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Abstract5

We determine the optimal asset allocation to bonds and stocks using an Annually Recalcu-6

lated Virtual Annuity (ARVA) spending rule for DC pension plan decumulation. Our objective7

function minimizes downside withdrawal variability for a given fixed value of total expected8

withdrawals. The optimal asset allocation is found using optimal stochastic control methods.9

We formulate the strategy as a solution to a Hamilton Jacobi Bellman (HJB) Partial Integro10

Differential Equation (PIDE). We impose realistic constraints on the controls (no shorting, no11

leverage, discrete rebalancing), and solve the HJB PIDEs numerically. Compared to a fixed12

weight strategy which has the same expected total withdrawals, the optimal strategy has a13

much smaller average allocation to stocks, and tends to de-risk rapidly over time. This conclu-14

sion holds in the case of a parametric model based on historical data, and also in a bootstrapped15

market based on the historical data.16

Keywords: DC pension plans, decumulation, optimal control, HJB equation, annually recal-17

culated virtual annuity18

1 Introduction19

Throughout the developed economies, defined benefit (DB) pension plans are disappearing. In an20

effort to reduce corporate risk exposures, firms are moving employees to defined contribution (DC)21

plans. In a typical DC plan, the employee and employer contribute a fraction of the employee’s22

annual salary to a tax-advantaged fund. The employee then can choose to invest the funds in a23

variety of investment vehicles. These usually include bond and equity index funds. A common24

default choice in the US is a Target Date Fund (TDF). In a TDF, the fraction invested in stocks25

declines over time in a prescribed manner, according to the anticipated retirement date.26

However, once employees reach retirement age, they are faced with constructing a decumulation27

strategy. In other words, pensioners then face the difficult problems of (i) calculating how much28

to withdraw from their investment portfolios each year; and (ii) determining their asset allocation29

strategies.30
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The shift to a DC plan transfers income and longevity risk from the firm to the plan member.31

The plan member is now exposed to investment risk during both the accumulation and decumulation32

phases, as well as longevity risk during decumulation. It might seem that use of an annuity would33

be a good strategy for decumulation, since this eliminates both of these risks during that phase.34

However, it is well known that when given a choice, few investors annuitize (Peijnenburg et al.,35

2016). While this has been traced to the investor’s desire to retain control over their portfolio,36

there are many other potential factors in play as well. For example, MacDonald et al. (2013) list37

more than three dozen reasons to avoid annuitization. Among these are the general lack of true38

inflation protection and the fact that in many cases, annuities are poorly priced in practice.39

A well-known decumulation strategy relies on the 4% rule. This can be traced to the work40

of Bengen (1994), which was based on historical backtests of a portfolio that had 50% invested41

in stocks and 50% invested in bonds, rebalanced annually. The final recommendation in Bengen42

(1994) was that withdrawing initially at a rate of 4% of the initial portfolio value and with succes-43

sive withdrawals adjusted for inflation was a safe strategy, in that the investor would have never44

run out of funds over any rolling 30-year historical period considered. More generally, there is a45

large academic literature on decumulation strategies. A small but representative sample includes46

Blake et al. (2003), Gerrard et al. (2004; 2006), Smith and Gould (2007), Milevsky and Young47

(2007), Freedman (2008), and Liang and Young (2018). For overviews of various strategies for48

decumulation, see MacDonald et al. (2013) and Bernhardt and Donnelly (2018).49

We emphasize that throughout this work we focus on real cash flows and real investment returns.50

This follows the tradition of sources such as Bengen (1994) who concentrated on inflation-adjusted51

withdrawals. The investment period we consider is sufficiently long that, even in a sustained52

environment of low inflation, the cumulative effects of inflation on purchasing power in the long53

run should not be ignored.54

Rather than specifying a strategy which withdraws a fixed real amount each year, we consider55

a strategy that responds to the actual investment experience. A recent suggestion is based on an56

Annually Recalculated Virtual Annuity (ARVA) (Waring and Siegel, 2015; Westmacott and Daley,57

2015). An ARVA rule can summarized as follows:58

“Each year, one should spend (at most) the amount that a freshly purchased annuity–59

with purchase price equal to the then-current portfolio and priced at the current interest60

rates and number of years of required cash flows remaining–would pay out in that year.”61

(Waring and Siegel, 2015, p. 91)62

The trade-off here is that real withdrawals will fluctuate in order to prevent the possibility of63

running out of cash. Of course, the downside is that in the event of very poor portfolio investment64

performance, the withdrawals may become minuscule (though the value of the ARVA portfolio65

will not drop to zero). Waring and Siegel (2015) justify this strategy by contending that DC plan66

decumulation is basically an annuitization problem. This does not require an actual annuity (hence67

the use of virtual in the ARVA designation), but does require annuity thinking. Note that longevity68

is taken into account in an approximate way by setting the current cash flow horizon to be the date69

at which 80% of the investors (at that time) have passed away. This is discussed in more detail70

later in this article.71

Waring and Siegel (2015) focus exclusively on the withdrawal rule, as opposed to the asset72

allocation strategy. Our objective here is to optimize the asset allocation strategy for an ARVA73

type decumulation rule. We consider two measures of performance:74

• The expected total real (i.e. inflation-adjusted) withdrawals over the lifetime of the strategy.75

• The expected downside variability of the withdrawals from one year to the next.76
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This results in a multi-objective optimization problem, which we solve using a scalarization ap-77

proach. In other words, for a fixed value of the expected total withdrawal, we find the strategy which78

gives us the smallest possible withdrawal variability. We formulate this problem as a Hamilton-79

Jacobi-Bellman (HJB) Partial Integro Differential Equation (PIDE), which we solve numerically.80

This allows us to impose realistic constraints on our strategy, i.e. no short-selling or leverage and81

infrequent (yearly) rebalancing.82

Of course, another reason to avoid annuitization is the desire to leave a bequest. This issue was83

discussed in Forsyth et al. (2019), where the decumulation problem was formulated based on fixed84

withdrawal amounts and the risk measure was based on the final wealth distribution. However, in85

principle, the ARVA spending rule is designed to spend down the investor’s wealth by the end of86

the cash flow horizon, so adding a risk measure based on terminal wealth conflicts with the ARVA87

philosophy.88

Using parameters of a stochastic model estimated from 90 years of market data, we compute89

and store the optimal strategy from the numerical solution of the HJB equation. We then use90

this strategy in Monte Carlo simulations to generate statistics of interest. One set of simulations91

is based on the same parametric stochastic model used to determine the investment strategy. We92

label this type of simulation the synthetic market. As a robustness check, we also use the stored93

strategy in historical bootstrap backtests. We refer to the market based on bootstrap resampling94

as the historical market. For comparison purposes, in addition to our optimal strategies we also95

test fixed weight strategies with ARVA withdrawals in both the synthetic and historical markets.96

The outline of this paper is as follows. Section 2 formulates the assumptions concerning the97

underlying stochastic processes. Section 3 defines the ARVA spending rule, and Section 4 gives a98

mathematical description of the optimal asset allocation problem. Section 5 describes the numerical99

method used to solve for the optimal asset allocation. Section 6 describes the data and calibration100

methods. A convergence test is given in Section 7. Illustrative results are provided in Sections101

8 and 9 for the synthetic and bootstrapped historical markets. Section 10 provides some general102

conclusions.103

2 Formulation104

For simplicity we assume that there are only two assets available in the financial market, namely a105

risky asset and a risk-free asset. In practice, the risky asset would be a broad equity market index106

fund. We assume that the investor’s allocation to these two assets is rebalanced periodically, not107

continuously.108

The investment horizon (i.e. the total time of the decumulation phase) is T . St and Bt re-109

spectively denote the amounts invested in the risky and risk-free assets at time t, t ∈ [0, T ]. The110

investor’s total wealth at time t is defined as111

Total wealth ≡Wt = St +Bt. (2.1)

To reduce subscript clutter, we will occasionally use the notation St ≡ S(t), Bt ≡ B(t) and112

Wt ≡W (t). Since we focus on real cash flows, St and Bt should be seen as being in real terms.113

In general, St and Bt will depend on the investor’s strategy over time, as well as changes in114

the real unit prices of these assets. Absent a control determined by the investor (i.e. withdrawing115

funds or rebalancing the portfolio), St and Bt will only change as a result of movements in real116

asset prices. In this case (absence of control), we assume that St follows a jump diffusion process117

under the objective measure (i.e. using real probabilities, not risk-neutral probabilities) of the form118
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119

dSt
St−

= (µ− ζξE [ξ − 1]) dt+ σ dZ + d

(
πt∑
i=1

(ξi − 1)
)
, (2.2)

where St− = limε→0+ St−ε, µ is the uncompensated drift rate, σ is the diffusive volatility, Z is120

a standard Brownian motion, πt is a Poisson process with positive intensity parameter ζξ, and121

ξi are i.i.d. positive random variables. We assume that ξi, πt, and Z are all mutually indepen-122

dent. Equation (2.2) augments standard geometric Brownian motion with occasional discontinuous123

jumps. Adding in jumps allows us to incorporate the effects of large market movements (e.g. market124

crashes) into our analysis. As we only consider cases where the portfolio is discretely rebalanced,125

the jump process models the cumulative effects of substantial changes in the real price of the risky126

asset between rebalancing times.127

When a jump occurs, St = ξSt− . We assume that log(ξ) follows a double exponential distribu-128

tion (Kou, 2002). Conditional on a jump occurring, pu is the probability of an upward jump, while129

pd = 1− pu is the chance of a downward jump. The density function for y = log(ξ) is130

f(y) = pu η1e
−η1y1y≥0 + pd η2e

η2y1y<0. (2.3)

Given (2.3), the expected value of the jump multiplier ξ is131

E[ξ] = pu η1
η1 − 1 + pd η2

η2 + 1 . (2.4)

Letting κ = E[ξ − 1], we can write equation (2.2) more informally as132

dSt
St−

= (µ− ζξκ) dt+ σ dZ + (ξ − 1) dQ (2.5)

where dQ = 1 with probability ζξ dt and dQ = 0 with probability 1− ζξ dt.133

In the absence of control, we assume that the dynamics of the amount Bt invested in the risk-free134

asset are simply135

dBt = rBt dt, (2.6)

where r is the constant real risk-free rate. This is obviously a gross simplification of the actual136

bond market, but it allows us to compute a relatively simple asset allocation strategy.137

Summarizing the model, we assume that there is a constant risk-free interest rate so that the138

amount invested in the risk-free asset is described by equation (2.6), apart from times when the139

investor either rebalances the portfolio or withdraws cash from it. Similarly excluding rebalances140

and withdrawals, the amount invested in the risky asset is described by the jump diffusion model141

(2.2). Equations (2.2) and (2.6) represent what we referred to earlier as the synthetic market. These142

equations are highly simplified models of actual stock and bond index processes. We use them to143

determine the asset allocation strategy in the synthetic market. We first evaluate the performance144

of the strategy using Monte Carlo simulations driven by the same underlying assumptions (i.e. in145

the synthetic market), but we subsequently assess the performance of the same strategy in the146

historical market, i.e. using bootstrapped historical bond and stock market returns. This second147

set of tests subjects the strategy to complications such as stochastic interest rates, correlations148

in stock and bond indices, and random changes in asset volatilities. As will be seen below, the149

performance of the strategy in the historical market is very similar to that found in the synthetic150

market, indicating that the parsimonious representation (2.2)-(2.6) suffices to determine an asset151

allocation strategy in our context.152
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3 ARVA Spending Rule153

The ARVA spending rule is based on the following idea. Each year, a virtual annuity is constructed154

based on the current portfolio value, the current number of remaining years of required cash flows,155

and the prevailing real interest rate. The withdrawal amount in a given year is then based on the156

fixed virtual annuity payment per year. The virtual annuity is recomputed each year, so the annual157

payments will fluctuate in response to the investment experience. In contrast to the ubiquitous 4%158

rule, ARVA is efficient, in the sense that all accumulated assets are withdrawn at the end of the159

period of required cash flows.160

Note that the ARVA rule is based on determining the number of years of remaining cash flows161

required, at each withdrawal time. As discussed by Waring and Siegel (2015) and Westmacott162

(2017), taking into account mortality can front load spending into periods when retirees are more163

active. Waring and Siegel (2015) observe that simply basing the virtual annuity on the remaining164

life expectancy results in very high front load spending with a rather large drop in spending in165

later years. Waring and Siegel end up suggesting a blend of current expected life expectancy and166

the maximum possible lifespan.167

We use the methods suggested in Westmacott (2017) to add a mortality boost to the ARVA168

spending rule. To avoid being overly conservative and assuming a maximum possible lifespan (117169

is the oldest recorded Canadian) we assume that retirees are merely in the top 20% as measured by170

longevity. Suppose that a retiree is x years old at t = 0. Assuming that the x+ t year old retiree171

is alive at time t, let T ∗x (t) be the time at which 80% of the cohort of x + t year olds have passed172

away, given that all members of the cohort were alive at time t. In other words, conditional on173

an investor being alive at time t, T ∗x (t) is the time at which there is just a 20% chance that this174

investor will still be alive.175

This rule provides some front end spending, while not reducing spending too precipitously176

during later years. The relative size of front load spending to back end spending can be adjusted177

by varying the fraction of the cohort assumed to have passed away. We emphasize that these178

spending rules are always based on assuming an annuity which pays out for the entire remaining179

years of required cash flows. This is, of course, not the same withdrawal amount as a currently180

purchased lifetime annuity (in general).181

Given the real interest rate r, the present value of a continuously paid annuity, which pays at182

a rate of one dollar per year, for (T ∗x (t)− t) years, is denoted by the annuity factor a(t) where183

a(t) = 1− exp[−r(T ∗x (t)− t)]
r

. (3.1)

Consequently, the continuous real annuity payment for T ∗x (t) − t years that can be purchased at184

time t with wealth W (t) is W (t)/a(t). Consider a set of withdrawal times T185

T ≡ {t0 = 0 < t1 < · · · < tM = T}, (3.2)

where t = 0 denotes the time that the x year old retiree begins to withdraw money from the DC186

plan. We specify that any two points of T are equidistant with ti−ti−1 = ∆t = T/M , i = 1, . . . ,M .187

In the following we will let ∆t = 1 year. If we restrict ourselves to annual payments at times ti,188

we can convert the continuous payment above into a lump sum received in advance of the interval189

[ti, ti+1]. The lump sum (i.e. the withdrawal at ti) is W (ti)A(ti), where the ARVA multiplier A(ti)190

is given by191

A(ti) =
∫ ti+1

ti

e−r(t
′−ti)

a(t) dt′ ,

withdrawal at ti = A(ti)W (ti) . (3.3)
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Figure 3.1: ARVA multiplier and spending amounts per year. The real interest rate r = .0048.
CPM 2014 mortality tables are used. The investor is assumed to be a 65 year old male at t = 0. In
panel (b), it is assumed that the initial portfolio value at t = 0 is W (0) = $1,000,000 and that the
portfolio is invested entirely in the risk-free asset. Mortality Effects: assumes equation (3.3) used. No
Mortality: fixed payments which exhaust all wealth after 30 years.

We use the CPM 2014 mortality tables (male) from the Canadian Institute of Actuaries1 to192

compute T ∗x (t) with x = 65.193

Figure 3.1(a) shows the ARVA multiplier A(ti) (assuming lump sum annual payments) for a194

Canadian male who begins withdrawing at age 65 at t = 0. As time passes T ∗x (t) − t shrinks,195

and so the ARVA multiplier becomes larger. In other words, given a fixed amount of wealth, the196

annuity that can be received based on 80% of ones cohort passing away becomes larger. Assuming197

an initial wealth of W (0) = $1,000,000, Figure 3.1(b) shows the withdrawal amounts per year198

based on the ARVA spending rule. The portfolio is entirely invested in the risk-free asset with an199

assumed real return of r = .004835, which was the average real return of one month US T-bills200

over the period 1926:1-2016:12 (see Section 6). Although A(ti) increases with ti, W (ti) decreases201

due to withdrawals. The net effect is that withdrawal amounts A(ti)W (ti) decrease with time. If202

mortality effects are ignored, then the real fixed lump sum yearly payment that precisely exhausts203

the initial wealth after 30 years would be about $34,650 per year.2204

We can see from Figure 3.1(b) that the ARVA rule with a mortality boost shifts spending to205

earlier years, but this comes at the cost of reduced spending compared to a fixed term annuity after206

about year 20, i.e. age 85 (assuming, of course, that the investor has not passed away). As points207

of reference, the CPM 2014 tables indicate that the probabilities that a 65 year old Canadian male208

attains the ages of 85, 95, or 100 are .58, .13, and .02 respectively.209

However, this pattern of reducing spending in the latter stages of retirement is perhaps not210

unreasonable. Studies show a decline in spending by about 1% per year after age 70, followed by a211

2% decline per year after age 80 (Vettese, 2018). More precisely, in the US total consumption stays212

fairly flat during retirement but the allocation to healthcare increases significantly to be the second213

1www.cia-ica.ca/docs/default-source/2014/214013e.pdf
2In contrast, assuming an initial capital of $1,000,000 a fairly priced real life annuity would generate about $49,960

per year. However, in the Canadian context real annuities are essentially unavailable. As of February 2019, online
posted rates for a life annuity (no guarantee) for a 65-year old Canadian male were in the range of $58,000 to $65,160
per year (nominal). A 2% annual inflation rate would reduce the real value of a payment of $60,000 to about $33,000
after 30 years.
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largest expense for those aged 91 and older.3 In Canada total consumption declines slightly on a214

per-adult basis by about 5% from early sixties to early seventies. The percentage of health-related215

spending does increase but from a low base of 3% to 6%.4 In summary, the data suggests that216

overall consumption declines from age 70, but the allocation to health and housing costs increases.217

The allocation to health care is a larger proportion of income in the US compared to Canada. In218

addition, in the Canadian context, deferring government benefits in terms of the Canada Pension219

Plan from age 65 to age 70 results in a 48% increase in annuity income. This deferred government220

annuity strategy can be used to offset the declining ARVA payments.221

Our objective is to improve these spending patterns with a high probability by investing the222

portfolio in a combination of risky and risk-free assets. The comparison with the fixed term annuity223

is not quite fair, since the ARVA with mortality effects will not exhaust the portfolio at t = 30. In224

fact, at t = 30, A(t = 30) = .24. This means that after the payment at age 95, which is 0.24 W (30),225

then 0.76 W (30) remains in the investment portfolio. If this portfolio is then invested in risk-free226

assets, three additional equal payments of 0.253 W (30) can be made at ages 96, 97, and 98. This227

will fund the retiree through to his 99th birthday.228

229

Remark 3.1. [ARVA and ruin] Note that the ARVA strategy has no possibility of ruin. However,230

the withdrawal amounts may be become very small. The use of T ∗x (t) to specify the remaining time231

of required cash flows allows us to front-end load spending in the early years of retirement, while232

allowing a reasonable buffer against longevity (i.e. the retiree has only a 20% chance of being alive233

at the end of the current annuity horizon). Note that this is a conditional probability, so that234

T ∗x (t) increases with t. In the original paper (Waring and Siegel, 2015), the authors suggest various235

possibilities for T ∗x (t), including the current life expectancy and the maximum possible lifespan.236

Waring and Siegel (2015) observe that use of current life expectancy results in a large front end237

spending, with a very rapid drop in spending in later years (provided the retiree is still alive).238

Westmacott (2017) suggests using the 20% rule as a way to shift spending to early years, while not239

causing too rapid a drop in spending in later years. Asset allocation strategies with fixed withdrawals240

and focusing on risk of ruin are analyzed in Forsyth et al. (2019).241

242

4 Optimization Problem243

Let T be the set of withdrawal/rebalancing times. At each ti ∈ T , the investor (i) withdraws an244

amount of cash Qi from the portfolio and then (ii) rebalances the portfolio. If the (unconstrained)245

ARVA rule is followed, then Qi = A(ti)W (ti), where A(ti) is defined in equation (3.3). As noted246

in the introduction, we consider a multi-objective problem which involves attempting to maximize247

reward while minimizing risk. This is in the spirit of mean-variance optimization, albeit using248

different measures of reward and risk. This general type of approach has been previously used by249

authors such as Freedman (2008) and Menoncin and Vigna (2017), among others. The obvious250

alternative would be to maximize some form of utility function. There are many possibilities here,251

including constant relative risk aversion (e.g. Milevsky and Young, 2007), constant absolute risk252

aversion (e.g. Liang and Young, 2018), recursive preferences (e.g. Blake et al., 2014), or habit253

formation (e.g. de Jong and Zhou, 2014). We do not pursue utility functions here, for several254

reasons. First, in some cases they would require additional parameters (e.g. separate parameters255

3https://www.vanguardcanada.ca/advisors/en/article/markets-economy/a-look-at-graying-populations
4https://www150.statcan.gc.ca/n1/en/pub/11f0027m/11f0027m2011067-eng.pdf?st=wqDBAi5o

7

https://www.vanguardcanada.ca/advisors/en/article/markets-economy/a-look-at-graying-populations
https://www150.statcan.gc.ca/n1/en/pub/11f0027m/11f0027m2011067-eng.pdf?st=wqDBAi5o


for risk-aversion and intertemporal substitution, in the case of recursive preferences). Second, a256

subjective discount rate often needs to be specified. This would have a similar effect as the mortality257

boost described above, i.e. it would tend to increase spending in earlier periods. Morever, such a258

parameter would be difficult to estimate. Third, some utility specifications are incompatible with259

the ARVA framework. For example, in the case of habit formation, “the habit serves as a floor in260

the required benefit level” (de Jong and Zhou, 2014, p. 37), and any benefit less than this level261

effectively results in an infinite loss of utility. On the other hand, as pointed out in Remark 3.1262

above, the ARVA framework effectively removes the probability of ruin by taking on the risk of263

extremely small withdrawals. Taken together, these various considerations lead us to avoid the use264

of utility functions in this work.265

As a measure of reward, we consider266

E

[
i=M∑
i=0

Qi

]
. (4.1)

Equation (4.1) is the expected sum of all real withdrawals. This captures the simple intuition that267

the investor seeks to maximize total real withdrawals. We do not explicitly consider the present268

value of the withdrawals because it is not clear what discount rate should be used given the risk269

of the withdrawals. The withdrawals are determined in part by the performance of an investment270

strategy having portfolio weights that change randomly over time, in response to realized past271

returns. As such, it is not possible to specify an appropriate discount rate.272

Our measure of risk is273

E

[
i=M∑
i=1

(
(Qi −Qi−1)−

)2]
, (4.2)

where (Qi − Qi−1)− ≡ min(Qi − Qi−1,0). This is a measure of the downside variability in with-274

drawals, and reflects the idea that the retiree generally wants to avoid year-to-year declines in275

withdrawals. However, keep in mind that applying the mortality boost as described in Section 3276

will tend to reduce withdrawals over time. These reductions will be reflected in the risk measure277

given in equation 4.2, even though they are in a sense a deliberate choice (from the mortality boost),278

not a consequence of poor investment allocation or performance. Overall, the investor wants to279

maximize reward (4.1) while minimizing risk (4.2). These are clearly conflicting goals, and we280

search for Pareto optimal strategies using a scalarization approach.281

Given a time dependent function h(t), we use the shorthand notation282

h+
i = h(t+i ) ≡ lim

ε→0+
h(ti + ε) ; h−i = h(t−i ) ≡ lim

ε→0+
h(ti − ε) ti ∈ T .

For ti ∈ T , let S−i = St−i
, S+

i = St+i
, B−i = Bt−i

, B+
i = Bt+i

Similarly, define total wealth as283

W−i = S−i +B−i and W+
i = S+

i +B+
i .284

Remark 4.1 (Relation to jump process (2.5)). Note that the jump process (2.5) is considered to285

apply only at times t /∈ T , while the notation W−i , W+
i refers to the times the instant before and286

after the rebalancing times t ∈ T . In other words, we suppose that the risky asset follows a jump287

diffusion process between rebalancing times (in the absence of control). Rebalancing is assumed to288

occur instantaneously, so that the probability of a jump ocurring in (t−i , t
+
i ) is zero. Informally, we289

suppose that during the interval (t−i ,t
+
i ), the risky asset value is frozen. As a concrete example, this290

would be the case if the investor (i) liquidated the risky asset and invested in riskless bonds just291

before the rebalancing time, and then (ii) purchased the desired amount of the risky asset just after292

the rebalancing time.293
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294

Define the state variable Q(t) for t ∈ (ti−1, ti) as Q(t) = Qi−1 for t ∈ (ti−1, ti). In other words,295

for any time between withdrawal dates, Q(t) represents the withdrawal amount at the previous296

withdrawal time. Finally, denote by X (t) = (S (t) , B (t) , Q(t)), t ∈ [0, T ], the multi-dimensional297

controlled underlying process, and let x = (s, b, q) be the realized state of the system.298

The control for our problem is the fraction allocated to equities at t+i , pi = pi(X−i , t
−
i ), where299

X−i = (S−i , B
−
i , Q

−
i ). Our optimization problem is then300

max
{p0,..., pM−1}

{
E

[
i=M∑
i=0

Qi

]
− λE

[
i=M∑
i=1

(
(Qi −Qi−1)−

)2]}

subject to


(St, Bt) follow processes (2.2)-(2.6); t /∈ T
Qi = min(AiW−i , Qmax)
W+
i = W−i −Qi ; S+

i = piW
+
i ; B+

i = (1− pi)W+
i ; t ∈ T

pi = pi(X−i , t
−
i ) ; pi ∈ Z ; Z = [0,1]

, (4.3)

where λ > 0 is the scalarization parameter, Ai ≡ A(ti) is defined in equation (3.3) and Z is the301

admissible set. In problem (4.3), we impose the constraints that no-shorting and no-leverage are302

permitted (i.e. pi ∈ Z = [0,1]). We also restrict the withdrawal amount to be at most Qmax in303

order to minimize the effects of large low probability withdrawals. We solve problem (4.3) using304

dynamic programming, working backwards from the investment horizon t = T to t = 0. Note that,305

given the control pi, then S+
i , B

+
i are entirely determined by quantities at t−i ,306

S+
i = pi(W−i −min(AiW−i , Qmax))

B+
i = (1− pi)(W−i −min(AiW−i , Qmax)) . (4.4)

307

In the interval (ti, ti+1), we define the value function V (s, b, q, t) as308

V (s, b, q, t) = max
p̂i+1

E

 M∑
k=i+1

Qk − λ
M∑

k=i+1

(
(Qk −Qk−1)−

)2 ∣∣∣∣S(t) = s,B(t) = b,Q(t) = q

 (4.5)

where p̂i+1 = {pi+1, . . . , pM−1}. For t ∈ (ti, ti+1), there are no external cash flows or controls309

applied, as well as no discounting (all quantities are real). Thus the tower property gives for310

h < (ti+1 − ti)311

V (s, b, q, t) = E

[
V (S(t+ h), B(t+ h), Q(t+ h), t+ h)

∣∣∣∣S(t) = s,B(t) = b,Q(t) = q

]
t ∈ (ti, ti+1 − h) . (4.6)

Assuming (St, Bt) follow the processes (2.2)-(2.6) and noting that Q(t) is constant in (ti, ti+1), Itô’s312

Lemma (for a jump diffusion) with h→ 0 gives the PIDE for V (s, b, q, t) in the interval (ti, ti+1):313

Vt + σ2s2

2 Vss + (µ− ζξκ)Vs − ζξV + rbVb +
∫ +∞

−∞
V (eys, b, q, t)f(y) dy = 0. (4.7)
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Across the rebalancing/withdrawal time (t−i , t
+
i ), the value function satisfies314

V (s, b, q, t−i ) = max
p′∈Z

{
V
(
p′ w+, (1− p′) w+, q+

i , t
+
i

)}
+ q+

i − λ
(
(q+
i − q)

−
)2

w− = s+ b

q+
i = min

(
Aiw

−, Qmax
)

w+ = w− − q+
i . (4.8)

Equations (4.8) can be simplified for implementation purposes. Define315

q+
i

(
w−
)

= min
(
Aiw

−, Qmax
)

w+ (w−) = w− − q+
i

(
w−
)

p∗i
(
w−
)

= arg max
p′∈Z

V
(
p′ w+ (w−) , (1− p′) w+ (w−) , q+

i

(
w−
)
, t+i

)
V̂i
(
w−
)

= V
(
p∗i
(
w−
)
w+ (w−) , (1− p∗i (w−)) w+ (w−) , q+

i

(
w−
)
, t+i

)
(4.9)

so that across the rebalancing time (t−i , t
+
i ) we have316

V (s, b, q, t−i ) = V̂i
(
w−
)

+ q+
i

(
w−
)
− λ

((
q+
i

(
w−
)
− q

)−)2
. (4.10)

Equation (4.10) shows that the optimal rebalancing fraction pi
(
s, b, q, t−i

)
= p∗

(
w−, t−i

)
is a317

function of only w− = (s+ b) and time. Note that this contrasts with typical glide path strategies318

in to and through target date funds, where the fraction invested in equities is a function of time319

only (Forsyth et al., 2019).320

5 Numerical Method321

We use dynamic programming to solve the optimization problem (4.3) on the computational domain322

Ω = (s,b,q,t) ∈ [smin, smax]× [0, bmax]× [0, qmax]× [0, T ]. At t = T we have323

V (s, b, q, T+) = 0; (s, b, q, T ) ∈ Ω. (5.1)

We use equation (4.8) to advance the solution (backwards in time) from t+i → t−i . Then we use324

equation (4.7) to advance the solution (backwards in time) from t−i → t+i−1.325

We discretize the intervals [0, bmax] and [0, qmax] using an unequally spaced grid having nb × nq326

nodes. The (constrained) ARVA spending rule means that 0 ≤ q ≤ qmax. Setting qmax = Qmax,327

then no boundary conditions are required at q = 0, qmax. We simply solve the PIDE (4.7) along the328

planes q = 0 and q = qmax. Similarly, the ARVA spending rule and the no-leverage constraint imply329

that b ≥ 0. In addition, we artificially set the interest payments to zero at b = bmax. We then solve330

PIDE (4.7) along the b = 0 plane. We solve PIDE (4.7) (setting the term rbVb to zero) along the331

b = bmax plane. We use the Fourier-based method described in Forsyth and Labahn (2019) with332

an equally spaced x = log s grid in the s direction with nx nodes. To avoid wrap-around pollution,333

we use a buffer zone where we extend the solution by constant values for s < smin, s > smax,334

as described in Forsyth and Labahn (2019). More precisely, V (s < smin,b,q, t) = V (smin, b,q,t)335

and V (s > smax,b,q, t) = V (smax, b,q,t), which is imposed at the end of each timestep. The336

local maximization problem in equation (4.8) is solved using exhaustive search by discretizing337

the admissible range of p using an equally spaced grid with nb nodes. Linear interpolation is338
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used to evaluate V (·) at off-grid points. For further details, see Forsyth and Labahn (2019) and339

Dang and Forsyth (2014). Choosing smax, bmax sufficiently large will result in the effect of the340

artificial boundary conditions being small in regions of interest. We will verify this in our numerical341

experiments.342

In order to determine343

E

[
i=M∑
i=0

Qi

]
; E

[
i=M∑
i=1

(
(Qi −Qi−1)−

)2] (5.2)

separately, we solve an additional PIDE for U(s,b,q,t) defined by344

U(s, b, q, t) = E{p∗i+1,...,p
∗
M−1}

 M∑
k=i+1

Qk

∣∣∣∣S(t) = s,B(t) = b,Q(t) = q

 ; t ∈
(
t+i , t

−
i+1

)
. (5.3)

where p∗i (s+b, t−i ) are the optimal controls determined from equation (4.10). Across the rebalancing345

times (t−i , t
+
i ) we have346

U(s, b, q, t−i ) = U
(
p∗iw

+, (1− p∗i )W+, q+
i

(
w−
)
, t+i

)
+ q+

i

(
w−
)

w− = (s+ b); w+ = w− − q+
i

(
w−
)
. (5.4)

At t = T , we have the initial condition347

U(s, b, q, T+) = 0; (s, b, q, T ) ∈ Ω. (5.5)

From t−i → t+i−1, we have348

Ut + σ2s2

2 Uss + (µ− ζξκ)Us − ζξU + rbUb +
∫ +∞

−∞
U(eys, b, q, t)f(y) dy = 0. (5.6)

Given an initial portfolio value W0 along with V (0,W0, 0, 0−) and U(0,W0, 0, 0−), it is straightfor-349

ward to determine the quantities of interest in equation (5.2).350

6 Data and Parameters351

The data we use was obtained from Dimensional Returns 2.0 under licence from Dimensional Fund352

Advisors Canada. In particular, we use the Center for Research in Security Prices Deciles (1-10)353

index. This is a total return value-weighted index of US stocks. We also use one month Treasury354

bill returns for the risk-free asset. Both the equity returns and the Treasury bill returns are in355

nominal terms, so we adjust them for inflation by using the US CPI index. All of the data used356

was at the monthly frequency, with a sample period of 1926:1 to 2016:12.357

To avoid known problems with other approaches, we use the method described in Dang and358

Forsyth (2016) and Forsyth and Vetzal (2017) based on the thresholding technique of Mancini359

(2009) and Cont and Mancini (2011). A tuning parameter α is required which, in intuitive terms,360

identifies a jump if the absolute value of the detrended log return is more than ασ
√

∆t, where361

σ is the annualized diffusive volatility and ∆t is the time interval (measured in years) between362

observations of the data series. Table 6.1 shows the estimated parameters of process (2.2) for the363

real stock return index, with α = 3. The (uncompensated) drift parameter µ is a bit below 9%,364

the diffusive volatility σ is around 15%, and jumps are expected occur about once every 1/ζξ ≈ 3365
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Real CRSP Value-Weighted Index

µ σ ζξ pu η1 η2
0.08753 0.14801 0.34065 0.25806 4.67877 5.60389

Real 1-Month Treasury Bill Index

Mean return Volatility Correlation
0.004835 0.018920 0.06662

Table 6.1: Annualized parameter estimates for jump diffusion model (see equation (2.2)) of the real
CRSP value-weighted equity index and mean annualized real rate of return for 1-month US Treasury
bills (log[B(T )/B(0)]/T ). Also reported are the annualized volatility of the real rate of return for
Treasury bills and the correlation between real returns for the Treasury bill and value-weighted equity
indexes. Sample period 1926:1 to 2016:12. Data obtained from Dimensional Returns 2.0 under licence
from Dimensional Fund Advisors Canada.

years. Downward jumps are almost three times as likely to occur as upward jumps, and the average366

magnitude of an upward jump (1/η1) is a bit higher than the average magnitude of a downward367

jump (1/η2). Table 6.1 also shows that the estimated value of r for the bond process (2.6) (i.e.368

the average annual return) is 0.4835%. For information purposes, we also provide the volatility of369

the real Treasury bill index return as well as its correlation with the equity market index. The370

volatility is quite low (less than 2%), and the two return series have slightly positive correlation371

over the sample period from 1926:1 to 2016:12.372

7 Convergence Test373

We begin by conducting a convergence test of our numerical method. We consider the scenario374

documented in Table 7.1. Monetary units in the table are in thousands of dollars, so that the initial375

portfolio value W0 = 1,000 implies an initial wealth of $1 million. The investor withdraws cash376

immediately and at the end of each of the next 30 years, and is not permitted to withdraw more than377

$100,000 per year. The portfolio is rebalanced annually, at the cash withdrawal times. As indicated378

in Table 7.1, the market parameters used are from Table 6.1. The summary statistics provided379

here are based on the average expected withdrawal Q̄ and the average withdrawal variability V̄q.380

These two quantities are defined as follows:381

Average expected withdrawal = Q̄ = 1
M + 1 E

[
i=M∑
i=0

Qi

]

Average withdrawal variability = V̄q =

√√√√E [ 1
M

i=M∑
i=1

((Qi −Qi−1)−)2
]

(Qi −Qi−1)− = min (Qi −Qi−1, 0) . (7.1)

We take the square root in equation (7.1) so that V̄q and Q̄ have the same units.382

We solve the optimization problem (4.3) by solving the PIDEs (4.5)-(4.8) and equations (5.3)-383

(5.6). We discretize the problem in the (s, b, q) directions using smin = .04, smax = bmax = 106,384

and qmax = Qmax. Increasing smax, bmax (by a factor of ten) and decreasing smin (dividing by ten)385

resulted in no change to the solution to six figures. We use the Fourier method described in Forsyth386
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Investment horizon T (years) 30
Equity market index CRSP value-weighted index (real)
Risk-free asset index 1-month Treasury bill index (real)
Initial portfolio value W0 1000
Cash withdrawal times t = 0,1, . . . , 30
Qmax 100
Rebalancing interval (years) 1
Market parameters See Table 6.1

Table 7.1: Input data for examples. Monetary units: thousands of dollars.

PIDE Monte Carlo

Grid (nx, nb, nq) Value Function Q̄ V̄q Q̄ V̄q
λ = 2.0

256× 153× 157 1257.23 61.4008 3.2284 61.3628 3.1231
512× 305× 313 1290.10 61.2590 3.1338 61.2232 3.1050
1024× 609× 625 1297.95 61.2060 3.1094 61.1830 3.1006

λ = 1.0

256× 153× 157 1647.22 67.8729 3.8388 67.8621 3.7580
512× 305× 313 1661.53 67.8883 3.7803 67.8786 3.7559
1024× 609× 625 1665.24 67.8931 3.7651 67.8808 3.7552

Table 7.2: Convergence test of the solution of equations (4.5)-(4.8) and equations (5.3)-(5.6) used
to compute the optimal asset allocation. Monte Carlo results based on 640,000 simulated paths in
the synthetic market, with controls computed from the PIDE at the indicated grid size. Input data
provided in Table 7.1. Monetary units: thousands of dollars.

and Labahn (2019), which requires that smin > 0. There is no timestepping error for the Fourier387

method between rebalancing times. Table 7.2 provides a convergence study in which we compute388

various quantities of interest for a sequence of grid sizes. The value function is V (0,W0, 0, 0−)389

where V (·) is defined in equation (4.5). We compute and store the optimal asset allocations from390

the PIDE solver, and then carry out Monte Carlo simulations to verify the solution. If we are391

in the asymptotic convergence region, then convergence of the PIDE Fourier method should be392

monotonic, and we can estimate a rate of convergence. This appears to be true from Table 7.2, and393

the rate of convergence appears to be between first and second order for the PIDE solution. Making394

the pessimistic assumption that convergence is first order, then for λ = 2.0 we can assume that395

Q̄ = 61.206± .05, V̄q = 3.1094± .025, while for λ = 1.0, we can estimate that Q̄ = 67.8931± .005,396

and V̄q = 3.7651 ± .01. The computational cost of our method is dominated by the cost of the397

PIDE solve. Suppose we have a grid with nx×nb×nq nodes. If we double the number of nodes in398

each direction, then this will cost 8(1 + 1/ log2(nx)) more computational time (the log2 term comes399

from the FFT algorithm). Results reported in the remainder of the paper use the control from400

the finest PIDE grid.401
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p Q̄ V̄q p Q̄ V̄q p Q̄ V̄q
0.00 33.0 1.11 0.45 55.7 3.45 0.75 66.1 4.56
0.20 41.9 1.88 0.50 58.0 3.68 0.80 67.0 4.73
0.25 44.6 2.21 0.55 60.1 3.88 0.85 67.9 4.90
0.30 47.4 2.56 0.60 62.0 4.06 0.90 68.5 5.07
0.35 50.3 2.90 0.65 63.6 4.24 0.95 69.1 5.24
0.40 53.1 3.88 0.70 64.9 4.40 1.00 69.6 5.42

Table 8.1: Results for ARVA spending rule when the portfolio is rebalanced at each rebalancing date
to a fixed risky asset weight p. Monetary units: thousands of dollars. Results computed using Monte
Carlo simulations in the synthetic market with 640,000 paths. Input data provided in Table 7.1.

8 Synthetic Market Examples402

We now explore some examples based on the input data given in Table 7.1. This section presents403

results in the synthetic market. Recall that this means that we compute the control using the404

parameters from Table 6.1 and then assess performance by Monte Carlo simulation assuming exactly405

the same parameters. More specifically, we use the following steps:406

1. We solve problem (4.3) to determine the optimal asset allocation strategy. This assumes that407

the value of the risky equity market and risk-free bond indexes evolve according to equations408

(2.2) and (2.6) respectively, with the parameters provided in Table 6.1. We store the generated409

optimal controls.410

2. We generate Monte Carlo simulated paths of the two indexes over the investment horizon,411

calculating values at each rebalancing date according to processes (2.2) and (2.6) with the412

parameters in Table 6.1.413

3. We then apply the stored controls to each path, calculating statistics such as the average414

withdrawal and withdrawal variability. We then compute averages and percentiles of the415

relevant path statistics across the simulated paths.416

For purposes of comparison, we also evaluate the performance of fixed weight strategies. In these417

cases Step 1 above is skipped, and in Step 3 we just rebalance to constant specified portfolio weights.418

As a first case, we consider the ARVA spending rule with a fixed (constant) equity allocation419

at each rebalancing time. Table 8.1 shows the results for this constant weight asset allocation420

strategy. As the fixed equity weight is increased, both the average expected withdrawal Q̄ and the421

average withdrawal variability V̄q rise monotonically. Note that even for p = 0 (all money invested422

in bonds), V̄q > 0. This is because the ARVA spending rule results in declining payments over423

time, due to the front end loading of the mortality boost as indicated in Figure 3.1(b).424

We next solve problem (4.3) to determine the optimal strategy according to our criteria. Optimal425

asset allocation results are shown for various values of the scalarization parameter λ in Table 8.2.426

Higher values of λ correspond to higher risk-aversion since more weight is placed on the risk term427

in the objective function. As the table shows, reducing λ leads to monotonically increasing reward428

Q̄ and risk V̄q.429

Table 8.2 shows that the average expected withdrawal Q̄ is 67.9 when λ = 1.0. From Table 8.1,430

the same average expected withdrawal is obtained for a fixed weight strategy with p = 0.85.431

However, the fixed weight strategy has higher average withdrawal variability V̄q of 4.73 compared432
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λ Q̄ V̄q
5.0 36.4 1.34
4.0 39.1 1.54
3.0 53.1 2.55
2.0 61.2 3.10
1.0 67.9 3.76
0.5 70.2 4.29

Table 8.2: Results for ARVA spending rule when the portfolio is rebalanced according to the optimal
asset allocation, defined as the solution to problem (4.3). Monetary units: thousands of dollars.
Results computed using Monte Carlo simulations in the synthetic market with 640,000 paths. Input
data provided in Table 7.1.
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(a) Fixed weight strategy p = 0.85.
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(b) Optimal strategy λ = 1.0.

Figure 8.1: Percentiles of withdrawal amounts over time for fixed weight strategy with p = 0.85
and optimal strategy with λ = 1.0. Results computed using Monte Carlo simulations in the synthetic
market with 640,000 paths. Input data provided in Table 7.1.

to 3.76 for the optimal asset allocation. An overall indication of the general pattern of withdrawals433

over time is provided in Figure 8.1, which shows the 5th, 50th, and 95th percentiles of the distribution434

of withdrawals for the fixed weight strategy in panel (a) and the optimal strategy in panel (b). At a435

broad level, the two cases appear to be quite similar. The initial withdrawal is around $40,000. The436

95th percentile of withdrawals rises rapidly over about the first 5 years to the maximum specified437

amount of $100,000 and remains there throughout the horizon for each case. Conversely, the 5th438

percentile of withdrawals quickly drops below $30,000 and remains there over most of the horizon,439

before tailing off a bit further in the final few years. The median withdrawal rises more slowly440

than the 95th percentile, but does attain the allowed maximum in each case. This happens slightly441

faster under the optimal strategy compared to the fixed weight strategy. The median withdrawal442

remains constant at the maximum amount throughout the horizon for the fixed weight strategy,443

but it drops off during the last 3 years of the horizon for the optimal strategy.444

Figure 8.2 depicts the 5th, 50th, and 95th percentiles of the fraction of the portfolio allocated to445

equities over time for the optimal strategy with λ = 1. Keep in mind that this strategy produces446

the same average expected withdrawal as a fixed weight strategy that annually rebalances to having447
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85% invested in the risky equity market index. The optimal strategy starts out with all funds in448

the risky asset. In the 5th percentile case, the portion of the portfolio in the risky asset drops very449

quickly, down to about 30% after 5 years and reaching zero after about 15 years. The median450

fraction has p = 1 for the first 7 years. This declines to around 10-15% for years 20-25, and451

thereafter increases back to about 30% at the end of the horizon. In the 95th percentile case, the452

portfolio is entirely invested in the risky asset for almost 20 years, and then falls off to being about453

30% at risk at the end of the horizon. Overall, an investor who follows the optimal strategy will need454

to initially put all of his funds in the risky asset, but he will likely to be able to reduce his equity455

market risk exposure substantially over time. Reaching the same average expected withdrawal456

with a fixed weight strategy requires keeping a consistently high equity weighting throughout the457

horizon. Of course, this leads to higher withdrawal variability, as measured by V̄q.458
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Figure 8.2: Percentiles of control p over time for optimal strategy with λ = 1.0. Results computed
using Monte Carlo simulations in the synthetic market with 640,000 paths. Input data provided in
Table 7.1.

Similar results are shown for λ = 2.0 in Figures 8.3 and 8.4. From Table 8.2, the average459

expected withdrawal in this case is Q̄ = 61.2. The constant weight strategy which gives the same460

value of Q̄ is p∗ = .58, found by interpolating the results reported in Table 8.1. This constant461

weight strategy has V̄q = 3.99, compared to the optimal strategy which has V̄q = 3.10. Unlike in462

Figure 8.1 above, here (Figure 8.3) the median withdrawal amount rises over the first several years463

and subsequently falls, but it never comes close to the maximum allowed withdrawal. Comparing464

Figures 8.2 and 8.4, we see that in the more risk-averse case (λ = 2), the fraction optimally put at465

risk declines from the initial value of p = 1 much earlier.466

Table 8.3 shows some statistics about the distributions of final wealth for the optimal strategies467

with λ = {1.0, 2.0} and the constant weight strategies which generate the same average expected468

withdrawals Q̄. The final wealth is at t = 30 years. Recall that there is enough cash remaining to469

fund 3 years of payments (after the payment at t = 30). As a result, this takes the retiree through470

to his 99th birthday. The final wealth values at the 5th percentiles are comparable with the fixed471

weight strategies with the same Q̄. However, the fixed weight strategies have much higher median472

and 95th percentile terminal portfolio values, which is to be expected due to the higher average473

allocation to equities. These large values of final wealth are due to low probability very favourable474

investment results, coupled with the cap on withdrawals of $100,000 per year.475

As another point of comparison between the fixed weight strategies and the optimal strategy, we476
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(a) Fixed weight strategy p = .58.
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(b) Optimal strategy λ = 2.0.

Figure 8.3: Percentiles of withdrawal amounts over time for fixed weight strategy with p = 0.58
and optimal strategy with λ = 2.0. Results computed using Monte Carlo simulations in the synthetic
market with 640,000 paths. Input data provided in Table 7.1.

Strategy Median WT 5th percentile WT 95th percentile WT

Q̄ = 61.2

Optimal λ = 1.0 179 47.9 610
Fixed p = .85 352 46.8 10800

Q̄ = 67.9

Optimal λ = 2.0 100 46.6 443
Fixed p = .58 161 52.5 2612

Table 8.3: Statistics of final wealthWT after withdrawal at T = 30 years. Monetary units: thousands
of dollars. Results computed using Monte Carlo simulations in the synthetic market with 640,000
paths. Input data provided in Table 7.1.

consider the time averaged median fraction in the risky asset. If Median[pi] is the median fraction477

invested in the risky asset at time ti, then we define the time averaged median fraction as478

time averaged median fraction in stocks = 1
M + 1

i=M∑
i=0

Median[pi] . (8.1)

Table 8.4 shows the time averaged median fraction invested in the risky asset for the cases of479

λ = {1.0, 2.0} compared with the fixed weight strategies which give the same Q̄. When λ = 1.0,480

the time averaged median value of p is .57, versus the fixed weight of .85. Similarly, for the case481

with λ = 2.0, the time averaged median of p is .40, compared to the fixed weight of p = .58.482

From Figure 8.4 we can see that the optimal strategy (λ = 2) has a median fraction in stocks483

of 1.0 during the early years of retirement, which then drops rapidly. This is contrary to the484

usual advice given to retirees. However, from Table 8.4 we can see that time averaged fraction in485

stocks for this strategy is 0.40. In order to generate the same average expected withdrawal, a fixed486

weight strategy requires p = .58, with considerably greater withdrawal variability. In other words,487

although the optimal strategy has a maximum equity fraction larger than the fixed weight strategy488
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Figure 8.4: Percentiles of control p over time for optimal strategy with λ = 2.0. Results computed
using Monte Carlo simulations in the synthetic market with 640,000 paths. Input data provided in
Table 7.1.

Optimal Fixed weight

Time Averaged
λ Q̄ V̄q Median of p p Q̄ V̄q
1.0 67.9 3.76 .57 .85 67.9 4.90
2.0 61.2 3.10 .40 .58 61.2 3.99

Table 8.4: Results for optimal strategy as in problem (4.3) and fixed weight strategies having the
same expected average withdrawal Q̄. Monetary units: thousands of dollars. Results computed using
Monte Carlo simulations in the synthetic market with 640,000 paths. Input data provided in Table 7.1.

with the same expected withdrawal, it is the time averaged equity fraction which contributes to489

overall risk. We discuss this in greater detail in the next section.490

8.1 Analysis of the Objective Function491

We now provide a heuristic analysis as to why the optimal strategy for objective function (4.3)492

tends to reduce the average amount in the risky asset. Consider the risk term in problem (4.3):493

E

[
i=M∑
i=1

(
(Qi −Qi−1)−

)2] =
i=M∑
i=1

E
[(

(Qi −Qi−1)−
)2]

. (8.2)

For ease of exposition, assume that ti − ti−1 = ∆t is small. If ti � T, T ∗x (ti), then we can also494

assume that A(ti) = O(∆t);A(ti) = A(ti−1) +O(∆t)2. Examining one term of the sum in equation495

(8.2) gives496 (
(Qi −Qi−1)−

)2 ≤ ((Qi −Qi−1))2

= A2
i

(
W−i −W

−
i−1 +O(∆t)2

)2
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' A2
i

(
W−i −

W+
i−1

1−Ai
+O(∆t)2

)2

= A2
i

(
∆W+

i−1 +O(∆t)
)2
, (8.3)

where ∆W+
i−1 =

(
W−i −W

+
i−1

)
. If we continuously rebalance to a fixed weight pi−1 for t ∈ (ti−1, ti),497

then from equations (2.5) and (2.6), and Itô’s Lemma for jump processes, we obtain498

dW

W
= [pi−1(µ− r) + r] dt− ζξκ dt+ pi−1σ dZ + pi−1(ξ − 1) dQ. (8.4)

If we assume that ∆t = ti − ti−1 ' dt and that dW ' (W−i −W
+
i−1) ≡ ∆W+

i−1, then equation (8.4)499

becomes500

∆W+
i−1

W+
i−1

= [pi−1(µ− r) + r] dt− ζξκ dt+ pi−1σ dZ + pi−1(ξ − 1) dQ. (8.5)

Substituting equation (8.5) into equation (8.3) and taking expectations gives501

E
[(

(Qi −Qi−1)−
)2] ≤ E [(Qi −Qi−1)2

]
=
(
W+
i−1

)2
A2
i

[
p2
i−1σ

2 dt+ p2
i−1E

[
(ξ − 1)2

]
ζξ dt

]
+ o(dt)

'
(
W+
i−1

)2
A2
i

[
p2
i−1σ

2 ∆t+ p2
i−1E

[
(ξ − 1)2

]
ζξ ∆t

]
+ o(∆t). (8.6)

Substituting equation (8.6) into equation (8.2) and ignoring terms of o(∆t) gives502

E

[
i=M∑
i=1

(
(Qi −Qi−1)−

)2] ≤ i=M∑
i=1

p2
i−1

(
W+
i−1

)2
A2
i

[
σ2 + E

[
(ξ − 1)2

]
ζξ
]

∆t. (8.7)

From equation (8.7) we can see that reducing the weighted average fraction invested in the risky503

asset (pi−1) will also reduce the upper bound on the risk term (8.2), which is consistent with the504

numerical results. As well, we can see that when W+
i−1 becomes small (for large times) the weight505

multiplying the risky asset fraction in equation (8.7) becomes small, hence maximizing problem506

(4.3) would focus on maximizing the expected total withdrawals, which would tend to increase507

the fraction invested in the risky asset at later times. This effect can be seen in Figures 8.2 and508

8.4. The non-smooth percentile curves in these plots for larger times arise because with little time509

remaining the control has a small influence on maximizing the expected total withdrawals.510

Finally, note that in the limit as ti − ti−1 → 0, the risk term on the right hand side of (8.7)511

becomes a weighted portfolio quadratic variation. This has previously been suggested as a stan-512

dalone risk measure in sources such as Brugiere (1996), Forsyth et al. (2012), and van Staden et al.513

(2019).514

9 Bootstrap Tests515

The results reported above have all been in the synthetic market, following the 3 step procedure516

outlined at the start of Section 8. We now replace the second step involving Monte Carlo simulation517

by bootstrap resampling of the historical data to generate simulated paths of the values of the risk518

and risk-free assets, in the absence of control. In this historical market, the other two steps remain519

as before. Although we still compute the optimal asset allocation strategy by solving problem (4.3),520
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assuming as before that St and Bt follow processes (2.2) and (2.6) respectively, the performance521

tests themselves make no assumptions regarding the stochastic processes followed by the value of522

the equity and bond market indexes.523

To construct a single bootstrap resampled path for asset returns, we use the stationary block524

bootstrap to account for possible serial dependence (see, e.g. Politis and White, 2004; Patton et al.,525

2009). We start at a random month in the 1926:1 to 2016:12 sample period. We draw a block of526

data starting in that month (we simultaneously sample both the bond and the stock indexes). The527

length of the block is determined by drawing a random value from a geometric distribution having528

mean (i.e. expected blocksize) b̂. We continue to draw blocks of data in this way and paste them529

together until we have a path that covers the entire horizon of T = 30 years. This procedure is530

repeated many times to generate a large number of resampled paths. Note that we draw the blocks531

of data with replacement, so it is possible for us to use a historical period more than once in a532

single path. We wrap the data around so that if the size of a particular block extends past the end533

of the sample period in 2016:12, values for the remaining duration of that block are taken from534

the start of the sample period, beginning in 1926:1. See Forsyth and Vetzal (2019) for a detailed535

description of the bootstrap algorithm.536

In principle, it is possible to estimate the optimal expected blocksize b̂. However, if we apply537

the algorithm described in Patton et al. (2009) to our data, we find very different estimates for the538

two indexes: the value for the equity market index is about 3.5 months, while the value for the539

bond market index is around 57 months. This poses a problem since we sample simultaneously540

from both indexes. Consequently, we give results for several expected blocksizes.541

One final point should be noted about our procedures. In our bootstrap tests, the bond and542

stock returns are computed using the actual historical returns. The ARVA annuity factor (3.3)543

is determined using the long term average real T-bill rate (recall that this is r = .0048). Since544

this rate is very low, this is a conservative approach, which essentially means that fluctuations in545

withdrawals are primarily driven by the actual observed asset returns, instead of projections about546

future real interest rates. Alternatively, it would be possible to use the most recently observed547

historical short rate in the ARVA annuity factor computation. However, this can cause volatility548

in the withdrawals solely due to the bootstrapping procedure, even when the portfolio returns are549

not volatile.550

Table 9.1 shows the results. We also provide comparable results for the fixed weight strategy551

which gives the same value of Q̄ in the synthetic market. For any given expected blocksize, the552

optimal strategy has a much smaller average allocation to the risky asset, while having a very553

similar average total withdrawal. We also observe that the results in Table 9.1 are relatively554

insensitive to expected blocksize, which suggests that the strategies are quite robust. Comparing555

Table 9.1 with the earlier Table 8.4 from the synthetic market, we observe that the results for556

the expected average withdrawal Q̄ are quite similar. For example, with λ = 1 we had Q̄ = 67.9557

and V̄q = 3.76 in the synthetic market (Table 8.4) for the optimal strategy. The corresponding558

bootstrap resampled values for Q̄ in Table 9.1 range from 67.6 to 69.3 as the expected blocksize559

increases from 6 months to 5 years, and the corresponding resampled values for V̄q range from560

3.81 to 3.97. Overall, for the optimal strategy the average expected withdrawal Q̄ in the historical561

market is quite close to that for the idealized synthetic market. The average withdrawal variability562

V̄q is slightly higher in the historical market, but this is not surprising since the resampled paths563

will have stochastic interest rates and randomly changing volatility, neither of which are features of564

our synthetic market. The historical market results for the fixed weight strategies in Table 9.1 are565

also quite close to their synthetic market counterparts in Table 8.4. For example, with p = .85 the566

average expected withdrawal ranges from 68.0 to 69.4 in the historical market, compared to 67.9567

in the synthetic market. Using this fixed weight gives average withdrawal variability that ranges568
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Optimal Fixed Weight

Average
λ Q̄ V̄q Median [p] p Q̄ V̄q

Expected blocksize = 0.5 years

1.0 67.6 3.81 .57 .85 68.0 4.76
2.0 60.6 3.22 .40 .58 60.7 3.95

Expected blocksize = 1.0 years

1.0 68.0 3.90 .57 .85 68.3 4.84
2.0 60.9 3.28 .40 .58 61.0 4.01

Expected blocksize = 2.0 years

1.0 68.1 3.97 .57 .85 68.6 5.00
2.0 60.9 3.36 .40 .58 61.0 4.14

Expected blocksize = 5.0 years

1.0 69.3 3.96 .56 .85 69.4 5.12
2.0 61.6 3.37 .40 .58 61.3 4.24

Table 9.1: Results for optimal strategy as in problem (4.3) and fixed weight strategy with the same
expected average withdrawal Q̄ in the synthetic market. Monetary units: thousands of dollars. Results
computed in the historical market with 100,000 bootstrap resampled paths. Input data provided in
Table 7.1. Controls computed in the synthetic market using parameters from Table 6.1 and stored,
then applied to resampled historical data.

from 4.76 to 5.12 in the historical market, versus 4.90 in the synthetic market.569

Figure 9.1 shows the percentiles of withdrawals over time for the fixed weight strategy with570

p = .85 and the optimal strategy with λ = 1 in the historical market with an expected blocksize of571

two years. The two panels here are quite similar to the corresponding synthetic market plots from572

Figure 8.1, another signal that the synthetic market strategy is robust when tested on historical573

market data. Figure 9.2 shows the percentiles of the fraction of the investment portfolio allocated574

to equities over time, based on bootstrap resampling with an expected blocksize of two years. These575

results are also quite similar to the corresponding synthetic market results shown in Figure 8.2.576

10 Conclusion577

An ARVA spending rule results in variable withdrawals, which eliminates the possibility of ruin over578

the specified horizon. The risk of ruin is effectively replaced by the risk of withdrawal variability.579

The main positive feature of an ARVA rule is the fact that withdrawals reflect the investment580

experience. In addition, a mortality boost can be used to front end load the withdrawals. On the581

other hand, compared to an annuity, there is some possibility of very low withdrawals later on in582

life. Combining an ARVA rule with investing in a portfolio of risky assets and risk-free assets leads583

to a higher average expected withdrawal compared to a fairly priced annuity. Under an ARVA rule584

the investor retains full control over their portfolio, unlike for an annuity.585

We compared two possible approaches to managing the investment portfolio under an ARVA586
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(a) Fixed weight strategy p = .85.
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(b) Optimal strategy λ = 1.0.

Figure 9.1: Percentiles of withdrawal amounts over time for fixed weight strategy with p = .85
and optimal strategy with λ = 1.0. Results computed in the historical market with 100,000 bootstrap
resampled paths and expected blocksize of 2 years. Input data provided in Table 7.1. Control computed
in the synthetic market using parameters from Table 6.1 and stored, then applied to resampled historical
data.

spending rule: a fixed weight strategy, and a strategy based on optimal control. The optimal587

control strategy minimized a downside measure of withdrawal variability, for a given expected588

average withdrawal. For the same expected average withdrawal, the optimal strategy has smaller589

withdrawal variability, smaller average investment over time in the risky asset, and similar final590

wealth at the 5th percentile, compared to a fixed weight strategy. However, the fixed weight strategy591

has a higher median terminal wealth compared to the optimal strategy. This is to be expected due592

to the higher average weight in risky assets (for the same expected average withdrawal) compared to593

the optimal strategy and the cap imposed on withdrawals. These results hold for both a parametric594

model based on historical time series, as well as bootstrap resampled backtests.595

The synthetic market results (parametric model) and the bootstrapped historical market results596

are very similar for either the optimal strategy or the fixed weight strategies. This suggests that an597

ARVA spending rule which adapts withdrawals to investment experience results in a very robust598

strategy, i.e. insensitive to market parameter misspecification.599

Overall, a combination of an ARVA spending rule and an optimal control approach to reduce600

withdrawal variability, result in a decumulation strategy which has a high probability of achieving601

desirable outcomes. This does, however, come at the cost of high median equity fractions for short602

periods of time. Nevertheless, the time averaged (median) equity fraction is much smaller than the603

equivalent constant weight strategy, which we argue is the appropriate risk measure in this case.604

A possible avenue for future research is to impose both maximum and minimum withdrawal605

amounts under an ARVA spending rule. This would ameliorate withdrawal variability, but now606

there is a risk of ruin. In this case, a possible objective function would maximize the expected total607

withdrawals, and minimize a risk measure such as probability of ruin or CVAR.608
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Figure 9.2: Percentiles of control p over time for optimal strategy with λ = 1.0. Results computed in
the historical market with 100,000 bootstrap resampled paths and expected blocksize of 2 years. Input
data provided in Table 7.1. Control computed in the synthetic market using parameters from Table 6.1
and stored, then applied to resampled historical data.
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