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On the Distribution of Terminal Wealth under Dynamic Mean-Variance Optimal
Investment Strategies\ast 
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Abstract. We compare the distributions of terminal wealth obtained from implementing the optimal investment
strategies associated with the different approaches to dynamic mean-variance (MV) optimization
available in the literature. This includes the precommitment MV (PCMV) approach, the dynamically
optimal MV (DOMV) approach, as well as the time-consistent MV approach with a constant risk
aversion parameter (cTCMV) and wealth-dependent risk-aversion parameter (dTCMV), respectively.
For benchmarking purposes, a constant proportion (CP) investment strategy is also considered. To
ensure that terminal wealth distributions are compared on a fair and practical basis, we assume
that an investor, otherwise agnostic about the philosophical differences of the underlying approaches
to dynamic MV optimization, requires that the same expected value of terminal wealth should be
obtained regardless of the approach. We present first-order stochastic dominance results proving
that for wealth outcomes below the chosen expected value target, the cTCMV strategy always
outperforms the DOMV strategy, and an appropriately chosen CP strategy always outperforms the
dTCMV strategy. We also show that the PCMV strategy results in a terminal wealth distribution
with fundamentally different characteristics than any of the other strategies. Finally, our analytical
results are very effective in explaining the numerical results currently available in the literature
regarding the relative performance of the various investment strategies.
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1. Introduction. Originating with Markowitz (1952), mean-variance (MV) portfolio
optimization forms the foundation of modern portfolio theory (Elton et al. (2014)), in part
due to its intuitive nature. In dynamic settings (see, for example, Zhou and Li (2000)), MV
optimization aims to obtain an investment strategy that maximizes the expected value of the
terminal wealth of the portfolio, for a given level of risk as measured by the associated variance
of the terminal wealth.

It is well known that variance does not satisfy the law of iterated expectations. As a
result, the MV objective is not separable in the sense of dynamic programming, resulting in
three main approaches to MV optimization that can be identified in the literature.

In the first approach, referred to as precommitment MV (PCMV) optimization, the

\ast Received by the editors May 15, 2020; accepted for publication (in revised form) February 3, 2021; published
electronically April 19, 2021.

https://doi.org/10.1137/20M1338241
\dagger Corresponding author. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, N2L 3G1,

Canada (pieter.vanstaden@gmail.com).
\ddagger School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane 4072, Australia

(duyminh.dang@uq.edu.au).
\S Cheriton School of Computer Science, University of Waterloo, Waterloo ON, N2L 3G1, Canada

(paforsyt@uwaterloo.ca).

566

D
ow

nl
oa

de
d 

04
/1

9/
21

 to
 1

29
.9

7.
16

7.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/20M1338241
mailto:pieter.vanstaden@gmail.com
mailto:duyminh.dang@uq.edu.au
mailto:paforsyt@uwaterloo.ca


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MEAN-VARIANCE OPTIMAL TERMINAL WEALTH 567

resulting optimal investment strategy is typically time-inconsistent when viewed from the
perspective of the original MV objective (Basak and Chabakauri (2010)). However, in practice
the PCMV problem is solved using the embedding approach of Li and Ng (2000) and Zhou and
Li (2000), and the resulting PCMV-optimal investment strategy is time-consistent from the
perspective of the induced quadratic objective function used in the corresponding embedding
problem (Vigna (2014, 2020)). Therefore, the PCMV-optimal investment strategies considered
in this paper are in fact feasible to implement as trading strategies (see Strub, Li, and Cui
(2019)).

The second approach, referred to as time-consistent MV (TCMV) optimization, is based
on a game-theoretic approach to the MV problem (Basak and Chabakauri (2010); Bjork
and Murgoci (2014)). The TCMV-optimal investment strategies are guaranteed to be time-
consistent, since optimization is performed only over a subset of investment strategies which
are time-consistent from the perspective of the original MV problem. Equivalently, in the
TCMV approach the MV problem is solved subject to a time-consistency constraint on the
admissible investment strategies (Cong and Oosterlee (2016a); Wang and Forsyth (2011)).
Two main variations of the TCMV approach can be found in the literature, depending on
the treatment of the risk-aversion parameter which encodes the investor's risk preferences in
an MV setting. Specifically, the risk-aversion parameter is either assumed to be a constant
over the entire investment time horizon (see, for example, Basak and Chabakauri (2010)), or
it is assumed to be ``wealth-dependent,"" in particular, inversely proportional to the investor's
wealth at any given point in time (Bjork, Murgoci, and Zhou (2014)). To distinguish between
these two cases, we refer to the TCMV approach that uses a constant risk-aversion parameter
as the cTCMV approach, and to the case that uses the wealth-dependent risk-aversion parameter
as the dTCMV approach.

The third approach, namely the dynamically optimal MV (DOMV) optimization approach
of Pedersen and Peskir (2017), entails solving an infinite number of problems with the MV
objective dynamically forward in time. In particular, starting from an initial wealth and
initial time, each new wealth level attained over time results in a new MV problem that has
to be solved, resulting in a new optimal strategy to be implemented only at that time instant
and for that particular wealth level. The resulting DOMV-optimal strategy therefore differs
fundamentally from the TCMV-optimal strategy but is indeed feasible to implement as a
trading strategy.

We briefly note that each of these approaches to dynamic MV optimization is associated
with a different underlying motivational philosophy. In this sense, preference for one strategy
over another depends on the MV investor's investment philosophy and perspective on time-
consistency; see Vigna (2017, 2020) for a number of the subtle issues involved. However, for a
practical assessment of the relative performance of the different investments strategies, we do
not dwell on these philosophical considerations in this paper and instead only focus on wealth
outcomes.

Recently, dynamic MV optimization has received considerable attention in institutional
settings, including pension fund and insurance applications; see, for example, Chen, Li, and
Guo (2013); Forsyth and Vetzal (2019a); Forsyth, Vetzal, and Westmacott (2019); H{\e}jgaard
and Vigna (2007); Liang, Bai, and Guo (2014); Lin and Qian (2016); Menoncin and Vigna
(2013); Nkeki (2014); Sun, Li, and Zeng (2016); Vigna (2014); Wang and Chen (2018, 2019);D
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568 P. M. VAN STADEN, D.-M. DANG, AND P. A. FORSYTH

Wei and Wang (2017); Wu and Zeng (2015); Zhao, Shen, and Zeng (2016); and Zhou et al.
(2016), among many others. In particular, we also highlight the popularity of the dTCMV
approach in institutional settings, for example, in the case of the investment-reinsurance
problems faced by insurance providers (Bi and Cai (2019); Li and Li (2013)), investment
strategies for pension funds (Liang, Bai, and Guo (2014); Sun, Li, and Zeng (2016); Wang
and Chen (2018, 2019)), corporate international investment (Long and Zeng (2016)), and
asset-liability management (Peng, Cui, and Shi (2018); Zhang et al. (2017)).

In all of these situations, it is reasonable to argue that the distribution of terminal wealth
is of key importance to stakeholders, despite the natural focus in the literature on the mean
and variance of terminal wealth. The reason for this is that in any practical setting, the
MV investor (or indeed, any investor) is likely to also take into account a number of other
measures of risk and investment performance,1 which might be critical even if only as a
result of regulatory considerations (see, for example, Antolin et al. (2009)). As noted in
Goetzmann et al. (2002), in a complete market, a dynamic trading strategy can be viewed as
a strategy consisting of the risky asset and options written on this asset. This changes the final
wealth distribution from a standard log-normal distribution (in the Black--Scholes market) in
a nontrivial manner. Hence, even if we consider ``Sharpe ratio"" maximizing strategies, it
is of interest to examine other properties (e.g., skewness, kurtosis) of the terminal wealth
distribution.

In light of these considerations, it is therefore not surprising that there has been significant
interest recently in different aspects of the terminal wealth distribution obtained under various
investment strategies, including optimal strategies associated with approaches to dynamic
MV portfolio optimization; see, for example, Forsyth and Vetzal (2017a,b, 2019a,b); Forsyth,
Vetzal, and Westmacott (2019). These papers present a very realistic formulation of the
underlying problems, including, for example, the treatment of withdrawals and contributions,
investment constraints, and so on. By necessity, these papers therefore focus on the results
obtained from the numerical solutions of the problems under consideration.

In contrast, there seems to be very little available research on the theoretical comparison
of the terminal wealth distributions in cases where the optimal investment strategies can be
expressed analytically. We emphasize that while analytical MV-optimal strategies sometimes
call for unacceptably high leverage ratios or unrealistic treatment of insolvency, investment
constraints can be incorporated easily in the numerical solution of the MV optimization
problem (see, for example, Cong and Oosterlee (2016b); Dang and Forsyth (2014); Van Staden,
Dang, and Forsyth (2018); Wang and Forsyth (2010, 2011)). However, analytical investment
strategies remain very useful, in that an analytical comparison of terminal wealth distributions
(i) can provide an additional perspective on some of the implications of the various approaches
to dynamic MV optimization that is currently not available in the literature, and (ii) can
assist in explaining some of the numerical results recently reported in the literature, such as

1We observe that it is possible for an investor to explicitly incorporate additional risk and/or performance
criteria as part of the objective function, instead of simply performing MV optimization. For example, portfolio
optimization with higher-order moments can be performed (see, for example, Jurczenko, Maillet, and Merlin
(2012) and Maringer and Parpas (2009)). However, as the MV objective remains by far the most popular
objective function in the recent dynamic portfolio optimization literature, we correspondingly focus on the case
of MV optimization, leaving other formulations for our future work.D
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the results of, for example, Forsyth and Vetzal (2017b) and Forsyth, Vetzal, and Westmacott
(2019).

The main objective of this paper is therefore a systematic comparison of the analytical
terminal wealth distributions resulting from the optimal investment strategies associated
with the different approaches to dynamic MV optimization in the literature. In order to
compare distributions on a fair basis, we assume that the investor remains agnostic as to the
philosophical differences underlying the various approaches to MV optimization, and simply
wishes to achieve a chosen expected value of terminal wealth regardless of the approach. Our
main contributions are as follows:

\bullet We derive analytical results regarding the terminal wealth distributions that, despite
our assumption of no market frictions (in particular, continuous trading with no
leverage constraints, no transaction costs, and without insolvency/bankruptcy
prohibitions), are very effective in explaining the numerical results incorporating realistic
investment constraints currently available in the literature.

\bullet For comparison and benchmarking purposes, our analysis includes a simple constant
proportion (CP) strategy, whereby the investor invests a fixed proportion of wealth in
the risky asset throughout the investment time horizon. The CP strategy is typically
not MV-optimal in the sense of any of the other strategies considered, but our analysis
proves that it easily outperforms the dTCMV-optimal investment strategy in the
general sense of a partial first-order stochastic dominance result we present.

\bullet Our results also show that the dTCMV-optimal strategy performs exceptionally poorly
compared to the other MV-optimal investment strategies, with, for example, the
dTCMV-optimal strategy achieving both a higher variance and lower median terminal
wealth than the cTCMV strategy. This calls into question the current popularity
enjoyed by the dTCMV-optimal strategy in the literature.

\bullet We establish that the cTCMV strategy outperforms the DOMV strategy in a first-
order stochastic dominance sense when we consider terminal wealth outcomes below
the expected value target. The cTCMV strategy also achieves a lower variance of
terminal wealth compared to the DOMV strategy.

\bullet Furthermore, we derive analytical results which prove that the PCMV strategy results
in a terminal wealth distribution with fundamentally different characteristics than
any of the other strategies. In particular, the PCMV-optimal strategy achieves the
lowest variance and highest median value of terminal wealth of all the strategies
considered, but the negative skewness and large kurtosis of the associated terminal
wealth distribution means that the otherwise excellent performance of the PCMV
strategy comes at the cost of increased left tail risk for the investor.

\bullet Numerical results, making use of model parameters calibrated to inflation-adjusted,
long-term US market data (1926--2014), are presented to validate and illustrate the
implications of our analytical results.

The remainder of the paper is organized as follows. Section 2 describes the underlying
dynamics, notational conventions, and rigorous definitions of the different approaches to
dynamic MV optimization. Subject to certain assumptions, section 3 presents a number
of analytical results, including some new results, regarding the terminal wealth distributions
associated with different approaches. In section 4, we present a rigorous analytical comparisonD
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study of terminal wealth distributions associated with different approaches, but all achieve the
investor's chosen expected value target. Numerical results are presented in section 5, while
section 6 concludes the paper and outlines possible future work.

2. Formulation. For simplicity, our analysis focuses on portfolios consisting of a well-
diversified stock index (the risky asset) and a risk-free asset. Since the available analytical
solutions for multiasset PCMV and TCMV approaches (see, for example, Li and Ng (2000)
and Zeng and Li (2011)) show that the overall composition of the risky asset basket remains
relatively stable over time, it is reasonable to focus on the overall risky asset basket vs. risk-free
asset composition of the portfolio as the primary investment question. We leave the extension
of our results to multiasset dynamic MV optimization problems for our future work.

Let t0 \equiv 0 denote the start of the investment time period, and let T > 0 denote the fixed
investment time horizon or maturity. The controlled wealth, with the control representing
some investment strategy, is denoted by W (t), t \in [t0, T ]. Specifically, let u : (W (t) , t) \mapsto \rightarrow 
u (t) = u (W (t) , t) , t \in [t0, T ], be the adapted feedback control representing the amount
invested in the risky asset at time t given wealth W (t), and let \scrA = \{ u (t) = u (w, t)| u : \BbbR 
\times [t0, T ] \rightarrow \BbbU \} denote the set of admissible controls, where \BbbU \subseteq \BbbR denotes the admissible
control space.

We assume that the risky asset follows a geometric Brownian motion (GBM), leaving the
treatment of jumps in the risky asset process and alternative model specifications for our
future work. While this choice of model may appear to be overly simplistic, we observe the
following: (i) The extensive backtesting results presented in Forsyth and Vetzal (2017b) show
that the GBM assumption actually performs very well over long investment time horizons,
suggesting that more complicated models (including, for example, incorporating stochastic
volatility (Ma and Forsyth (2016)) may not offer substantial advantages in this setting.
(ii) As discussed in more detail below, the analytical results presented in this paper (based on
GBM dynamics) are in qualitative agreement with the numerical results presented in Forsyth
and Vetzal (2019b) and Forsyth, Vetzal, and Westmacott (2019) where jump-diffusion models
are assumed for the risky asset, indicating that a GBM model appears to be sufficient in
capturing the salient characteristics of the different investment strategies.

Therefore, based on the assumption of GBM dynamics for the risky asset, the dynamics
of the wealth W (t) of a self-financing portfolio, with no contributions or withdrawals, is given
by (see, for example, Bjork (2009); Bjork, Murgoci, and Zhou (2014))

dW (t) = [rW (t) + (\mu  - r)u (t)] dt+ \sigma u (t) dZ(t), t \in (t0, T ] ,(2.1)

W (t0) = w0 > 0.(2.2)

Here, w0 > 0 denotes the initial wealth, r > 0 denotes the continuously compounded risk-
free interest rate, \mu > r and \sigma > 0 denote the drift and volatility of the dynamics of the risky
asset, respectively, and Z denotes a standard Brownian motion. For subsequent reference, we
also define the following combination of parameters:

A =
(\mu  - r)2

\sigma 2
.(2.3)

Before presenting rigorous definitions of the various approaches to dynamic MV optimization,
we introduce a number of notational conventions. Let Qw,t

u [W (T )] denote some quantity QD
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associated with the terminal wealth W (T ), given wealth W (t) = w at time t \in [0, T ] and the
application of control u \in \scrA over the time interval [t, T ]. Specific examples of the quantity Q
encountered in this paper include the expected value (in which case we set Q = E), variance
(Q = V ar), standard deviation (Q = Stdev), conditional probability measure (Q = \BbbP ),
and the value-at-risk and conditional value-at-risk2 at level \alpha \in (0, 1), respectively denoted
by Q = \alpha VaR and Q = \alpha CVaR. The optimal control and optimal terminal wealth will
be denoted by u\ast j and Wj (T ), respectively, where the subscript j \in \{ p, d, c, cd, cp\} is used to
distinguish the underlying approach with respect to which u\ast j andWj (T ) are optimal. For ease
of subsequent reference, the particular association of the subscript j with the corresponding
investment approach is outlined in Table 2.1.

Table 2.1
Summary of notational conventions. The subscript j \in \{ p, d, c, cd, cp\} is used to identify the approach in

terms of which the optimal investment strategy u\ast 
j and associated optimal terminal wealth Wj (T ) is obtained.

For the sake of simplicity, the CP strategy is identified using similar notation, but we emphasize that the CP
strategy is not formulated to be MV-optimal.

Subscript j Approach Abbreviation Optimal control u\ast 
j Optimal terminal

wealth using control u\ast 
j

j = p Precommitment MV PCMV u\ast 
p Wp (T )

j = d Dynamically optimal MV DOMV u\ast 
d Wd (T )

j = c Time-consistent MV with constant
risk-aversion parameter

cTCMV u\ast 
c Wc (T )

j = cd Time-consistent MV with
wealth-dependent risk-aversion
parameter

dTCMV u\ast 
cd Wcd (T )

j = cp Constant proportion strategy CP u\ast 
cp Wcp (T )

We now present the definitions of the main approaches to MV portfolio optimization
considered in this paper. Using the standard scalarization method for multicriteria optimization
problems (Yu (1974)), a general definition of the dynamic MV optimization problem is given
by (see, for example, Zhou and Li (2000))

(2.4) sup
u\in \scrA 

\bigl( 
Ew0,t0

u [W (T )] - \rho \cdot V arw0,t0
u [W (T )]

\bigr) 
, \rho > 0,

where the the investor's level of risk aversion is reflected by the risk-aversion (or scalarization)
parameter \rho > 0.

As noted in the introduction, variance does not satisfy the smoothing property of conditional
expectation, and therefore dynamic programming cannot be applied directly to (2.4). The
first approach to dynamic MV optimization, the precommitment MV (PCMV) approach,
employs the technique of Li and Ng (2000) and Zhou and Li (2000) to embed problem (2.4)
in a new optimization problem, often referred to as the embedding problem, which can be
solved using dynamic programming techniques. We follow the convention in the literature
(see, for example, Cong and Oosterlee (2017); Dang, Forsyth, and Vetzal (2017)) of defining

2The terms and risk measures are defined rigorously below; see section 4.D
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the PCMV optimization problem as the associated MV embedding problem, namely

(PCMV (\gamma )) : inf
u\in \scrA 

\biggl( 
Ew0,t0=0

u

\biggl[ \Bigl( 
W (T ) - \gamma 

2

\Bigr) 2\biggr] \biggr) 
,

\gamma 

2
> w0e

rT ,(2.5)

where the embedding parameter \gamma is assumed to satisfy \gamma > 2w0e
rT to ensure that financially

meaningful results are obtained (see Dang and Forsyth (2016); Vigna (2014)). As per Table
2.1, we use the notation u\ast p and Wp (T ) to denote the optimal control and optimal terminal
wealth for problem (2.5), respectively.

Remark 2.1 (time-consistency of PCMV-optimal control u\ast p.). As discussed in detail in Li
and Forsyth (2019) and Forsyth, Vetzal, and Westmacott (2019), there appears to be some
confusion in the literature as to whether the PCMV-optimal control u\ast p is time-consistent or
not. This question is of great practical significance, since u\ast p is typically time-inconsistent (see
Basak and Chabakauri (2010); Bjork and Murgoci (2014)) from the perspective of the original
MV objective (2.4), which raises questions regarding its feasibility as an implementable trading
strategy. This observation is arguably the reason why a number of different approaches to
dynamic MV optimization have been developed, each with a different underlying philosophy
as to how the problem of time-inconsistency with respect to the original objective (2.4) is to
be addressed; see Vigna (2017, 2020) for a discussion of the various considerations involved.
For purposes of clarity, we make a number of observations regarding this issue.

Using the same assumptions as in this paper (including the dynamics (2.1) and the
assumptions introduced below in section 3), Vigna (2014) builds on the results of Zhou and
Li (2000) to show that there is a one-to-one correspondence between the results (including
optimal control and the MV efficient frontier) of problems (2.4) and (2.5), provided that \rho in
(2.4) at t0 = 0 is related to \gamma in (2.5) by the relationship

\rho =
eAT

2
\bigl( \gamma 
2  - w0erT

\bigr) .(2.6)

Note that the exact relationship (2.6) between \rho and \gamma , including its one-to-one nature, might
no longer hold if, for example, jumps are included in the wealth dynamics (see Dang, Forsyth,
and Li (2016) for a detailed treatment). That said, the key embedding result from Zhou and
Li (2000) and Li and Ng (2000) can be shown to hold regardless of the specification of the
admissible set of the controls (Dang and Forsyth (2016)).

Therefore, given that the one-to-one relationship (2.6) holds on the basis of the assumptions
of this paper, whether we use formulation (2.4) or (2.5) as our starting point does not affect
any of the subsequent results, regardless of one's philosophical preference. However, from an
investor's perspective, the starting point has important practical consequences. First, Vigna
(2014) points out that specifying the ``quadratic target"" \gamma /2 in (2.5) is far more ``user-friendly""
than specifying \rho in (2.4), since the literature does not offer much guidance as to how \rho should
be selected. Second, it is worth emphasizing that, for a fixed value of \gamma in (2.5), the optimal
control u\ast p of (2.5) is a time-consistent control from the perspective of the quadratic objective
function in (2.5) and is therefore feasible to implement as a trading strategy (see Strub, Li,
and Cui (2019)), whereas formulating this control in terms of \rho results in a time-inconsistent
(and therefore impractical) trading strategy from the perspective of (2.4).D
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As a result, it should be clear from this discussion that the issue of the time-consistency
of u\ast p is a matter of perspective, and in this paper we always view u\ast p as the time-consistent
strategy minimizing the induced objective function in (2.5), and correspondingly formulate all
our results in terms of \gamma . To be precise, the control for the time-inconsistent problem (2.4), for
a given value of \rho , specified at time t0, is identical to the control for time-consistent problem
(2.5), with fixed \gamma given from (2.6). Since this control is the solution of time-consistent
problem (2.5), it is a valid or implementable control for all t \geq t0. This treatment aligns
with our stated objective of comparing terminal wealth distributions from the perspective of
an investor who remains agnostic as to the underlying philosophical differences of the various
approaches to dynamic MV optimization.

Next, we consider the dynamically optimal MV (DOMV) approach proposed by Pedersen
and Peskir (2017). Informally, this entails solving an infinite number of problems of the form
(2.4) dynamically forward in time. Starting from the initial state and time (w0, t0), each new
state (W (t) , t) , t \in [t0, T ], attained by the controlled wealth process results in a new problem
(2.4) to be solved to obtain the optimal control u\ast d (W (t) , t) := u\ast d (t) applicable at that time
instant. In this way, the dynamically optimal control u\ast d (t) is obtained for all t \in [t0, T ],
resulting in a DOMV-optimal terminal wealth Wd (T ). More formally, following Pedersen and
Peskir (2017), we define the DOMV problem and associated optimal control u\ast d as follows:

(DOMV (\rho )) : u\ast d \in \scrA is dynamically optimal for (2.4) with a given fixed \rho > 0,

if \forall (w, t) \in \BbbR \times [t0, T ] , \exists u \in \scrA satisfying u (w, t) = u\ast d (w, t) ,

such that \forall v \in \scrA with v (w, t) \not = u\ast d (w, t) ,we have

Ew,t
u [W (T )] - \rho \cdot V arw,t

u [W (T )] \geq Ew,t
v [W (T )] - \rho \cdot V arw,t

v [W (T )] .(2.7)

The time-consistent MV (TCMV) approach (Basak and Chabakauri (2010)) involves
maximizing the objective of (2.4) subject to a time-consistency constraint (see, for example,
Cong and Oosterlee (2016a); Van Staden, Dang, and Forsyth (2019); Wang and Forsyth
(2011)), so that the resulting optimal control is time-consistent from the perspective of the
original MV objective (2.4). As noted in the introduction, we distinguish two variants of the
TCMV approach, depending on the treatment of the risk-aversion parameter \rho in (2.4).

First, using a constant risk-aversion parameter \rho > 0 in (2.4), we define the cTCMV
problem as

(cTCMV (\rho )) : sup
u\in \scrA 

\bigl( 
Ew0,t0

u [W (T )] - \rho \cdot V arw0,t0
u [W (T )]

\bigr) 
, \rho > 0,(2.8)

s.t. u\ast c (t0; y, v) = u\ast c
\bigl( 
t\prime ; y, v

\bigr) 
for v \geq t\prime , t\prime \in [t0, T ] ,(2.9)

where u\ast c (t0; y, v) denotes the optimal control calculated at time t0 and to be applied at some
future time v \geq t\prime \geq t0 given future state W (v) = y, while u\ast c (t

\prime ; y, v) denotes the optimal
control calculated at some future time t\prime \in [t0, T ], also to be applied at the same later time
v \geq t\prime given the same future state W (v) = y. To lighten notation, as per Table 2.1 we will
use the notation u\ast c (t) to denote the optimal control of the cTCMV problem (2.8)--(2.9).D
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574 P. M. VAN STADEN, D.-M. DANG, AND P. A. FORSYTH

A popular alternative formulation of the TCMV problem is to specify a risk-aversion
parameter that is inversely proportional to wealth; see Bjork, Murgoci, and Zhou (2014) for
the motivation and a detailed analysis. Specifically, in this formulation, the constant \rho in (2.8)
is replaced by \rho (w) = \rho / (2w) for \rho > 0, where w denotes the current wealth. This results in
the dTCMV problem defined by

(dTCMV (\rho )) : sup
u\in \scrA 

\biggl( 
Ew0,t0

u [W (T )] - \rho 

2w0
\cdot V arw0,t0

u [W (T )]

\biggr) 
, \rho > 0,(2.10)

s.t. u\ast cd (t0; y, v) = u\ast cd
\bigl( 
t\prime ; y, v

\bigr) 
for v \geq t\prime , t\prime \in [t0, T ] ,(2.11)

where the time-consistency constraint (2.11) has the same interpretation as in (2.9). As
per Table 2.1, we denote the dTCMV-optimal control by u\ast cd (t) and the associated optimal
terminal wealth by Wcd (T ).

Finally, for benchmarking and comparison purposes, we also consider the constant proportion
(CP) problem, defined as follows:

(CP (\theta cp)) : Choose a constant proportion \theta cp > 0 of wealth

to invest in the risky asset \forall t \in [t0, T ] , so that

u\ast cp (t) = \theta cpW (t) \forall t \in [t0, T ] .(2.12)

As noted in the introduction, the CP strategy is not designed to be MV-optimal in any
sense. However, as per Table 2.1, for convenience we use the notation u\ast cp (t) and Wcp (T ),
respectively, to denote the control and terminal wealth associated with the CP problem for
some choice of the constant proportion \theta cp. A concrete example of choosing a value of \theta cp to
achieve a specific goal is given in section 4.

3. Selected analytical results. In this section, we present analytical results relevant to
the terminal wealth distributions obtained under the optimal investment strategies of the
problems presented in section 2. All results in this section are based on the assumption of no
market frictions or investment constraints, which are formally defined as Assumption 3.1.

Assumption 3.1 (no market frictions). Trading continues in the event of insolvency, no
transaction costs are applicable, and no leverage constraints are in effect.

Remark 3.1 (relaxing Assumption 3.1). Since the simultaneous application of multiple realistic
investment constraints can be incorporated with relative ease in the numerical solution of
dynamic MV optimization problems (see Cong and Oosterlee (2016b); Dang and Forsyth
(2014); Van Staden, Dang, and Forsyth (2018); Wang and Forsyth (2010, 2011), among
others), relaxing Assumption 3.1 is not challenging in a practical setting. However, as
noted in the introduction, this paper focuses on a theoretical comparison of optimal terminal
wealth distributions in the particular select cases where the optimal investment strategies
associated with dynamic MV optimization problems can be expressed analytically. The two
main consequences of Assumption 3.1 are therefore that it (i) ensures that an additional
perspective on the implications of the various approaches to dynamic MV optimization can
be presented in this paper that is currently missing from the literature, and (ii) assists in
explaining some of the numerical results reported in the literature (see, for example, Forsyth
and Vetzal (2017a,b, 2019a,b); Forsyth, Vetzal, and Westmacott (2019)).D
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Under Assumption 3.1, the optimal controls associated with the dynamic MV optimization
problems presented in section 2 can be expressed analytically, as the following lemma shows.

Lemma 3.2 (optimal controls). Under Assumption 3.1, the optimal controls of problems
PCMV (2.5), DOMV (2.7), cTCMV (2.8)--(2.9), and dTCMV (2.10)--(2.11) are, respectively,
given by

u\ast p (t) =
A

(\mu  - r)
e - r(T - t)

\Bigl[ \gamma 
2
 - W (t) er(T - t)

\Bigr] 
,(3.1)

u\ast d (t) =
1

2\rho 
\cdot A

(\mu  - r)
e(A - r)(T - t),(3.2)

u\ast c (t) =
1

2\rho 
\cdot A

(\mu  - r)
e - r(T - t),(3.3)

u\ast cd (t) = \theta (t) \cdot W (t) ,(3.4)

where A is defined in (2.3), and \theta (t) in (3.4) is given by the unique solution to the following
integral equation:

\theta (t) =
A

\rho (\mu  - r)

\Bigl\{ 
e - 

\int T
t (r+(\mu  - r)\theta (\tau ) - \sigma 2\theta 2(\tau ))d\tau + \rho e - 

\int T
t \sigma 2\theta 2(\tau )d\tau  - \rho 

\Bigr\} 
.(3.5)

Proof. See Basak and Chabakauri (2010); Pedersen and Peskir (2017); Zhou and Li (2000);
and Bjork, Murgoci, and Zhou (2014). The existence and uniqueness of the solution to the
integral equation (3.5) is established in Bjork, Murgoci, and Zhou (2014).

Including the CP strategy (2.12) in this discussion would therefore result in five different
investment strategies under consideration. However, Lemma 3.2 shows that there are only
three fundamentally different forms of the resulting controls: (i) The DOMV- and cTCMV-
optimal controls ((3.2) and (3.3), respectively) are simply deterministic functions of time and
do not depend on the investor's wealth. (ii) Both the CP strategy (2.12) and the dTCMV-
optimal strategy (3.4) are proportional strategies, in that they specify the amount to invest
in the risky asset as a proportion of the wealth at time t. In contrast to the constant
proportion \theta cp used by the CP strategy, the dTCMV strategy specifies a proportion \theta (t)
that is a deterministic function of time satisfying (3.5). (iii) The PCMV-optimal control (3.1)
can be viewed as a linear combination of the TCMV-optimal control (3.3) and the CP strategy
(2.12).

Starting from a given initial wealth w0 > 0 at time t0 \equiv 0, we now assume that the optimal
investment strategies from Lemma 3.2, as well as the CP strategy (2.12), are implemented
over the investment time horizon [t0, T ]. As a result, we obtain the optimal terminal wealth
Wj (T ) corresponding to each investment strategy j \in \{ p, d, c, cd\} , as well as the terminal
wealth under the CP strategy Wcp (T ).

Lemma 3.3 (optimal terminal wealth). Let w0 > 0 and t0 = 0. Under Assumption 3.1,
the optimal terminal wealth Wj (T ) corresponding to each investment strategy j \in \{ p, d, c, cd\} ,D
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given controlled wealth dynamics (2.1) and optimal controls as in Lemma 3.2, are given by

Wp (T ) =
\gamma 

2
 - 
\Bigl[ \gamma 
2
 - w0e

rT
\Bigr] 
exp

\biggl\{ 
 - 3

2
AT  - 

\surd 
A \cdot Z (T )

\biggr\} 
,(3.6)

Wd (T ) = w0e
rT  - 1

2\rho 

\bigl( 
1 - e - AT

\bigr) 
+

1

2\rho 

\surd 
A

\int T

0
eA(T - t)dZ(t),(3.7)

Wc (T ) = w0e
rT +

1

2\rho 
AT +

1

2\rho 

\surd 
A \cdot Z (T ) ,(3.8)

Wcd (T ) = w0e
rT \cdot exp

\biggl\{ \int T

0

\biggl[ 
(\mu  - r) \theta (t) - 1

2
\sigma 2\theta 2 (t)

\biggr] 
dt+

\int T

0
\sigma \theta (t) dZ(t)

\biggr\} 
.(3.9)

The terminal wealth Wcp (T ) under a CP strategy u\ast cp (t) = \theta cpW (t) is given by

Wcp (T ) = w0e
rT \cdot exp

\biggl\{ \biggl[ 
(\mu  - r) \theta cp  - 

1

2
\sigma 2\theta 2cp

\biggr] 
T + \sigma \theta cpZ (T )

\biggr\} 
.(3.10)

Proof. The result (3.6), reported in Vigna (2014) and Pedersen and Peskir (2017), can be
obtained by applying It\^o's lemma to the auxiliary process

Xp (t) =
\gamma 

2
e - r(T - t)  - Wp (t) , t \in (t0 = 0, T ] ,(3.11)

Xp (t0) =
\gamma 

2
e - rT  - w0,

which shows that Xp (t) follows a GBM (Vigna (2014)). The proof of (3.7)--(3.10) is straight-
forward and therefore omitted.

Based on the results of Lemma 3.3, the distribution of terminal wealth can be identified
easily in all cases except for the PCMV-optimal terminal wealth Wp (T ), as the following
lemma confirms.

Lemma 3.4 (Distribution of terminal wealth under the DOMV, cTCMV, dTCMV, and CP
strategies). Under Assumption 3.1, the terminal wealth under the optimal controls of problems
DOMV and cTCMV is normally distributed. Specifically, Wd (T ) \sim N

\bigl( 
\^\mu d, \^\sigma 

2
d

\bigr) 
, where

\^\mu d := Ew0,t0=0
u\ast 
d

[Wd (T )] = w0e
rT +

1

2\rho 

\bigl( 
eAT  - 1

\bigr) 
,(3.12)

\^\sigma 2
d := V arw0,t0=0

u\ast 
d

[Wd (T )] =
1

2

\biggl( 
1

2\rho 

\biggr) 2 \bigl( 
e2AT  - 1

\bigr) 
,(3.13)

while Wc (T ) \sim N
\bigl( 
\^\mu c, \^\sigma 

2
c

\bigr) 
with

\^\mu c := Ew0,t0=0
u\ast 
c

[Wc (T )] = w0e
rT +

1

2\rho 
AT,(3.14)

\^\sigma 2
c := V arw0,t0=0

u\ast 
c

[Wc (T )] =

\biggl( 
1

2\rho 

\biggr) 2

AT.(3.15)D
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The terminal wealth under the dTCMV-optimal and CP investment strategies is lognormally
distributed. In particular, Wcd (T ) \sim Logn

\bigl( 
\^\mu cd, \^\sigma 

2
cd

\bigr) 
, where

\^\mu cd := Ew0,t0=0
u\ast 
cd

[logWcd (T )] = logw0 + rT +

\int T

0

\biggl[ 
(\mu  - r) \theta (t) - 1

2
\sigma 2\theta 2 (t)

\biggr] 
dt,(3.16)

\^\sigma 2
cd := V arw0,t0=0

u\ast 
cd

[logWcd (T )] =

\int T

0
\sigma 2\theta 2 (t) dt,(3.17)

while Wcp (T ) \sim Logn
\bigl( 
\^\mu cp, \^\sigma 

2
cp

\bigr) 
with

\^\mu cp := Ew0,t0=0
u\ast 
cp

[logWcp (T )] = logw0 + rT +

\biggl[ 
(\mu  - r) \theta cp  - 

1

2
\sigma 2\theta 2cp

\biggr] 
T,(3.18)

\^\sigma 2
cp := V arw0,t0=0

u\ast 
cp

[logWcp (T )] = \sigma 2\theta 2cpT.(3.19)

Proof. The results follow directly from the results of Lemma 3.3.

It is clear from the results of Lemma 3.3 that the distribution of the PCMV-optimal
terminal wealth Wp (T ) is significantly more complex than any of the results presented in
Lemma 3.4, as it appears not to conform to any of the commonly encountered probability
distributions. However, by rearranging (3.6), it is clear that

\gamma 
2  - Wp (T )
\gamma 
2  - w0erT

\sim Logn
\bigl( 
\^\mu p, \^\sigma 

2
p

\bigr) 
, where \^\mu p =  - 3

2
AT and \^\sigma 2

p = AT,(3.20)

so that the distribution of Wp (T ) can perhaps be best described as a ``reflected log-normal
distribution"" (see Goetzmann et al. (2002) where this terminology is used for a random variable
with a similar distribution). The following lemma makes use of the observation (3.20) to give
the exact distribution of Wp (T ).

Lemma 3.5 (Distribution of PCMV-optimal terminal wealth). Under Assumption 3.1, the
cumulative distribution function (CDF) of the terminal wealth under the optimal control of
problem PCMV is given by

Pw0,t0=0
u\ast 
p

[Wp (T ) \leq w] =

\left\{     \Phi 

\biggl( 
 - 1\surd 

AT
\cdot log

\biggl[ \gamma 
2  - w

\gamma 
2  - w0erT

\biggr] 
 - 3

2

\surd 
AT

\biggr) 
if w <

\gamma 

2
,

1 otherwise,

(3.21)

where Pw0,t0
u\ast 
p

(\cdot ) denotes the probability calculated under the PCMV-optimal control u\ast p (t) and

given initial wealth w0 at time t0, while \Phi (\cdot ) denotes the standard normal CDF. Furthermore,
the noncentral moments of the PCMV-optimal terminal wealth Wp (T ) can be expressed as

m(n)
p (T ) := Ew0,t0=0

u\ast 
p

\bigl[ 
Wn

p (T )
\bigr] 

=
n\sum 

k=0

n!

k! (n - k)!

\Bigl( \gamma 
2

\Bigr) n - k \Bigl[ 
w0e

rT  - \gamma 

2

\Bigr] k
\cdot exp

\biggl\{ 
1

2
k (k  - 3)AT

\biggr\} 
, n \in \BbbN .(3.22)
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Proof. The results (3.21) and (3.22) follow from the observation (3.20). With regard
to the cases of the CDF (3.21), it should be noted that Vigna (2014) proved that under
the stated assumptions (including Assumption 3.1 and dynamics (2.1)), the PCMV-optimal
terminal wealth approaches the quadratic target \gamma 

2 from below, so that it is always the case
that Wp (T ) <

\gamma 
2 .

The first four noncentral moments of the distribution of the PCMV-optimal terminal
wealth play an important role in section 4 and are given by the following lemma.

Lemma 3.6 (Distribution of PCMV-optimal terminal wealth: First four noncentral moments).
Under Assumption 3.1, the first four noncentral moments of the distribution of Wp (T ) are

given by m
(n)
p (T ) = Ew0,t0=0

u\ast 
p

\bigl[ 
Wn

p (T )
\bigr] 
, n \in \{ 1, 2, 3, 4\} , where

m(1)
p (T ) = w0e

rT + e - AT
\bigl( 
eAT  - 1

\bigr) \Bigl[ \gamma 
2
 - w0e

rT
\Bigr] 
,(3.23)

m(2)
p (T ) =

\Bigl[ 
m(1)

p (T )
\Bigr] 2

+ e - 2AT
\bigl( 
eAT  - 1

\bigr) \Bigl[ \gamma 
2
 - w0e

rT
\Bigr] 2

,(3.24)

m(3)
p (T ) = 3

\Bigl[ 
m(1)

p (T )
\Bigr] \Bigl[ 

m(2)
p (T )

\Bigr] 
 - 2

\Bigl[ 
m(1)

p (T )
\Bigr] 3

 - e - 3AT
\Bigl[ \bigl( 
eAT  - 1

\bigr) 3
+ 3

\bigl( 
eAT  - 1

\bigr) 2\Bigr] \Bigl[ \gamma 
2
 - w0e

rT
\Bigr] 3

,(3.25)

m(4)
p (T ) = 4

\Bigl[ 
m(1)

p (T )m(3)
p (T )

\Bigr] 
 - 6

\Bigl[ 
m(1)

p (T )
\Bigr] 2 \Bigl[ 

m(2)
p (T )

\Bigr] 
+ 3

\Bigl[ 
m(1)

p (T )
\Bigr] 4

+
\bigl( 
e2AT  - 4e - AT + 6e - 3AT  - 3e - 4AT

\bigr) \Bigl[ \gamma 
2
 - w0e

rT
\Bigr] 4

.(3.26)

Proof. The results follow from Lemma 3.5, where the moments (3.22) are simplified and
factorized.

Up to this point, we made no reference to any particular choices made by the investor
regarding the risk-aversion parameters \rho > 0, embedding parameter \gamma > 2w0e

rT , or CP
\theta cp > 0. In the next section (section 4), we introduce specific choices for these parameters
that, when substituted into the results presented in this section, allow the investor to consider
the resulting terminal wealth distributions on a comparable basis.

4. Comparison of terminal wealth distributions. The analytical results presented in
section 3 are used in this section to compare the terminal wealth distributions resulting from
implementing the various investment strategies under consideration.

Throughout this discussion, we assume that the investor remains agnostic as to the
philosophical perspectives underlying the different approaches to dynamic MV optimization.
Specifically, we assume that the investor considers the resulting optimal controls in Lemma
3.2 as well as the CP strategy (2.12) simply as different candidate investment strategies, with
each resulting in a terminal wealth distribution that can be assessed according to various
prespecified risk and return criteria.

In order to compare the resulting terminal wealth distributions on a fair basis, we introduce
the following practical assumption.

Assumption 4.1 (expected value target for terminal wealth). We assume that, regardless of
investment strategy j \in \{ p, d, c, cd, cp\} , the investor sets a particular target value \scrE > w0e

rTD
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for the expected value of terminal wealth. In other words, the investor requires

(4.1) Ew0,t0=0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T )
\bigr] 
\equiv \scrE , with \scrE > w0e

rT \forall j \in \{ p, d, c, cd, cp\} ,

where u\scrE \ast 
j denotes the optimal control for investment strategy j achieving the optimal terminal

wealth W \scrE 
j (T ) with expected value \scrE . We will refer to W \scrE 

j (T ) as the target terminal wealth
and to its distribution as the target terminal wealth distribution.

Using the results of section 3, the targeted expected value (4.1) is achieved as follows. For
investment strategies j \in \{ p, d, c, cd\} , the strategy u\scrE \ast 

j is found by choosing the appropriate
value of \gamma or \rho in Lemma 3.2, while u\scrE \ast 

cp is found by choosing the appropriate proportion \theta cp in
(2.12). Specifically, for j \in \{ p, d, c, cd, cp\} , we respectively set \gamma \equiv \gamma \scrE 

p , \rho \equiv \rho \scrE 
d, \rho \equiv \rho \scrE 

c , \rho \equiv \rho \scrE 
cd

and \theta cp \equiv \theta \scrE 
cp, where

PCMV
\bigl( 
\gamma \equiv \gamma \scrE 

p

\bigr) 
: \gamma \scrE 

p = 2w0e
rT +

2eAT

(eAT  - 1)

\bigl( 
\scrE  - w0e

rT
\bigr) 
,(4.2)

DOMV (\rho \equiv \rho \scrE 
d) : \rho \scrE 

d =

\bigl( 
eAT  - 1

\bigr) 
2 (\scrE  - w0erT )

,(4.3)

cTCMV (\rho \equiv \rho \scrE 
c ) : \rho \scrE 

c =
AT

2 (\scrE  - w0erT )
,(4.4)

dTCMV (\rho \equiv \rho \scrE 
cd) : \rho \scrE 

cd together with the function t \rightarrow \theta \scrE (t) determined numerically

using (3.5) such that Ew0,t0=0

u\scrE \ast 
cd

[W \scrE 
cd (T )] \equiv \scrE ,(4.5)

CP
\bigl( 
\theta cp \equiv \theta \scrE 

cp

\bigr) 
: \theta \scrE 

cp =
log (\scrE /w0) - rT

(\mu  - r) \cdot T
.(4.6)

Using the results of Lemmas 3.4 and 3.6, it is straightforward to verify that the choices
(4.2)--(4.6) result in the terminal wealth distributions with the required expected value target
\scrE .

Remark 4.1 (risk preferences and the basis for comparing terminal wealth distributions).
Assumption 4.1 is clearly reasonable from the classical Markowitz (1952) perspective, where,
according to one interpretation, the investor simply wishes to achieve the lowest variance for
a given expected value (see, for example, Perrin and Roncalli (2020)). It is therefore not
surprising that when different investment strategies are compared in the literature, it is often
on the basis of a fixed level/target of either the expected value or, alternatively, of the volatility
of portfolio wealth or returns. For some recent examples, see Bender, Blackburn, and Sun
(2019); Dopfel and Lester (2018); Soup\'e, Lu, and Leote de Carvalho (2019); Zhang, Zohren,
and Roberts (2020). According to this view, the scalarization or risk-aversion parameter \rho in
(2.4) would be ``calibrated"" (Bender, Blackburn, and Sun (2019)) on the basis of the chosen
target, which in our case results in the particular values (4.2)--(4.5). This sidesteps the explicit
selection of a value of \rho appropriate for the investor, a matter on which the literature offers
very little guidance (Vigna (2014)), and it also avoids the selection of some arbitrary value
of \rho to be used for illustrative purposes without any reference to the investor's goals (as is
commonly used in the literature to illustrate analytical results; see, for example, DeMiguel
et al. (2020)).D
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A possible objection to this perspective and therefore to Assumption 4.1, is that using
different parameters (4.2)--(4.5) implies that we are comparing the results of different MV
problem formulations on the basis of different levels of risk aversion, since different values of
\rho are effectively being used in (2.4).

Suppose, for the sake of argument, that we intend to compare the terminal wealth
distributions corresponding to the same value of the risk-aversion parameter \rho in (2.4) for
all formulations of the MV problem. First, to the detriment of the subsequent results, we
will have to exclude the CP strategy from the comparison, since its definition (2.12) does not
explicitly incorporate any notion of a risk-aversion parameter, and therefore it is not clear
how to select \theta cp to ensure a fair comparison on the basis of risk preferences. Next, in the
case of the dTCMV problem (2.10), from the perspective of t0 \equiv 0 the effective risk-aversion
parameter at time t \in (0, T ] depends on the wealth at (future) time t and is therefore stochastic
(see Bensoussan, Wong, and Yam (2019) and Bjork, Murgoci, and Zhou (2014) for a detailed
analysis).

This leaves the PCMV, DOMV, and cTCMV problems. We observe that by Remark 2.1,
the value of \gamma \scrE 

p in (4.2) is consistent with a scalarization parameter value \rho \scrE 
p in the original

MV objective (2.4) given by

\rho \scrE 
p =

eAT  - 1

2 (\scrE  - w0erT )
(by (2.6) and (4.2)) ,(4.7)

= \rho \scrE 
d (by (4.3)) .

From the perspective of the MV objective (2.4), the PCMV and DOMV problems with the
same expected terminal wealth \scrE therefore make use of identical risk-aversion parameter
values. However, this does not mean that the PCMV problem with \gamma \equiv \gamma \scrE 

p (4.2) and the
DOMV problem with \rho \equiv \rho \scrE 

d (4.3) incorporate the same investor risk preferences for t \in (0, T ].
Instead, (4.7) only implies that PCMV and DOMV risk preferences agree instantaneously at
t0 \equiv 0 (Vigna (2020)).

It is worth emphasizing that the issues involved are subtle and beyond the scope of
this paper. Vigna (2017, 2020) rigorously defines and analyzes the notion of ``preferences
consistency"" in dynamic MV optimization approaches, which can informally be defined as the
case when the investor's risk preferences at time t \in (0, T ] agree with the investor's original
risk preferences at time t0 \equiv 0. Vigna (2017, 2020) show that only the DOMV approach
is ``preferences-consistent,"" i.e., instantaneously consistent with the investor's original risk
preferences at any time t \in (0, T ]. The PCMV approach is consistent with the target \gamma /2
but not with initial risk preferences (Cong and Oosterlee (2016a)). In addition, Vigna (2020)
shows that the cTCMV investor is also not preferences-consistent, which is to be expected,
since as shown originally in Bjork and Murgoci (2010), the TCMV problem is equivalent to
a stochastic control problem with a different objective but no time-consistency constraint,
namely the mean-quadratic variation problem (see Van Staden, Dang, and Forsyth (2019) for
a detailed analysis).

Therefore, insisting that the resulting terminal wealth distributions should be compared on
the basis of equal risk preferences is not only less practical than setting a risk or return target
as in Assumption 4.1 but also arguably meaningless in the context of dynamic MV-optimal
investment strategies.D
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Figure 4.1 illustrates the probability density functions (PDFs) of the distributions of
W \scrE 

j (T ) , j \in \{ p, d, c, cd, cp\} , for the particular choices (4.2)--(4.6), all with the same expected
value \scrE = 250. In the case of j \in \{ d, c, cd, cp\} , these PDFs can be obtained analytically by
appropriately substituting (4.3)--(4.6) into the corresponding results of Lemma 3.4. In the
case of PCMV (j = p), the simulated PDF of W \scrE 

p (T ) can be obtained using the expression
(3.6) in Lemma 3.3 with \gamma = \gamma \scrE 

p as per (4.2).
The rest of this section is devoted to a quantitative analysis of the differences in the

distributions of W \scrE 
j (T ) for investment strategies j \in \{ p, d, c, cd, cp\} , illustrated by Figure 4.1.
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(a) cTCMV vs. DOMV
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(b) CP vs. dTCMV
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Figure 4.1. Probability density functions (PDFs) of the target terminal wealth W \scrE 
j (T ) for j \in 

\{ p, d, c, cd, cp\} , all with the same expected value \scrE = 250. w0 = 100, t0 = 0, T = 10, and other parameters are
as in section 5, so that w0e

rT = 106.43. Note that the same scale is used on the x-axis.

As an introductory result, the following lemma gives a relationship between the parameters
of the target terminal wealth distributions in the case of the CP and dTCMV strategies that
turns out to have far-reaching consequences.

Lemma 4.2 (parameters of the distribution of W \scrE 
j (T ), j \in \{ cd, cp\} : CP vs. dTCMV).

Assume that the conditions of Assumptions 3.1 and 4.1 are satisfied. For any target value \scrE 
satisfying (4.1), the parameters \^\mu \scrE 

j and \^\sigma \scrE 
j of the lognormally distributed target terminal wealth

distributions, W \scrE 
j (T ) \sim Logn(\^\mu \scrE 

j , (\^\sigma 
\scrE 
j )

2), j \in \{ cp, cd\} , satisfy the following relationships:

(4.8) \^\mu \scrE 
cp \geq \^\mu \scrE 

cd, \^\sigma \scrE 
cp \leq \^\sigma \scrE 

cd.

Proof. By Lemma 3.4, \^\mu \scrE 
cp = log (\scrE )  - 1

2

\bigl( 
\^\sigma \scrE 
cp

\bigr) 2
and \^\mu \scrE 

cd = log (\scrE )  - 1
2 (\^\sigma 

\scrE 
cd)

2, so we only
need to prove that \^\sigma \scrE 

cp \leq \^\sigma \scrE 
cd, where

(4.9) \^\sigma \scrE 
cp =

1\surd 
AT

[log (\scrE /w0) - rT ] , \^\sigma \scrE 
cd = \sigma \cdot 

\biggl( \int T

0
[\theta \scrE (t)]2 dt

\biggr) 1
2

.

To ensure that W \scrE 
cd (T ) has the required mean \scrE , the function t \rightarrow \theta \scrE (t) and risk-aversion

parameter \rho \scrE 
cd in (4.5) are solved numerically using the integral equation (3.5) to guaranteeD
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that \int T

0
\theta \scrE (t) dt \equiv log (\scrE /w0) - rT

(\mu  - r)
.(4.10)

With \theta \scrE 
cp defined as the CP in (4.6), we recognize that \theta \scrE 

cpT =
\int T
0 \theta \scrE (t) dt. Furthermore, the

Cauchy--Schwarz inequality implies that

1

T

\bigl( 
\theta \scrE 
cpT
\bigr) 2

=
1

T

\biggl( \int T

0
\theta \scrE (t) dt

\biggr) 2

\leq 
\int T

0
[\theta \scrE (t)]2 dt.(4.11)

Therefore, (4.9) and (4.11) imply that we always have \^\sigma \scrE 
cp \leq \^\sigma \scrE 

cd, regardless of the target

\scrE > w0e
rT .

As noted before, the dTCMV-optimal strategy is an example of a deterministic ``glide
path"" strategy typically encountered in the pension fund literature, and in that particular
context the result (4.11) used in the proof of Lemma 4.2 is a known result (see, for example,
Forsyth and Vetzal (2019a); Graf (2017)). However, it is worth emphasizing the result (4.8)
in this paper for two reasons.

First, in the specific case of the dTCMV problem, the conclusion of Lemma 4.2 enables
the comparison of the distributions of W \scrE 

cd (T ) and W \scrE 
cp (T ) without resorting to the numerical

solution of the function t \rightarrow \theta \scrE (t) using the cumbersome integral equation (3.5). In particular,
note that the exact form of the function t \rightarrow \theta \scrE (t) does not matter; the only relevant fact
regarding \theta \scrE (t) is that its integral satisfies (4.10), which is just a constant multiple of the
value of \theta \scrE 

cp in (4.6). Second, the result (4.8) turns out to be sufficient to prove a number of
very interesting results not just limited to mean and variance but also including a first-order
stochastic dominance result (see Theorem 4.13 below). This follows since we have a complete
description of the relevant distributions under the stated assumptions.

We now return to our comparison of the distributions of the target terminal wealth W \scrE 
j (T )

for investment strategies j \in \{ p, d, c, cd, cp\} . First, consider an investor primarily interested in
the first two moments of the terminal wealth. Since all the target terminal wealth distributions
W \scrE 

j (T ) have the same mean \scrE as per (4.1), we start by considering the variance W \scrE 
j (T )

obtained for each investment strategy j.

Lemma 4.3 (Variance: Target terminal wealth distribution). Assume that the conditions of
Assumptions 3.1 and 4.1 are satisfied. The variance of the target terminal wealth W \scrE 

j (T ), for
j \in \{ p, d, c, cd, cp\} , is given by the following expressions:
(4.12)

V arw0,t0=0
u\scrE \ast 
p

\bigl[ 
W \scrE 

p (T )
\bigr] 
=

1

(eAT  - 1)

\bigl( 
\scrE  - w0e

rT
\bigr) 2

, V arw0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T )]=

\bigl( 
eAT + 1

\bigr) 
2 (eAT  - 1)

\bigl( 
\scrE  - w0e

rT
\bigr) 2

,

(4.13)

V arw0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T )]=

1

AT

\bigl( 
\scrE  - w0e

rT
\bigr) 2

, V arw0,t0=0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T )
\bigr] 
=\scrE 2\cdot 

\biggl( 
e(\^\sigma 

\scrE 
j )

2

 - 1

\biggr) 
, j\in \{ cd, cp\} ,

where \^\sigma \scrE 
j , j \in \{ cp, cd\} are given by (4.9).D
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Proof. The results follow from Lemma 3.4, Lemma 3.6, and (4.2)--(4.6).

The following lemma compares the variances of the target terminal wealth distributions.

Lemma 4.4 (Comparison: Variance). Assume that the conditions of Assumptions 3.1 and
4.1 are satisfied. The variances of the target wealth distributions for investment strategies
j \in \{ p, d, c, cd, cp\} are related as follows:

V arw0,t0=0
u\scrE \ast 
p

\bigl[ 
W \scrE 

p (T )
\bigr] 
< V arw0,t0=0

u\scrE \ast 
c

[W \scrE 
c (T )](4.14)

<

\left\{   V arw0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T )] ,

V arw0,t0=0
u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T )
\bigr] 
\leq V arw0,t0=0

u\scrE \ast 
cd

[W \scrE 
cd (T )] .

(4.15)

Proof. Inequality (4.14) is obvious from the variance results (4.12)--(4.13) in Lemma 4.3.
Considering (4.15), we first observe that (x - 2) ex + x + 2 > 0 for all x > 0. Since A > 0
(recall that \mu > r, \sigma > 0) and T > 0, AT > 0, we exploit the following inequality which turns
out to be very useful for proving some of the subsequent results:

AT >
2
\bigl( 
eAT  - 1

\bigr) 
(eAT + 1)

\forall A, T > 0.(4.16)

Considering the results of Lemma 4.3, the inequality (4.16) implies that V arw0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T )] <

V arw0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T )]. Next, observing that log x \geq [1 - (1/x)] for all x>1, and exp

\bigl\{ 
y \cdot log2 x

\bigr\} 
>\bigl[ 

1 + y \cdot log2 x
\bigr] 
for all x, y > 0, it follows that

(4.17) exp
\bigl\{ 
y \cdot log2 x

\bigr\} 
 - y

\biggl( 
1 - 1

x

\biggr) 2

 - 1 > 0 \forall x > 1, y > 0.

Since \scrE /
\bigl( 
w0e

rT
\bigr) 
>1 by (4.1) andAT >0, (4.17) implies that we also have V arw0,t0=0

u\scrE \ast 
c

[W \scrE 
c (T )] <

V arw0,t0=0
u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T )
\bigr] 
. Finally, the conclusion V arw0,t0=0

u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T )
\bigr] 
\leq V arw0,t0=0

u\scrE \ast 
cd

[W \scrE 
cd (T )]

follows from (4.13) and (4.8).

Lemma 4.4 therefore shows that a hypothetical MV investor who is only narrowly interested
in the mean and variance of terminal wealth and agnostic as to the philosophical differences
underlying the various approaches to dynamic MV optimization would conclude the following:
(i) The PCMV strategy always outperforms all the other strategies; (ii) the cTCMV strategy
outperforms both the DOMV and CP strategies; and (iii) as expected based on the result
of Lemma 4.2, the CP strategy outperforms the dTCMV strategy. Our analytical results
therefore confirm and assist in explaining the conclusions from numerical tests regarding the
relative performance of the PCMV and the CP strategies in Forsyth and Vetzal (2017b),
as well as the performance comparison of the PCMV, cTCMV, dTCMV, and CP strategies
presented in Forsyth and Vetzal (2019a).

Remark 4.5 (comparison of quantities other than mean and variance). The subsequent results
include the comparison of higher-order moments, median values, cumulative distribution
functions, and downside risk measures associated with the target terminal wealth distributionsD
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obtained under the various MV approaches. However, since the investor is performing MV
optimization, a question might arise as to why aspects of the distribution other than mean
and variance might be of importance to the investor. Furthermore, if other qualities of the
distribution are important, should these be incorporated in the objective function?

First, as observed in the introduction, dynamic MV optimization appears to be very
popular in institutional settings. Some recent applications include deriving optimal investment
strategies for pension funds (see, for example, Forsyth and Vetzal (2019a); Forsyth, Vetzal, and
Westmacott (2019); H{\e}jgaard and Vigna (2007); Liang, Bai, and Guo (2014); Menoncin and
Vigna (2013); Nkeki (2014); Sun, Li, and Zeng (2016); Vigna (2014); Wang and Chen (2018,
2019); Wu and Zeng (2015)), solving investment-reinsurance problems faced by insurance
providers (Bi and Cai (2019); Chen, Li, and Guo (2013); Li and Li (2013); Lin and Qian (2016);
Zhao, Shen, and Zeng (2016); Zhou et al. (2016)), optimization in corporate international
investment (Long and Zeng (2016)), and asset-liability management (Peng, Cui, and Shi
(2018); Wei and Wang (2017); Zhang et al. (2017); Zweng and Li (2011)). In all of these
practical settings, it is highly likely that the investor and other stakeholders will be concerned
with other aspects of the distribution in addition to its mean and variance. Not only might
the investor have secondary risk and investment performance considerations (for example,
other risk and return measures might have to be reported even though they are not explicitly
included in the optimization), but external stakeholders such as regulators might require the
investor to consider other aspects of the distribution (see, for example, Antolin et al. (2009)),
including downside risk measures, such as expected shortfall and VaR which are discussed
below.

Of course, the investor might wish to augment the objective function to include aspects
of the distribution other than mean and variance. Back, Crane, and Crotty (2018) observe
that there is evidence indicating that investors are concerned with higher-order moments, and
portfolio optimization with higher-order moments has in fact been proposed (see, for example,
Aracioglu, Demircan, and Soyuer (2011); Jondeau and Rockinger (2006); Jurczenko, Maillet,
and Merlin (2012); Lai, Yu, and Wang (2006); Maringer and Parpas (2009)). Furthermore, if
downside risk is a major consideration, the investor might replace variance in the objective
with a downside risk measure (see, for example, Forsyth (2020); Miller and Yang (2017)).

However, as the MV objective remains by far the most popular objective function in the
recent dynamic portfolio optimization literature, and (as noted above) is especially popular
in applications in institutional settings, we correspondingly focus on comparing the terminal
wealth distributions in the case of MV optimization, leaving other formulations for our future
work.

In the next two lemmas, we focus on the skewness and (excess) kurtosis of the target
wealth distribution, since these are the quantities typically included in portfolio optimization
problems that generalize MV optimization to include higher-order moments; see, for example,
Jurczenko, Maillet, and Merlin (2012). We remind the reader, that as discussed in Goetzmann
et al. (2002), dynamic trading strategies essentially contain embedded options. Hence it is
useful to compare the higher moments of the various strategies.D

ow
nl

oa
de

d 
04

/1
9/

21
 to

 1
29

.9
7.

16
7.

10
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MEAN-VARIANCE OPTIMAL TERMINAL WEALTH 585

Lemma 4.6 compares the skewness3 of the target terminal wealth distributions.

Lemma 4.6 (Comparison: Skewness). Assume that the conditions of Assumptions 3.1 and
4.1 are satisfied. The coefficients of skewness of the target wealth distributions,

Skeww0,t0=0

u\scrE \ast 
j

[W \scrE 
j (T )], j \in \{ p, d, c, cd, cp\} ,

are related as follows:

Skeww0,t0=0
u\scrE \ast 
p

\bigl[ 
W \scrE 

p (T )
\bigr] 
< 0 = Skeww0,t0=0

u\scrE \ast 
c

[W \scrE 
c (T )]

= Skeww0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T )](4.18)

< Skeww0,t0=0
u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T )
\bigr] 

(4.19)

\leq Skeww0,t0=0

u\scrE \ast 
cd

[W \scrE 
cd (T )] .(4.20)

Proof. From Lemma 3.6, it follows that

Skeww0,t0=0
u\scrE \ast 
p

\bigl[ 
W \scrE 

p (T )
\bigr] 
=  - 

\bigl( 
eAT  - 1

\bigr) 1
2
\bigl[ \bigl( 
eAT  - 1

\bigr) 
+ 3
\bigr] 
< 0 \forall A, T > 0,(4.21)

which, together with Lemma 3.4, implies (4.18). It follows from Lemma 4.2 that

Skeww0,t0=0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T )
\bigr] 
=

\biggl[ 
e(\^\sigma 

\scrE 
j )

2

+ 2

\biggr] 
\cdot 
\biggl[ 
e(\^\sigma 

\scrE 
j )

2

 - 1

\biggr] 1
2

, j \in \{ cd, cp\} ,(4.22)

which implies (4.19) and, together with (4.8), also implies (4.20).

Before discussing the implications of Lemma 4.6, we present the comparison of the excess
kurtosis of the target terminal wealth distributions.

Lemma 4.7 (Comparison: Excess kurtosis). Assume that the conditions of Assumptions 3.1
and 4.1 are satisfied. The coefficients of (excess) kurtosis of the target wealth distributions,
Kurtw0,t0=0

u\scrE \ast 
j

[W \scrE 
j (T )], j \in \{ p, d, c, cd, cp\} , are related as follows:

0 = Kurtw0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T )] = Kurtw0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T )](4.23)

<

\left\{   Kurtw0,t0=0
u\scrE \ast 
p

\bigl[ 
W \scrE 

p (T )
\bigr] 
,

Kurtw0,t0=0
u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T )
\bigr] 
\leq Kurtw0,t0=0

u\scrE \ast 
cd

[W \scrE 
cd (T )] .

(4.24)

Proof. Equation (4.23) follows from Lemma 3.4. Noting the factorization

e2AT  - 4e - AT + 6e - 3AT  - 3e - 4AT

= e - 4AT
\bigl( 
eAT  - 1

\bigr) 2 \Bigl[ \bigl( 
eAT  - 1

\bigr) 4
+ 6

\bigl( 
eAT  - 1

\bigr) 3
+ 15

\bigl( 
eAT  - 1

\bigr) 2
+ 16

\bigl( 
eAT  - 1

\bigr) 
+ 3
\Bigr] 
,

3We use the standard definition of Pearson's moment coefficient of skewness, which in this context is simply
given by Skeww0,t0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T )
\bigr] 
= Ew0,t0

u\scrE \ast 
j

[
\bigl( 
W \scrE 

j (T ) - \scrE 
\bigr) 3
]/[V arw0,t0

u\scrE \ast 
j

[W \scrE 
j (T )]]3/2.D
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we see that Lemma 3.6 implies that the excess kurtosis of W \scrE 
p (T ) is always positive,

(4.25)

Kurtw0,t0=0
u\scrE \ast 
p

\bigl[ 
W \scrE 

p (T )
\bigr] 
=
\bigl( 
eAT  - 1

\bigr) \Bigl[ \bigl( 
eAT  - 1

\bigr) 3
+ 6

\bigl( 
eAT  - 1

\bigr) 2
+ 15

\bigl( 
eAT  - 1

\bigr) 
+ 16

\Bigr] 
> 0.

In the case of CP and dTCMV, Lemma 4.2 implies that

Kurtw0,t0=0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T )
\bigr] 
= e4(\^\sigma 

\scrE 
j )

2

+ 2e3(\^\sigma 
\scrE 
j )

2

+ 3e2(\^\sigma 
\scrE 
j )

2

 - 6 > 0, j \in \{ cd, cp\} ,(4.26)

which, together with (4.8), implies (4.24).

Considering the results of Lemmas 4.6 and 4.7, we note that there is overwhelming evidence
in the literature that investors prefer positive skewness under very general assumptions; see, for
example, Agren (2006); Back, Crane, and Crotty (2018); Barberis and Huang (2008); Barberis,
Harvey, and Shephard (2016); Boyer, Mitton, and Vorkink (2010); Goetzmann and Kumar
(2008); Hagestande and Wittussen (2016); Heuson, Hutchinson, and Kumar (2020); Kumar
(2009); Maringer and Parpas (2009); Mitton and Vorkink (2007); Omed and Song (2014),
among many others. This appears to follow from an investor preference for the possibility of
a large gain (Agren (2006)), which may not be entirely rational (Omed and Song (2014)). In
contrast, the evidence on kurtosis preferences is far more complicated;4 see, for example, Haas
(2007). However, when portfolio optimization with higher-order moments is performed (see,
for example, Jurczenko, Maillet, and Merlin (2012)), kurtosis is usually minimized, suggesting
that lower kurtosis is preferred (Maringer and Parpas (2009)).

Based on these observations, the results of Lemmas 4.6 and 4.7 indicate that the excess
kurtosis and, especially, the negative skewness associated with the PCMV-optimal strategy
are at least somewhat undesirable from the perspective of an investor concerned with higher-
order moments. The desirable variance result reported in Lemma 4.4 for the PCMV strategy
therefore comes at the cost of other potentially undesirable shape characteristics. These
results therefore explain the numerical results reported in Forsyth and Vetzal (2019a), where
the increased left tail risk of the PCMV strategy compared to the cTCMV and CP strategies
is observed.

We also observe that the dTCMV strategy not only results in the largest (positive)
skewness but also is associated with the largest variance and the largest excess kurtosis.
The normally distributed terminal wealth of the DOMV and cTCMV strategies results in
zero skewness and excess kurtosis, as expected. Therefore, for an investor concerned with the
first four moments, the cTCMV strategy is always to be preferred to the DOMV strategy,
since the associated target terminal wealth distributions have the same mean (Assumption
4.1) and the same skewness and kurtosis (Lemmas 4.6 and 4.7), but the cTCMV strategy has
a lower variance (Lemma 4.4).

Finally, we note the interesting fact that the skewness and kurtosis results for the CP and
dTCMV strategies depends on the target \scrE , but this is not the case for the PCMV, cTCMV,
and DOMV strategies. As discussed in section 5, this has some interesting consequences.

4As Haas (2007) notes, ``while risk aversion implies that investors dislike large losses more than they like
large profits, kurtosis aversion requires that they dislike fat tails more than they like high peaks.""D
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Given the preceding results on skewness and kurtosis, and the fact that as per Assumption
4.1 all the target distributions considered in this section have identical means \scrE , the comparison
of the median terminal wealth outcomes, given in the following lemma, is instructive. All
else being equal, investors are expected to prefer larger median values (Forsyth, Vetzal, and
Westmacott (2019)).

Lemma 4.8 (Comparison: Medians). Assume that the conditions of Assumptions 3.1 and
4.1 are satisfied. The medians of the target wealth distributions,

Medw0,t0=0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T )
\bigr] 
, j \in \{ p, d, c, cd, cp\} ,

are related as follows:

Medw0,t0=0

u\scrE \ast 
cd

[W \scrE 
cd (T )] \leq Medw0,t0=0

u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T )
\bigr] 

(4.27)

< Medw0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T )]

= Medw0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T )](4.28)

= \scrE 
< Medw0,t0=0

u\scrE \ast 
p

\bigl[ 
W \scrE 

p (T )
\bigr] 
.(4.29)

Proof. Since Medw0,t0=0

u\scrE \ast 
j

[W \scrE 
j (T )] = \scrE \cdot exp\{  - 1

2(\^\sigma 
\scrE 
j )

2\} for j \in \{ cd, cp\} , results (4.27) and

(4.28) follow from Lemmas 3.4 and 4.2. Using Lemma 3.5 and (4.2), it can be shown that

Medw0,t0=0
u\scrE \ast 
p

\bigl[ 
W \scrE 

p (T )
\bigr] 
= \scrE +

\Biggl( 
1 - e - 

1
2
AT

eAT  - 1

\Biggr) \bigl( 
\scrE  - w0e

rT
\bigr) 
.(4.30)

By Assumption 4.1,
\bigl( 
\scrE  - w0e

rT
\bigr) 
> 0, so (4.30) implies (4.29).

On the basis of median terminal wealth, Lemma 4.8 shows that the investor would prefer
the CP strategy to the dTCMV strategy and prefer either the cTCMV or the DOMV strategy
to the CP strategy, while the PCMV strategy dominates all other strategies in terms of
median wealth. This conclusion therefore provides an analytical explanation of the numerically
calculated median results reported in Forsyth and Vetzal (2019a) and Forsyth, Vetzal, and
Westmacott (2019).

The following lemma reports the analytical expressions of the cumulative distribution
functions (CDFs) of W \scrE 

j (T ), for j \in \{ p, d, c, cd, cp\} .

Lemma 4.9 (CDFs: Target terminal wealth distributions). Assume that the conditions of
Assumptions 3.1 and 4.1 are satisfied. Then the CDFs of the target terminal wealth W \scrE 

j (T ),D
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for j \in \{ p, d, c, cd, cp\} , are as follows:

\BbbP w0,t0=0
u\scrE \ast 
p

\bigl[ 
W \scrE 

p (T ) \leq w
\bigr] 

(4.31)

=

\left\{     \Phi 

\biggl( 
 - 1\surd 

AT
\cdot log

\biggl[ 
1 - 

\biggl( 
1 - e - AT

\scrE  - w0erT

\biggr) \bigl( 
w  - w0e

rT
\bigr) \biggr] 

 - 3

2

\surd 
AT

\biggr) 
if w <

\Biggl( 
\scrE  - w0e

(r - A)T

1 - e - AT

\Biggr) 
,

1 otherwise

and

\BbbP w0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T ) \leq w] = \Phi 

\Biggl( 
(w  - \scrE )

\scrE  - w0erT
\cdot 

\sqrt{} 
2 (eAT  - 1)

(eAT + 1)

\Biggr) 
, w \in \BbbR ,(4.32)

\BbbP w0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T ) \leq w] = \Phi 

\biggl( 
(w  - \scrE )

(\scrE  - w0erT )
\cdot 
\surd 
AT

\biggr) 
, w \in \BbbR ,(4.33)

\BbbP w0,t0=0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T ) \leq w
\bigr] 
= \Phi 

\left(   log (w/\scrE ) + 1
2

\Bigl( 
\^\sigma \scrE 
j

\Bigr) 2
\^\sigma \scrE 
j

\right)   , w > 0, j \in \{ cd, cp\} ,(4.34)

where we recall that \Phi (\cdot ) denotes the standard normal CDF.

Proof. This follows from the results of Lemmas 3.4 and 3.5, as well as the definitions (4.1)
and (4.9).

The remaining results of this section make use of the analytical expressions of the CDFs of
W \scrE 

j (T ) given in Lemma 4.9. However, considering the results (4.31)--(4.34), it is clear that the
distribution of the PCMV-optimal target terminal wealth W \scrE 

p (T ) in (4.31) is fundamentally
different and far more analytically challenging than the distributions of the target terminal
wealth under the other strategies.

We leave further analysis of the PCMV target wealth distribution for our future work, and
instead focus on the strategies j \in \{ d, c, cd, cp\} in the subsequent analysis. The reason is that
in practice it is simply far easier to use (4.31) to numerically calculate and compare desired
quantities of interest involving the PCMV target wealth, rather than to derive analytical
comparison results which would be significantly more complex and cumbersome to use. By
contrast, as we show subsequently, we can derive a number of simple comparison results for
strategies j \in \{ d, c, cd, cp\} , which has very interesting and potentially far-reaching implications
for the MV investor.

We now recall the concept of first-order stochastic dominance by applying the definition
given in Joshi and Paterson (2013) in our setting.

Definition 4.10 (first-order stochastic dominance). W \scrE 
j (T ) has first-order stochastic

dominance over W \scrE 
k (T ) for some j, k \in \{ p, d, c, cd, cp\} if

\BbbP w0,t0
u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T ) \leq w
\bigr] 
\leq \BbbP w0,t0

u\scrE \ast 
k

[W \scrE 
k (T ) \leq w] \forall w(4.35)D
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and if

\BbbP w0,t0
u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T ) \leq w
\bigr] 
< \BbbP w0,t0

u\scrE \ast 
k

[W \scrE 
k (T ) \leq w] for some w.(4.36)

We observe that Definition 4.10 is a very general result, since it implies that any investor
preferring more wealth to less wealth (i.e., any investor with an increasing utility function)
would prefer W \scrE 

j (T ) over W \scrE 
k (T ) if (4.35)--(4.36) are satisfied.

Remark 4.11 (practical challenges of applying Definition 4.10). While very general, the
conditions of Definition 4.10 can be impossible to satisfy in the case of nontrivial investment
strategies, including the strategies considered in this paper. In particular, note that (4.35) is
required to hold for all values of w. Therefore, even when comparing two relatively simple
strategies, for example, (i) the CP strategy defined in (2.12), and (ii) the strategy of regularly
participating in a lottery with a sufficiently large payout (not conventionally considered an
``investment strategy,"" with good reason), condition (4.35) would be violated despite the fact
that strategy (ii) is unlikely to be preferred by any reasonable investor over strategy (i).
However, relaxing condition (4.35) by requiring that it holds only for values of w below a
certain level is particularly useful, in that it would readily show that strategy (i) is to be
preferred over strategy (ii) in this simple example.

As a result of the observations in Remark 4.11, the weaker definition of stochastic dominance
proposed by Atkinson (1987) is adapted to our setting and is given by Definition 4.12.

Definition 4.12 (partial first-order stochastic dominance relative to a level \ell ). Let j, k \in 
\{ p, d, c, cd, cp\} . We define W \scrE 

j (T ) as having partial first-order stochastic dominance over
W \scrE 

k (T ) relative to a level \ell if

\BbbP w0,t0
u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T ) \leq w
\bigr] 
\leq \BbbP w0,t0

u\scrE \ast 
k

[W \scrE 
k (T ) \leq w] \forall w < \ell .(4.37)

Note that Definition 4.12 focuses on ``downside risk"" in that (4.37) is only concerned with
the behavior of the CDFs below the given level \ell . In what follows, we typically set \ell equal
to the investor's expected value target \scrE . In other words, we assume that the investor is
primarily concerned with the possibility of underperforming the expected value target while
considering the ``upside"" of outcomes above \scrE as a satisfying windfall, but this is not critical
for investment strategy comparison purposes. We argue that this treatment is reasonable
given the popularity of dynamic MV strategies in institutional settings,5 especially in the case
of pension fund managers and insurance companies who are likely to take a keen interest in
avoiding the underperformance of expectations.

Using Definition 4.12, the following theorem gives one of the key results of this paper.

Theorem 4.13 (partial first-order stochastic dominance for underperforming expectations).
Assume that the conditions of Assumptions 3.1 and 4.1 are satisfied. We have the following
relationships between the CDFs of W \scrE 

j (T ) for j \in \{ d, c, cd, cp\} :

\BbbP w0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T ) \leq w] < \BbbP w0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T ) \leq w] \forall w < \scrE (4.38)

5See, for example, Alia, Chighoub, and Sohail (2016); Bi and Cai (2019); Liang, Bai, and Guo (2014); Liang
and Song (2015); Lin and Qian (2016); Sun, Li, and Zeng (2016); Vigna (2014); Wu and Zeng (2015), among
many others.D
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and

\BbbP w0,t0=0
u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T ) \leq w
\bigr] 
\leq \BbbP w0,t0=0

u\scrE \ast 
cd

[W \scrE 
cd (T ) \leq w] \forall w < \scrE .(4.39)

Furthermore, there exists a unique value of terminal wealth w0
cp;c \in (0, \scrE ), with the upper

bound

w0
cp;c <

\scrE  - w0e
rT

log (\scrE /w0) - rT
,(4.40)

such that

\BbbP w0,t0=0
u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T ) \leq w
\bigr] 
< \BbbP w0,t0=0

u\scrE \ast 
c

[W \scrE 
c (T ) \leq w] \forall w < w0

cp;c,(4.41)

\BbbP w0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T ) \leq w] < \BbbP w0,t0=0

u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T ) \leq w
\bigr] 

\forall w \in 
\bigl( 
w0
cp;c, \scrE 

\bigr] 
.(4.42)

Proof. Result (4.38) follows from (4.32)--(4.33), the relationship (4.16), and the fact that
\Phi is strictly increasing. To prove (4.39), we first note that

x log (z) - 1

2
xy2  - 1

2
x2y \leq 0 \forall x \geq 0, y \geq 0, z \leq 1.

The result (4.39) follows from setting y = \^\sigma \scrE 
cp, x = \^\sigma \scrE 

cd  - \^\sigma \scrE 
cp (so that x \geq 0, by (4.8)), and

z = w/\scrE , noting the definition (4.34) and using the fact that \Phi is strictly increasing. Next,
let x0cp;c be the unique root in the interval (0, 1) of the function x \rightarrow fpc;c (x; c1, c2), defined by

fpc;c (x; c1, c2) =

\biggl[ 
c1
c2

\biggr] 
\cdot log (x) - 

\biggl[ 
c1e

c2

ec2  - 1

\biggr] 
\cdot (x - 1) +

1

2
c2, x \in (0, 1] (c1 > 0, c2 > 0) .

Then (4.40)--(4.42) follows by setting w0
cp;c=\scrE \cdot x0cp;c, c1=AT, and c2=[log (\scrE /w0) - rT ].

The results of Theorem 4.13 are illustrated in Figures 4.2 and 4.3 below and provide
theoretical support for the qualitatively similar observations regarding the numerical results6

presented in Forsyth and Vetzal (2019a). We make the following observations regarding our
analytical results.

First, subject to the stated assumptions, any investor who is agnostic about the philosophy
underlying the different MV optimization approaches and simply concerned about the risk of
underperforming the expectation \scrE would never choose the DOMV or the dTCMV strategy,
since better results can be obtained using the cTCMV or the CP strategy, respectively. Note
that, as in the case of (4.38), we typically have strict inequality in (4.39) as well, since in
typical applications it is the case that \^\sigma \scrE 

cd > \^\sigma \scrE 
cp in (4.8).

Second, (4.41)--(4.42) indicates that the CP strategy is preferred to the cTCMV strategy
if we set the level \ell \leq w0

cp;c in Definition 4.12. Note that the upper bound (4.40) on w0
cp;c

is strictly (and often substantially) less than \scrE , so this bound can be very useful for a quick
assessment depending on the critical value of w under consideration in (4.41)--(4.42). This
behavior is to be expected, since wealth can assume negative values in the case of the cTCMV

6The numerical results in Forsyth and Vetzal (2019a) do not include the DOMV-optimal strategy.D
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strategy but not in the case of the CP strategy (see Lemma 3.4). However, the skewness
results of the target wealth distribution in the case of the CP strategy (see Lemmas 4.6 and
4.8) means that it starts (in aggregate probability) underperforming the cTCMV strategy
fairly quickly as \scrE is approached from below; see Figure 4.3.

For illustrative purposes, Figure 4.3 also includes the simulated CDF of the PCMV target
terminal wealth distribution. Compared to the CP and cTCMV strategies, it is clear that
the negative skewness (Lemma 4.6) and excess kurtosis (Lemma 4.7) in this case combine to
imply that the PCMV-optimal strategy holds substantial downside risks, as noted above.

-50 0 50 100 150 200 250

Terminal wealth

0

0.1

0.2

0.3

0.4

0.5

0.6

C
D

F

E = 250

cTCMV

DOMV

(a) cTCMV and DOMV

-50 0 50 100 150 200 250

Terminal wealth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
D

F

E = 250

dTCMV

CP

(b) CP and dTCMV

Figure 4.2. Illustration of the results of Theorem 4.13: CDFs of W \scrE 
j (T ), j \in \{ d, c, cd, cp\} , all with the

same expected value \scrE = 250. w0 = 100, t0 = 0, T = 10, w0e
rT = 106.43. Other parameters as in section 5.
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Terminal wealth

0

0.1
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cTCMV

PCMV

w
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0

(a) cTCMV, CP, and PCMV

-100 -50 0 50 100

Terminal wealth

0

0.05

0.1

0.15

C
D

F

PCMVcTCMV

CP

w
cp;c

0

(b) Same as figure (a) on the left, with
left tail enlarged

Figure 4.3. Illustration of the results of Theorem 4.13: CDFs of W \scrE 
j (T ), j \in \{ p, c, cp\} , all with the same

expected value \scrE = 250. w0 = 100, t0 = 0, T = 10, other parameters as in section 5. The value of w0
cp;c in

(4.41)--(4.42) is indicated in both figures.

Up to this point, we have only focused on the expectation \scrE of the target terminal
wealth distribution. However, the expectation conditional on W \scrE 

j (T ) being below the risk-free

investment outcome w0e
rT or simply conditional on underperforming the expectation targetD
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\scrE is also likely to be of particular interest to the investor. The following lemma summarizes
the conditional expectation results for the investment strategies j \in \{ d, c, cd, cp\} .

Lemma 4.14 (conditional expectations of target terminal wealth distributions). Assume that
the conditions of Assumptions 3.1 and 4.1 are satisfied, and let \phi (\cdot ) and \Phi (\cdot ) be the PDF
and CDF of the standard normal distribution, respectively. The conditional expectations of
W \scrE 

j (T ), given that W \scrE 
j (T ) \leq w, for j \in \{ d, c, cd, cp\} , are as follows:

(4.43)

Ew0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T )| W \scrE 

d (T ) \leq w] = \scrE  - 

\sqrt{} 
(eAT + 1)

2 (eAT  - 1)
\cdot 
\bigl( 
\scrE  - w0e

rT
\bigr) \phi \Bigl( (w - \scrE )

\scrE  - w0erT
\cdot 
\sqrt{} 

2(eAT - 1)
(eAT+1)

\Bigr) 
\Phi 
\Bigl( 

(w - \scrE )
\scrE  - w0erT

\cdot 
\sqrt{} 

2(eAT - 1)
(eAT+1)

\Bigr) ,
(4.44)

Ew0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T )| W \scrE 

c (T ) \leq w] = \scrE  - 1\surd 
AT

\cdot 
\bigl( 
\scrE  - w0e

rT
\bigr) \phi \Bigl( (w - \scrE )

\scrE  - w0erT
\cdot 
\surd 
AT
\Bigr) 

\Phi 
\Bigl( 

(w - \scrE )
\scrE  - w0erT

\cdot 
\surd 
AT
\Bigr) ,

(4.45)

Ew0,t0=0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T )
\bigm| \bigm| W \scrE 

j (T ) \leq w
\bigr] 
= \scrE \cdot 

\Phi 

\biggl( 
\mathrm{l}\mathrm{o}\mathrm{g}(w/\scrE ) - 1

2(\^\sigma 
\scrE 
j )

2

\^\sigma \scrE 
j

\biggr) 
\Phi 

\biggl( 
\mathrm{l}\mathrm{o}\mathrm{g}(w/\scrE )+ 1

2(\^\sigma 
\scrE 
j )

2

\^\sigma \scrE 
j

\biggr) , j \in \{ cd, cp\} .

Proof. This follows from Lemma 3.4 and Assumption 4.1.

We now use the results of Lemma 4.14 to compare the expectations of the target terminal
wealth distributions conditional on W \scrE 

j (T ) \leq w, for any w < \scrE , where j \in \{ d, c, cd, cp\} . The
results, given in Lemma 4.15, are intuitively expected given the results up to this point.

Lemma 4.15 (Comparison: Conditional expectations for underperforming target \scrE ). Assume
that the conditions of Assumptions 3.1 and 4.1 are satisfied. The conditional expected values of
W \scrE 

j (T ), conditional on W \scrE 
j (T ) \leq w, where w < \scrE and j \in \{ d, c, cd, cp\} , satisfy the following:

Ew0,t0=0

u\scrE \ast 
d

[W \scrE 
d (T )| W \scrE 

d (T ) \leq w] < Ew0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T )| W \scrE 

c (T ) \leq w] \forall w < \scrE ,(4.46)

Ew0,t0=0

u\scrE \ast 
cd

[W \scrE 
cd (T )| W \scrE 

cd (T ) \leq w] \leq Ew0,t0=0
u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T )
\bigm| \bigm| W \scrE 

cp (T ) \leq w
\bigr] 

\forall w \in (0, \scrE ) .(4.47)

Proof. The inverse Mills ratio \lambda (x) := \phi (x) /\Phi (x) is strictly decreasing for all x \in \BbbR , with
\lambda \prime (x) \in ( - 1, 0) for all x. Since \lambda \prime (x) =  - \lambda (x) [x+ \lambda (x)] and \lambda (x) > 0 for all x, we have, in
particular, x+ \lambda (x) > 0 for all x < 0. Therefore, we have

d

dx

\biggl[ 
1

x
\lambda (x)

\biggr] 
<  - 1

x2
[x+ \lambda (x)] < 0 \forall x < 0,(4.48)

so that the function 1
x\lambda (x) is strictly decreasing for all x < 0. Considering (4.43) and (4.44),

together with the requirement that w < \scrE and the inequality (4.16), this is sufficient toD
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conclude (4.46). To prove (4.47), we fix some constant c \geq 0 and consider the auxiliary
function x \rightarrow f\Phi (x; c) defined by

f\Phi (x; c) =
\Phi 
\bigl( 
 - c

x  - 1
2x
\bigr) 

\Phi 
\bigl( 
 - c

x + 1
2x
\bigr) , x \geq 0 (c \geq 0) .(4.49)

We observe that f\Phi \geq 0, and f \prime 
\Phi (x; c) \leq 0 if and only if\biggl[ 

c

x2
 - 1

2

\biggr] 
\cdot \lambda 
\biggl( 
 - c

x
 - 1

2
x

\biggr) 
\leq 
\biggl[ 
c

x2
+

1

2

\biggr] 
\cdot \lambda 
\biggl( 
 - c

x
+

1

2
x

\biggr) 
, x \geq 0 (c \geq 0) .(4.50)

If
\bigl[ 

c
x2  - 1

2

\bigr] 
\leq 0, then (4.50) holds since \lambda (x) is positive and decreasing for all x \in \BbbR . If\bigl[ 

c
x2  - 1

2

\bigr] 
> 0 or, equivalently, c > 1

2x
2, the inequality (4.50) also holds since y \rightarrow 1

y\lambda (y) for
all y < 0 is decreasing as a result of (4.48). Therefore, since f\Phi (x; c) is decreasing in x \geq 0
for any fixed c \geq 0, the relationship (4.8) and expressions (4.45) imply the result (4.47).

The results of Lemma 4.15, while not making as general a statement as Theorem 4.13,
are arguably of more practical relevance to investors since its conclusions are simple and
intuitive to interpret. Informally, (4.46)--(4.47) simply state that when the investor is primarily
concerned with outcomes underperforming the target \scrE , the DOMV and dTCMV strategies
always lead to worse underperformance on average than the cTCMV and CP strategies,
respectively.

Note that Lemma 4.15 does not also provide a comparison of the conditional expectations
in the cases of CP and cTCMV. The reason is that such a comparison depends on the process
and investment parameters in a fairly complicated way, and we instead explore the relationship
between CP and cTCMV outcomes in more detail in the \alpha VaR results below. Here we simply
observe that since the cTCMV strategy can result in negative wealth outcomes, we do know
that for some sufficiently small value7 of w\delta > 0 we have

(4.51)

Ew0,t0=0
u\scrE \ast 
c

[W \scrE 
c (T )| W \scrE 

c (T ) \leq w] < Ew0,t0=0
u\scrE \ast 
cp

\bigl[ 
W \scrE 

cp (T )
\bigm| \bigm| W \scrE 

cp (T ) \leq w
\bigr] 

for w \in (0, w\delta ] ,

which turns out to be sufficient to explain the numerical results observed in section 5.
We introduce the following definition of the \alpha VaR and \alpha CVaR, which has been adapted

from the definition given in Forsyth, Vetzal, and Westmacott (2019) to our setting. Note that,
depending on the application, slightly different formulations are used in the literature (for
example, focusing on the ``loss distribution"" instead; see Miller and Yang (2017); Rockafellar
and Uryasev (2002)), but all these definitions have the same qualitative content.

Definition 4.16 (\alpha VaR and \alpha CVaR). Fix a level \alpha \in (0, 1). The VaR at level \alpha , or \alpha VaR,
is defined as the terminal wealth value \alpha VaRw0,t0

u\ast 
j

, where

\alpha VaRw0,t0
u\ast 
j

:= w\alpha such that \alpha \equiv \BbbP w0,t0
u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T ) \leq w\alpha 

\bigr] 
, j \in \{ p, d, c, cd, cp\} .(4.52)

7The value of w\delta should be sufficiently small in the context of all the investment and process parameters.
For example, in section 5 we give an example where w\delta > w0e

rT .D
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The CVaR (also known as the expected shortfall) at level \alpha , or \alpha CVaR, is the expected value
of terminal wealth W \scrE 

j (T ) given that it is below the level of the associated \alpha VaR. In other
words,

\alpha CVaRw0,t0
u\ast 
j

:= Ew0,t0
u\ast 
j

\Bigl[ 
W \scrE 

j (T )
\bigm| \bigm| W \scrE 

j (T ) \leq \alpha VaRw0,t0
u\ast 
j

\Bigr] 
, j \in \{ p, d, c, cd, cp\} .(4.53)

Note that according to Definition 4.16, all else being equal, smaller values of \alpha VaRw0,t0
u\ast 
j

and

\alpha CVaRw0,t0
u\ast 
j

represent a worse outcome for the investor than larger values. This qualitative

interpretation is of course the opposite of those examples in the literature, where these
quantities are defined in terms of the loss distribution.

Typical values of \alpha used in Definition 4.16 are fairly small, for example, \alpha = 0.05 (5\%) or
\alpha = 0.01 (1\%). However, the following lemma compares the \alpha VaR results for any choice of
\alpha \in (0, 0.5), since this interval is wide enough to ensure that all likely values of interest of \alpha 
will be included.

Lemma 4.17 (Comparison: \alpha VaR). Assume that the conditions of Assumptions 3.1 and 4.1
are satisfied. Fix a level \alpha \in (0, 0.5). The following comparison results hold for \alpha VaRw0,t0=0

u\ast 
j

,

j \in \{ d, c, cd, cp\} :

\alpha VaRw0,t0=0

u\scrE \ast 
d

< \alpha VaRw0,t0=0
u\scrE \ast 
c

\forall \alpha \in (0, 0.5) ,(4.54)

\alpha VaRw0,t0=0

u\scrE \ast 
cd

\leq \alpha VaRw0,t0=0
u\scrE \ast 
cp

\forall \alpha \in (0, 0.5) .(4.55)

Proof. This follows from the results of Theorem 4.13. However, a direct proof is instructive
due to the key role played by \alpha VaR in the risk management literature (Jorion (2009)). We
start by noting that the definition (4.52), together with the results of Lemma 4.9, implies that

\alpha VaRw0,t0=0

u\scrE \ast 
d

= \scrE +

\sqrt{} 
(eAT + 1)

2 (eAT  - 1)

\bigl( 
\scrE  - w0e

rT
\bigr) 
\cdot \Phi  - 1 (\alpha ) ,(4.56)

\alpha VaRw0,t0=0
u\scrE \ast 
c

= \scrE +
1\surd 
AT

\bigl( 
\scrE  - w0e

rT
\bigr) 
\cdot \Phi  - 1 (\alpha ) ,(4.57)

\alpha VaRw0,t0=0

u\scrE \ast 
j

= \scrE \cdot exp
\biggl\{ 
\^\sigma \scrE 
j \cdot \Phi  - 1 (\alpha ) - 1

2

\bigl( 
\^\sigma \scrE 
j

\bigr) 2\biggr\} 
, j \in \{ cd, cp\} .(4.58)

The result (4.54) therefore follows from (4.56)--(4.57) and the inequality (4.16), together with
the fact that \Phi  - 1 (\alpha ) < 0 for all \alpha < 0.5. Next, we observe that if \^\sigma \scrE 

cp = \^\sigma \scrE 
cd, then it is clear

that \alpha VaRw0,t0=0

u\scrE \ast 
cd

= \alpha VaRw0,t0=0
u\scrE \ast 
cp

. Assume therefore that \^\sigma \scrE 
cp < \^\sigma \scrE 

cd. Then (4.58) implies that

\alpha VaRw0,t0=0

u\scrE \ast 
cd

< \alpha VaRw0,t0=0
u\scrE \ast 
cp

for all \alpha > 0 such that \alpha < \Phi 
\bigl( 
1
2

\bigl[ 
\^\sigma \scrE 
cd + \^\sigma \scrE 

cp

\bigr] \bigr) 
. Observing that

0.5 < \Phi 
\bigl( 
1
2

\bigl[ 
\^\sigma \scrE 
cd + \^\sigma \scrE 

cp

\bigr] \bigr) 
, we see that the result (4.55) also holds.

Given the results of Theorem 4.13 and Lemma 4.17, as well as the fact that the \alpha VaR
might be of particular interest to investors, we analyze the \alpha VaR results for the CP and
cTCMV strategies in more detail. To this end, we give the following simple initial result.D
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Lemma 4.18 (Comparison: \alpha VaR for CP and cTCMV, a simple condition). Assume that the
conditions of Assumptions 3.1 and 4.1 are satisfied. Then

\alpha VaRw0,t0=0
u\scrE \ast 
c

< \alpha VaRw0,t0=0
u\scrE \ast 
cp

if \alpha < \Phi 

\biggl( 
 - \scrE 
(\scrE  - w0erT )

\cdot 
\surd 
AT

\biggr) 
.(4.59)

Proof. By Lemma 3.4, W \scrE 
c (T ) can assume negative values but W \scrE 

cp (T ) cannot. Therefore,

if \alpha is chosen such that \alpha VaRw0,t0=0
u\ast 
c

< 0, then it necessarily follows that \alpha VaRw0,t0=0
u\ast 
c

<

\alpha VaRw0,t0=0
u\ast 
cp

. The condition on \alpha in (4.59) follows from the expression for \alpha VaRw0,t0=0
u\scrE \ast 
c

in

(4.57), ensuring that \alpha VaRw0,t0=0
u\ast 
c

< 0.

The result of Lemma 4.18 is useful in that it is easy to verify, and if \alpha is small, the
condition (4.59) is often easily satisfied; for example, it is sufficient to explain the 1\%VaR
results for CP and cTCMV reported in section 5. However, if we consider more general values
for \alpha \in (0, 0.5), the comparison results of \alpha VaR for CP and cTCMV are more involved, as the
following lemma shows. Specifically, we give two conditions on the process and investment
parameters, either of which can be used to obtain more specific comparison results regarding
\alpha VaR for CP and cTCMV.

Lemma 4.19 (Comparison: \alpha VaR for CP and cTCMV). Assume that the conditions of
Assumptions 3.1 and 4.1 are satisfied. Furthermore, assume that the wealth process (2.1) and
investment parameters are such that either condition C1 or condition C2 is satisfied, where

(4.60)

C1 : log2
\biggl( 

\scrE 
w0erT

\biggr) 
\cdot exp

\biggl\{ 
 - 1

2AT
log2

\biggl( 
\scrE 

w0erT

\biggr) \biggr\} 
>

2

5

\surd 
AT

\biggl( 
\scrE  - w0e

rT

\scrE 

\biggr) 
,

(4.61)

C2 :
1\surd 
A T

\biggl[ 
log

\biggl( 
\scrE 
w0

\biggr) 
 - rT

\biggr] 2
\cdot exp

\Biggl\{ 
 - 1

2AT

\biggl[ 
log

\biggl( 
\scrE 
w0

\biggr) 
 - rT

\biggr] 2\Biggr\} 
>

2

5

\bigl( 
\scrE  - w0e

rT
\bigr) 

\scrE 
.

Then there exists a unique value \alpha cp;c \in (0, 0.5) such that

\alpha VaRw0,t0=0
u\scrE \ast 
c

< \alpha VaRw0,t0=0
u\scrE \ast 
cp

\forall \alpha \in (0, \alpha cp;c) ,(4.62)

\alpha VaRw0,t0=0
u\scrE \ast 
cp

< \alpha VaRw0,t0=0
u\scrE \ast 
c

\forall \alpha \in (\alpha cp;c, 0.5) ,(4.63)

while the difference [\alpha VaRw0,t0=0
u\scrE \ast 
c

 - \alpha VaRw0,t0=0
u\scrE \ast 
cp

] attains a maximum at \alpha \ast \in (\alpha cp;c, 1) given

by

\alpha \ast = \Phi 

\Biggl( \surd 
AT

log (\scrE /w0) - rT
\cdot log

\Biggl( 
1 - \scrE 

w0erT

log (\scrE /w0) - rT

\Biggr) 
+

1

2
\cdot log (\scrE /w0) - rT\surd 

AT

\Biggr) 
.(4.64)

Proof. From Lemma 4.18, we know that \alpha VaRw0,t0=0
u\ast 
c

< \alpha VaRw0,t0=0
u\ast 
cp

provided \alpha is sufficiently

small. From the results (4.57)--(4.58), it is clear that \alpha VaRw0,t0=0
u\ast 
cp

< \alpha VaRw0,t0=0
u\ast 
c

if \alpha = 0.5D
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and, by continuity, therefore also for some \epsilon -neighborhood of \alpha = 0.5. It is straightforward to
show that either of the relatively simple conditions (4.60)--(4.61) is sufficient to ensure that the
function \alpha \rightarrow [\alpha VaRw0,t0=0

u\scrE \ast 
c

 - \alpha VaRw0,t0=0
u\scrE \ast 
cp

] is strictly concave, so that the results (4.62)--(4.64)

follow.

The results of Lemma 4.19 are useful in providing an explanation of the numerical results
presented in section 5, where we encounter a particular example where both conditions (4.60)
and (4.61) are satisfied and \alpha cp;c \in (0.05, 0.1).

Given the recent interest in using \alpha CVaR as a risk measure in dynamic portfolio optimization
applications (see, for example, Forsyth (2020); Miller and Yang (2017)), the following lemma
compares the \alpha CVaR results for investment strategies j \in \{ d, c, cd, cp\} for any choice \alpha \in 
(0, 1). We highlight the fact that while the conditional expectation comparison (Lemma 4.15)
compares the results below a fixed wealth level regardless of the associated percentile, the
\alpha CVaR comparison in Lemma 4.20 considers the conditional expectations of wealth outcomes
below a fixed percentile (see Definition 4.16).

Lemma 4.20 (Comparison: \alpha CVaR). Assume that the conditions of Assumptions 3.1 and
4.1 are satisfied. Fix a level \alpha \in (0, 1). The following comparison results hold for \alpha CVaRw0,t0=0

u\ast 
j

,

j \in \{ d, c, cd, cp\} :

\alpha CVaRw0,t0=0

u\scrE \ast 
d

< \alpha CVaRw0,t0=0
u\scrE \ast 
c

\forall \alpha \in (0, 1) ,(4.65)

\alpha CVaRw0,t0=0

u\scrE \ast 
cd

\leq \alpha CVaRw0,t0=0
u\scrE \ast 
cp

\forall \alpha \in (0, 1) .(4.66)

Proof. Given Definition 4.16, the results of Lemma 4.15, and the results for \alpha VaRw0,t0=0

u\scrE \ast 
j

in (4.56)--(4.58), we have the following expressions for \alpha CVaRw0,t0=0
u\ast 
j

, j \in \{ d, c, cd, cp\} :

\alpha CVaRw0,t0=0

u\scrE \ast 
d

= \scrE  - 

\sqrt{} 
(eAT + 1)

2 (eAT  - 1)
\cdot 
\bigl( 
\scrE  - w0e

rT
\bigr) 
\cdot 
\phi 
\bigl( 
\Phi  - 1 (\alpha )

\bigr) 
\alpha 

,(4.67)

\alpha CVaRw0,t0=0
u\scrE \ast 
c

= \scrE  - 1\surd 
AT

\bigl( 
\scrE  - w0e

rT
\bigr) 
\cdot 
\phi 
\bigl( 
\Phi  - 1 (\alpha )

\bigr) 
\alpha 

,(4.68)

\alpha CVaRw0,t0=0

u\scrE \ast 
j

= \scrE \cdot 
\Phi 
\Bigl( 
\Phi  - 1 (\alpha ) - \^\sigma \scrE 

j

\Bigr) 
\alpha 

, j \in \{ cd, cp\} .(4.69)

Since \phi (x) > 0 for all x and \alpha > 0, the result (4.65) follows from the inequality (4.16) together
with (4.67)--(4.68). Second, (4.66) follows from (4.69) together with (4.8) and the fact that \Phi 
is strictly increasing.

The results of Lemma 4.20 are intuitively expected given the results of Lemmas 4.15 and
4.17. We do not provide a comparison of \alpha CVaR in the cases of CP and cTCMV, since such
a comparison is too cumbersome to be of much practical use---this can be seen by comparing
the requirement of Definition 4.16 with the \alpha VaR results in Lemma 4.19.

In the next section, we present numerical results illustrating the analytical results presented
in this section.D
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5. Numerical results. To obtain the numerical results presented in this section, we assume
a fixed initial wealth of w0 = 100 at time t0 \equiv 0, and an investment time horizon of
T = 10 years. The wealth dynamics (2.1) is parameterized using the same calibration
data and calibration techniques as detailed in Dang and Forsyth (2016); Forsyth and Vetzal
(2017a), which we now briefly summarize. In terms of the empirical data sources, the risky
asset data are based on inflation-adjusted daily total return data (including dividends and
other distributions) for the period 1926--2014 from the CRSP's VWD index,8 which is a
capitalization-weighted index of all domestic stocks on major US exchanges. The risk-free
rate is based on 3-month US T-bill rates9 over the period 1934--2014 and has been augmented
with the NBER's short-term government bond yield data10 for 1926--1933 to incorporate the
impact of the 1929 stock market crash. Prior to calculations, all time series were inflation-
adjusted using data from the US Bureau of Labor Statistics.11 Standard maximum likelihood
techniques are used to calibrate the GBM dynamics; see Dang and Forsyth (2016); Forsyth
and Vetzal (2017a) for more information regarding the relevant details. As a result, we obtain
the following parameters for use throughout this section:

(5.1) \mu = 0.0816, \sigma = 0.1863, r = 0.00623.

Table 5.1 presents the numerical results on various aspects of the target terminal wealth
distributions for two expected value targets, \scrE = 125 and \scrE = 250. Note that investing all
wealth in the risk-free asset over the entire time period [0, T ] results in a terminal wealth
of w0e

rT = 106.43. Therefore, the strategies associated with the target \scrE = 125 are quite
risk-averse but not to the extent that all wealth is invested in the risk-free asset. In contrast,
a target of \scrE = 250 requires a substantial investment in the risky asset during at least a
significant portion of the investment time period.

We make the following observations regarding the results in Table 5.1:
\bullet The role of the expected value target in shaping the results is worth highlighting.

Specifically, the larger the expected value target, the larger the investment required
in the risky asset, which magnifies the differences between the investment strategies,
as expected. As a result, for purposes of clarity we focus mostly on the results for the
target \scrE = 250 in the subsequent discussion.

\bullet The first-order stochastic dominance results of Theorem 4.13 are illustrated quite
dramatically in Table 5.1. It is clear from the results that, subject to the stated
assumptions under which these results were derived, no rational investor purely
interested in the terminal wealth distributions would pursue the DOMV-optimal or the
dTCMV-optimal strategy, since the cTCMV-optimal and CP strategies, respectively,
perform much better.

8Calculated based on data from the Historical Indexes 2015©, Center for Research in Security Prices
(CRSP), The University of Chicago Booth School of Business. Wharton Research Data Services was used in
preparing this article. This service and the data available thereon constitute valuable intellectual property and
trade secrets of WRDS and/or its third party suppliers.

9Data was obtained from http://research.stlouisfed.org/fred2/series/TB3MS.
10Data was obtained from the National Bureau of Economic Research (NBER) website, http://www.nber.

org/databases/macrohistory/contents/chapter13.html.
11The annual average CPI-U index, which is based on inflation data for urban consumers, was used; see

https://www.bls.gov/cpi.D
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\bullet The performance of the dTCMV-optimal strategy can be exceptionally poor. Of
course, while this has been established convincingly by the results presented in section
4, the sheer degree of the underperformance can be quite dramatic, as the case of
\scrE = 250 highlights. Observe, for example, that in this case the standard deviation of
W \scrE 

cd (T ) is more than two times that of W \scrE 
cp (T ), about four times that of W \scrE 

c (T ), and
more than six times that of W \scrE 

p (T ). The median of W \scrE 
cd (T ) is also exceptionally poor,

and there is a 45\% chance that W \scrE 
cd (T ) is below w0e

rT . Arguably the only redeeming
feature of W \scrE 

cd (T ) is the role of its log-normal distribution in limiting the downside
tail risk in the most extreme cases; this is illustrated by the 1\%VaR and 1\%CVaR
results. However, the same can be said of the corresponding CP strategy, which per
Theorem 4.13 performs much better overall than the dTCMV strategy. Since the poor
performance of the dTCMV strategy has also been confirmed in Forsyth and Vetzal
(2019a) using numerical experiments for the case where multiple realistic investment
constraints are applied simultaneously, there is some concern about the popularity
of applying the dTCMV approach in institutional settings in the literature (see, for
example, Bi and Cai (2019); Li and Li (2013), Liang, Bai, and Guo (2014); Sun, Li,
and Zeng (2016); Wang and Chen (2018, 2019); Long and Zeng (2016); Peng, Cui, and
Shi (2018); Zhang et al. (2017)).

\bullet The cTCMV-optimal strategy performs very well compared to the CP strategy by a
number of the measures considered, for example, standard deviation and the probability
that the terminal wealth will fall below w0e

rT or the target \scrE . However, the CP
strategy performs better where the extreme left tail of the distribution is concerned (for
example, the \alpha VaR and \alpha CVaR for \alpha \in \{ 1\%, 5\%\} ), which agrees with the numerical
results presented in Forsyth and Vetzal (2019a) and also confirms the analytical
conclusions of section 4, especially Theorem 4.13.

\bullet The PCMV-optimal strategy has the best performance in terms of the standard
deviation (Lemma 4.4) and also in terms of the median wealth (Lemma 4.8). However,
as observed in Forsyth and Vetzal (2019a), this performance comes at the cost of
increased left tail risk, as confirmed by our negative skewness and excess kurtosis
results for the distribution of W \scrE 

p (T ); see Lemmas 4.6 and 4.7. The implication in this
example is that the resulting 1\%VaR and 1\%CVaR are the worst of all the strategies
considered. However, this is only true for very extreme tail outcomes, since already
the 5\%VaR and 5\%CVaR associated with W \scrE 

p (T ) are the best of all the strategies
considered.

Finally, we note that while the numerical results presented in Table 5.1 illustrate the analytical
results of section 4, and are therefore also subject to Assumptions 3.1 and 4.1, the qualitative
observations regarding the relative performance of the different strategies are in agreement
with the observations from the relevant numerical results available in the literature. In
particular, we refer the reader to Forsyth and Vetzal (2017b, 2019a,b) and Forsyth, Vetzal, and
Westmacott (2019), where the portfolio optimization problems are solved numerically subject
to multiple realistic investment constraints being applied simultaneously. This illustrates that
our analytical results, while obtained under stylized assumptions regarding trading in the
underlying market, are nevertheless of practical use in explaining the performance of dynamic
MV-optimal investment strategies in a realistic setting.D
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Table 5.1
Numerical results related to the target terminal wealth distributions for two expected value targets, \scrE = 125

and \scrE = 250. Initial wealth w0 = 100, t0 = 0, and T = 10 years. ``Parameter"" reports the values of \gamma \scrE 
p ,

\rho \scrE 
d , \rho 

\scrE 
c , \rho 

\scrE 
cd/ (2w0), and \theta \scrE 

cp, respectively, for each strategy achieving the stated expected value target \scrE as per
(4.2)--(4.6). ``Prob.\leq k"" refers to the probability \BbbP w0,t0=0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T ) \leq k
\bigr] 
, and ``CExp.\leq k"" to the conditional

expectation Ew0,t0=0

u\scrE \ast 
j

\bigl[ 
W \scrE 

j (T )
\bigm| \bigm| W \scrE 

j (T ) \leq k
\bigr] 
, respectively, for j \in \{ p, d, c, cd, cp\} . Numbers rounded to nearest

integer except where doing so would obscure relevant information.

Quantity Target expected value \scrE = 125 Target expected value \scrE = 250
PCMV DOMV cTCMV dTCMV CP PCMV DOMV cTCMV dTCMV CP

Parameter 259 0.111 0.044 0.041 0.213 569 0.014 0.006 0.001 1.133

Mean 125 125 125 125 125 250 250 250 250 250

Median 127 125 125 124 124 269 250 250 123 200

Stdev 9 16 15 16 16 71 124 112 444 187

Skewness -15 0 0 0.4 0.4 -15 0 0 11 3

Ex.Kurtosis 1042 0 0 0.3 0.3 1042 0 0 487 15

1\% VaR 91 88 91 92 93 -15 -38 -11 8 42

5\% VaR 113 99 101 101 101 159 47 65 17 67

10\% VaR 119 105 106 105 106 206 92 106 27 85

1\% CVaR 63 82 86 89 89 -228 -80 -49 5 34

5\% CVaR 97 92 95 96 96 37 -5 19 11 52

10\% CVaR 107 97 100 99 100 112 33 53 17 64

Prob.\leq w0e
rT 3\% 12\% 10\% 11\% 11\% 3\% 12\% 10\% 45\% 17\%

Prob.\leq \scrE 26\% 50\% 50\% 53\% 53\% 26\% 50\% 50\% 72\% 63\%

CExp.\leq w0e
rT 87 99 100 100 100 -45 45 53 52 77

CExp. \leq \scrE 117 112 113 113 113 187 151 160 95 146

6. Conclusion. In this paper, we compared the terminal wealth distributions obtained
by implementing the optimal investment strategies associated with the different approaches
to dynamic MV optimization available in the literature. In particular, we considered the
precommitment MV (PCMV) approach, the dynamically optimal MV (DOMV) approach,
and the time-consistent MV approach with a constant risk-aversion parameter (cTCMV)
and wealth-dependent risk-aversion parameter (dTCMV), respectively. For comparison and
benchmarking purposes, a constant proportion (CP) strategy was also considered.

We introduced some simplifying assumptions regarding the underlying market in order to
analytically compare the resulting terminal wealth distributions on a fair basis. Specifically,
we assumed that the investor is agnostic about the philosophical differences underlying the
various approaches to MV optimization and simply wishes to achieve a chosen expected value
of terminal wealth regardless of the approach. We also assumed that the investor faced no
leverage constraints or transaction costs and could trade continuously in the market.

Subject to these assumptions, we presented first-order stochastic dominance results proving
that for wealth outcomes below the chosen expected value target, the cTCMV strategy always
outperforms the DOMV strategy, and the CP strategy always outperforms the dTCMV
strategy. We also showed that the dTCMV strategy performs exceptionally poorly among
the strategies considered according to a number of criteria, including variance and median
of terminal wealth, raising concerns regarding the popularity in the literature of applyingD
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the dTCMV strategy in institutional settings. Furthermore, we showed that the PCMV-
optimal terminal wealth distribution has fundamentally different characteristics than any of
the other strategies, including some characteristics which may be desirable (higher median,
lower standard deviation) and some which may be less desirable (large negative skewness and
excess kurtosis).

Our analytical results, while derived under simplifying assumptions, nonetheless prove
effective in explaining the numerical results incorporating realistic investment constraints
currently available in the literature

Finally, we leave further analysis of the PCMV-optimal target terminal wealth distribution,
extension of our results to solutions for multiple risky assets, and treatment of alternative
model specifications (e.g., jumps in the risky asset process and alternative model specifications)
for our future work.
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