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Abstract— Metal artifacts are very common in CT scans since
metal insertion or replacement is performed for enhancing
certain functionality or mechanism of patient’s body. These
streak artifacts could degrade CT image quality severely, and
consequently, they could influence clinician’s diagnosis. Many
existing supervised learning methods approaching this problem
assume the availability of clean images data, images free of
metal artifacts, at the part with metal implant. However, in
clinical practices, those clean images do not usually exist.
Therefore, there is no support for the existing supervised
learning based methods to work clinically. We focus on reducing
the streak artifacts on the hip scans and propose a convolutional
neural network based method to eliminate the need of the clean
images at the implant part during model training. The idea is to
use the scans of the parts near the hip for model training. Our
method is able to suppress the artifacts in corrupted images,
highly improve the image quality, and preserve the details of
surrounding tissues, without using any clean hip scans. We
apply our method on clinical CT hip scans from multiple
patients and obtain artifact-free images with high image quality.
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I. INTRODUCTION
When a patient has metallic objects implanted in their

body, such as hip replacements, dental fillings, aneurysm
clips and coils (Figure 1), their CT scans may contain
different types of metal artifacts[1]. The typical appearance
of metal artifacts are bright and dark streaks expanding from
or surrounding the metal pieces. The streak artifacts obscure
vital information for physicians to analyze CT scans and
make diagnosis. In the past few decades, many metal artifacts
reduction methods have been developed, but there is no
standard solution to this difficult problem in clinical CT.

Conventional metal artifacts reduction methods usually
leave artifacts in the reconstructed images or even create
new artifacts, and many of them are not efficient[1]. In
recent years, researchers have attempted to use deep learning
to solve the problems in medical imaging. To tackle the
metal artifacts reduction in CT scans, researchers often take
artifact-contaminated images for restoration or erroneous
sinograms for inpainting. Using a special loss function in
a deep neural network, Gjesteby et al.[3] developed a model
to suppress artifacts and tested it on phantom images. Ghani
and Karl[2] inpaint sinograms using CNN. The methods in
the literature are mostly based on supervised learning, which
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Fig. 1. Examples of metal artifacts in the CT images of hip scan[1], brain
scan[5] and dental scan[5].

requires an input-target pair of data for each sample to train
a model. Specifically, we need to have artifact-corrupted
images as inputs and artifact-free images as targets for a
CT scan-based model, or their corresponding sinograms as
inputs and targets for a sinogram-based model. However,
in clinical practices, the artifact-free scans at the part with
inserted metallic objects are not available. Without artifact-
free scans, which are usually call the ground truth images,
model training cannot be completed.

In this paper, we focus on reducing metal artifacts in the
hip scans of patients with hip prosthesis. In clinical practices,
we do not have artifact-free hip scans as targets for a model
to learn from. To solve this issue, we propose an innovative
method that conducts model training on the scans near the
hip with simulated artifacts. Artifacts suppression is then
carried out on the actual artifact-corrupted hip scans using the
trained model. Our approach eliminates the need for clean
hip scans in model training and produces artifact-free hip
scans using model prediction.

Our paper is organized as follows. Section II discusses the
ground truth assumption issue and describes our proposed
method. Section III presents different experimental results
and Section IV points out future research directions.

II. METHODOLOGY

A. Our Proposed Method

Supervised learning requires input-target pairs for training.
A model needs target examples to learn how to map an
artifact-corrupted image to an artifact-free image, or how
to map a sinogram with bright traces to a smooth sinogram
without traces. But artifact-free scans do not exist in clinical
practices. To tackle the ground truth assumption issue, we
propose an innovative method to remove the need for clean
images at the hip. In a series of CT scans, the scans from
the abdomen to the thigh are similar in terms of body and
bone shapes as well as tissues. By taking advantage of the
similarities, our idea is to simulate artifacts in the scans near
the hip and train a CNN model on the sinograms of these
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images. After the model is trained, it can then be used to
reduce artifacts in hip scans. In this situation, the training
data, including the input images and the target images, is
generated from the scans that are clinically available. The
clean images of the artifact-corrupted scans at the hip are
not required for model training any more.

To verify our idea, we prepare the training data as follows
(see Figure 2). Given a series of artifact-corrupted hip scans,
we first segment the metal pieces from these images. The
segmentation result will be used to simulate artifacts on the
scans near the hip. Since the trained model will be adopted
to reduce artifacts on hip scans, the simulated artifacts are
desired to be as similar as possible to the artifacts on the hip
scans. Here, metal segmentation is used to approximate the
shapes and locations of the metallic objects. We apply the
K-means clustering method for metal pieces segmentation.
After obtaining the segmented metallic objects, we store the
results as masks for the subsequent streak simulation. We
overlay a mask on a scan near the hip and apply radon
transform to get a sinogram with bands in light colors. To
simulate artifacts, we fill the bands with the largest existing
value in a sinogram. Then Filtered Back Projection (FBP) is
applied on the trace-filled sinograms to reconstruct CT scans.
Due to the modification in sinograms, the reconstructed scans
near the hip now have bright metal pieces as well as streak
artifacts. Lastly, by using radon transform on the artifact-
corrupted near-hip scans, we acquire their corresponding
sinograms, which are the input data to our model. The targets
are the sinograms of the clean images near the hip.

Training a neural network model often requires many
samples since the model contains many parameters. The
number of the abdomen scans and the thigh scans of a
patient, which is usually around 20, is insufficient for a
model to learn sinogram inpainting. We, therefore, conduct
perturbations on the segmentation results regarding the sizes
and locations of the metallic objects to obtain additional
masks. In our experiments, 1000 masks are sufficient for
model training. Then, we randomly choose a near hip scan
and overlay one of the perturbed masks on it, to simulate
artifacts. Through perturbation, we acquire sufficient training
data and our model can learn to correct a variety of different
traces in sinograms.

When our model finishes training, it can correct the
sinograms by inpainting the bright bands. We use the trained
model to correct the sinograms of artifact-corrupted hip
scans. The corrected output sinograms will then be used to
reconstruct artifact-free CT scans of the hip by FBP.

B. Single-Patient and Multiple-Patient Scenarios

Based on our proposed method, we design two model
training processes for metal artifacts reduction in clinical
applications. The first process trains models using the scans
of a single patient and will be used on the hip scans of the
same patient only. The other process trains model on the
hip scans of multiple patients and is thus more robust. The
trained model can be applied on the patients it trained on
and potentially also applied on future patients.

Fig. 2. Training data generation process. This process can be viewed as a
segmentation step and an artifacts simulation process.

For the first process, we observe that consecutive slices
from one CT screening are consistent in body shapes and
similar in brightness, contrast and pixel value distributions.
Their corresponding sinograms also share a large amount
of resemblance. When a model is being trained on these
sinograms, it does not need to adapt to background variations
and thus, it can focus on inpainting traces. However, the
generalizability and transferability of the trained model will
be relatively low. The model may work effectively for the
patient used for training, but may produce poor artifacts
suppression results for other patients. Therefore, training a
model on every single patient’s sinograms is inefficient.

To resolve this concern, we consider developing a model
that can be applied to multiple patients who have vari-
ous physical circumstances and characteristics. Due to the
diversity in body shapes and image properties, the input
sinograms from different patients have more variances in
pixel value distributions than the sinograms from a single
patient. Unfortunately, our model trained on multiple patients
fails to adapt to the dissimilarities in the inputs and produces
sinograms that output blurred reconstructed CT images.
Therefore, we consider a different approach by calibrating
the inputs obtained from multiple patients. Among the CT
scans of different patients, the inconsistencies fall in body
shapes as well as the brightness and contrast of the scans.
Since it is inappropriate for us to alter any physical property
or condition of a patient, we ignore the body shape inconsis-
tencies during input normalization. Between brightness and
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Fig. 3. Model architecture

contrast, we observe that brightness is the main cause of
the variance in pixel value distributions of the scans and the
corresponding sinograms. Thus, we focus on normalizing the
brightness which can be done by scaling. Given an image
S as the standard and an image I to be scaled, we find a
scalar a such that the value distribution of aI is similar to
the value distribution of S. We use the same scaling factor
for all the scans of a single patient and different scaling
factors for scans of different patients. After scaling the near
hip scans of different patients and applying radon transform,
we can acquire the sinograms with similar distributions. By
applying FBP on the output sinograms from the model, we
obtain artifact-free images with similar distributions. We then
divide the images by their corresponding scaling factors to
get the final images without artifacts, but with background
pixel value distributions similar to the original scans.

C. CNN Model Architecture

The model we use is a CNN model (Figure 3) which
inspired Ghani and Karl[2]’s work. There are 6 consecutive
convolutional layers in the network. The kernels used in con-
volutional layers capture the spatial information in sinograms
to correct the values of the bright traces. The kernel is of
size 5× 5 and is moved 1 pixel at a time. We pad zeros
along margins so that the input image size is the same as the
output image size. Each convolutional layer is followed by
an activation function – Leaky Rectifier Linear Unit (Leaky
ReLU) with slope 0.2. Additionally, batch normalization is
performed after activation. The last convolution layer is the
output layer and has no activation or batch normalization.

III. EXPERIMENTS AND RESULTS

A. Experiment Setup

The model we previously introduced is used for both
experiments outlined in this section. We also apply identical
training settings in all experiments. We deploy ADAM
optimizer with learning rate 5e-3 and decay 2.5e-5. The batch
size is 16 and the training time is 1.5 hours for 1000 sino-
grams. The loss function is mean squared error, measuring
the Euclidean distance between outputs and targets.

The data used in the experiments are obtained from Gross-
berg et al.[4]. All the images in the dataset, including hip
scans, are metal-free and artifact-free. Therefore, we need to
simulate artifacts on hip scans and then validate our proposed

method. We will use the clean hip images as reference im-
ages to perform both qualitative and quantitative evaluations.
The evaluation will be conducted only on the test data in
each experiment. Qualitative evaluations are performed by
showing the artifact-corrupted images, the artifact-reduced
images and the reference images. Quantitative evaluations
are conducted using metrics MSE, SSIM and PSNR.

B. Experiment 1: single-patient scenario

In this experiment, we validate our idea by training our
model on the sinograms generated from the near hip scans
and testing on the sinograms of artifact-corrupted hip scans.
All images in training and testing come from a single patient.

We generate 1000 hip scans with artifacts, then perform
K-means segmentation with k = 3 to extract the masks of
metallic objects. For generating training data, we pick 22
near hip scans, 11 consecutive slices above the hip and 11
consecutive slices below the hip from the same patient. We
overlay each of the 1000 masks on a random near hip scan
and then simulate artifacts as described in Figure 2. From this
we acquire 1000 near hip scans with various artifacts. We use
the corrupted sinograms of these 1000 scans as training input
and the corresponding clean sinograms as training targets.
The 11 slices with manually inserted circles are used to
make 11 artifact-corrupted images, which are then used as
the testing set. In model prediction, the 11 sinograms of the
hip scans with artifacts will be used as inputs.

For experimental purposes only, we compare the recon-
struction results of the 11 hip scans with the clean ones
which are obtained from the data source directly. Clinically,
we do not have the clean images of the hip to compare with.
The only available comparison, in reality, is between artifact-
corrupted scans and artifact-reduced scans.

As observed from Figure 4 and Table I, the artifacts are
significantly suppressed in the hip scans transformed from
the corrected sinograms. Our model successfully learns the
way to correct the values in the traces regardless of different
body parts. Even though the model has never seen the hip
sinograms, by learning from the sinograms of abdomen and
thigh, it is able to adapt the knowledge learned and fill the
traces in the hip sinograms with appropriate values. This
experiment demonstrates the flexibility of our model for
handling discrepancies between training and testing sets.

TABLE I
QUANTITATIVE COMPARISON RESULTS OF EXPERIMENT 1

Images MSE SSIM PSNR
Corrected Image 3.564e-4 40.990 0.9473

Uncorrected Image 6.623e-2 20.793 0.3514

C. Experiment 2: multiple-patient scenario

As explained in section II-B, building one model per
patient is inefficient in practice. We hope to generalize our
approach so that it can be used on multiple patients with
various physical circumstances and characteristics.
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Fig. 4. Experiment 1: training on near hip scans and testing on hip scans
from a single patient. Three testing examples to illustrate metal artifacts
reduction result in the scans of hip.

In this experiment, we generate our training data set and
testing data set using the scans from 10 different patients.
We create 1000 corrupted images from the near hip slices
from the 10 patients’ scans for training using the same
process in Experiment 1. The testing data in this experiment
is 102 artifact-corrupted hip scans obtained from the 10
patients. Pixel value distribution normalization is conducted
on these images before the input sinograms are generated.
The reconstructed results of hip scans will then be re-scaled
using the inverses of the scaling functions, and compared
with the clean images in the same way as in Experiment 1.

We obtain the results shown in Figure 5 and Table II by
normalizing the pixel value distributions. We see a greater
reduction of artifacts when comparing the reference images
and the reconstructed ones. With the normalization of pixel
value distributions using scaling functions, our approach can
adapt to the variances in body shapes and physical conditions
at the hip, and be applied on multiple patients.

TABLE II
QUANTITATIVE COMPARISON RESULTS OF EXPERIMENT 2

Images MSE SSIM PSNR
Corrected Image 2.324e-4 36.915 0.9094

Uncorrected Image 6.271e-2 21.438 0.4329

IV. FUTURE WORK

Our proposed method attains great performance in the
above experiments. However, the research is limited to hip
prosthesis as the method requires consecutive scans around
the body part with metal insertion. The approach has the
potential to succeed on artifact-corrupted head CT scans
but might not be suitable for dental CT scans. In addition,

Fig. 5. Experiment 2: training on near hip scans and testing on hip scans of
multiple patients. Five testing examples to illustrate metal artifacts reduction
results in hip scans.

acquiring clinical artifact-corrupted images would be helpful
to validate the effectiveness of our approach.
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