable

x A realization of X(t)

X̄ long run equilibrium level of temperature, ◦C above pre-industrial levels

Bp(Ep, t) Benefits from pollution

Cp(X, t) Damages from pollution

gp(t) Emissions reduction in region p relative to a target

θp Willingness to pay in region p for emissions reduction from a target

Ap(gp(t)) Green reward benefits from emissions reductions

πp Flow of net benefits to region p

r risk free interest rate

215

Regions emit carbon in order to generate income. For simplicity we assume that there is216

a one to one relation between emissions and regional income. The two regions are indexed217

by p = 1, 2 and Ep refers to carbon emissions from region p. The stock of atmospheric218

carbon, S, is augmented by the emissions of each player and is reduced by a natural cycle219

whereby carbon is removed from the atmosphere and absorbed into other carbon sinks. The220

removal of carbon from the atmosphere can be described by decay function, ρ(X,S, t), which221

in theory may depend on the average surface temperature, X(t), the stock of carbon, S(t),222

and time, t. ρ(X,S, t) is referred to as the removal rate. For simplicity, as described in223

10



Section 5, we will later drop the dependence on X and S, assuming that ρ is a function only224

of time. However, our solution technique can easily accommodate more general functional225

forms for ρ. The evolution of the carbon stock over time is described by the deterministic226

differential equation:227

dS(t)

dt
= E1 + E2 + (S̄ − S(t))ρ(X,S, t); S(0) = s0 S ∈ [smin, smax] . (2)

S̄ is the pre-industrial equilibrium level of atmospheric carbon.228

The mean global increase in temperature above the pre-industrial level, denoted by X,229

is described by an Ornstein Uhlenbeck process:230

dX(t) = η(t)

[
X̄(S, t)−X(t)

]
dt+ σdZ. (3)

where η(t) represents the speed of mean reversion and is a deterministic function of time.231

X̄ represents the long run mean of global average temperature which depends on the stock232

of carbon and time. σ is the volatility parameter, assumed to be constant. The detailed233

specification of these functions and parameters is given in Section 5. dZ is the increment234

of a standard Wiener process, intended to capture the volatility in the earth’s temperature235

due to random effects.236

The net benefits from carbon emissions are represented as a general function πp =237

πp(E1, E2, X, S, t). More specifically, π is composed of the benefits from emissions, Bp(Ep, t),238

the damages from increasing temperature, Cp(X, t), and a green reward that results from239

reducing emissions relative to a given target or baseline level, Ap(gp(t)):240

πp = Bp(Ep, t)− Cp(X, t) + Ap(gp(t)) p = 1, 2; (4)

where gp(t) refers to emissions reduction. The detailed specification of benefits, damages,241

and the green reward is left to Section 5242
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It is assumed that the control is applied at fixed decision times denoted by:243

T = {t0 = 0 < t1 < ...tm... < tM = T}. (5)

We assume that (tm − tm−1) is constant (two years in our numerical example), reflecting244

the time lags in real world policy making. A sensitivity with one year intervals made little245

difference to our results.6 We use the following short hand notation. Consider a function246

f(t). We define247

f(t+) = lim
ε→0+

f(t+ ε) ; f(t−) = lim
ε→0+

f(t− ε). (6)

Informally t− and t+ denote the instants immediately before and after t.248

Let e+
1 (E1, E2, X, S, t

+
m) and e+

2 (E1, E2, X, S, t
+
m) denote the controls implemented by the249

players 1 and 2 respectively, which are contained within the set of admissible controls: e+
1 ∈250

Z1 and e+
2 ∈ Z2. The controls act on the state variables, E1 and E2, either leaving them251

as is or changing to a new level. We can specify a control set which contains the optimal252

controls for all tm.253

K =
{

(e+
1 , e

+
2 )t0=0, (e+

1 , e
+
2 )t1=1, ... , (e

+
1 , e

+
2 )tM=T

}
. (7)

In this paper we will consider three possibilities for selection of the controls (e+
1 , e

+
2 ) at254

t ∈ T : Stackelberg, Nash, and social planner. We delay the precise specification of how the255

the Stackelberg and social planner controls are determined until Section 4.2, while the Nash256

controls are specified in Appendix B.257

Regardless of the control strategy, the value function for player p, Vp(e1, e2, x, s, t) is258

6It is possible to let this time interval become vanishingly small, in which case this would become a
classic impulse control problem. This would increase the computational cost of the numerical examples and
is beyond the scope of the paper. The interval between decision times is currently exogenous. By making
(tm − tm−1) very small we could examine the impact of endogenous decision times. In this case, it would
make sense to add a cost for changing emissions to reflect administrative costs of applying a new policy.
This would result in finite times between actual decision times, since the cost of continuous policy changes
would be prohibitive.

12



defined as:259

Vp(e1, e2, x, s, t) = EK
[∫ T

t′=t

e−r(t
′−t)πp(E1(t′), E2(t′), X(t′), S(t′)) dt′ +

e−r(T−t)Vp(E1(T ), E2(T ), X(T ), S(T ), T )
∣∣∣E1(t) = e1, E2(t) = e2, X(t) = x, S(t) = s

]
. (8)

EK [·] is the expectation under control set K. Note that lower case letters e1, e2, x, s have been260

used to denote realizations of the state variables E1, E2, X, S. The value in the final time261

period, T , is assumed to be the present value of a perpetual stream of expected net benefits at262

given carbon stock, S, and temperature levels, X, with emissions set to their maximum level.263

This is reflected in the term Vp(E1(T ), E2(T ), X(T ), S(T ), T ) and is described in Section 4.1264

as a boundary condition. The justification is the assumption that the world has decarbonized265

by this time, and emissions still generate income but no longer add to the stock of carbon.266

4 Dynamic Programming Solution267

Using dynamic programming, we solve the problem represented by Equation (8) backwards268

in time, breaking the solution phases up into two components for t ∈ (t−m, t
+
m) and (t+m, t

−
m+1),269

where tm ∈ T are decision times (Equation (5)) and t+m and t−m are defined in Equation (6) .270

In the interval (t−m, t
+
m), we determine the optimal controls, implying that for the Stackelberg271

game, the follower plays immediately after the leader. In the interval (t+m, t
−
m+1), we solve a272

system of partial differential equations. Recall it is assumed that (tm+1− tm) is a fixed finite273

interval. As a visual aid, Equation (9) shows the noted time intervals going forward in time,274

t−m → t+m → t−m+1 → t+m+1 . (9)

4.1 Advancing the solution backward in time from t−m+1 → t+m275

The solution proceeds going backward in time from t−m+1 → t+m, which is a fixed finite interval276

where players take no actions, but temperature and carbon stock evolve. Consider at time277
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interval h < (tm+1− tm). For t ∈ (t+m, t
−
m+1− h) , the dynamic programming principle states278

that (for small h),279

V (e1, e2, s, x, t) = e−rhE
[
V (E1(t), E2(t), S(t+ h), X(t+ h), t+ h)

∣∣∣ (10)

S(t) = s,X(t) = x,E1(t) = e1, E2(t) = e2

]
+ πp(e1, e2, s, x, t)h.

The parameter r is the risk free interest rate. Note that for t ∈ (t+m, t
−
m), the emission levels280

E1 and E2 are fixed. Letting h → 0 and using Ito’s Lemma,7 the equation satisfied by the281

value function, Vp is expressed as:282

∂Vp
∂t

+ πp(e1, e2, x, s, t) + LVp = 0, p = 1, 2 . (11)

where L is the differential operator for player p and is defined as follows:283

LVp ≡
(σ)2

2

∂2Vp
∂x2

+ η(X̄ − x)
∂Vp
∂x

+ [(e1 + e2) + ρ(S̄ − s)]∂Vp
∂s
− rVp; p = 1, 2 . (12)

The arguments in the Vp function, as well as in η and ρ, have been suppressed when there is284

no ambiguity.285

The domain of Equation (11) is (e1, e2, x, s, t) ∈ Ω∞, where Ω∞ ≡ Z1 × Z2 × [x0,∞] ×286

[S̄,∞] × [0,∞]. x0 would be the lowest temperature possible on earth. For computational287

purposes, we truncate the domain Ω∞ to Ω, where Ω ≡ Z1×Z2×[xmin, xmax]×[S̄, smax]×[0, T ].288

T , S̄, smax, Z1, Z2, xmin, and xmax are specified based on reasonable values for the climate289

change problem, and are given in Section 5.290

Remark 1 (Admissible sets Z1, Z2). We will assume in the following that Z1, Z2 are compact291

discrete sets. Since e1 and e2 are the result of policy decisions about appropriate regional292

emissions levels, we argue that it is reasonable to consider these as discrete sets. We envision293

7Dixit & Pindyck (1994) provide an introductory treatment of optimal decisions under uncertainty char-
acterized by an Ito process such as Equation (3). A more advanced treatment in a finance context is given
by Bjork (2009). Note that we are applying Ito’s Lemma to infinitely smooth test functions, as required by
viscosity solution theory. This does not require that the value function be smooth. See Barles & Souganidis
(1991).
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governments being limited in their ability to finely tune emissions levels, but able to implement294

policies that change emissions to one of a range of possibilities. A sensitivity of different295

admissible sets is contained in Appendix D. Reisinger & Forsyth (2016) show that as the296

difference between elements in the discrete choice set go to zero, the solution converges to297

that of a continuous control space.298

Boundary conditions for the PDEs are specified below.299

� For fixed X̄, as x → xmax, it is assumed that |σ2

2

∂2Vp
∂x2
| is small compared to |η(X̄ −300

x)∂Vp/∂x|. Intuitively this boundary condition implies that the impact of volatility301

at very high temperature levels is unimportant. At extreme temperature levels, the302

optimal emissions are zero. Assuming that xmax > X̄, Equation (11) has outgoing303

characteristics (assuming σ2

2

∂2Vp
∂x2

can be ignored at x = xmax) and hence no other304

boundary conditions are required.305

� As x→ xmin, where xmin is below the pre-industrial temperature, the effect of volatility306

is small compared to the drift term. Hence we set σ = 0 at x = xmin. Assuming307

xmin < X̄ then Equation (11) has outgoing characteristics at x = xmin and no other308

boundary conditions are required. Note that we will show that πp ≥ 0 at x = xmin.309

� As s→ smax, it is assumed that emissions do not increase s beyond the limit of smax.310

smax is set to be a large enough value so that there is no impact on utility or optimal311

emission choices for s levels of interest. We have verified this in our computational312

experiments. This amounts to dropping the term ∂VP
∂S

(e1 + e2) from Equation (12).313

This can be justified by noting that if smax � S̄ then ρ(S̄ − S) >> (e1 + e2) for314

reasonable values of e1 and e2.315

� As s → S̄, no extra boundary condition is needed as we assume e1, e2 ≥ 0 hence the316

Equation has outgoing characteristics at s = S̄.317

� At t = T , it is assumed that Vp is equal to the present value of the infinite stream318

of benefits associated with a given temperature when emissions are set to their max-319

imum level. Essentially, it is assumed that players receive the costs associated with320
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that temperature in perpetuity and T is large enough that we assume the world has321

decarbonized.322

More details of the numerical solution of the system of PDEs are provided in Appendix323

A.324

4.2 Advancing the solution backward in time from t+m → t−m325

Going backward in time, the optimal control, is determined between t+m → t−m. We con-326

sider three possibilities for selection of the controls (e+
1 , e

+
2 ) at t ∈ T : Stackelberg, social327

planner, and Nash. Below we describe the Stackelberg and social planner controls. We328

include the Nash case for reference only and the Nash controls are describe in Appendix329

B. We remind the reader that our controls are assumed to be feedback, i.e. a function330

of state. However, to avoid notational clutter in the following, we will fix (e1, e2, s, x, tm),331

so that, if there is no ambiguity, we will write (e+
1 , e

+
2 ) which will be understood to mean332

(e+
1 (e1, e2, s, x, tm), e+

2 (e1, e2, s, x, tm)).333

334

Remark 2. In all cases the objective function for both players is given in Equation (8). For335

each type of game there are constraints on the permitted controls which are apparent from336

the different best response functions defined below for the Stackelberg game and in Appendix337

B for the Nash game.338

339

4.2.1 Stackelberg Game340

In the case of a Stackelberg game, suppose that, in forward time, player 1 goes first, and341

then player 2. Conceptually, we can then think of the time intervals (in forward time) as342

(t−m, tm], (tm, t
+
m). Player 1 chooses control e+

1 in (t−m, tm], then player 2 chooses control e+
2 in343

(tm, t
+
m).344

We suppose at t+m, we have the value functions V1(e1, e2, s, x, t
+
m) and V2(e1, e2, s, x, t

+
m).345
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Definition 1 (Response set of player 2). The best response set of player 2, R2(ω1, e1, e2, s, x, tm)346

is defined to be the best response of player 2 to a control ω1 of player 1.347

R2(ω1, e1, e2, s, x, tm) = argmax
ω′2∈Z2

V2(ω1, ω
′
2, s, x, t

+
m) ; ω1 ∈ Z1 . (13)

Remark 3 (Tie breaking). We break ties by (i) staying at the current emission level if348

possible, or (ii) choosing the lowest emission level. Rule (i) has priority over rule (ii). Note349

that rule (i) corresponds to an infinitesimal switching cost and rule (ii) to an infinitesimal350

green reward (see Section 5.3.3). Consequently there are no ties after applying either of these351

rules.352

Similarly, we define the best response set of player 1.353

Definition 2 (Response set of player 1). The best response set of player 1, R1(ω2, e1, e2, s, x, tm)354

is defined to be the best response of player 1 to a control ω2 of player 2.355

R1(ω2, e1, e2, s, x, tm) = argmax
ω′1∈Z1

V1(ω′1, ω2, s, x, t
+
m) ; ω2 ∈ Z2 . (14)

Again, to avoid notational clutter, we will fix (e1, e2, s, x, tm) so that we can write without356

ambiguity R1(ω2) = R1(ω2, e1, e2, s, x, tm) and R2(ω1) = R2(ω1, e1, e2, s, x, tm).357

Remark 4 (Dependence on states e1, e2). In Equations (13) and (14) the tie breaking rule358

induces dependence on the initial state, e1, e2.359

Definition 3 (Stackelberg Game: Player 1 first). The optimal controls (e+
1 , e

+
2 ) assuming360

player 1 goes first are given by361

e+
1 = argmax

ω′1∈Z1

V1(ω′1, R2(ω′1), s, x, t+m) ,

e+
2 = R2(e+

1 ) . (15)

Since we use dynamic programming, we determine the optimal controls using the follow-362

ing algorithm.363
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Stackelberg Control: Player 1 first364

Input: V1(e1, e2, s, x, t
+
m), V2(e1, e2, s, x, t

+
m).365

Step 1: Compute the best response set for player 2 assuming player 1 chooses control ω1366

first, ∀ω1 ∈ Z1, using Equation (13), giving R2(ω1).367

Step 2: Determine an optimal pair (e+
1 , e

+
2 ) using Equation (15).368

Determine solution at t−m

V1(e1, e2, s, x, t
−
m) = V1(e+

1 (·), e+
2 (·), s, x, t+m) ;

V2(e1, e2, s, x, t
−
m) = V2(e+

1 (·), e+
2 (·), s, x, t+m) . (16)

Output: V1(e1, e2, s, x, t
−
m), V2(e1, e2, s, x, t

−
m)369

4.2.2 Social Planner370

For the social planner case, we have that an optimal pair (e+
1 , e

+
2 ) is given by371

(e+
1 , e

+
2 ) = argmax

ω1∈Z1
ω2∈Z2

{
V1(ω1, ω2, s, x, t

+
m) + V2(ω1, ω2, s, x, t

+
m)

}
. (17)

and as a result372

V1(e1, e2, s, x, t
−
m) = V1(e+

1 , e
+
2 , s, x, t

+
m) ; V2(e1, e2, s, x, t

−
m) = V2(e+

1 , e
+
2 , s, x, t

+
m) . (18)

Ties are broken by minimizing |V1(e+
1 , e

+
2 , s, x, t

+
m)− V2(e+

1 , e
+
2 , s, x, t

+
m)|. In other words, the373

social planner picks the emissions choices which give the most equal distribution of welfare374

across the two players.375
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5 Detailed model specification and parameter values376

This section describes the functional forms and parameter values used in the numerical377

application. Assumed parameter values are summarized in Table 2.378

379

5.1 Carbon stock details380

The evolution of the carbon stock is described in Equation (2). In Integrated Assessment381

Models, there is typically a detailed specification of the exchange of carbon emissions between382

the various carbon reservoirs: the atmosphere, the terrestrial biosphere and different ocean383

layers (Nordhaus 2013, Lemoine & Traeger 2014, Traeger 2014, Golosov et al. 2014). In384

Equation (2) the removal function is given as ρ(X,S, T ). In our numerical application, we385

use a simplified specification, based on Traeger (2014), to avoid the creation of additional386

path dependent variables which increase computational complexity. We denote the rate387

at which carbon is removed from the atmosphere by ρ(t) and assume it is a deterministic388

function of time which approximates the removal rates in the DICE 2016 model.389

ρ(t) = ρ̄+ (ρ0 − ρ̄)e−ρ
∗t (19)

ρ0 is the initial removal rate per year of atmospheric carbon, ρ̄ is a long run equilibrium rate390

of removal, and ρ∗ is the rate of change in the removal rate. Specific parameter assumptions391

for this Equation are given in Table 2. The resulting removal rate starts at 0.01 per year392

and falls to 0.0003 per year within 100 years.393

The pre-industrial equilibrium level of carbon, S̄ in Equation (2), is assumed to be 588394

gigatonnes (GT) based on estimates used in the DICE (2016)8 model for the year 1750. The395

allowable range of carbon stock is given by smin = 588 GT and smax = 10000 GT. smax is396

8The 2013 version of the DICE model is described in Nordhaus & Sztorc (2013). GAMS
and Excel versions for the updated 2016 version are available from William Nordhaus’s website:
http://www.econ.yale.edu/ nordhaus/homepage/.
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Table 2: Base Case Parameter Values

Parameter Description Equation Assigned Value

Reference

S̄ Pre-industrial atmospheric carbon stock (2) 588 GT carbon

smin Minimum carbon stock (2) 588 GT carbon

smax Maximum carbon stock (2) 10000 GT carbon

ρ̄, ρ0, ρ∗ Parameters for carbon removal equation (19) 0.0003, 0.01, 0.01

φ1, φ2, φ3 Parameters of temperature equation (20) 0.02, 1.1817, 0.088

φ4 Forcings at CO2 doubling (22) 3.681

FEX(0) Parameters from forcing equation (22) 0.5

FEX(100) 1

α1, α2 Ratio of the deep ocean to surface temp, 0.008, 0.0021

α(t) = α1 + α2 × t, (20)

t is time in years with 2015 set as year 0

σ Temperature volatility (20) 0.1

xmin, xmax Upper and lower limits on average temperature, ◦C (20) -3, 20

ap Parameter in benefit function, player p (24) 10

Z1, Z2 Admissible controls (7) 0,1,2,...,10

Ē Baseline emissions (27) 10

κ1 Linear parameter in cost function for both players (26) 0.75

κ2 Exponent in cost function for both players (26) 2 or 3

κ3 Term in exponential cost function for both players (25) 1

θP WTP for emissions reduction by player p (4) 0 or 3

T terminal time (5) 150 years

r risk free rate (12) 0.01

(tm+1 − tm) fixed time between decision dates (5) 2 years
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set well above the 6000 GT carbon in Nordhaus (2013) and will not be a binding constraint397

in the numerical examples.9 A 2014 estimate of the atmospheric carbon level is 840 GT.10
398

5.2 Stochastic process temperature: details399

Equation (3) specifies the stochastic differential equation which describes temperature X(t)400

and includes the parameters η(t) and X̄(t). To relate Equation (3) to common forms used401

in the climate change literature, we rewrite it in the following format:402

dX = φ1

[
F (S, t)− φ2X(t)− φ3[1− α(t)]X(t)

]
dt+ σdZ (20)

where φ1, φ2, φ3 and σ are constant parameters.11 The drift term in Equation (20) is a403

simplified version of temperature models typical in Integrated Assessment Models, based404

on Lemoine & Traeger (2014). α(t) represents the ratio of the deep ocean temperature to405

the mean surface temperature and, for simplicity, is specified as a deterministic function of406

time.12 Equation (20) is equivalent to Equation (3) with:407

η(t) ≡ φ1

(
φ2 + φ3(1− α(t))

)
(21)

X̄(t) ≡ F (S,t)
(φ2+φ3(1−α(t))

.

F (S, t) refers to radiative forcing, and it measures additional energy trapped at the earth’s408

surface due to the accumulation of carbon in the atmosphere compared to preindustrial levels409

and also includes other greenhouse gases,410

F (S, t) = φ4

(
ln(S(t)/S̄)

ln(2)

)
+ FEX(t) . (22)

9Golosov et al. (2014) chose a maximum atmospheric carbon stock of 3000 GT which is intended to reflect
the carbon stock that results if most of the predicted stocks of fossil fuels are burned in “a fairly short period
of time” (page 67).

10According to the Global Carbon Project, 2014 global atmospheric CO2 concentration was 397.15± 0.10
ppm on average over 2014. At 2.21 GT carbon per 1 ppm CO2, this amounts to 840 GT car-
bon.(www.globalcarbonproject.org)

11φ1, φ2, φ3 are denoted as ξ1, ξ2, and ξ3 in Nordhaus (2013).
12We are able to get a good match to the DICE2016 results using a simple linear function of time.
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φ4 indicates the forcing from doubling atmospheric carbon.13 FEX(t) is forcing from causes411

other than carbon and is modelled as an exogenous function of time as specified in Lemoine412

& Traeger (2014) as follows:413

FEX(t) = FEX(0) + 0.01
(
FEX(100)− FEX(0)

)
min{t, 100} (23)

The values for the parameters in Equation (20) are taken from the DICE (2016) model.414

Note that φ1 = 0.02 which is the value reported in DICE (2016) divided by five to convert415

to an annual basis from the five year time steps used in the DICE (2016) model. FEX(0)416

and FEX(100) (Equation (22)) are also from the DICE (2016) model. The ratio of the deep417

ocean temperature to surface temperature, α(t), is modelled as a linear function of time.418

This function approximates the average values from the DICE (2016) base and optimal tax419

cases.420

Useful intuition about the temperature model can be gleaned by substituting parameter421

values from Table 2 to determine implied values for the speed of mean reversion η(t) and422

the long run temperature mean X̄(t) in Equation (3) for 2015. Using the definitions in423

Equation (21) it can be determined that η(t) = 0.02 and X̄ = 1.9◦C. This value for η implies424

that, ignoring volatility, temperature would revert to its long run mean in about 50 years.425

The long run temperature of 1.9◦C is above today’s value of 1◦C above preindustrial levels.426

This temperature model and assumed parameter values imply considerable momentum in427

the temperature trajectory.428

Figure 1 shows the changes in global surface temperature relative to the 1951 to 1980429

average.14 Based on this data the volatility parameter was estimated using maximum likeli-430

hood techniques to be approximately σ = 0.1/
√

year. For the numerical solution we choose431

xmin = −3 and xmax = 20.432

As time tends to infinity, the probability density of an Ornstein-Uhlenbeck process is433

Gaussian with mean X̄ and variance σ2/2η. Our assumed parameter values therefore give a434

13φ4 translates to Nordhaus’s η (Nordhaus & Sztorc 2013).
14The data is from NASA’s Goddard Institute for Space Studies and is available on NASA’s web site

Global Climate Change: https://climate.nasa.gov/vital-signs/global-temperature/.
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Figure 1: Global land-ocean temperature index, degrees C, annual averages since 1880 rela-
tive to the 1951-1980 average

long run standard deviation of 0.44◦C and mean of 1.9◦C. This implies there is a 2.3 percent435

probability that temperature could rise by 2 standard deviations (0.88 ◦C) due solely to436

randomness, independent of carbon emissions. We conclude that volatility should be an437

important consideration in any analysis of climate change policies.438

5.3 Benefits, Damages and the Green Reward439

The term πp in Equation (4) comprises benefits and damages from emissions as well as the440

green reward. This section describes these components.441

5.3.1 Benefits and Admissible Controls442

As is common in the pollution game literature, the benefits of emissions are quadratic ac-443

cording the following utility function:444

Bp(Ep) = apEp(t)− E2
p(t)/2, p = 1, 2 (24)
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ap is a constant parameter which may be different for different players. As in List & Mason445

(2001), Ep ∈ [0, ap] so that the marginal benefit from emissions is always positive.446

In the numerical example, there are eleven possible emissions levels for each player Ep ∈447

{0, 1, 2, ..., 10} in gigatonnes (GT) of carbon per year and we set a1 = a2 = 10. We argue448

that a discrete set of possible emission levels, rather than a continuous set, is more realistic449

from a policy making perspective. A sensitivity with a finer grid of possible emissions levels450

is reported in Appendix D.451

The controls are applied at fixed time intervals which we set at two years apart. In other452

words, every two years the leader chooses their optimal control, and immediately thereafter453

the follower chooses their optimal control.15
454

5.3.2 Damages455

Assumptions regarding damages from increasing temperatures are speculative, and this is a456

highly criticized element of climate change models. The DICE model (and others) specify457

damages as a multiple of GDP and a quadratic function of temperature, implying that458

damages never exceed 100 percent of GDP. This formulation ignores possible catastrophic459

effects. Damage function calibrations are generally based on estimates for the zero to 3◦C460

range above pre-industrial temperatures.461

A multiplicative formulation is not appropriate for the model used in this paper in which462

benefits are zero if emissions are zero (Equation (24)). This is because the multiplicative463

damage function implies that choosing zero emissions would reduce damages immediately464

to zero. For this analysis an additive damage function is adopted in which damages rise465

exponentially with temperature:466

Cp(t) = κ1e
κ3X(t) p = 1, 2., (25)

where κ3 is a constant and p = 1, 2 refers to the two players. We also explore results with467

15A sensitivity using one year intervals between the application of controls did not change our results
significantly. In (Insley & Forsyth 2019), the impact of increasing the interval between the leader and
follower decision times (an interleaved game) is explored in some detail.
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quadratic or cubic forms of the cost function468

Cp(X, t) = κ1X(t)κ2 p = 1, 2, . (26)

where κ1 and κ2 are constants.469

We choose the parameters in the damage functions (Equation (26) and (25)) so that470

damages represent a reasonable portion of benefits at current temperatures levels (i.e. at471

0.86 degrees C over preindustrial levels). Base case values for κ1, κ2 and κ3 imply damages472

of about 1 percent of benefits at current temperature levels. Figure 2 compares the three473

cost functions as a percentage of benefits. The comparison is for the exponential function474

and for the power damage function with the exponent set to 2 or 3 in the latter. We observe475

that the three cost functions are virtually indistinguishable up to 3 ◦C above pre-industrial476

levels. After 3 ◦C the cost functions diverge dramatically. We choose the exponential cost477

function for our base case as it implies that for temperature increases above 3 ◦C, damages478

from climate change would be disastrous, which seems a reasonable supposition. We report479
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on sensitivities with quadratic and cubic damage functions in Section 6.5.480

5.3.3 Green Reward481

We define emissions reduction, gp(t), relative to a baseline level of emissions level, Ē, for482

each region.483

gp(t) = max(Ēp − Ep(t), 0), p = 1, 2 (27)

Citizens of each region are assumed to value emissions reduction as contributing to the public484

good. We denote the degree of environmental awareness in a region by θp which represents485

a willingness to pay for emissions reduction because of a desire to be good environmental486

citizens, distinct from the expressions for the benefits and costs of emissions as defined in487

Equations (24) and (25).488

The benefit from emissions reduction, called the green reward, Ap, depends on environ-489

mental awareness as well as emissions reduction in both regions:490

Ap(t) = θpgp(t), p = 1, 2. (28)

In our base case, θp = 0 for both players initially. We then explore differential green491

preferences by setting θp = 3 for one of the players. In future work, we will explore the492

possibility that environmental preferences may evolve randomly over time and may depend493

on environmental actions taken in the other region.494

6 Numerical results495

In this section we analyze results for four different cases of interest. In the base case, players496

are identical, the willingness to pay for emissions reduction due to the green reward is zero,497

and assumed parameter values are as described as in Table 2. In the second case, players498

are also identical but temperature is much more volatile than in the base case. In the third499

and fourth cases, players are asymmetric, differing either in terms of damages from increased500
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temperature or in terms of preferences for emissions reduction (i.e. green preferences). In all501

cases the damage function is assumed to be exponential as in Equation (25), but we report502

sensitivity analysis for quadratic and cubic damage functions in Section 6.5.503

The numerical results are depicted in two different ways. Firstly, the optimal controls,504

(e+
p ) and expected utilities, (Vp), of the players are shown at time zero for particular values505

of state variables. Secondly we undertake Monte Carlo simulations of the stochastic state506

variables and apply the previously determined optimal controls to simulate possible paths,507

going forward in time, for temperature, atmospheric carbon stock, player emissions and508

utilities, given assumptions about starting values for the state variables. The Monte Carlo509

analysis allows us to compute percentiles for variables of interest. In the results discussion,510

player 1 always refers to the leader in the Stackelberg game, and player 2 refers to the511

follower.512

6.1 Base case: identical players513

Figure 3 depicts the optimal controls for the game and the social planner versus the stock of514

carbon at time zero, conditional on a temperature of 1.0 ◦C (close to the current value), and515

starting emissions for both players at 10 GT. For reference, recall that the stock of carbon516

in 2017 was about 870 GT.16 The expected time path of optimal controls is captured in the517

Monte Carlo analysis below.518

Figure 3(a) shows the optimal controls for individual players and the resulting total for519

the game, while Figure 3(b) compares total emissions choices under the game (repeated from520

Figure 3(a)) versus the social planner. The individual players’ choices of emissions are below521

the initial value of 10 GT for all carbon stock levels, starting at 7 GT for low levels of S522

and then falling as S increases, reaching zero at about 2700 GT of carbon. (Note that the523

jump up and then down for Player 1’s emissions at S = 2300 GT is the result of a very flat524

value surface around this point, so that there is little difference in value between a choice of525

16Note that we can also show similar graphs for any time period between t = 0 and t = T . The optimal
controls for other time periods will be the same as at time zero, until the boundary condition at t = T begins
to have an effect.
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4 GT versus 5 GT for the optimal control.) The social planner chooses lower total emissions526

at every level of carbon stock, compared to the game, with emissions of zero if the stock527

of carbon is at 1800 GT or above. (Recall that the social planner maximizes total utility,528

which implies equalizing emissions between the two players, since players are symmetric in529

the benefits received from emissions.) Similar graphs can be drawn showing optimal controls530

versus temperature for given values of the carbon stock. These graphs (not shown) indicate531

that the optimal choice of emissions falls with increasing temperature.532
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Figure 3: Optimal control versus carbon stock, at time zero. Contrasting game and social
planner, base case. State variables: temperature = 1 degrees C above pre-industrial levels,
and initial emissions of 10 GT for both players.

Figure 4 plots expected utilities, Vp, at time zero for the game and the social planner533

versus various initial temperature levels at S = 800 GT, consistent with these optimal534

controls. We observe that utility declines with the initial temperature, as expected. Under535

the game, player 1 has slightly higher utility than player 2. Recall that this is a repeated game536

which is played (i.e. optimal control applied) every two years over 150 years. Since the leader537

is able to choose an optimal control first, with knowledge of how the other player will react,538

this imparts some advantage to the leader depending on the values of the state variables.539

Player utilities are identical under the social planner, and hence are not shown. The social540
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planner choices result in significantly higher utility than under the game, indicating a tragedy541

of the commons whereby strategic interactions of the two decision makers leave both worse542

off than when decisions are made by a planner. Similar plots of utility could be drawn for543

different starting values of S. For higher S values, the utility curves shift inward.544
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Figure 4: Utility versus temperature, comparing base case game (total, player 1 and player
2) and social planner (total). Utility refers to Vp defined in Equation (8) for player p. In the
planner case, the sum of player utilities is shown. Time zero. Exponential damage function.
Stock of carbon at 800 GT. Initial emissions at E1 = E2 = 10

We use Monte Carlo simulation to illustrate the evolution of cumulative emissions, the545

carbon stock, average global temperature, and utility assuming players follow optimal strate-546

gies, as previously computed through the numerical solution of the optimal control problem547

(Equation (8)), and given assumed starting values at time zero. Figure 5(a) depicts median,548

5th and 95th percentiles for cumulative emissions for the players in the base case game con-549

trasted with cumulative emissions given the social planner’s choices. This is based on 10,000550

Monte Carlo simulations in which players choose the optimal control and state variables551

evolve accordingly. We observe that median cumulative emissions for the social planner are552

much lower than in the game over the entire 150 years. In addition, player 1 in the base game553

has higher median emissions than player 2 beginning at about year 60. Recall that players554

had similar optimal controls at time zero in Figure 3(a), but from the Monte Carlo simula-555
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tion depicted in 5(a), it is clear that optimal controls diverge as time goes forward with the556

leader able to benefit by choosing higher emissions. In contrast, the social planner chooses557

the equal emissions for players 1 and 2. Figure 5(b) depicts percentiles for the carbon stock.558

Median carbon stock for both the planner and the game initially rises, and then eventually559

starts to drop as emissions go to zero and natural processes gradually remove some carbon560

from the atmosphere. Consistent with the paths shown for cumulative emissions, the carbon561

stock under the social planner is lower than under the game and also starts to decline sooner.562
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Figure 5: Cumulative emission percentiles versus time, base game and social planner, X(0) =
1, S(0) = 800, , E1(0) = E2(0) = 10. Dashed lines = 95th percentiles, solid lines = medians,
dotted lines = 5th percentiles. 10,000 simulations.

The cumulative emissions and carbon stock affect the expected path of temperature over563

time. One way to view possible future temperature paths is via a heat map. Figure 6(a) shows564

10,000 possible realizations of the path of temperature with temperature values represented565

by colours according to the legend given on the right of the graph. Blue represents cooler566

temperatures while red represents hotter temperatures. The graph shows the distribution of567

temperature in terms of percentiles (y-axis) going forward in time (x-axis). Figure 6(b) is568

a similar plot for the social planner case. The differences in these two graphs become most569

apparent after 50 years, from which point the hotter colours of 3 C◦(above pre-industrial570

levels) and greater are much more in evidence for the game. By year 75, the 25th percentile571
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(a) Temperature map, base game
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(b) Temperature map, planner

Figure 6: Temperature maps for base case game and social planner. X(0) = 1 C◦, S(0) = 800
GT, , E1(0) = E2(0) = 10 GT. 10,000 simulations.

50 years 100 years

Base Game Planner Base Game Planner

25th percentile 1.79 1.45 2.96 2.25

median 2.50 2.12 3.67 2.96

95th percentile 3.18 2.81 4.36 3.62

Table 3: Selected temperature percentiles, C◦, for base case game and social planner

in the game is at about 3◦C whereas the social planner is below 2.5◦C. Table 3 highlights572

some other key percentiles from the graphs.573

Figure 7 depicts expected utility, Vp(e1, e2, s, x, t), from t = 0 to t = 150 for the game and574

the social planner. At t = 0, the values shown match those in Figure 4. As t increases, Vp575

evolves over time showing the expected present value of starting the game at a given tm > 0.576

For example, at 80 years the combined expected value for the two players in the game (left577

graph) is approximately -2500 utils. This means that for players starting this game in year578

80, the present value of total combined expected utility from year 80 to year 150 is -2500579

utils. The left hand graph shows that median utility under the planner is much higher than580

under the game. Total median utility initially declines for both cases, but eventually rises as581
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the boundary condition at time T = 150 has an effect. Recall that at time T it is assumed582

that the economy is decarbonized and emissions no longer add to the stock of carbon. At583

T = 150 the economy benefits from carbon emissions, but faces damages depending on the584

long term equilibrium temperature implied by the carbon stock in that year. These net585

benefits are received as a perpetual annuity.17
586

We also observe in Figure 7 that the 95th and 5th percentiles are much more spread587

apart in the game than under the social planner, indicating that the game is more risky in588

terms of the variability of possible outcomes. The right hand graph shows that both players589

have the same median utility under the planner (as expected since players are symmetric),590

while under the game, player 1 has slightly higher median utility over most of the 150 years.591
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Figure 7: Utility percentiles over time for base case game and social planner. Utility refers
to Vp defined in Equation (8) for player p. In the planner case, the sum of player utilities
is shown. X(0) = 1 C◦, S(0) = 800 GT, E1(0) = E2(0) = 10 GT. Dashed lines = 95th
percentiles, solid lines = medians, dotted lines = 5th percentiles. 10,000 simulations.

17A sensitivity was carried out with T = 200. The median temperature path matched the base case closely
for the first 75 years, and then for the next 75 years temperature in the sensitivity (T = 200) case was slightly
above the base case. The utility profiles for the sensitivity case have the same shape, but are consistently
lower than those in Figure 7, reflecting the longer time until decarbonization.
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6.2 Importance of temperature volatility592

As noted in Section 5.2, average global temperature exhibits significant volatility and in this593

section, we analyze its impact on the outcome of the game. Figure 8 compares the optimal594

controls at time zero for the base (low volatility) case where σ = 0.1 and a high volatility595

case where σ = 0.3. In Figure 8(a), we observe that a higher volatility reduces total optimal596

emissions significantly in the game. (Individual player emissions are not shown as they are597

quite similar to each other at time zero.) The same is true for the social planner (Figure 8(b)),598

however the relative reduction is much larger for the game. Median cumulative emissions599

over time are compared in Figure 9. In Figure 9(a) we observe that in the high volatility600

case, median cumulative emissions for player 1 exceed those of player 2 beginning around601

year 50, whereas for the low volatility case, player 1 exceeds player 2 median cumulative602

emissions closer to year 100. As already noted, at time zero the optimal controls are similar603

for the leader and follower in both high and low volatility cases, but diverge over time as604

indicated by the Monte Carlo analysis. The results in Figure 9(a) indicate that the follower605

makes the greater relative sacrifice in emissions reduction when volatility is higher. This606

observation is confirmed in the comparison of player utilities plots (Figure 11(c)) discussed607

below.608

Figure 9(b) contrasts the two players’ emissions under the social planner for the high and609

low volatility cases, showing that the planner curbs emissions significantly along the median610

path with more volatile temperatures. These results make sense given that damages are611

highly convex in temperature, causing both the social planner and the players of the game612

to react accordingly. Figure 9(c) shows the median path for atmospheric carbon stock is613

highest for the low volatility game over the entire 150 years, followed by the high volatility614

game, then the low volatility planner then the high volatility planner.615

Figure 10(a) shows heat maps for the game and social planner cases in the high volatility616

scenario. These heat maps produce more optimistic forecasts compared to those shown in617

Figure 6 in that they indicate a higher probability of lower temperatures throughout the 150618

year time frame. From the optimal control discussed above, we know that both the social619
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Figure 8: High Volatility: Optimal control versus carbon stock for high volatility (σ = 0.3)
and low volatility (σ = 0.1) cases, game (symmetric players) and social planner, exponential
damage. Only total combined emissions are shown.

Game Planner ratio planner/game

Base case 2068 3206 1.6

High volatility 558 2081 3.7

Table 4: Total expected utility comparison (V1 + V2) at time zero. X(0) = 1, S(0) = 800,
E1(0) = E2(0) = 10. 10,000 simulations.

planner and the decision makers in the game reduce emissions when volatility is high to620

avoid the most damaging temperatures. The 95th percentiles show very high temperatures -621

over 4.5 C◦for both the planner and the game - indicating the high risk of this case whereby622

even the social planner may not be able to avoid a very negative outcome.623

Figures 11(a) and 11(b) show total utility percentiles over time for the game and social624

planner. For ease of comparison, Table 4 shows numerical values at time zero. The difference625

in total expected utility between the planner and the game is much larger under the high626

volatility case. Clearly the benefit of cooperative action, as provided by the social planner,627

is higher in the high volatility scenario.628

Figure 11(c) compares individual player utilities for the high and low volatility games.629

We observed previously that player 1 emissions begin to exceed player 2 emissions earlier630
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Figure 9: High Volatility: Cumulative player emissions, median values over time, comparing
high and low volatility cases. X(0) = 1, S(0) = 800, , E1(0) = E2(0) = 10. 10,000
simulations.

in the game in the high volatility case. Consistent with this, we observe that the relative631

difference between player 1 and player 2 utilities is larger in the high volatility case. So632

although the value of the game at time zero to both players is less in the high volatility case,633

the relative advantage of being the first player has increased.634
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(a) Temperature map, high volatility game
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(b) Temperature map,high volatility planner

Figure 10: Temperature maps for high volatility games and social planner. X(0) = 1,
S(0) = 800, , E1(0) = E2(0) = 10. 10,000 simulations.

6.3 Asymmetric damages635

An important feature of global warming is the distribution of damages across nations, with636

some of the world’s poorer regions suffering disproportionately. In this section we explore637

the effect of asymmetric damages on strategic interactions by considering a case in which the638

follower has much higher sensitivity to increasing temperatures than the leader. Specifically,639

we compare the base case where κ3 = 1.0 in Equation (25) for both players to one where640

κ3 = 1 for player 1 and κ3 = 1.15 for player 2. We refer to the latter as the asymmetric641

damages case and the former as the base or symmetric damages case.642

The optimal controls in these cases for various carbon stocks and at a temperature643

of 1◦C are shown in Figure 12. In Figure 12(a) we observe that the follower facing higher644

damages (red line) starkly curtails emissions, compared to the base case (blue line). Similarly645

the planner chooses lower emissions for player 2 in the asymmetric case (magenta line)646

compared to the symmetric case (black line). Figure 12(b) depicts the leader’s optimal647

controls. Comparing the blue (symmetric case) and red (asymmetric case) line, we observe648

that for lower levels of the carbon stock, the leader chooses higher emissions under the649

asymmetric case. The fact that the follower experiences higher damages allows the leader650
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Figure 11: High Volatility: Utility percentiles over time, comparing high and low volatility
cases, game and social planner. Utility refers to Vp defined in Equation (8) for player p. In the
planner case, the sum of player utilities is shown. X(0) = 1, S(0) = 800, E1(0) = E2(0) = 10.
10,000 simulations.

to take advantage and increase their own emissions. However, this result does not hold for651

higher levels of the carbon stock. For S > 1700 the leader chooses lower emissions in the652

asymmetric damages case. This is an interesting interaction of the two players. In effect653

for these large levels of the carbon stock, the asymmetry in damages reduces the tragedy654

of the commons compared to the symmetric case. The leader knows that the follower will655
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curtail their emissions due to the higher damages it experiences. Therefore the leader is656

able to reduce emissions, knowing that the follower will not fill in the gap. While Figure 12657

is drawn for a current temperature of 1 C◦, this same phenomenon is observed when other658

temperatures (such as 2, 3 or 4 C◦) are chosen as the reference point. Note that these results659

also hold when the leader has the higher damages. In this case (not shown) the follower660

takes advantage and increases their own emissions at low carbon stock levels, but curtails661

their emissions at high carbon levels (all relative to the symmetric case). Looking at total662

emissions in Figure 12(c) we observe that emission choices are highest in the symmetric663

game, followed by the asymmetric game, then the symmetric planner case and then the664

asymmetric planner case.665

Player utility at time zero for different carbon stock levels is depicted in Figure 13(a)666

for the asymmetric damages case and in Figure 13(b) for the symmetric damages case. We667

observe that in the asymmetric damages case, player 1’s utility is everywhere above that of668

player 2’s and as well the slope ∂V/∂S is less negative than for player 2. This compares with669

the right hand graph where the two player are much closer together and the slopes ∂V/∂S670

are similar. (Note that the player 1’s utility is above that of player 2 in the right hand graph671

- by 20 percent at S = 800 - but this is not visible due to the scale of the graph.) The main672

point is that when player 2 experiences higher damages, player 1’s utility at the beginning673

of the game is less affected by the current carbon stock (as indicated by ∂V/∂S) because674

player 2 is motivated to take on a larger share of emissions reduction compared to the case675

of symmetric damages.676

A comparison of median emissions over time is shown in Figure 15 in Appendix C. Along677

the median path, player 1 increases their cumulative emissions relative to the base case678

while player 2 reduces their cumulative emissions. Median carbon emissions (Figure 15(c))679

remain below 1200 GT, which is also consistent with the range of S values when the leader’s680

actions partially offset those of the follower relative to the base case (as observed from the681

optimal controls in Figure 12). In contrast, when the planner chooses emissions (Figure682

15(b)), player 2 receives larger emissions than player 1. The planner makes up for some of683
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the added damage to player 2 from rising temperatures by allotting more economic activity684

(as indicated by emissions) to player 2. Median total emissions (Figure 15(c)) are lower in685

the asymmetric damages case compared to the symmetric case over the entire 150 years,686

whether for the game or the planner.687
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(a) Follower optimal emissions
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Figure 12: Asymmetric Versus Symmetric Damages: Optimal controls versus carbon stock
in GT, temperature = 1 ◦C, Symmetric case: κ3 = 1 for both players; Asymmetric case:
κ3 = 1 for player 1 and κ3 = 1.15 for player 2

Time paths for other variables of interest in the asymmetric damages case are shown in688

Figure 16 in Appendix C. Figure 16(a) shows that median temperature is kept lower for the689

asymmetric cases (game and planner) compared to the symmetric counterparts. Total utility690
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Figure 13: Asymmetric Versus Symmetric Damages: Utility at time zero for follow, leader
and total versus stock of carbon in GT. Utility refers to Vp defined in Equation (8) for player
p. Current temperature = 1 ◦C, Symmetric case: κ3 = 1 for both players; Asymmetric case:
κ3 = 1 for player 1 and κ3 = 1.15 for player 2

is lower for the asymmetric game over most of the time frame (Figure 16(b). For the planner691

(also Figure 16(b)), total utility is lower under the asymmetric game until a bit beyond year692

50, after which we observe higher utility under the planner asymmetric damages case. This693

is a reflection of the strong emissions reduction from the first 50 years paying off in utility694

terms for the last 100 years. An interesting observation (Figure 16(c)) is that player 1 has695

the highest expected utility in the asymmetric game until year 50, compared with the other696

three cases (symmetric game, asymmetric planner, symmetric planner), but after that does697

better under the planner. From the perspective of time zero, player 1 benefits from the fact698

that player 2 experiences higher damages from climate change. Not surprisingly, player 2699

does worse under the game throughout the entire 150 years compared to the other three700

cases (Figure 16(d) ).701

6.4 Asymmetric preferences702

This section examines the impact of asymmetric preferences by considering a case in which703

one of the players gains a psychic benefit for reducing emissions relative to a given benchmark,704
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which we refer to as the green reward (GR). We report only the outcome of the GR for the705

Stackelberg game, and not for the social planner case.18 We assume that the environmentally706

friendly player (player 1 in this example) is willing to pay 3 utility units, (θp = 3) for707

reductions in emissions below the benchmark Ē. The results are shown in Figure 14 which708

depicts optimal emissions choices at time 0, for different carbon stock levels conditional on709

a temperature of 1 ◦C. We observe from Figure 14(a) that, as expected, when the leader710

has greener sentiments, it chooses a lower level of emissions than in the base case over most711

carbon stock levels, and chooses the same emissions for S > 2700 GT. In Figure 14(b) we712

observe that the follower increases emissions compared to the base case for low carbon stock713

levels. However for higher carbon stock levels (≥ 1400GT ), player 2 has either the same714

or less carbon emissions than in the base case game. At low carbon stock levels this can715

be explained as form of green paradox, characterized elsewhere in the literature, whereby716

increased green sentiments of one player causes the other player to free ride by increasing717

emissions. At higher carbon stock levels, rather than a green paradox, we have a sort of green718

bandwagon effect. An explanation is that at high carbon levels, the environmentally friendly719

policies of the leader make it worthwhile for the follower to also choose environmentally720

friendly policies, because the follower knows this choice will help avert highly damaging721

consequences. In other words, green sentiments on the part of player 1, give player 2 more722

agency to affect future outcomes. This is similar to our observations in the asymmetric723

damages case above. In Figure 14(c) we observe that total emissions are lower in the green724

reward case over most carbon stock levels.725

Median cumulative emissions are depicted in Figure 17(a) in Appendix C. Player 2’s726

median cumulative emissions are shown to be significantly higher in the GR case compared727

to the base game. In Figure 17(b) we observe that all carbon stock percentiles are lower728

in the GR case compared to the base case. Consistent with the these carbon stock paths,729

Figure 18(a) in Appendix C shows temperature percentiles for the GR case are below those730

of the base case. Figure 18(b) indicates that both players have substantially higher median731

18The case of a planner maximizing total utility including one player’s green reward seems of less interest
than the social planner actions in previous cases.
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Figure 14: Green reward: Optimal control versus pollution stock when leader receives a
green reward for emissions reductions. X(0) = 1, S(0) = 800, E1(0) = E2(0) = 10. 10,000
simulations.

utility along the entire 150 year time path in the GR case.732

6.5 Alternate damage functions733

Sensitivities were conducted using the alternate damage function given by Equation (26) in734

the case of symmetric players. Using a quadratic function, (κ2 = 2), the optimal choice of735

emissions is near the maximum possible (9 GT for each player, compared to a maximum736

of 10 GT) in both the game and the social planner. In contrast a cubic damage function,737

42



(κ2 = 3) results in some curtailment of emissions, but emissions are still at higher levels738

than with exponential damages and never go to zero. We consider the exponential damage739

function to be the most reasonable as the damages quickly become very large at temperature740

above 3◦C.741

6.6 Checking for Nash equilibria742

Recall that we are solving for a repeated series of Stackelberg games which happen every743

2 years over the 150 year time span of the analysis. It is of interest to note whether Nash744

equilibria exist for these repeated games. In each of the cases described above, we check745

for the existence of Nash equilibria across all state variables and at each of the 75 decision746

times. We find that at each decision time about 25 percent of the nodes (representing carbon747

stock, temperature and emissions levels) satisfy the Nash equilibrium criterion. Further, we748

determine that 8 to 9 percent of the Stackelberg equilibria are also Nash equilibria. See749

Appendix B for details.750

7 Concluding comments751

In this paper we have examined the strategic interactions of large regions making choices752

about greenhouse gas emissions in the face of rising global temperatures. We have modelled753

optimal decisions of players in a fully dynamic, feedback, repeated Stackelberg game and have754

demonstrated its numerical solution. The results indicate a classic tragedy of the commons755

whereby regions acting in their own self interest in a non-cooperative game choose higher756

levels of emissions and have lower total utility than would be chosen by a social planner.757

As expected, the leader in the Stackelberg game was found to have an advantage over the758

follower. However, unexpectedly, this advantage is small relative to the reduction in total759

utility compared to a cooperative solution as represented by the social planner. We examined760

the effects of temperature volatility, asymmetric damages and asymmetric preferences on the761

strategic interactions of players and considered their effects on carbon emissions choices and762
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utilities.763

Volatility is found to have an important effect on optimal choices of players in the game764

as well as the social planner. An increase in volatility increases the likelihood of high tem-765

peratures and resulting high damages. This causes players in the game and to social planner766

to choose lower levels of emissions. The difference in total expected utility between the767

social planner and the game (the social planner advantage) at time zero is larger for higher768

volatility, implying that the tragedy of the commons is exacerbated by higher volatility, or,769

in other words, the need for cooperative action is increased. This conclusion is reinforced770

by observing percentiles for total utility over 150 years showing that possible outcomes are771

much more variable in the high volatility Stackelberg game compared to the social planner.772

In effect, the game becomes more risky relative to the social planner. Although the drift in773

long run temperature is key in climate change policy, the impact of volatility on strategic774

interactions of decision makers is significant.775

Asymmetric damages are also found to affect the outcome of the game. When one player776

experiences greater harm with rising temperatures, we find that over lower carbon stock777

levels, the player with higher damages is made worse off by the response of the other player.778

While the player with higher damages cuts back on their emissions more aggressively, the779

low damage player takes advantage of this by increasing their own own emissions relative to780

the symmetric damage case. At higher carbon stock levels, we find a contrasting interaction781

of the two players in that the player with lower damages actually reduces their emissions782

compared to the symmetric damage case. In effect, emissions reduction by the high dam-783

age player are reinforced by those of the low damage player, all relative to the symmetric784

damages case. However, the median path of emissions over 150 years shows the low damage785

player with higher cumulative emissions compared to the symmetric case. The benefit of786

cooperative action via a social planner is higher in the case of asymmetric damages versus787

symmetric damages, as the social planner optimally distributes emissions across the two788

players, allowing the player experiencing higher damages from climate change to emit more789

carbon. The impact of the stock of carbon on player interactions in the asymmetric damages790
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case is an interesting conclusion of this paper.791

We also examined a case where one of the players receives a psychic benefit from emissions792

reductions compared to a benchmark, an effect we labelled the green reward. A green793

reward for one player causes that player to cut back their emissions from what would have794

otherwise been the case. There are various responses by the player with no green reward795

(the brown player) ranging from no response, to increasing or decreasing emissions depending796

on the values of the state variables. At low carbon stock levels the brown player increases797

their emissions relative to the case of symmetric preferences. This is similar to the green798

paradox effects observed by Wirl (2011) in a deterministic game whereby an increase in green799

sentiments increases the free riding of brown players. We also observed a contrary effect,800

which we call the green bandwagon effect, whereby for some high values of the carbon stock,801

the presence of a green reward for one player causes the brown player to reduce their own802

emissions (relative to the case with no green reward). Our interpretation is that at high803

carbon stocks where disaster is on the horizon, the brown player can be assured that the804

green player will cut back emissions, making it worthwhile for the brown player to also reduce805

emissions. The green preferences of the green player give the brown player more agency to806

effect a change in climate outcomes. While this green band wagon effect is a possibility, we807

find that along the median path of emissions, the cumulative emissions of the brown player808

exceed those of the case of symmetric preferences.809

Appendices810

A Numerical methods811

A.1 Advancing the solution from t−m+1 → t+m812

This section elaborates further on the description of the numerical solution in Section 4.1813

which describes the solution of the relevant PDEs that hold between decision dates.814

Since we solve the PDEs backwards in time, it is convenient to define τ = T − t and use815
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the definition816

V̂p(e1, e2, xi, s, τ) = Vp(e1, e2, xi, s, T − τ)

π̂p(e1, e2, xi, s, τ) = πp(e1, e2, xi, s, T − τ) . (29)

We rewrite Equation ((11)) in terms of backwards time τ = T − t817

∂V̂p
∂τ

= L̂V̂p + π̂p + [(e1 + e2) + ρ(S̄ − s)]∂V̂p
∂s

L̂V̂p ≡
(σ)2

2

∂2V̂p
∂x2

+ η(X̄ − x)
∂V̂p
∂x
− rV̂p . (30)

Defining the Lagrangian derivative818

DV̂p
Dτ
≡ ∂V̂p

∂τ
+

(
ds

dτ

)
∂V̂p
∂s

, (31)

then Equation (30) becomes819

DV̂p
Dτ

= L̂V̂p + πp (32)

ds

dτ
= −[(e1 + e2) + ρ(S̄ − s)] . (33)

Integrating Equation (33) from τ to τ −∆τ gives820

sτ−∆τ = sτ exp(−ρ∆τ) + S̄(1− exp(−ρ∆τ)) +
(e1 + e2

ρ

)
(1− exp(−ρ∆τ)) . (34)

We now use a semi-Lagrangian timestepping method to discretize Equation (30) in backwards821

time τ . We use a fully implicit method as described in Chen & Forsyth (2007).822

V̂p(e1, e2, x, sτ , τ) = (∆τ)L̂V̂p(e1, e2, x, sτ , τ)

+(∆τ)πp(e1, e2, x, sτ , τ) + V̂p(e1, e2, x, sτ−∆τ , τ −∆τ) . (35)
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Equation (35) now represents a set of decoupled one-dimensional PDEs in the variable x, with823

(e1, e2, s) as parameters. We use a finite difference method with forward, backward, central824

differencing to discretize the L̂ operator, to ensure a positive coefficient method. (See Forsyth825

& Labahn (2007) for details.) Linear interpolation is used to determine V̂p(e1, e2, x, sτ−∆τ , τ−826

∆τ). We discretize in the x direction using an unequally spaced grid with nx nodes and in the827

S direction using ns nodes. Between the time interval t−m+1, t
+
m we use nτ equally spaced time828

steps. We use a coarse grid with (nτ , nx, ns) = (2, 27, 21). We repeated the computations829

with a fine grid doubling the number of nodes in each direction to verify that the results are830

sufficiently accurate for our purposes.831

A.2 Advancing the solution from t+m → t−m832

This section elaborates on the solution of the game at fixed decision dates as described in833

Section 4.2.1.834

We model the possible emission levels as ten discrete states for each of e1, e2, which gives835

100 possible combinations of (e1, e2). We then determine the optimal controls using the836

methods described in Section 4.2.1. We use exhaustive search (among the finite number of837

possible states for (e1, e2) ) to determine the optimal policies. This is, of course, guaranteed838

to obtain the optimal solution.839

B Nash Equilibrium840

Section 4.2.1 describes choice of controls for the Stackelberg game and the social planner.841

In this appendix we describe how we determine whether a particular choice of controls at a842

given decision time is a Nash Equilibrium.843

We again fix (e1, e2, s, x, tm), so that we understand that e+
p = e+

p (e1, e2, s, x, tm), Rp(ω) =844

Rp(ω, e1, e2.s, x, tm).845

Definition 4 (Nash Equilibrium). Given the best response sets R2(ω1), R1(ω2) defined in846
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Equations (13)-(14), then the pair (e+
1 , e

+
2 ) is a Nash equilibrium point if and only if847

e+
1 = R1(e+

2 ) ; e+
2 = R2(e+

1 ) . (36)

From Definition 3 of a Stackelberg game, if player 1 goes first, we have the optimal pair848

(ê+
1 , ê

+
2 )849

ê+
1 = argmax

ω′1∈Z1

V1(ω′1, R2(ω′1), s, x, t+m) ,

ê+
2 = R2(ê+

1 ) . (37)

Similarly, we have the pair (ē+
1 , ē

+
2 ) if player 2 goes first850

ē+
2 = argmax

ω′2∈Z2

V2(R1(ω′2), ω′2, s, x, t
+
m) ,

ē+
1 = R1(ē+

2 ) . (38)

Suppose (ê+
1 , ê

+
2 ) = (ē+

1 , ē
+
2 ). Consequently, we have (e+

1 , e
+
2 ) = (ê+

1 , ê
+
2 ) = (ē+

1 , ē
+
2 ) and we851

replace the ê+
p by e+

p and ēp
+ by ep

+ in Equations (37) - (38) giving852

e+
1 = argmax

ω′1∈Z1

V1(ω′1, R2(ω′1), s, x, t+m) ,

e+
2 = argmax

ω′2∈Z2

V2(R1(ω′2), ω′2, s, x, t
+
m) ,

e+
1 = R1(e+

2 ) ; e+
2 = R2(e+

1 ) , (39)

which is a Nash equilibrium from Definition 4. We can summarize this result in the following853

Proposition 1 (Sufficient condition for a Nash Equilibrium). A Nash equilibrium exists at854

a point (e1, e2, s, x, tm) if (ê+
1 , ê

+
2 ) = (ē+

1 , ē
+
2 ).855

Remark 5 (Checking for a Nash equilibrium). A necessary and sufficient condition for856

a Nash Equilibrium is given by condition (36). However a sufficient condition for a Nash857

equilibrium in the Stackelberg game is that the optimal control of either player is independent858
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of who goes first.859

In our numerical experiments we find Nash equilibria exist only at some points (not860

all) over the state space. This is, of course, not surprising since the system of PDEs is861

degenerate. Insley & Forsyth (2019) examine this issue, along with other possible games,862

such as leader-leader, follower-follower games, and interleaved games.863

C Additional figures displaying results864

This section displays figures that depict numerical results described in Section 6.865
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Figure 15: Asymmetric and Symmetric Damages: Cumulative player emissions and carbon
stock, median values over time. X(0) = 1, S(0) = 800, , E1(0) = E2(0) = 10. 10,000
simulations.
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Figure 16: Asymmetric and Symmetric Damages: Temperature and utility, median values
over time. X(0) = 1, S(0) = 800, , E1(0) = E2(0) = 10. 10,000 simulations.
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Figure 17: Green Reward: Cumulative player median emissions and carbon stock percentiles
for base case game and green reward. X(0) = 1, S(0) = 800, , E1(0) = E2(0) = 10. 10,000
simulations. In right hand figure, solid lines are medians, dashed are 95th percentiles and
dotted are 5th percentiles.
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Figure 18: Green reward: Temperature percentiles median player utilities for the base case
game and green reward. Utility refers to Vp defined in Equation (8) for player p. X(0) = 1,
S(0) = 800, , E1(0) = E2(0) = 10. 10,000 simulations.

52



D Sensitivity to the admissible set for emissions866

Decision makers in the model represent two large nations or groups of nations with a sig-867

nificant impact on total world emissions. We have assumed optimal emissions are chosen868

from a discrete set of possibilities, which we believe is a more logical assumption than as-869

suming policy makers choose from a continuous set. The latter assumption seems to imply870

that decision makers have a greater ability to fine tune policy choices than is likely to hold871

in reality. However this naturally raises the question of what is the impact of varying the872

admissible choice set. We explored this question through several sensitivities. In particular873

we compared results between three different admissible sets.874

Coarse: Zp = {0, 3, 7, 10}

Medium: Zp = {0, 1, 2, ..., 9, 10}

Fine: Zp = {0, 0.5, 1, ..., 9.5, 10}, p = 1, 2

The Medium admissible set is the one adopted in the current paper. The Coarse admissible875

set is used to explore different games in Insley & Forsyth (2019).876

For the base case game we find that expected utility is quite close whether we use the877

coarse or medium admissible sets. A larger difference in results emerges for cases with asym-878

metric players. In this appendix we present the results for the Green Reward case in which879

the leader gets positive utility from reducing emissions due a more the more environmentally880

friendly preferences of its citizens. Figure 19 compares optimal controls for the three ad-881

missible sets. We observe the greatest difference between the coarse versus the other cases.882

With the coarse admissible set, the optimal choice of emissions is lower for most values of the883

carbon stock compared to the admissible sets with finer grids. As noted in the main text, the884

point where the optimal controls jump down and then back up again are points where the885

value function is quite flat, so that there is little difference in value over the particular range886

of emissions where these “blips” occur. The different choices for emissions in the Coarse887

admissible set, translate into lower utility levels as is shown in Figure 20. Utility for the888
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medium and fine admissible sets are very close.889

We conclude that the admissible set for the optimal control does affect the strategic890

interactions of players, particularly when players are asymmetric. We have argued that a891

discrete set of choices is a more realistic representation of available policy choices. However,892

the further refinement of the admissible set from the Medium to the Fine case does not make893

a large difference for the analysis in this paper.894
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Figure 19: Comparing coarse, medium and fine admissible sets for optimal emissions: Op-
timal controls versus carbon stock in GT, carbon stock = 800 GT, Base case is labeled as
medium.
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