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Abstract1

Under the assumption that two asset prices follow an uncertain volatility model, the maximal and2

minimal solution values of an option contract are given by a two dimensional Hamilton-Jacobi-Bellman3

(HJB) PDE. A fully implicit, unconditionally monotone finite difference numerical scheme is developed4

in this paper. Consequently, there are no time step restrictions due to stability considerations. The5

discretized algebraic equations are solved using policy iteration. Our discretization method results in a6

local objective function which is a discontinuous function of the control. Hence some care must be taken7

when applying policy iteration. The main difficulty in designing a discretization scheme is development8

of a monotonicity preserving approximation of the cross derivative term in the PDE. We derive a hybrid9

numerical scheme which combines use of a fixed point stencil and a wide stencil based on a local coordinate10

rotation. The algorithm uses the fixed point stencil as much as possible to take advantage of its accuracy11

and computational efficiency. The analysis shows that our numerical scheme is l∞ stable, consistent in12

the viscosity sense, and monotone. Thus, our numerical scheme guarantees convergence to the viscosity13

solution.14

Keywords: Monotone scheme, Fully implicit, Uncertain volatility, HJB equation, Policy iteration, Hy-15

brid scheme16

Version: December 16, 201517

1 Introduction18

1.1 Overview19

A key sufficient requirement for ensuring convergence to the viscosity solution of multidimensional HJB20

equations is that the discretization be monotone (Barles et al., 1995; Barles and Souganidis, 1991). We21

are particularly interested in optimal stochastic control problems where the control appears in the diffusion22

tensor. In this case, construction of a monotone scheme is a non-trivial matter. Previous work has focused23

on explicit wide stencil schemes (Bonnans and Zidani, 2003; Debrabant and Jakobsen, 2013). In this paper,24

we focus on fully implicit methods (hence avoiding timestep restrictions due to stability considerations). In25

addition, we attempt to minimize the use of a wide stencil discretization. To provide a concrete application26

of our method, we focus on the well known uncertain volatility model for pricing multi-factor contingent27

claims. However, the reader should have no difficulty applying the techniques in this paper to other optimal28

stochastic control problems formulated as HJB equations.29
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1.2 Uncertain volatility model30

The uncertain volatility model was first independently developed by Lyons (Lyons, 1995) and Avellaneda et31

al. (Avellaneda and Paras, 1996). In this case, the volatility of the risky asset is assumed to lie within a32

range of values. As such, prices obtained under a no-arbitrage analysis are no longer unique. All that can33

be computed are the best-case and worst-case prices, for a specified long or short position. By assuming34

the worst case, an investor can hedge his/her position and obtain a non-negative balance in the hedging35

portfolio, regardless of the actual volatility movement, provided that volatility remains within the specified36

range.37

Several studies have already considered the uncertain volatility for one factor problems. A European call38

option with transaction cost and uncertain volatility is considered in Dokuchaev and Savkin (1998). Barrier39

options under uncertain volatility were studied in Avellaneda and Buff (1999) and Buff (2002), as well as40

American options and a portfolio of uncertain volatility options. American options were also studied in41

Smith (2002). Using market bid-ask spreads, an uncertain volatility calibration method was suggested in42

Coleman et al. (2010). A fully implicit PDE scheme is developed for discretely observed barrier options in43

Forsyth and Vetzal (2001). These studies are all based on numerical solution of the HJB equations.44

In the one-dimensional (single factor) case, it has been shown in Pooley et al. (2003a) that seemingly45

reasonable discretizations of the uncertain volatility PDE may not converge to the viscosity solution, which46

is the financially relevant solution. Consequently, it is important to ensure that the numerical scheme is47

l∞ stable, consistent in the viscosity sense, and monotone. These properties guarantee convergence to the48

viscosity solution (Barles and Souganidis, 1991).49

Two factor uncertain volatility models were discussed in Pooley et al. (2003b), however, the scheme was50

not guaranteed to be monotone. The main difficulty in constructing compact multi-dimensional monotone51

schemes is the presence of the mixed derivative term, which appears in any case where there is a non-zero52

correlation between the two underlying assets. In certain cases, monotone schemes can be constructed for53

very restrictive grid spacing conditions and for certain classes of diffusion tensors (Øksendal and Sulem,54

2005), but this approach is not very general.55

In general, no fixed point stencil finite difference scheme can produce a monotone scheme for arbitrary two56

factor diffusion tensors (Dong and Krylov, 2006). To ensure monotonicity for problems with non-constant57

diffusion tensors, first order wide stencil methods have been suggested. That is, the stencil increases in size58

(relative to the node spacing) as the grid is refined. In this paper, we will primarily use a wide stencil based59

on a local coordinate rotation. An alternative approach is based on factoring the diffusion tensor. This60

idea has a long history in stochastic control, see for example (Menaldi, 1989; Camilli and Falcone, 1995;61

Kushner and Dupuis, 2001). For a recent overview of these methods, we refer the reader to Debrabant and62

Jakobsen (2013). Another variant of the wide stencil method is discussed in Bonnans and Zidani (2003) and63

Bonnans et al. (2004). However, as noted in Debrabant and Jakobsen (2013), the complexity of computing64

the coefficients of the wide stencil technique in Bonnans and Zidani (2003) is quite large, which leads to65

problems if the coefficients need to be recomputed at every node and every policy iteration (as would be66

required in our implicit approach).67

1.3 Main results68

• A fully implicit, consistent, unconditionally monotone numerical scheme is first developed for a two69

factor uncertain volatility model. The discretized algebraic equations are solved using policy iteration.70

Our discretization method results in a local objective function which can be a discontinuous function71

of the control. Hence some care must be taken when applying policy iteration (Huang et al., 2012).72

Since we use implicit timestepping, there are no time step restrictions due to stability considerations,73

an advantage over the method in Debrabant and Jakobsen (2013).74

• Each policy iteration requires solution of an unstructured sparse M-matrix at each iterate. Since75

the stencil potentially changes at each policy iteration, this means that the data structure of the76

sparse matrix must be recomputed at each policy iteration. In this paper, we use a preconditioned77
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Bi-CGSTAB iterative method for solving the sparse matrix (Saad, 2004). However, the cost of78

constructing the data structure and solving the matrix is in fact negligible in comparison to the cost79

of solving the local optimization problem at each grid node. Assuming that the number of policy80

iterations is bounded as the mesh size tends to zero (which is in fact observed experimentally) the fully81

implicit method has essentially the same complexity per step as the explicit method in Debrabant and82

Jakobsen (2013).83

• A monotone scheme is constructed by factoring the diffusion tensor in Debrabant and Jakobsen (2013).84

We compare this approach to a method based on a local coordinate system rotation. Although both85

of these wide stencils are first order, our numerical experiments indicate that the use of the locally86

rotated coordinate system seems to perform better than constructing a local coordinate system based87

on factoring the diffusion tensor.88

• We also derive a hybrid numerical scheme that combines use of a fixed point stencil (Clift and Forsyth,89

2008; Øksendal and Sulem, 2005) with a wide stencil. The fixed point stencil is a second-order ap-90

proximation (for smooth test functions), but this discretization cannot ensure monotonicity at every91

node in general. We propose an algorithm which uses the fixed point stencil as much as possible to92

take advantage of its accuracy and computational efficiency, while still keeping the numerical scheme93

monotone. This can be viewed as the multi-dimensional generalization of the standard “central dif-94

ferencing as much as possible” scheme in one dimension (Wang and Forsyth, 2008). Our tests show95

that this hybrid technique is generally more smoothly convergent and more accurate than a pure wide96

stencil scheme. Note that use of an explicit scheme coupled with the hybrid discretization would not97

result in a practical method, due to the small timesteps required for stability.98

2 Formulation99

Let U(S1, S2, τ) be the value of a European option contract written on asset prices S1 and S2, which both100

follow the stochastic processes under the risk neutral measure101

dS1 = (r − q1)S1dt+ σ1S1dW1,

dS2 = (r − q2)S2dt+ σ2S2dW2,
(2.1)

where r is the risk-free interest rate, qi, i = 1, 2 are the dividend yields for Si. σi, i = 1, 2 are volatilities,102

and Wi, i = 1, 2 are Wiener processes with dW1dW2 = ρ dt.103

We consider the uncertain volatility model that was first developed in Avellaneda and Paras (1996) and104

Lyons (1995). That is, σi is an uncertain volatility in the processes (2.1), but lies within a range, e.g.,105

σ1 ∈ [σ1,min, σ1,max] and σ2 ∈ [σ2,min, σ2,max]. In addition, uncertain correlation between the two underlying106

assets is permitted, e.g., ρmin ≤ ρ ≤ ρmax. When the volatilities σ1, σ2, and the correlation ρ are uncertain,107

the the price of an option contract is no longer unique. However, in the event of uncertain parameters, we108

can determine the worst case hedging costs for long and short positions.109

These maximal and minimal values of an option contract are given by the following Hamilton-Jacobi-110

Bellman (HJB) PDEs111

Uτ = sup
Q∈Z
LQU ; or Uτ = inf

Q∈Z
LQU ,

U(S1, S2, 0) =W(S1, S2),
(2.2)

which is defined over (S1, S2, τ) ∈ [0,+∞)× [0,+∞)× [0, T ]. W(S1, S2) is the terminal payoff of the option112

contract. The sup in equation (2.2) corresponds to the worst case short position, while the inf corresponds113

3



to the worst case long position. The differential operator LQ is defined as114

LQU = V · ∇U + (D∇) · ∇U − rU ,
D ∈ R2 × R2; V ∈ R2;

∇ =

( ∂
∂S1
∂
∂S2

)
, V =

(
(r − q1)S1

(r − q2)S2

)
, D =

1

2

(
σ2

1S
2
1 ρσ1σ2S1S2

ρσ1σ2S1S2 σ2
2S

2
2

)
,

(2.3)

where ∇ is the gradient operator, V is the drift tensor, and D is the diffusion tensor.115

Note that the notation (D∇) · ∇U is to be interpreted as116

(D∇) · ∇U =
σ2

1S
2
1

2
US1S1

+ ρσ1σ1S1S2 US1S2
+
σ2

2S
2
2

2
US2S2

. (2.4)

The control Q = (σ1, σ2, ρ), and the admissible set of the controls is given by117

Z = [σ1,min, σ1,max]× [σ2,min, σ2,max]× [ρmin, ρmax],

σ1,min ≥ 0, σ2,min ≥ 0, −1 ≤ ρmin ≤ 1, −1 ≤ ρmax ≤ 1.
(2.5)

Without loss of generality, we only consider sup problem in the following discussion. All the results of this118

paper hold in the inf case as well.119

3 Restriction of control set Z120

Before we introduce our discretization method, we take a short digression here to discuss the maximization of121

the right hand side of equation (2.2). We consider (for the time being) that all the derivatives which appear122

on the right hand side of equation (2.2) are constructed from known, smooth functions. Since consistency123

in the viscosity sense is defined in terms of smooth test functions (Barles and Souganidis, 1991), this will be124

relevant to our discretization approach.125

To maximize the solution value in equation (2.2), it suffices to maximize the diffusion terms. Let Γkl ≡126

∂2U
∂Sk∂Sl

, k, l = 1, 2. Assume for the moment that Γkl is known, independent of the control. In this notation,127

the diffusion terms in (2.2) become128

sup
Q∈Z

((D∇) · ∇U) = max
(σ1,σ2,ρ)∈Z

(
σ2

1S
2
1

2
Γ11 + ρσ1σ2S1S2Γ12 +

σ2
2S

2
2

2
Γ22

)
. (3.1)

Since Z (2.5) is a compact set, the supremum is simply the maximum value.129

It is easy to see that the optimal correlation value is a bang-bang control. That is, the optimal ρ ∈130

{ρmin, ρmax}, depends only on the sign of the cross derivative Γ12.131

ρ (Γ12) =

{
ρmax Γ12 ≥ 0

ρmin Γ12 < 0.
(3.2)

With ρ given from (3.2), a quadratic-form optimization with linear constraints needs to be solved. The132

problem is formulated as133

max
σ

σTMσ ≡ max
σ1,σ2

(
σ1 σ2

)( s21
2 Γ11 ρ(Γ12) s1s22 Γ12

ρ(Γ12) s1s22 Γ12
s22
2 Γ22

)(
σ1

σ2

)
, (3.3)

subject to134

σ1,min ≤ σ1 ≤ σ1,max, σ2,min ≤ σ2 ≤ σ2,max. (3.4)
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Proposition 3.1. Suppose that Γik exist ∀i, k. The optimal value of the objective function in (3.1) can be135

determined by examining values only on the boundary of Z, denoted by ∂Z.136

sup
Q∈Z

((D∇) · ∇U) = sup
Q∈∂Z

((D∇) · ∇U) . (3.5)

Proof. From equation (3.2), the choice of the optimal correlation ρ is either ρmax or ρmin, depending on the137

sign of the cross derivative term. Thus, the optimal correlation is always either end of its range [ρmin, ρmax].138

The quadratic form in equation (3.3) is σTMσ. A critical point is such that Mσ = 0. When M is a139

non-singular, the critical point is (0, 0), which is either outside Z or on the boundary of Z. When M is140

singular, the critical points are on the line
{

(σ1, σ2)
∣∣∣S2

1

2 Γ11σ1 + ρ(Γ12)S1S2

2 Γ12σ2 = 0
}

. If this line intersects141

Z, then the optimal value is attained at ∂Z. If this line does not intersect Z, then the optimal value is142

also on ∂Z. Hence, in all cases, the optimal value can be attained by examining the objective function on143

∂Z.144

Remark 3.1. Proposition 3.1 will prove useful when we design a numerical scheme. In the case when the145

discretization stencil depends on the control, no closed form expression is available for the optimal value. We146

can then discretize the control set and search over the boundary ∂Z, instead of the entire three dimensional set147

Z. Consistency in the viscosity sense is defined in terms of smooth test functions, hence our assumption that148

Γik exist is not restrictive and we can then use Proposition 3.1 to prove that this is a consistent discretization149

(in the viscosity sense).150

4 Discretization151

In this paper, we develop an unconditionally monotone finite difference numerical scheme for the two factor152

uncertain volatility model. However, a standard finite difference scheme cannot ensure monotonicity due153

to the cross derivative term. For example, the fixed point stencil method in Øksendal and Sulem (2005)154

requires a restrictive grid spacing, which cannot always be satisfied, to preserve monotonicity. In our problem,155

the tensor diffusion is non-constant and non-diagonally dominant. We will focus mainly on a wide stencil156

method based on a local coordinate rotation, but we include some comparisons with the factoring technique157

in Debrabant and Jakobsen (2013). Furthermore, we propose a hybrid algorithm which combines use of a158

fixed point stencil (Clift and Forsyth, 2008; Øksendal and Sulem, 2005) with a wide stencil. This algorithm159

uses the fixed point stencil as much as possible to take advantage of its accuracy and computational efficiency,160

but still keeping the numerical scheme monotone.161

We discretize equation (2.2) over a finite grid N = N1 ×N2 in the plane (S1, S2). Define a set of nodes162

{(S1)1, (S1)2, . . . , (S1)N1} in S1 direction and {(S2)1, (S2)2, . . . , (S2)N2} in S2 direction. Denote the nth time163

step by τn = n∆τ, n = 0, . . . , Nτ , with Nτ = T
∆τ . Let Uni,j be the approximate solution of the equation (2.2)164

at ((S1)i, (S2)j , τ
n).165

It will be convenient to define166

∆(S1)max = max
i

((S1)i+1 − (S1)i) , ∆(S1)min = min
i

((S1)i+1 − (S1)i) ,

∆(S2)max = max
i

((S2)i+1 − (S2)i) , ∆(S2)min = min
i

((S2)i+1 − (S2)i) .
(4.1)

We assume that there is a mesh discretization parameter h such that167

∆(S1)max = C1h, ∆(S2)max = C2h, ∆(S1)min = C
′

1h, ∆(S2)min = C
′

2h, ∆τ = C3h, (4.2)

where C1, C2, C
′

1, C
′

2, C3 are constants independent of h.168
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4.1 The fixed point stencil169

We use a seven-point stencil (Clift and Forsyth, 2008; Øksendal and Sulem, 2005) to discretize the cross-170

partial derivative ∂2U
∂S1∂S2

. Denote171

∆+(S1)i = (S1)i+1 − (S2)i, ∆−(S1)i = (S1)i − (S1)i−1,

∆+(S2)j = (S2)j+1 − (S2)j , ∆−(S2)j = (S2)j − (S2)j−1.
(4.3)

We approximate the cross-partial derivative at ((S1)i, (S2)j , τ
n) using one of the following stencils, as illus-172

trated in Figure 4.1, depending on the sign of ρ. For ρ ≥ 0, we use173

∂2U
∂S1∂S2

≈
2Uni,j + Uni+1,j+1 + Uni−1,j−1

∆+(S1)i∆+(S2)j + ∆−(S1)i∆−(S2)j
−

Uni+1,j + Uni−1,j + Uni,j+1 + Uni,j−1

∆+(S1)i∆+(S2)j + ∆−(S1)i∆−(S2)j
. (4.4)

For ρ < 0, we use174

∂2U
∂S1∂S2

≈ −
2Uni,j + Uni+1,j−1 + Uni−1,j+1

∆+(S1)i∆−(S2)j + ∆−(S1)i∆+(S2)j
+

Uni+1,j + Uni−1,j + Uni,j+1 + Uni,j−1

∆+(S1)i∆−(S2)j + ∆−(S1)i∆+(S2)j
. (4.5)

u

u

u

u

u

u

u

(a) ρ ≥ 0

u

u

u

u

u

u

u

(b) ρ < 0

Figure 4.1: The seven-point stencil for ρ ≥ 0 and ρ < 0. The seven points used in the stencil depend on the
sign of ρ.

Standard three point differences are used for the ∂2U
∂S1∂S1

and ∂2U
∂S2∂S2

terms. First order partial derivatives175

in (2.2) are approximated with second order central differencing as much as possible (see Appendix A). We176

select central, forward and backward differencing to minimize the appearance of negative coefficients in the177

discretization (Wang and Forsyth, 2008). The linear differential operator L in (2.2) is discretized to form178

the discrete linear operator LQf .179

LQf U
n
i,j = (αS1

i,j − γi,j)U
n
i−1,j + (βS1

i,j − γi,j)U
n
i+1,j + (αS2

i,j − γi,j)U
n
i,j−1 + (βS2

i,j − γi,j)U
n
i,j+1

+ 1ρ≥0(γi,jUni+1,j+1 + γi,jUni−1,j−1) + 1ρ<0(γi,jUni+1,j−1 + γi,jUni−1,j+1)

− (αS1
i,j + βS1

i,j + αS2
i,j + βS2

i,j − 2γi,j + r)Ui,j ,

(4.6)

where αS1
i,j , β

S1
i,j , α

S2
i,j , β

S2
i,j , and γi,j are defined in Appendix A. The notation LQf indicates that the equation180

coefficients are functions of the control Q.181

The positive coefficient condition (Forsyth and Labahn, 2007) is182

αS1
i,j − γi,j ≥ 0, βS1

i,j − γi,j ≥ 0, αS2
i,j − γi,j ≥ 0, βS2

i,j − γi,j ≥ 0,

γi,j ≥ 0, αS1
i,j + βS1

i,j + αS2
i,j + βS2

i,j − 2γi,j + r ≥ 0, 1 ≤ i < N1, 1 ≤ j < N2.
(4.7)
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Due to the presence of the γi,j term in (4.6), the discretization does not ensure that the positive coefficient183

condition (4.7) is satisfied even if our choice of the seven-point operator ensures that γi,j ≥ 0. However,184

our algorithm makes the positive coefficient condition hold on as many grid nodes as possible with a fixed185

stencil. Only when the cross derivative term disappears in the HJB equation (2.2) can we guarantee that186

the positive coefficient condition always holds for a fixed point stencil.187

Remark 4.1. It is possible to carry out a logarithmic transformation on equation (2.2). In the new coordinate188

system (logS1, logS2), the diffusion tensor becomes constant for a fixed control. If we discretize the PDE189

on the space (logS1, logS2), a positive coefficient discretization can be constructed for a very restrictive grid190

spacing condition (Clift and Forsyth, 2008), but this approach is not very general, and the diffusion tensor191

is not constant if local volatility surfaces are used, which is common in practice. Consequently, we prefer to192

use the more meaningful discretization in (S1, S2) coordinates.193

4.2 Local coordinate rotation: the wide stencil194

We now consider the wide stencil discretization method. Suppose we discretize equation (2.2) at grid node195

(i, j) for a fixed control. Consider a virtual rotation of the local coordinate system clockwise by196

θi,j =
1

2
tan−1

(
2ρσ1σ2(S1)i(S2)j

(σ1(S1)i)2 − (σ2(S2)j)2

)
. (4.8)

That is, (y1, y2) in the transformed coordinate system is obtained by using the following matrix multiplication197 (
S1

S2

)
=

(
cos θi,j − sin θi,j
sin θi,j cos θi,j

)(
y1

y2

)
. (4.9)

We denote the rotation matrix in (4.9) as Ri,j . This rotation operation will result in a zero correlation in198

the diffusion tensor of the rotated system. That is, the cross derivative term will be eliminated. Under this199

grid rotation, the second order terms in equation (2.2) are, in the transformed coordinate system (y1, y2),200

ai,j
∂2V
∂y2

1

+ bi,j
∂2V
∂y2

2

, (4.10)

where V is the value function V(y1, y2, τ) in the transformed coordinate system, and201

ai,j =

(
(σ1 cos(θi,j)(S1)i)

2

2
+ ρσ1σ2(S1)i(S2)j sin(θi,j) cos(θi,j) +

(σ2 sin(θi,j)(S2)j)
2

2

)
,

bi,j =

(
(σ1 sin(θi,j)(S1)i)

2

2
− ρσ1σ2(S1)i(S2)j sin(θi,j) cos(θi,j) +

(σ2 cos(θi,j)(S2)j)
2

2

)
.

(4.11)

The diffusion tensor in (4.10) is diagonally dominant with no off-diagonal terms, and consequently a202

standard finite difference discretization for the second partial derivatives is a positive coefficient scheme.203

The rotation angle θi,j depends on the grid node and the control, therefore it is impossible to rotate the204

global coordinate system by a constant angle and build a grid over the space (y1, y2). The local coordinate205

system rotation is only used to construct a virtual grid which overlays the original mesh. We have to206

approximate the values of U on our virtual local grid using an interpolant JhU on the original mesh. To207

keep the numerical scheme monotone, linear interpolation is the most accurate interpolation we can use.208

Thus, Jh is a linear interpolation operator. Moreover, to keep the numerical scheme consistent, we need209

to use the points on our virtual grid whose Euclidean distances are O(
√
h) from the central node, where h210

is the mesh discretization parameter (4.2). This results in a wide stencil method since the relative stencil211

length increases as the grid is refined (
√
h
h →∞ as h→ 0). The wide stencil method is illustrated in Figure212

4.2. With a slight abuse of notation, we define the following213

Un(S) ≡ U(S1, S2, τ
n), S =

(
S1

S2

)
, Vn(y) ≡ V(y1, y2, τ

n), y =

(
y1

y2

)
. (4.12)
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Then, the second order terms in equation (2.2) at ((S1)i, (S2)j , τ
n) are approximated as214

ai,j
Vn
(
yi,j +

√
he1

)
+ Vn

(
yi,j −

√
he1

)
− 2Vn (yi,j)

h

+ bi,j
Vn
(
yi,j +

√
he2

)
+ Vn

(
yi,j −

√
he2

)
− 2Vn (yi,j)

h

≈ ai,j
JhUn(Si,j +

√
h(Ri,j)1) + JhUn(Si,j −

√
h(Ri,j)1)− 2Un(Si,j)

h

+ bi,j
JhUn(Si,j +

√
h(Ri,j)2) + JhUn(Si,j −

√
h(Ri,j)2)− 2Un(Si,j)

h
,

(4.13)

where Si,j = ((S1)i, (S2)j), yi,j = RT
i,jSi,j , (Ri,j)k is k-th column of the rotation matrix Ri,j (4.9), and

e1 =

(
1
0

)
, e2 =

(
0
1

)
.

To satisfy the positive coefficient condition, we then use an upstream finite differencing to discretize the first215

order derivatives.

S1

S2

θi,j

√

h

b

b

b

b

b

Figure 4.2: The wide stencil method based on local coordinate rotation.

216

4.3 Boundary conditions217

We shall assume that the discretization is posed on a bounded domain for computational purposes. The218

discretization is applied to the localized finite region (S1, S2) ∈ [0, S1,max]× [0, S2,max].219

No boundary condition is needed on the lower boundaries S1 = 0 or S2 = 0. The equation (2.2) reduces220

to221

∂U
∂τ

=


(r − q2)S2

∂U
∂S2

+
S2

2σ
2
2

2

∂2U
∂S2

2

− rU , for (S1, S2) ∈ {0} × (0, S2,max),

(r − q1)S1
∂U
∂S1

+
S2

1σ
2
1

2

∂2U
∂S2

1

− rU , for (S1, S2) ∈ (0, S1,max)× {0},

−rU , at (S1, S2) = (0, 0).

(4.14)

The cross derivative term vanishes on the lower boundaries. Thus, we can use a standard finite difference222

stencil to construct a monotone scheme on the lower boundaries.223

In order to preserve monotonicity of the discretization, a Dirichlet boundary condition is imposed on the224

upper boundaries S1 = S1,max or S2 = S2,max. As pointed out in Barles et al. (1995), we can expect any225
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errors incurred by imposing approximate boundary conditions at S1 = S1,max or S2 = S2,max to be small in226

areas of interest if S1,max or S2,max is sufficiently large. As S1 → ∞ or S2 → ∞, we normally use financial227

reasoning to determine the asymptotic form of the solution. The upper boundary may be approximated by228

a time-dependent value229

UA(S1, S2, τ) ≈ c0(τ) + c1(τ)S1 + c2(τ)S2. (4.15)

4.4 Avoid using points below the lower boundaries230

To make the numerical scheme consistent in a wide stencil method, the stencil length needs to be increased231

to use the points beyond the nearest neighbors of the original grid. As shown in Section 4.2, we use the four232

points Si,j ±
√
h(Ri,j)k, k = 1, 2 in (4.13), when we approximate the second order terms (4.10). Therefore,233

when solving the PDE on a bounded region, this numerical discretization (4.13) may require points outside234

the computational domain.235

When a candidate point we use is outside the computational region at the upper boundaries, we directly236

use the asymptotic solution as specified in (4.15) at the point. However, we have to take special care when237

we may use a point below the lower boundaries S1 = 0 or S2 = 0. The possibility of using points below the238

lower boundaries only occurs when the node (i, j) falls in the region239

[h,
√
h]× (0, S2,max] ∪ (0, S1,max]× [h,

√
h]. (4.16)

We propose a simple method to avoid this problem, which retains consistency. That is, when one of the four240

candidate points Si,j ±
√
h(Ri,j)k, k = 1, 2 is below the lower boundaries, we then shrink its corresponding241

distance to h, instead of
√
h. This treatment ensures that all data required is within the computational242

domain. The details of the method are given in Algorithm 4.1. We will prove that this simple idea retains243

consistency in Section 5.2.

Algorithm 4.1 Avoid using the points below the lower boundaries when approximating the ∂2V
∂y2k

, k = 1, 2

1: Let Sk,left = Si,j −
√
h(Ri,j)k and hk,left =

√
h

2: if Sk,left below the lower boundaries then
3: hleft = h
4: end if
5: Let Sk,right = Si,j +

√
h(Ri,j)k and hk,right =

√
h

6: if Sk,right below the lower boundaries then
7: hright = h
8: end if
9: The second derivative term ∂2V

∂y2k
at yi,j = RT

i,jSi,j are approximated as
10:

JhU(Si,j−hk,left(Ri,j)k)−U(Si,j)
hk,left

+
JhU(Si,j+hk,right(Ri,j)k)−U(Si,j)

hk,right
hk,left+hk,right

2

. (4.17)

244

4.5 Factoring the diffusion tensor245

In Debrabant and Jakobsen (2013), the wide stencil method based on factoring the diffusion tensor is
surveyed. For the convenience of the reader, we briefly summarize this method here. For more details we
refer readers to Debrabant and Jakobsen (2013). Let the diffusion tensor in (2.2) be

D =
1

2
CTC.
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Then, the second order terms in (2.2) are approximated as246

((D∇) · ∇U) ≈ 1

2

(
JhU(S +

√
hC1) + JhU(S−

√
hC1)− 2U(S)

h

+
JhU(S +

√
hC2) + JhU(S−

√
hC2)− 2U(S)

h

)
+O(h),

(4.18)

where Ck is k-th column of C. From the stochastic processes of the two asset prices (2.1), it is natural to
choose

C =

(
σ1S1 0

σ2ρS2 σ2

√
1− ρ2S2

)
.

That is, C is the lower triangular matrix associated with the Cholesky decomposition of the diffusion tensor.247

This consistent approximation is also a first order approximation and compatible with a monotone numer-248

ical scheme. Although the defining ideas, between this method and the local coordinate rotation introduced249

in Section 4.2, are different, we can relate them by re-interpreting the approximation (4.18). Firstly, we250

virtually transform the coordinate system as follows:251 (
S1

S2

)
= C

(
y1

y2

)
. (4.19)

This transformation will result in a zero correlation in the diffusion tensor of the transformed system. After252

applying this local virtual coordinate transformation, we then construct a local discretization in a manner253

similar to the method used for the rotation method in Section 4.2. The transformation (4.19) is both a254

stretching and rotation of the coordinate system, not an orthogonal rotation (4.9) as in Section 4.2. Thus,255

in (4.18), we shall use points whose Euclidean distance from (S1, S2) are |
√
hCk|, k = 1, 2, which is state256

dependent on S1 and S2. For example, the points we use may be far away from the central node (i, j),257

especially when the grid state (S1)i or (S2)j is large. However, as noted in Bonnans and Zidani (2003)258

and Kushner and Dupuis (2001), it is highly desirable to limit the use of points that are far away from259

the central node. When we use the method of locally rotating coordinate system, the candidate points are260

always
√
h|(Ri,j)k| =

√
h away from the central node. In our numerical experiments, we will compare the261

performance of these two methods.262

4.6 Maximal use of a fixed point stencil263

We will derive a hybrid scheme which combines use of the fixed point stencil (Section 4.1) with the wide stencil264

based on a local coordinate rotation (Section 4.2). The fixed point stencil is a second-order approximation265

of the diffusion terms, but this discretization cannot ensure a positive coefficient method at every node in266

general. The computational cost is also highly increased when we use a wide stencil. This is due to the fact267

that we have an analytical solution for the local optimization problem for the fixed point stencil case. On268

the other hand, when using a wide stencil, we need to discretize the control set and then perform a linear269

search to find the optimal value for the control. We propose an algorithm which uses the fixed point stencil270

as much as possible to take advantage of its accuracy and computational efficiency, while still satisfying the271

positive coefficient condition. Note that our algorithm is also applicable if we factor the diffusion tensor, as272

in Debrabant and Jakobsen (2013).273

Lemma 4.1. The positive coefficient condition (4.7) for a fixed point stencil is satisfied for an arbitrary274

Q = (σ1, σ2, ρ), if the following constraints hold275

(1) We must select equation (4.4) if ρ ≥ 0 and equation (4.5) if ρ < 0 to approximate the cross derivative276

term.277

(2) The following sufficient conditions are satisfied,278
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for ρ ≥ 0

(S2)j max(∆+(S1)i,∆
−(S1)i)

(S1)i

∆+(S1)i + ∆−(S1)i
∆+(S1)i∆+(S2)j + ∆−(S1)i∆−(S2)j

≤ σ1

σ2ρ
, (4.20a)

(S2)j
(S1)i max(∆+(S2)j ,∆−(S2)j)

∆+(S1)i∆
+(S2)j + ∆−(S1)i∆

−(S2)j
∆+(S2)j + ∆−(S2)j

≥ σ1ρ

σ2
, (4.20b)

279

for ρ < 0

(S2)j max (∆+(S1)i,∆
−(S1)i)

(S1)i

∆+(S1)i + ∆−(S1)i
∆+(S1)i∆−(S2)j + ∆−(S1)i∆+(S2)j

≤ σ1

σ2|ρ|
, (4.21a)

(S2)j
(S1)i max(∆+(S2)j ,∆−(S2)j)

∆+(S1)i∆
−(S2)j + ∆−(S1)i∆

+(S2)j
∆+(S2)j + ∆−(S2)j

≥ σ1|ρ|
σ2

. (4.21b)

Proof. We select equation (4.4) if ρ ≥ 0 and equation (4.5) if ρ < 0 to approximate the cross derivative term,
this choice then ensures γi,j ≥ 0. The condition (2) makes the following inequities hold

αS1
i,j − γi,j ≥ 0, βS1

i,j − γi,j ≥ 0, αS2
i,j − γi,j ≥ 0, αS2

i,j − γi,j ≥ 0.

For more details see Øksendal and Sulem (2005, Chapter 9.4).280

Theorem 4.1. Assume that281

(1) We must select equation (4.4) if ρ ≥ 0 and equation (4.5) if ρ < 0 to approximate the cross derivative282

term.283

(2) The grid spacings satisfy the following conditions in terms of extreme values of the control Q = (σ1, σ2, ρ).284 
(4.20a) for (σ1,min, σ2,max, ρmax) and (4.20b) for (σ1,max, σ2,min, ρmax), if ρmin ≥ 0,

(4.21a) for (σ1,min, σ2,max, ρmin) and (4.21b) for (σ1,max, σ2,min, ρmin), if ρmax ≤ 0,

(4.20a) for (σ1,min, σ2,max, ρmax), (4.20b) for (σ1,max, σ2,min, ρmax), (4.21a) for (σ1,min, σ2,max, ρmin),

and (4.21b) for (σ1,max, σ2,min, ρmin), if ρmin ≤ 0 ≤ ρmax.
(4.22)

With these conditions, we can select a differencing scheme (see Appendix A) so that the positive coefficient285

condition (4.7) is satisfied for ∀Q ∈ Z. We denote the domain where the conditions (4.22) are satisfied by286

Ωf .287

Proof. For the case ρmin ≥ 0, if the constraint (4.20) holds for all Q ∈ Z, we have288

(S2)j max(∆+(S1)i,∆
−(S1)i)

(S1)i

∆+(S1)i + ∆−(S1)i
∆+(S1)i∆+(S2)j + ∆−(S1)i∆−(S2)j

≤ inf
Q∈Z

σ1

σ2ρ
=

σ1,min

σ2,maxρmax
,

(S2)j
(S1)i max(∆+(S2)j ,∆−(S2)j)

∆+(S1)i∆
+(S2)j + ∆−(S1)i∆

−(S2)j
∆+(S2)j + ∆−(S2)j

≥ sup
Q∈Z

σ1ρ

σ2
=
σ1,maxρmax

σ2,min
.

(4.23)

The proof is similar for the other two cases.289
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We select central/upstream differencing (forward or backward differencing) for the first order derivative290

terms. When the conditions in Theorem 4.1 are satisfied, upstream differencing ensures that the positive291

coefficient condition holds. However, central differencing is used as much as possible to minimize discretiza-292

tion error. Consequently, given a control Q, if central differencing satisfies the positive coefficient condition,293

central differencing will be preferred.294

Remark 4.2. Grid spacing conditions in Theorem 4.1 depend on the space state (S1, S2), thus the structure295

of a grid is not always such that these conditions are met everywhere. We shall not enforce these conditions,296

but indeed check whether they are satisfied at a given grid node.297

Our algorithm is summarized as follows. The domains are defined in Table 4.1. The fixed point stencil298

introduced in Section 4.1 is used in the domain Ωf . For the case
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw, we need to use a299

wide stencil based on a local coordinate rotation to discretize the second derivative terms (D∇) · ∇U in the300

HJB equation (2.2). When using the wide stencil discretization, we use an upstream finite differencing for301

the first order derivatives. We avoid using points below the lower boundaries for
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw∗ .302

We use the asymptotic solution (4.15) of the HJB equation at a point outside the computational region at303

the upper boundaries. From the discretization (4.13), we can see that the measure of Ωout converges to zero304

as h→ 0 (4.2). Lastly, fully implicit time-stepping is used to ensure the unconditional monotonicity of our305

numerical scheme.

Ω [0, S1,max]× [0, S2,max]× [0, T ]
Ωτ0 [0, S1,max]× [0, S2,max]× {0}
Ωup {S1,max} × (0, S2,max]× (0, T ] ∪ (0, S1,max]× {S2,max} × (0, T ]
Ωin Ω/Ωτ0/Ωup
Ωf The region in Ωin where conditions (4.22) in Theorem 4.1 hold.

Ωb [h,
√
h]× (0, S2,max]× (0, T ] ∪ (0, S1,max]× [h,

√
h]× (0, T ].

Ωw∗ The region in Ωb that does not satisfy the condition (4.22).
Ωw Ωin/Ωf/Ωw∗

Ωout (S1,max, S1,max +
√
h]× [0, S2,max +

√
h]× (0, T ] ∪ [0, S1,max]× (S2,max, S2,max +

√
h]× (0, T ]

Table 4.1: The domain definitions.

306

S1

S2

{

{

Ωb

Ω
b

√
h

√
h

{

h

{h

Ωf ∪ Ωw

{√
h

√
h { Ωup ∪ Ωout

Ω
u
p
∪
Ω

o
u
t

Figure 4.3: The domain descriptions.
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4.7 Discretization form307

We will give details of the discretization for the HJB equation (2.2) in Ωin in this section. For the case308 (
(S1)i, (S2)j , τ

n+1
)
∈ Ωf where the fixed point stencil is used, the HJB equation (2.2) has the following309

discretized form310

Un+1
i,j − Uni,j

∆τ
= sup
Q∈∂Z

(
LQf U

n+1
i,j

)
, (4.24)

where the discretized linear operator LQf is defined in (4.6).311

Remark 4.3. (Restricting the control to the boundary) In the discrete equations LQf U
n+1
i,j , the numerical312

approximations of first order derivatives depend on the stencil, backward, forward or central differencing,313

which depend on the control. Thus, the discrete first order derivatives are also involved in the optimization314

of the discrete equations. In addition, the numerical approximation of the cross derivative term in (4.6) is315

dependent on the sign of the correlation ρ. In Proposition 3.1, the objective function contains just the diffusion316

terms, and we assume that Γkl, k, l = 1, 2 are constant and independent of the control. Therefore, the317

optimal value of the discrete equations is not necessarily attained at the boundary ∂Z. However, Proposition318

3.1 holds for a smooth test function. Consequently, restricting the control to the boundary of the control set319

is a consistent approximation in the viscosity sense. Note that we also have an analytic expression for the320

optimal control for the discrete equations LQf U
n+1
i,j when restricting Q ∈ ∂Z. See details in Section E.321

For the case
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw where the wide stencil is used, the discretized form of the linear322

differential operator L (2.3) is denoted by LQw .323

LQwUn+1
i,j =

ai,j
h
JhUn+1

(
Si,j +

√
h(Ri,j)1

)
+
ai,j
h
JhUn+1

(
Si,j −

√
h(Ri,j)1

)
+
bi,j
h
JhUn+1

(
Si,j +

√
h(Ri,j)2

)
+
bi,j
h
JhUn+1

(
Si,j −

√
h(Ri,j)2

)
+ 1(r−q1)≥0

(r − q1)(S1)i
∆+(S1)i

Un+1
i+1,j − 1(r−q1)<0

(r − q1)(S1)i
∆−(S1)i

Un+1
i−1,j + 1(r−q2)≥0

(r − q2)(S2)j
∆+(S2)j

Un+1
i,j+1

− 1(r−q2)<0
(r − q2)(S2)j

∆−(S2)j
Un+1
i,j−1 −

(
1(r−q1)≥0

(r − q1)(S1)i
∆+(S1)i

− 1(r−q1)<0
(r − q1)(S1)i

∆−(S1)i

+ 1(r−q2)≥0
(r − q2)(S2)j

∆+(S2)j
− 1(r−q2)<0

(r − q2)(S2)j
∆−(S2)j

+
2ai,j
h

+
2bi,j
h

+ r

)
Un+1
i,j ,

(4.25)

where ai,j and bi,j are given in (4.11), and the presence of JhUn+1
(
Si,j ±

√
h(Ri,j)k

)
, k = 1, 2 is due to the324

discretization of the second derivative terms (4.13). As defined in (4.12), Un(S) ≡ U(S1, S2, τ
n), S = (S1, S2)325

and Si,j = ((S1)i, (S2)j).326

Remark 4.4. The points Si,j ±
√
h(Ri,j)k, k = 1, 2 used in (4.25) are control Q dependent. Therefore, the327

discretization in this case will depend on the control. We indicate this fact in the notation of the discrete328

linear operator LQw .329

Since the numerical approximations of the diffusion terms depend on the control in the discrete equations330

LQwUn+1
i,j , there is no simple analytic expression which can be used to maximize the discrete equations (4.25).331

We also do not have any known convexity properties of (4.25). For a compact set of the controls, we must find332

the global maximum of (4.25) to ensure that our policy iteration algorithm converges. Hence, we discretize333

the control set Z (2.5), and maximize by linear search.334

As explained in Remark 4.3, we will maximize the discrete equations LQwUn+1
i,j restricting the control to335

∂Z. This significantly reduces the computational cost. We denote ∂Zh as the discrete approximation of ∂Z336

∂Zh = {(σ1)1, . . . , (σ1)lmax
} × {(σ2)1, . . . , (σ2)kmax

} × {ρmin, ρmax}, (4.26)
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where (σ1)1 = σ1,min, (σ1)lmax = σ1,max, (σ2)1 = σ2,min, and (σ2)kmax = σ2,max. Let337

max
i

((σ1)i − (σ1)i−1) = C4h and max
i

((σ2)i − (σ2)i−1) = C5h, (4.27)

where h (4.2) is the mesh discretization parameter.338

Finally, using fully implicit timestepping, the HJB equation (2.2) has the following discretized form for339

this case340

Un+1 − Un

∆τ
= sup
Q∈∂Zh

(
LQwUn+1

i,j

)
. (4.28)

For the case
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw∗ , we need to adapt the discretized linear operator LQw to avoid341

using points below the lower boundaries as described in Algorithm 4.1. The details of discretized equation342

for this case are given in Appendix B.343

4.8 The matrix form of the discrete equations344

It is convenient to use a matrix form to represent the discretized equations for computational purposes. In345

this section we define a number of matrices and vectors to represent the discretized PDEs in (4.24), (4.28)346

and (B.2). Let Uni,j be the approximate solution of the equation (2.2) at ((S1)i, (S2)j , τ
n), 1 ≤ i ≤ N1,347

1 ≤ j ≤ N2 and 0 ≤ τn ≤ Nτ , and form the solution vector348

Un =
(
Un1,1,Un2,1, . . . ,UnN1,1, . . . ,U

n
1,N2

, . . . ,UnN1,N2

)
. (4.29)

It will sometimes be convenient to use a single index when referring to an entry of the solution vector

Un` = Uni,j , ` = i+ (j − 1)N1.

Let N = N1 ×N2, and we define the N ×N matrix Ln+1(Q), where349

Q = {Q1, . . . , QN} (4.30)

is an indexed set of N controls, and each Q` is in the set of admissible controls. Ln+1
`,k (Q) is the entry on the350

`-th row and k-th column, where ` = i+ (j − 1)N1, i = 1, . . . , N1, j = 1, . . . , N2.351

For the case
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωup where the Dirichlet boundary condition (4.15) is imposed, and we352

then have353

Ln+1
`,k (Q) = 0, k = 1, . . . , N, (4.31)

and define the vector Fn+1 with entries354

Fn+1
` =

{
UA
(
(S1)i, (S2)j , τ

n+1
)
,
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωup,

0, otherwise.
(4.32)

For the case
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωf , the entries Ln+1

`,k (Q) are constructed from the discrete linear355

operator LQf (4.6). That is,356

[Ln+1(Q)Un+1]` = LQf U
n+1
i,j . (4.33)

For the case
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw, we need to use the values at the following four off-grid points357

Si,j ±
√
h(Ri,j)k, k = 1, 2 in the discrete linear operator LQw (4.25). Let these four points denoted as358

Pmi,j , m = 1, 2, 3, 4, respectively. Note that these points may be outside the bounded domain Ωin. When359

Pmi,j ∈ Ωin, using linear interpolation, values at these four points are approximated as follows360

JhUn+1
(
Pmi,j

)
=


∑
d=0,1
e=0,1

ωpm+d,qm+e
i,j Un+1

pm+d,qm+e, Pmi,j ∈ Ωin

0, Otherwise

. (4.34)

14



For linear interpolation, we have that ωpm+d,qm+e
i,j ≥ 0 and

∑
d=0,1
e=0,1

ωpm+d,qm+e
i,j = 1. By inserting (4.34) in361

(4.25), the entries Ln+1
`,k (Q) on `-th row are then specified. When a point Pmi,j is outside the domain Ωin and362

inside the domain Ωout, we then use its asymptotic solution at the point without extrapolating its value. We363

need to define the vector Bn+1(Q) to facilitate the construction of the matrix form in this situation when364

we use a point in the domain Ωout.365

Bn+1
` (Q) =


1P 1

i,j∈Ωout
ai,j
h UA(P 1

i,j) + 1P 2
i,j∈Ωout

ai,j
h UA(P 2

i,j)

+ 1P 3
i,j∈Ωout

bi,j
h UA(P 3

i,j) + 1P 4
i,j∈Ωout

bi,j
h UA(P 4

i,j),
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw ∪ Ωw∗

0, otherwise

,

(4.35)
where UA(Pmi,j) is the asymptotic solution (4.15) at the point. As a result, for the case

(
(S1)i, (S2)j , τ

n+1
)
∈366

Ωw, we have367

[Ln+1(Q)Un+1]` + Bn+1
` (Q) = LQwUn+1

i,j . (4.36)

Lastly, for
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw∗ , using the corresponding discrete linear operator LQw∗ (B.1), the entries368

Ln+1
`,k (Q) are constructed similarly to the previous case where

(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw.369

Let370

A(Q) ≡ [I−∆τLn+1(Q)], (4.37)

and371

C(Q) ≡ Un + Fn+1 − Fn + ∆τBn+1(Q). (4.38)

so that the discretized equations are written in the compact form372

sup
Q∈Ẑ

{
−A(Q)Un+1 + C(Q)

}
= 0, (4.39)

where we define Ẑ as373

Ẑ =

{
∂Z,

(
(S1)i, (S2)j , τ

n+1
)
∈ Ωf ,

∂Zh,
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw ∪ Ωw∗ ,

. (4.40)

5 Convergence to the viscosity solution374

In general, we cannot expect solutions to the HJB equation (2.2) to be smooth. Hence, we seek the viscosity375

solution of the equation (2.2). From Barles et al. (1995), we find that a sufficient condition which guarantees376

convergence to the viscosity solution is that the numerical scheme is `∞ stable, consistent in the viscosity377

sense, and monotone. In the following sections, we will verify each of the properties in turn for our numerical378

scheme.379

5.1 Viscosity solution for the localized problem380

To make the statement of the problem more precise in the context of viscosity solutions, we now write
the localized problem in a compact form, which includes the terminal and boundary equations in a single
equation. Let us define

x = (S1, S2, τ), DU(x) = (
∂U
∂S1

,
∂U
∂S2

), D2U(x) =

(
∂2U
∂S2

1

∂2U
∂S1∂S2

∂2U
∂S1∂S2

∂2U
∂S2

2

)
.

The HJB equation for the value function (2.2) on the localized domain Ω ∪ Ωout is given by381

FU ≡ F
(
x,U(x), DU(x), D2U(x)

)
= 0, (5.1)
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where the operator FU is defined by382

FU =


FinU ≡ Fin

(
x,U(x), DU(x), D2U(x)

)
, x ∈ Ωin = Ωf ∪ Ωw ∪ Ωw∗ ,

Fτ0U ≡ Fτ0 (x,U(x)) , x ∈ Ωτ0 ,

FmaxU ≡ Fmax (x,U(x)) , x ∈ Ωup ∪ Ωout.

(5.2)

Here,383

FinU = Uτ −max
Q∈Z

(LU) , (2.2)

F0U = U −W(S1, S2),

FmaxU = U − UA(S1, S2, τ) ,

(5.3)

where UA is the asymptotic form of the solution, as in equation (4.15).384

Before defining the viscosity solution of equation (5.1), we first recall the definitions of upper and lower385

semi-continuous envelopes. Given a function f : Ω̃→ R, Ω̃ ⊆ Rn, the upper semi-continuous envelope of f ,386

denoted by f∗, is defined as387

f∗(x̃) = lim
[

sup

r̃→0+

{
f(y)

∣∣∣ y ∈ B(x̃, r̃) ∩ Ω̃
}]

, (5.4)

where B(x̃, r) = {y ∈ Rn | |x̃− y| < r̃}. We also have the obvious definition for a lower semi-continuous388

envelope f∗(x̃).389

We also define390

lim sup
y→x̃

f(y) = lim
[

sup

r̃→0+

{
f(y)

∣∣∣ y ∈ B(x̃, r̃) ∩ Ω̃− x̃
}]

, (5.5)

with the corresponding definition of lim inf.391

Definition 5.1. (Viscosity solution of equation 5.1) A locally bounded function U : Ω ∪ Ωout → R is a392

viscosity sub-solution (resp. super-solution) of equation (5.1) if, for all test functions φ(x) ∈ C∞(Ω∪Ωout),393

and all x, such that U − φ has a strict global maximum (resp. minimum) with φ(x) = U∗(x) (resp. U∗(x)),394

we have395

F∗
(
x, φ(x), Dφ(x), D2φ(x)

)
≤ 0,(

resp. F ∗
(
x, φ(x), Dφ(x), D2φ(x)

)
≥ 0

)
,

(5.6)

where F∗(·) is the lower semi-continuous envelope of F (resp. the upper semi-continuous envelope F ∗). U396

is a viscosity solution if it is both a viscosity sub-solution and a viscosity super-solution.397

Proposition 5.1. (Strong comparison) Suppose the payoff functionW(S1, S2) at expiry time T is continuous398

with quadratic growth, then the value function satisfies a strong comparison result, hence there exists an399

unique continuous viscosity solution of the problem (2.2) (Pham, 2005; Guyon and Henry-Labordere, 2011).400

Proof. See Pham (2005).401

Corollary 5.1. Note that we restrict ourselves to a finite domain Ω∪Ωout for the HJB equation FU defined402

in (5.1), hence the value function (5.1) satisfies a strong comparison result.403

5.2 Consistency404

For the purpose of proving convergence to the viscosity solution, it is more convenient to rewrite equations405

(4.24), (4.28) and (B.2) in an equivalent form. Let G(·) be the discrete approximation to Fin for x ∈ Ωin,406

and xn+1
i,j = ((S1)i, (S2)j , τ

n+1). For xn+1
i,j ∈ Ωf , from (4.24), we have407

G

(
h,xn+1

i,j ,Un+1
i,j ,

{
Un+1
a,b

}
a 6=i

or b6=j
, {Unk,l}

)
=
Un+1
i,j − Uni,j

∆τ
− sup
Q∈∂Z

(
LQf U

n+1
i,j

)
= 0. (5.7)
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For xn+1
i,j ∈ Ωw, from (4.28), we have408

G

(
h,xn+1

i,j ,Un+1
i,j ,

{
Un+1
a,b

}
a6=i

or b 6=j
, {Unk,l}

)
=
Un+1
i,j − Uni,j

∆τ
− sup
Q∈∂Zh

(
LQwUn+1

i,j

)
= 0. (5.8)

For xn+1
i,j ∈ Ωw∗ , from (B.2), we have409

G

(
h,xn+1

i,j ,Un+1
i,j ,

{
Un+1
a,b

}
a 6=i

or b6=j
, {Unk,l}

)
=
Un+1
i,j − Uni,j

∆τ
− sup
Q∈∂Zh

(
LQw∗Un+1

i,j

)
= 0. (5.9)

Finally, we have410

G(·) = 0 =

{
U((S1)i, (S2)j , 0)−W((S1)i, (S2)j), xn+1

i,j ∈ Ωτ0 ,

U((S1)i, (S2)j , τ
n+1)− UA((S1)i, (S2)j , τ

n+1), xn+1
i,j ∈ Ωup ∪ Ωout.

(5.10)

The domains Ωf , . . . ,Ωout are defined in Table 4.1, and UA is defined in equation (4.15).411

Definition 5.2. (Consistency) For any C∞ function φ(S1, S2, τ) in Ω ∪ Ωout, with φn+1
i,j = φ(xn+1

i,j ) =412

φ
(
(S1)i, (S2)j , τ

n+1
)
, the numerical scheme G(·) is consistent in the viscosity sense, if, ∀x̂ = (Ŝ1, Ŝ2, τ̂) with413

xn+1
i,j =

(
(S1)i, (S2)j , τ

n+1
)
, the following holds414

lim sup
h→0
ψ→0

xn+1
i,j →x̂

G

(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a 6=i

or b 6=j
,
{
φnk,l + ψ

})
≤ F ∗

(
x̂, φ(x̂), Dφ(x̂), D2φ(x̂)

)
,

(5.11)

and415

lim inf
h→0
ψ→0

xn+1
i,j →x̂

G

(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a 6=i

or b 6=j
,
{
φnk,l + ψ

})
≥ F∗

(
x̂, φ(x̂), Dφ(x̂), D2φ(x̂)

)
.

(5.12)

Lemma 5.1. (Local consistency). Suppose the mesh discretization parameter h is defined in (4.2) and416

the control discretization satisfies equation (4.27), then for any C∞ function φ(S1, S2, τ) in Ω ∪ Ωout, with417

φn+1
i,j = φ

(
(S1)i, (S2)j , τ

n+1
)

= φ(xn+1
i,j ), and for h, ψ sufficiently small, ψ a constant, we have that418

G

(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,l + ψ

})

=



Finφ
n+1
i,j +O(h) +O(ψ), xn+1

i,j ∈ Ωf ,

Finφ
n+1
i,j +O(h) +O(ψ), xn+1

i,j ∈ Ωw,

Finφ
n+1
i,j +O(

√
h) +O(ψ), xn+1

i,j ∈ Ωw∗ ,

Fτ0φ
n+1
i,j +O(ψ), xn+1

i,j ∈ Ωτ0 ,

Fmaxφ
n+1
i,j +O(ψ), xn+1

i,j ∈ Ωup ∪ Ωout.

(5.13)

Proof. To be precise, define the following419

Lφn+1
i,j ≡ Lφ((S1)i, (S2)j , τ

n+1),

(φτ )n+1
i,j ≡ φτ ((S1)i, (S2)j , τ

n+1).
(5.14)
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For the case xn+1
i,j ∈ Ωf , LQf φ

n+1
i,j (4.6) is a locally consistent discretization of the linear operator L (2.3),420

that is,421

LQf φ
n+1
i,j = Lφn+1

i,j +O(h), (5.15)

which is easily proved by Taylor series, and note that422

LQf
(
φn+1
i,j + ψ

)
= LQf φ

n+1
i,j − rψ,

φn+1
i,j − φni,j

∆τ
= (φτ )n+1

i,j +O(h).
(5.16)

Since φ is a smooth test function, and ∂2φ
∂Sk∂Sl

, k, l = 1, 2 are independent of the control, then, by423

Proposition 3.1, we have424

sup
Q∈∂Z

(
Lφn+1

i,j

)
= sup
Q∈Z

(
Lφn+1

i,j

)
, (5.17)

and from equation (5.7) and (5.17), we then have the result425

G

(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a 6=i

or b 6=j
,
{
φnk,l + ψ

})

=
φn+1
i,j − φni,j

∆τ
− sup
Q∈∂Z

(
LQf φ

n+1
i,j

)
+O(ψ)

= (φτ )n+1
i,j − sup

Q∈∂Z

(
Lφn+1

i,j

)
+O(ψ) +O(h)

= (φτ )n+1
i,j − sup

Q∈Z

(
Lφn+1

i,j

)
+O(ψ) +O(h)

= Finφ
n+1
i,j +O(ψ) +O(h), xn+1

i,j ∈ Ωf

(5.18)

For the case where xn+1
i,j ∈ Ωw, LQwφ

n+1
i,j (4.25) is also locally consistent,426

LQwφ
n+1
i,j = Lφn+1

i,j +O(h), (5.19)

and note that427

LQw
(
φn+1
i,j + ψ

)
= LQwφ

n+1
i,j − rψ,

φn+1
i,j − φni,j

∆τ
= (φτ )n+1

i,j +O(h).
(5.20)

From equation (5.8), we then have428

G

(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a 6=i

or b 6=j
,
{
φnk,l + ψ

})

=
φn+1
i,j − φni,j

∆τ
− sup
Q∈∂Zh

(
LQwφ

n+1
i,j

)
+O(ψ)

= (φτ )n+1
i,j − sup

Q∈∂Zh

(
Lφn+1

i,j

)
+O(ψ) +O(h).

(5.21)

We discretize the set ∂Z and maximize the discrete equations by linear search. If the discretization step429

for the control is also O(h), then this is a consistent approximation (Wang and Forsyth, 2008), since the430

equation coefficients are Lipschitz continuous functions of the controls. That is, using equation (5.17),431

sup
Q∈∂Zh

(
Lφn+1

i,j

)
= sup
Q∈∂Z

(
Lφn+1

i,j

)
+O(h) = sup

Q∈Z

(
Lφn+1

i,j

)
+O(h). (5.22)
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Using equation (5.22) in equation (5.21), we then have the final result432

G

(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a 6=i

or b 6=j
,
{
φnk,l + ψ

})
= (φτ )n+1

i,j − sup
Q∈Z

(
Lφn+1

i,j

)
+O(ψ) +O(h),

= Finφ
n+1
i,j +O(ψ) +O(h), xn+1

i,j ∈ Ωw.

(5.23)

For the case xn+1
i,j ∈ Ωw∗ , the proof is similar to the case xn+1

i,j ∈ Ωw, but the consistency of the discrete

linear operator LQw∗ is perhaps not obvious. A possible inconsistency may arise when we shrink the stencil
length from O(

√
h) to O(h) to avoid using points below the lower boundaries. However, consistency still

holds for LQw∗ (see the proof in Appendix C).

LQw∗φ
n+1
i,j = Lφn+1

i,j +O(
√
h).

Following the same steps as the case xn+1
i,j ∈ Ωw, we finally have433

G

(
h,xn+1

i,j , φn+1
i,j + ψ,

{
φn+1
a,b + ψ

}
a6=i

or b 6=j
,
{
φnk,l + ψ

})
= Finφ

n+1
i,j +O(ψ) +O(

√
h), xn+1

i,j ∈ Ωw∗ . (5.24)

The remaining results in (5.13) can be proven using similar arguments.434

Lemma 5.2. (Consistency) Provided that all conditions in Lemma 5.1 are satisfied, then scheme (5.7-5.10)435

is consistent according to Definition (5.2).436

Proof. This follows in straightforward fashion from Lemma 5.1, using the same steps as in, for example,437

Huang and Forsyth (2012).438

5.3 Stability439

Definition 5.3. (M -matrix) If a matrix A has elements aii > 0 and aij < 0 for i 6= j and every row sum is440

non-negative with at least one row sum positive in each connected part of A, then A is an M -matrix (Varga,441

2009).442

Remark 5.1. We remind the reader that a sufficient condition for a matrix A to be an M -matrix is that443

A has positive diagonals, non-positive offdiagonals, and is diagonally dominant (Varga, 2009).444

Lemma 5.3. Providing the following conditions hold445

• We only use the discrete linear operator LQf (4.6) in the domain Ωf ,446

• A linear interpolation operator Jh is used in (4.25) and (B.1).447

Then, A(Q) = [I−∆τLn+1(Q)] (4.39) is an M -matrix, with448 ∑
k

[I−∆τLn+1(Q)]`,k ≥ 1 . (5.25)

Proof. From the formation of matrix L in (4.31), (4.33) and (4.36), it is easily seen that [I −∆τLn+1(Q)]449

has positive diagonals, non-positive offdiagonals, and the `-th row sums for the matrix is450

∑
k

[
I−∆τLn+1(Q)

]
`,k

=

{
1 + r∆τ i = 1, . . . , N1 − 1, , j = 1, . . . , N2 − 1,

1 i = N1 or j = N2,
(5.26)

where ` = i+ (j − 1)N1. Thus, the matrix [I−∆τLn+1(Q)] is diagonally dominant.451
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Lemma 5.4. (Stability) If the conditions for Lemma 5.3 are satisfied, the discretization (4.39), equivalently452

(5.7-5.10), is unconditionally l∞ stable, as mesh discretization parameter (4.2) h→ 0, satisfying453

‖Un‖∞ ≤ max
(
‖U0‖∞, C6

)
, (5.27)

where C6 = maxn ‖Fn‖∞, where Fn is determined by the asymptotic boundary condition (4.15).454

Proof. By Lemma 5.3, and using a straightforward maximum analysis as in d’Halluin et al. (2004), the result455

follows.456

Remark 5.2. From the properties of M-matrices and equation (5.26) we have that457

‖A(Q)−1‖∞ = ‖[I−∆τLn+1(Q)]−1‖∞ ≤ max
`

1

rowsum([I−∆τLn+1(Q)]`)
≤ 1 (5.28)

5.4 Monotonicity458

Definition 5.4. (Monotonicity) The discrete scheme is monotone if for all Yni,j ≥ Xni,j , ∀i, j, n459

G

(
h,xn+1

i,j ,Un+1
i,j ,

{
Yn+1
a,b

}
a 6=i

or b6=j
,
{
Ynk,l

})
≤ G

(
h,xn+1

i,j ,Un+1
i,j ,

{
Xn+1
a,b

}
a6=i

or b 6=j
,
{
Xnk,l

})
. (5.29)

Lemma 5.5. (Monotonicity) If the scheme (5.7-5.10) satisfies the conditions required for Lemma 5.3, then460

the discretization is monotone, according to Definition 5.4.461

Proof. Since our discretization is a positive coefficient scheme ∀Q ∈ Ẑ (4.40), monotonicity follows using the462

same steps as in Forsyth and Labahn (2007).463

5.5 Convergence464

Theorem 5.1. (Convergence) Assume that discretization (5.7-5.10) satisfies all the conditions required by465

Lemma 5.2, 5.4 and 5.5, and that Proposition 5.1 holds, then numerical scheme (5.7-5.10) converges to the466

unique continuous viscosity solution of the problem (5.1).467

Proof. Since the scheme is monotone, consistent and `∞-stable, this follows from the results in Barles and468

Souganidis (1991).469

6 Solution of the nonlinear discrete algebraic equations470

Although we have established that discretization (4.39) is consistent, `∞ stable and monotone, fully implicit471

timestepping requires solution of highly nonlinear algebraic equations at each timestep. For the applications472

addressed in Forsyth and Labahn (2007) an efficient method for solving the associated algebraic systems made473

use of a policy iteration scheme. However, our discretization method is control dependent, and consequently474

the local objective function may be a discontinuous function of the control (Wang and Forsyth, 2008; Huang475

et al., 2012). Hence some care must be taken when applying policy iteration. Recall that at every timestep476

τn, the nonlinear algebraic linear equations (4.39) can be represented as in the form477

sup
Q∈Ẑ

{
−A(Q)Un+1 + C(Q)

}
= 0, (6.1)

where Q ∈ Ẑ (see the definition of Ẑ in (4.40)) denotes that each Q` ∈ Ẑ, ` = 1, . . . , N . Equation (6.1) is478

to be understood in the row-wise sense, i.e. supQ∈Ẑ [ · ]` = 0 ; ` = 1, · · · , N1N2.479

Before proceeding with a discussion of Policy Iteration, for solution of equation (6.1), we list here a set480

of properties of A(Q), C(Q), Ẑ, which will prove useful in later sections.481
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Properties 6.1. (Properties of A(Q), C(Q), Ẑ)482

(i) The set of controls Ẑ (4.40) is compact.483

(ii) The matrices and vectors have the property that A`,k(Q) and C`(Q) depend only on Q`. That is,484

A`,k(Q) = A`,k(Q`) and C`(Q) = C`(Q`).485

(iii) A(Q) is a diagonally dominant M-matrix ∀Q, and
∑
k A`,k(Q) ≥ Cr > 0, where Cr is independent of486

Q and row `.487

(iv) ‖A(Q)‖∞, ‖C(Q)‖∞, and ‖A(Q)−1‖∞ are bounded uniformly w.r.t. Q.488

Lemma 6.1 (Verification of Properties 6.1). The discretization (4.39) satisfies Properties 6.1.489

Proof. Property (i) holds from the definition of Z, Ẑ, see equation (2.5) and equation (4.40). From the490

definitions of A and C, in equations (4.37-4.38), (ii) follows from the fact that the control at discrete node491

` depends only on the discretized equation at node `. (iii) holds from Lemma 5.3, with Cr = 1 (equation492

(5.26)). From (i) and the definitions of A and C, we have that ‖A(Q)‖ and ‖C(Q)‖ are bounded independent493

of Q. From equation (5.28), it follows that ‖A(Q)−1‖ is bounded independent of Q as well, hence (iv) is494

satisfied.495

Fix a vector W. From Properties 6.1, there exists a sequence Qk, such that496

lim
k→∞

(
−A(Qk)W + C(Qk)

)
= sup
Q∈Ẑ
{−A(Q)W + C(Q)} . (6.2)

Since A(Q), C(Q) are bounded, then there is a convergent subsequence {Qkj} such that A(Qkj )→ Â(W)497

and C(Qkj )→ Ĉ(W), for some Â(W), Ĉ(W), satisfying498

−Â(W)W + Ĉ(W) = sup
Q∈Ẑ
{−A(Q)W + C(Q)} . (6.3)

We also have the following result499

Proposition 6.1. If Properties 6.1 hold, with Â(W) and Ĉ(W) defined in equation (6.3), then Â(W) is500

an M-matrix, and ‖Ĉ(W)‖∞ and ‖Â(W)−1‖∞ are bounded uniformly w.r.t. W.501

Proof. From Properties 6.1, every matrix in the sequence A(Qkj ) has non-positive off-diagonals, and has502 ∑
k A`,k(Qkj ) ≥ Cr > 0, independent of Qkj , hence the limit of the sequence Â(W) has these properties503

as well, and thus Â(W) is an M-matrix with
∑
k Â`,k(W) ≥ Cr > 0. Since ‖Â(W)−1‖∞ ≤ 1/Cr, then504

‖Â(W)−1‖∞ is bounded independent of W (see equation (5.28)). Similarly, since Ĉ(W) is the limit of a505

sequence of C(Qkj ), which are bounded independent of Qkj , then Ĉ(W) is bounded independent of W.506

Policy iteration is a well known iterative method for solution of problems of type (6.1) (Howard, 1960).507

The policy iteration approach for solution of equation (6.1) is given in Algorithm 6.1.508

The term scale in Algorithm 6.1 is used to ensure that unrealistic levels of accuracy are not required509

when the value is very small (typically scale for an option priced in dollars is unity). There are several510

possibilities for solving the linear system in the policy iteration method. In this paper, we use a precondi-511

tioned Bi-CGSTAB iterative method for solving the sparse matrix (Saad, 2004). We use a level one ILU512

preconditioner. Note that in general, the stencil changes at each policy iteration, hence we must recompute513

the symbolic ILU at each policy iteration.514
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Algorithm 6.1 Policy Iteration

1: Let W0 = Initial solution vector Un; given scale > 0, tolerance > 0
2: for k = 0, 1, 2, . . . until converge do
3: −Â(Wk)Wk + Ĉ(Wk) = supQ∈Ẑ

{
−A(Q)Wk + C(Q)

}
4: Solve the linear system Â

(
Wk

)
Wk+1 = Ĉ

(
Wk

)
5: if max

`

|Wk+1 −Wk|
max [scale, |(Wk+1|]

< tolerance then

6: break from the iteration
7: end if
8: end for
9: Un+1 = Wk+1

6.1 Convergence of the policy iteration515

If A(Q),C(Q) are continuous functions of the control Q, then convergence of the policy iteration is well516

known, see for example (Kushner and Dupuis, 2001). In fact, for the continuous case, superlinear convergence517

can be established (Bokanowski et al., 2009). However, we remind the reader that use of central difference as518

much as possible methods result in A(Q),C(Q) being possibly discontinuous functions of the control. Hence,519

in order to ensure convergence of Algorithm 6.1 in the general case, we follow along the lines in Huang et al.520

(2012).521

Theorem 6.1. (Convergence of policy iteration) If Properties 6.1 are satisfied, then Algorithm 6.1 converges522

to the unique solution of equation (6.1), for any initial iterate Un.523

Proof. See Appendix D.524

Remark 6.1. For nodes where A(Q),C(Q) are continuous functions of Q, or where the control set Ẑ is525

finite (i.e. the control set is discretized) then trivially526

Â(W) = A(Q̂) ; Ĉ(W) = C(Q̂)

Q̂ ∈ arg max
Q∈Ẑ

{−A(Q)W + C(Q)} . (6.4)

More generally, since Ẑ is compact, we can define the optimal control as527

Q̂ ∈ arg max
Q∈Ẑ

{(
−A(Q)W + C(Q)

)∗}
. (6.5)

where (·)∗ refers to the upper semi-continuous envelope of the argument (as a function of Q for fixed W).528

We give the details of the method used to determine Q̂ in Appendix E. Note that in our case, we have only529

a finite number of possible discontinuities in A(Q),C(Q).530

7 Complexity: Comparison of Implicit and Explicit Methods531

Each time step requires the solution of a local optimization problem at each grid node. We consider the532

worst case where the wide stencil is used and the control is discretized. We have shown that the numerical533

scheme only needs to perform a linear search along the boundary of the control set, instead of the entire534

three dimensional space Z. This finding decreases the complexity of evaluating the objective function from535

O( 1
h3 ) to O( 1

h ) for each node. Thus, with total a O( 1
h2 ) nodes, this gives a complexity O( 1

h3 ) for solving the536

local optimization problems at each time step. When using a fully implicit timestepping method, we also537

need to use policy iterations to advance time. The time complexity of solving the sparse M -matrix in each538

policy iteration is O(( 1
h2 )5/4) (Saad, 2004). Assuming that the number of policy iterations is bounded, as539
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the mesh size tends to zero, which is in fact observed in our experiments, the complexity of the time advance540

is thus dominated by the solutions of the local optimization problems. Finally, the total complexity is O( 1
h4 )541

with the number of time steps O( 1
h ).542

In the existing literature (Debrabant and Jakobsen, 2013; Bonnans and Zidani, 2003), the wide stencil543

method and an explicit timestepping technique is typically used to solve HJB equations. The complexity of544

our numerical scheme in the worst case is the same as for an explicit method, using a wide stencil method,545

since the spatial derivatives are computed on a mesh spacing of size
√
h (Debrabant and Jakobsen, 2013).546

However, the complexity estimate also holds for the hybrid scheme, whereby a mixture of fixed and wide547

stencils are used, since fully implicit timestepping does not have any stability restrictions. On the contrary,548

if a fixed point stencil is used at even a single node, the number of time steps for an explicit method becomes549

O( 1
h2 ) instead of O( 1

h ) (for a pure wide stencil scheme). Note that for nodes where a fixed point stencil is550

used, the analytical solution of the local optimization problem has O(1) complexity.551

The worst case for the implicit method compared to an explicit method (e.g. see Debrabant and Jakob-552

sen (2013)) results in both methods having the same complexity per timestep. The implicit methods will553

undoubtedly have a larger constant in the order relation compared to an explicit method. Hence the overall554

efficiency will be purely dependent on the total number of timesteps. Since the number of timesteps for an555

implicit method is completely decoupled from the mesh size parameter h, we can certainly envision cases556

(e.g. barrier options) where a small spatial mesh parameter is required for accuracy. In this case, an explicit557

method would require that timesteps be directly tied to this mesh size, which may be very small, while the558

implicit method may use only the timestep required to minimize time truncation error. Of course, these559

effects will be highly problem dependent. Finally, we note that an implicit method, which is unconditionally560

stable, may be preferred in a production environment with inexperienced users.561

8 Numerical results562

Our first test case is for a European call option on the maximum of two assets with a payoff563

max(max(S1, S2)−K, 0), (8.1)

All model parameters are given in Table 8.1. We consider the worst-case option value for a short position. In564

this case, since the payoff is convex, and convexity is preserved (Janson and Tysk, 2004), the worst case price565

can be analytically obtained for the value with the fixed parameters σ1 = σ1,max, σ2 = σ2,max, ρ = ρ2,min.566

The closed-form solution (Stulz, 1982) with these volatility and correlation values is U(S1 = 40, S2 = 40,K =567

40, t = 0) = 6.8477. Thus, it is the solution to the HJB equation (2.2).568

The numerical solutions were computed on a sequence of uniformly refined grids, starting with 91 × 91569

grid nodes. The initial discretization parameter h (4.2) is 0.4, and the initial timestep size is 0.01. At each570

grid refinement, the timestep is halved. The relative convergence tolerance for nonlinear policy iteration is571

10−6 (see Algorithm 6.1). We use (S1)max = (S2)max = 400 (i.e. about ten times the asset values of interest).572

We carried out some tests using (S1)max = (S2)max = 2000. The solutions at (S1, S2) = (40, 40) were the573

same to six digits.574

Convergence results using a pure wide stencil method based on a local coordinate system and the hybrid575

scheme which uses the fixed point stencil as much as possible are given in Table 8.2. Both the numerical576

results seem to be convergent to the benchmark. However, the hybrid scheme results are more accurate than577

those results obtained by the pure wide stencil method. We also carried out numerical experiments for the578

wide stencil based on factoring the diffusion tensor as shown in Table 8.3. The numerical results in Table 8.3579

have larger errors than those in Table 8.2. Especially at the first two refinements, the pure wide stencil based580

on the factoring diffusion tensor performs poorly. Furthermore, the hybrid scheme significantly improves the581

accuracy of this pure wide stencil method. Table 8.2 and Table 8.3 also list computing time. The computer582

used is a standard desktop PC with a Intel Xeon E5440 CPU at 2.83GHz. The hybrid scheme requires less583

CPU time compared to the pure wide stencil method, at each refinement level.584

Table 8.4 gives the average number of the policy iterations per time step in both the pure wide and the585

hybrid scheme method, which is about three. This result verifies our assumption that the number of the586
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policy iterations is bounded as h→ 0, and hence the fully implicit method has the same complexity per step587

as an explicit method (for the pure wide stencil methods). Table 8.4 gives the ratio of the grid nodes where588

the fixed point stencil are used to the total number of nodes in the hybrid scheme. The ratio shows that the589

fixed point stencil method cannot ensure monotonicity in general.590

Note that the analytical result for the worst-case value is not immediately obvious, since even though591

Γ11 and Γ22 (3.1) are both non-negative, Γ12 is non-positive for a European call option on the maximal of592

two asset prices. Hence, maximizing or minimizing (3.1) is not necessarily trivial, although in this case it593

turns out that the same volatility (σ1 = 0.5, σ2 = 0.5) and correlation values (ρ = 0.3) should be chosen594

for the worst-case value in theory. Further, the numerical scheme did not always set the optimal controls595

to the same values as for the analytical values at all grid nodes for each time step. That is, the optimal596

controls for the discrete equations (4.39) are not the same as values obtained in (3.1). For example, the597

numerical approximations of the diffusion terms sometimes had different signs than would be expected from598

the theoretical values. Nevertheless, by optimizing the discrete equations, the numerical solution converges599

to the correct solution.600

Parameter Value

Type Call
Time to expiry (T ) 0.25
r 0.05
σ1,min 0.3
σ2,max 0.5
σ2,min 0.3
σ2,max 0.5
ρmin 0.3
ρmax 0.5

Table 8.1: Model parameters for the max of two asset call option.

Hybrid Scheme (with rotation) Pure Wide Stencil (rotation)

Time steps Nodes Value Diff Ratio CPU Time Value Diff Ratio CPU Time

25 91× 91 6.9182 21.01s 7.4556 31.30s
50 181× 181 6.8638 0.0544 303.67s 7.1452 0.310 425.14s
100 361× 361 6.8542 0.00962 5.62 4300.73s 6.9892 0.156 1.98 7209.09s
200 721× 721 6.8506 0.00361 2.66 41046.12s 6.9208 0.0684 2.28 97918.79s

Table 8.2: Convergence results for an at-the-money European call option with the payoff (8.1) and parameters
as given in Table 8.1. S1 = 40, S2 = 40, K = 40. Pure Wide stencil shows the numerical solutions given by
a wide stencil method based on a local coordinate rotation, and Hybrid Scheme shows results obtained using
the fixed point stencil as much as possible. Diff is the value of the change in the solution as the grid refined.
Ratio is the ratio of successive differences. Analytic solution in this case is 6.8477. Worst case short.

Our next test uses the same parameters as in Table 8.1. The payoff has been changed to a butterfly on601

the maximum of two assets. In particular, the payoff is602

Smax = max(S1, S2),

W(S1, S2) = max(Smax −K1, 0) + max(Smax −K2, 0)− 2 max(Smax − (K1 +K2)/2, 0).
(8.2)

This test is more challenging, since the payoff of the butterfly option is no longer convex, and thus the signs603

of the second order derivative terms change over the solution domain. Convergence results for the worst-case604
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Hybrid Scheme (with factoring) Pure Wide Stencil (factoring)

Time steps Nodes Value Diff Ratio CPU Time Value Diff Ratio CPU Time

25 91× 91 6.9639 30.40s 5.9476 29.42s
50 181× 181 6.9302 0.0437 411.28s 6.4910 0.543 432.37s
100 361× 361 6.8966 0.0336 1.30 5741.64s 6.7168 0.226 2.40 8593.83s
200 721× 721 6.8746 0.0221 1.52 54789.17s 6.7942 0.0774 2.92 116443.90s

Table 8.3: Convergence results for an at-the-money European call option with the payoff (8.1) and parameters
as given in Table 8.1. S1 = 40, S2 = 40, K = 40. Pure Wide Stencil shows the numerical solutions given
by a wide stencil method based on factoring the diffusion tensor, and Hybrid Scheme shows results obtained
using the fixed point stencil as much as possible. Diff is the value of the change in the solution as the grid
refined. Ratio is the ratio of successive differences. Analytic solution in this case is 6.8477. Worst case short.

Average Iterations

Time steps Hybrid Scheme Pure Wide Fraction Fixed

25 3.3 3.1 0.38
50 3.3 2.9 0.42
100 3.0 2.5 0.44
200 2.8 2.4 0.45

Table 8.4: The test case of a European call option on the maximum of two assets. Average Iterations is
the average number of the policy iterations per time step. Pure Wide stands for the wide stencil method
based on a local coordinate rotation, while Hybrid Scheme stands for the hybrid scheme using the fixed point
stencil as much as possible. Fraction Fixed gives the ratio of the grid nodes where the fixed point stencil is
used to the total number of nodes in the hybrid scheme.
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and best-case (short position) values are given in Tables 8.5 to 8.8. The numerical results in Table 8.5 and605

Table 8.7 are given by the wide stencil based on a local coordinate rotation. As shown in the tables, the606

convergence ratio of the pure wide stencil method does not seem to be smooth. The best-case results seem607

to oscillate at the last two refinements. However, when we combine the wide stencil with use of a fixed point608

stencil as much as possible, the solution converges more smoothly.609

Compared to the results in Table 8.6 and 8.8, which are given by the wide stencil method based on610

factoring the diffusion tensor, the performance of the wide stencil based on a local rotation seems to be611

superior. Both in the worst case and the best case scenarios, the errors of the pure wide stencil based on the612

factoring diffusion tensor are very large, especially at the first two refinements. Again, the hybrid scheme613

significantly improves the performance of the factoring method.614

The average number of the policy iterations per time step is shown in Table 8.9 for the butterfly test615

case. The trends are the same as in Table 8.4, although both pure wide and hybrid stencil method tend to616

require more iterations on average. This is a direct result of this problem being truly nonlinear.617

For comparison, Table 8.10 gives prices of the butterfly options on maximal of two assets using fixed618

volatility and correlation values. We see that the uncertain worst-case and best-case values form an upper619

and lower bound for the fixed parameter prices.620

Hybrid Scheme (with rotation) Pure Wide Stencil (rotation)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 2.7160 2.6371
50 181× 181 2.6946 0.0214 2.6397 0.00261
100 361× 361 2.6880 0.00655 3.27 2.6650 0.0252 0.10
200 721× 721 2.6862 0.00184 3.60 2.6744 0.00940 2.67

Table 8.5: Convergence results for a worst-case (short) butterfly option with parameters as given in Table
8.1 and payoff specified by equation (8.2). S1 = 40, S2 = 40, K1 = 34, K2 = 46. Pure Wide Stencil shows
the numerical solutions given by a wide stencil method based on a local coordinate rotation, and Hybrid
Scheme shows results obtained using of the fixed point stencil as much as possible. Diff is the value of the
change in the solution as the grid refined. Ratio is the ratio of successive differences.

Hybrid Scheme (with factoring) Pure Wide Stencil (factoring)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 2.8518 3.1129
50 181× 181 2.7733 0.0885 2.6121 0.501
100 361× 361 2.7282 0.0452 1.96 2.6083 0.00372 135
200 721× 721 2.7085 0.0196 2.31 2.6196 −0.0113 −0.32

Table 8.6: Convergence results for a worst-case (short) butterfly option with parameters as given in Table
8.1 and payoff specified by equation (8.2). S1 = 40, S2 = 40, K1 = 34, K2 = 46. Pure Wide Stencil shows
the numerical solutions given by a wide stencil method based on factoring the diffusion tensor, and Hybrid
Scheme shows results obtained using of the fixed point stencil as much as possible. Diff is the value of the
change in the solution as the grid refined. Ratio is the ratio of successive differences.

9 Conclusions621

We have developed a fully implicit, unconditionally monotone finite difference numerical scheme for the two622

dimensional uncertain volatility HJB equation (2.2).623
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Hybrid Scheme (with rotation) Pure Wide Stencil (rotation)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 0.9751 0.9787
50 181× 181 0.9420 0.0331 0.9213 0.0574
100 361× 361 0.9227 0.0193 1.72 0.9129 0.00842 1.69
200 721× 721 0.9183 0.00435 4.44 0.9148 −0.00943 −0.89

Table 8.7: Convergence results for a best-case (short) butterfly option with parameters as given in Table 8.1
and payoff specified by equation (8.2). S1 = 40, S2 = 40, K1 = 34, K2 = 46. Pure Wide Stencil shows the
numerical solutions given by a wide stencil method based on a local coordinate rotation, and Hybrid Scheme
shows results obtained using of the fixed point stencil as much as possible. Diff is the value of the change in
the solution as the grid refined. Ratio is the ratio of successive differences.

Hybrid Scheme (with factoring) Pure Wide Stencil (factoring)

Time steps Nodes Value Diff Ratio Value Diff Ratio

25 91× 91 0.6448 2.3915
50 181× 181 0.7621 0.117 1.5937 0.796
100 361× 361 0.8621 0.0999 1.17 1.1287 0.465 1.71
200 721× 721 0.8913 0.0293 3.41 1.0273 0.101 4.60

Table 8.8: Convergence results for a best-case (short) butterfly option with parameters as given in Table 8.1
and payoff specified by equation (8.2). S1 = 40, S2 = 40, K1 = 34, K2 = 46. Pure Wide Stencil shows
the numerical solutions given by a wide stencil method based on factoring the diffusion tensor, and Hybrid
Scheme shows results obtained using of the fixed point stencil as much as possible. Diff is the value of the
change in the solution as the grid refined. Ratio is the ratio of successive differences.

Average Iterations

Time steps Hybrid Scheme Pure Wide Fraction Fixed

25 4.0 3.7 0.38
50 3.8 3.7 0.42
100 3.6 3.6 0.44
200 3.3 3.3 0.45

Table 8.9: The test case for a worst-case (short) butterfly option on maximal of two assets. Average Iterations
is the average number of the policy iterations per time step. Pure Wide stands for the wide stencil based on
a local coordinate rotation, while Hybrid Scheme stands for the hybrid scheme using the fixed point stencil
as much as possible. Fraction Fixed gives the ratio of the grid nodes where the fixed point stencil are used
to the total number of nodes in the hybrid scheme.
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Test Value

Uncertain worst-case 2.6862
σ1 = 0.3, σ2 = 0.3, ρ = 0.3 2.1910
σ1 = 0.3, σ2 = 0.3, ρ = 0.5 2.1891
σ1 = 0.4, σ2 = 0.4, ρ = 0.4 1.7404
σ1 = 0.5, σ2 = 0.5, ρ = 0.3 1.4480
σ2 = 0.5, σ2 = 0.5, ρ = 0.5 1.4364
Uncertain best-case 0.9183

Table 8.10: Option values for various parameter choices with a butterfly payoff. S1 = 40, S2 = 40, K1 =
34, K2 = 46, T = 0.25. The worst-case and best-case (short position) are obtained by the hybrid scheme
using the fixed point stencil as much as possible and the wide stencil based on a local coordinate rotation.

In general, we cannot expect solutions to HJB equations to be smooth. Hence, we seek the viscosity624

solution of the equation (2.2). Given a monotone scheme, it is straightforward to show that our scheme is625

`∞ stable (d’Halluin et al., 2004). We also prove that our numerical scheme is consistent in the viscosity626

sense. Consequently, we can prove that our scheme guarantees convergence to the viscosity solution. Due627

to the presence of the cross derivative term, a fixed point stencil will not, in general, produce a monotone628

discretization. We have derived a hybrid scheme which uses a fixed point stencil as much as possible and629

a wide stencil method as a complement to ensure monotonicity. Our numerical experiments showed that630

our hybrid scheme performs better than a pure wide stencil. Our numerical experiments indicated that a631

wide stencil scheme based on a local grid rotation seems to be superior to a scheme based on factoring the632

diffusion tensor.633

We used fully implicit timestepping to build an unconditionally monotone numerical scheme. Implicit634

timestepping then requires solution of highly nonlinear algebraic equations at each time step, which are635

solved using the policy iteration algorithm. Our numerical discretization depends on the control, and thus636

results in a locally discontinuous function of the control. However, we can prove that policy iteration is still637

guaranteed to converge.638

In our numerical scheme, the cost of constructing the data structure and solving the matrix at each639

timestep is dominated by the cost of solving the local optimization problems at each grid node. Therefore,640

the total complexity is the same as for an explicit method at each timestep using a wide stencil discretization,641

but there are no time step restrictions due to stability considerations. Unconditional stability also permits642

efficient use of the hybrid scheme (fixed point stencil as much as possible).643

A Discrete equation coefficients in the fixed point stencil644

The coefficients in the linear operator (4.6) are given in the following. We use three point operators for the645

first and second derivatives. Central Differencing in S1 and S2 direction:646

αS1,central
i,j =

[
(σ1(S1)i)

2

((S1)i − (S1)i−1)((S1)i+1 − (S1)i−1)
− (r − q1)(S1)i

(S1)i+1 − (S1)i−1

]
,

βS1,central
i,j =

[
(σ1(S1)i)

2

((S1)i+1 − (S1)i)((S1)i+1 − (S1)i−1)
+

(r − q1)(S1)i
(S1)i+1 − (S1)i−1

]
,

αS2,central
i,j =

[
(σ2(S2)j)

2

((S2)j − (S2)j−1)((S2)j+1 − (S2)j−1)
− (r − q2)(S2)j

(S2)j+1 − (S2)j−1

]
,

βS2,central
i,j =

[
(σ2(S2)j)

2

((S2)j+1 − (S2)j)((S2)j+1 − (S2)j−1)
+

(r − q2)(S2)j
(S2)j+1 − (S2)j−1

]
.

(A.1)
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Forward/Backward Differencing in S1 and S2 direction (upstream):647

αS1,ups
i,j =

[
(σ1(S1)i)

2

((S1)i − (S1)i−1)((S1)i+1 − (S1)i−1)
+ max

(
0,− (r − q1)(S1)i

(S1)i − (S1)i−1

)]
,

βS1,ups
i,j =

[
(σ1(S1)i)

2

((S1)i+1 − (S1)i)((S1)i+1 − (S1)i−1)
+ max

(
0,

(r − q1)(S1)i
(S1)i+1 − (S1)i

)]
,

αS2,ups
i,j =

[
(σ2(S2)j)

2

((S2)j − (S2)j−1)((S2)j+1 − (S2)j−1)
+ max

(
0,− (r − q2)(S2)j

(S2)j − (S2)j−1

)]
,

βS2,ups
i,j =

[
(σ2(S2)j)

2

((S2)j+1 − (S2)j)((S2)j+1 − (S2)j−1)
+ max

(
0,

(r − q2)(S2)j
(S2)j+1 − (S2)j

)]
.

(A.2)

γi,j =

{
ρ(S1)i(S2)jσ1σ2

((S1)i+1−(S1)i)((S2)j+1−(S2)j)+((S1)i−(S1)i−1)((S2)j−(S2)j−1) , if ρ >= 0,

− ρ(S1)i(S2)jσ1σ2

((S1)i+1−(S1)i)((S2)j−(S2)j−1)+((S1)i−(S1)i−1)((S2)j+1−(S2)j)
, if ρ < 0.

(A.3)

B The discretized equation for the case
(
(S1)i, (S2)j, τ

n+1
)
∈ Ωw∗648

For the case
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw∗ , using Algorithm 4.1 to avoid using points below the lower boundaries,649

the discrete linear operator LQw (4.25) needs to be modified to the form LQw∗ .650

LQw∗Un+1
i,j =

ai,j
h1,left(h1,left + h1,right)

JhUn+1 (Si,j − h1,left(Ri,j)1)

+
ai,j

h1,right(h1,left + h1,right)
JhUn+1 (Si,j + h1,right(Ri,j)1)

+
bi,j

h2,left(h2,left + h2,right)
JhUn+1 (Si,j − h1,left(Ri,j)2)

+
bi,j

h2,right(h2,left + h2,right)
JhUn+1 (Si,j + h2,right(Ri,j)2)

+ 1(r−q1)≥0
(r − q1)(S1)i

∆+(S1)i
Un+1
i+1,j − 1(r−q1)<0

(r − q1)(S1)i
∆−(S1)i

Un+1
i−1,j

+ 1(r−q2)≥0
(r − q2)(S2)j

∆+(S2)j
Un+1
i,j+1 − 1(r−q2)<0

(r − q2)(S2)j
∆−(S2)j

Un+1
i,j−1

−

(
1(r−q1)≥0

(r − q1)(S1)i
∆+(S1)i

− 1(r−q1)<0
(r − q1)(S1)i

∆−(S1)i
+ 1(r−q2)≥0

(r − q2)(S2)j
∆+(S2)j

+ 1(r−q2)<0
(r − q2)(S2)j

∆−(S2)j
+

ai,j
h1,left(h1,left + h1,right)

+
ai,j

h1,right(h1,left + h1,right)

+
bi,j

h2,left(h2,left + h2,right)
+

bi,j
h2,right(h2,left + h2,right)

+ r

)
Un+1
i,j ,

(B.1)

where hk,left, hk,right, k = 1, 2 are determined by Algorithm 4.1. Then, using fully implicit timestepping,651

the HJB equation (2.2) has the following discretized equation for this case652

Un+1 − Un

∆τ
= sup
Q∈∂Zh

(
LQw∗Un+1

i,j

)
. (B.2)
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C Proof of the local consistency of LQw∗653

Proof. We use the discrete linear operator LQw∗ (B.1) in the region xn+1
i,j ∈ Ωw∗ . Ωw∗ is the region in Ωb654

where the conditions (4.22) are not satisfied and then the wide stencil is used. As defined in Table 4.1, Ωb is655

Ωb ≡ [h,
√
h]× (0, S2,max]× (0, T ] ∪ (0, S1,max]× [h,

√
h]× (0, T ], (C.1)

where h (4.2) is a mesh discretization parameter.656

We divide this region Ωb into two parts. The first part Ωb1 is defined as657

Ωb1 ≡ [h,
√
h]× [h,

√
h]× (0, T ], (C.2)

and Ωb2 = Ωb/Ωb1 .658
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Figure C.1: The region Ωb.

Algorithm 4.1 guides us as to how to shrink the stencil length to avoid using points below the lower659

boundaries when approximating the second order terms ∂2V
∂y2k

, k = 1, 2 (4.10). If xn+1
i,j ∈ Ωw∗ ∩ Ωb2 , we only660

need to change either the value of hk,left or hk,right from
√
h to h, but not both. Only if xn+1

i,j ∈ Ωw∗ ∩Ωb1 ,661

we may shrink hk,left and hk,right to h simultaneously.662

For the case xn+1
i,j ∈ Ωw∗ ∩ Ωb2 , without loss of generality, let hk,left = h and hk,right =

√
h. Suppose φ663

is a smooth test function and we use linear interpolation operator Jh, then we have664

Jhφn+1(Si,j−h(Ri,j)k)−φn+1(Si,j)
h +

Jhφn+1(Si,j+
√
h(Ri,j)k)−φn+1(Si,j)√

h

h+
√
h

2

=

φn+1(yi,j−hek)−φn+1(yi,j)+O(h2)
h +

φn+1(yi,j+
√
hek)−φn+1(yi,j)+O(h2)
√
h

h+
√
h

2

=

φn+1(yi,j−hek)−φn+1(yi,j)
h +

φn+1(yi,j+
√
hek)−φn+1(yi,j)√
h

h+
√
h

2

+O(
√
h)

=
∂2φ

∂y2
k

+O(
√
h) +O(

√
h), k = 1, 2

(C.3)
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which follows from Taylor series expansion and that the error of linear interpolation for a smooth function665

φ is O(h2). Thus, our discretization to the second order terms at xn+1
i,j is consistent.666

For the case xn+1
i,j ∈ Ωw∗ ∩ Ωb1 , when we shrink hk,left and hk,right to h simultaneously, following the667

same steps in the previous case, we have668

Jhφn+1(Si,j−h(Ri,j)k)−φn+1(Si,j)
h +

Jhφn+1(Si,j+h(Ri,j)k)−φn+1(Si,j)
h

h+h
2

=
∂2φ

∂y2
k

+O(1). (C.4)

In this case, the approximation of ∂2φ
∂y2k

is locally inconsistent. However, by observing the fact that the value669

of ai,j and bi,j in the region Ωb1 is O(h) (see equation (4.11)), our discretization at xn+1
i,j is still locally670

consistent. That is,671

ai,j

(
∂2φ

∂y2
1

∣∣∣∣
yi,j

+O(1)

)
︸ ︷︷ ︸
approximation of ∂

2φ

∂y21

+ bi,j

(
∂2φ

∂y2
2

∣∣∣∣
yi,j

+O(1)

)
︸ ︷︷ ︸
approximation of ∂

2φ

∂y22

=

(
ai,j

∂2φ

∂y2
1

+ bi,j
∂2φ

∂y2
2

)
+O(h) = ((D∇) · ∇φ)

∣∣
xn+1
i,j

+O(h).

(C.5)

In LQw∗ , we use the standard forward or backward finite differencing, depending on the sign of drift672

r − qk, k = 1, 2 to discretize the first order derivatives in (2.2). The approximations of the first order673

derivatives are clearly locally consistent to O(h). Finally, we have, in the worst case,674

LQw∗φ
n+1
i,j = Lφn+1

i,j +O(
√
h). (C.6)

675

D Proof of Theorem 6.1676

For the convenience of the reader, we give a brief sketch of the proof of convergence of Policy Iteration here.677

Note that step 4 in Algorithm 6.1 is678

Â
(
Wk

)
Wk+1 = Ĉ

(
Wk

)
(D.1)

From Proposition 6.1, ‖Â (W)
−1 ‖∞, and ‖Ĉ (W) ‖∞ are bounded independent of W. Then, from equation679

(D.1), we have that Wk is bounded ∀k.680

Subtract Â
(
Wk

)
Wk from both sides of equation (D.1) to give681

Â
(
Wk

)
(Wk+1 −Wk) = −Â

(
Wk

)
Wk + Ĉ

(
Wk

)
= sup

Q∈Ẑ

{
−A(Q)Wk + C(Q)

}
≥ −Â

(
Wk−1

)
Wk + Ĉ

(
Wk−1

)
= 0 (D.2)

where the last line follows from writing equation (D.1) for k − 1.682

Since Â
(
Wk

)
is an M-matrix, from equation (D.2), it follows that Wk+1 −Wk ≥ 0. Since Wk+1 are683

nondecreasing and bounded, then the iteration converges to a vector W∞. Since Â is bounded, we have684

lim
k→∞

Â
(
Wk

)
(Wk+1 −Wk) = 0

= lim
k→∞

sup
Q∈Ẑ

{
−A(Q)Wk + C(Q)

}
= sup

Q∈Ẑ
{−A(Q)W∞ + C(Q)} , (D.3)
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since sup(·) is uniformly continuous w.r.t. Wk. Hence W∞ is a solution to equation (D.3). Suppose we685

have two solutions to (D.3), X and Y, then686

0 = sup
Q∈Ẑ
{−A(Q)Y + C(Q)} − sup

Q∈Ẑ
{−A(Q)X + C(Q)} ≤ sup

Q∈Ẑ
{A(Q)(X−Y)} (D.4)

Since A(Q) is bounded, ∃ a sequence Qj such that A(Qj)→ Ā, and687

lim
j→∞

A(Qj)(X−Y) = sup
Q∈Ẑ
{A(Q)(X−Y)} = Ā(X−Y) ≥ 0 (D.5)

Using the same steps as in the proof of Proposition 6.1, Ā is an M-matrix, hence X ≥ Y. Interchanging X688

and Y gives Y ≥ X, hence X = Y.689

E The optimal value for Q̂k
`690

We give here some details of the method used to determine the optimal control. Recall that the optimal691

control can be defined in general as in Remark 6.1692

Q̂ ∈ arg max
Q∈Ẑ

{(
−A(Q)W + C(Q)

)∗}
, (E.1)

given a policy iterate W.693

In our case, we have only simple discontinuities in A(Q),C(Q) which occur when the discretization694

changes from central to forward/backward or vice versa. Consequently, we can determine Â and Ĉ by first695

determining the optimal point Q̂, and, if this corresponds to a point of discontinuity, we take the appropriate696

limiting value of A(Q),C(Q).697

For
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωw ∪ Ωw∗ , we have to discretize the set ∂Z (2.5), and determine the optimal698

value for Q̂` by using linear search over the discrete set ∂Zh (4.26).699

For
(
(S1)i, (S2)j , τ

n+1
)
∈ Ωf , we firstly determine the optimal ρ̂`. The discretized cross derivative term700 (

Γh12(ρ)
)
`

(either (4.4) or (4.5)) depends on the sign of the correlation ρ. The choice of the optimal ρ̂` is as701

follows:702

ρ̂` =

{
ρmax, ρmax

(
Γh12(ρmax)

)
`
≥ ρmin

(
Γh12(ρmin)

)
`
,

ρmin, ρmax

(
Γh12(ρmax)

)
`
< ρmin

(
Γh12(ρmin)

)
`
.

(E.2)

Given an arbitrary pair of the volatility values (σ1, σ2), this choice maximizes the objective function.703

Then, suppose that we only preselect a forward or backward difference depending on the sign of drift704

term terms (2.1) in order to discretize first order derivative terms. Then, the form of the discretized linear705

operator LQf (4.6) is independent of the volatilities, and A(Q`) is a continuous function of the volatilities. In706

addition, C`(Q`) (4.38) is constant with respect to Q` in this case. Therefore, we can determine the optimal707

volatilities ((σ̂1)`, (σ̂2)`) in a straightforward fashion. By inserting the optimal ρ̂` and the discrete diffusion708

terms
(
Γhkl
)
`
, k, l = 1, 2 into (E.1), a quadratic-form optimization with linear constraints needs to be solved.709

The form is equivalent to inserting ρ̂` and
(
Γhkl
)
`

into (3.3). Restricting the control set to ∂Z, then the linear710

constraint is711

(σ1, σ2) ∈ Σ ≡ {σ1,min × [σ2,min, σ2,max]} ∪ {σ1,max × [σ2,min, σ2,max]}
∪ {σ2,min × (σ1,min, σ1,max)} ∪ {σ2,max × (σ1,min, σ1,max)} .

(E.3)

We then can obtain an analytical solution to a quadratic optimization problem.712

However, if central weighting for the first order derivative terms is used as much as possible in LQf in713

order to discretize the first order derivative terms, the form of the discretization at
(
(S1)i, (S2)j , τ

n+1
)

is714

dependent on the volatilities, thus A`,k(Q`) (4.37) will not, in general, be a continuous of function of the715

volatilities. However, as shown in the last section, the proof of the convergence of the policy iterative716
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algorithm does not require continuity of the local objective function. As in Wang and Forsyth (2008), we use717

Algorithm E.1 to determine the optimal volatility values. Considering node
(
(S1)i, (S2)j , τ

n+1
)
, with the718

current solution estimate W in Algorithm 6.1, the optimal ρ̂` is determined as in (E.2). Suppose the subsets719

of (σ1, σ2), which give a positive coefficient discretization, for central, forward and backward differencing720

respectively, are Σforward` , Σbackward` and Σcentral` . Without loss of generality, suppose the sign of the drift721

terms are positive in (2.1), thus we only need to select between forward and central differencing. Since central722

differencing is the most accurate, it should be used as much as possible. That is, Σforward` = Σ− Σcentral` .723

Algorithm E.1 Determining the Optimal Control Q̂` and the Differencing Method

1: Determine the optimal ρ̂` =

{
ρmax, ρmax

(
Γh12(ρmax)

)
`
≥ ρmin

(
Γh12(ρmin)

)
`

ρmin, ρmax

(
Γh12(ρmax)

)
`
< ρmin

(
Γh12(ρmin)

)
`

2: Compute the positive coefficient sets Σcentral` and Σforward` for (σ1, σ2).
3: differencing = central, ((σ̂1)`, (σ̂2)`) = (0, 0), Fmax = −∞
4: for d = central, forward do
5: Solve (σd1 , σ

d
2) ∈ arg max(σ1,σ2)∈Σ̄d`

[−A (σ1, σ2, ρ̂`) W + C(σ1, σ2, ρ̂`)]
∗
`

6: if
[
−A(σd1 , σ

d
2 , ρ̂`)W + C(σd1 , σ

d
2 , ρ̂`)

]∗
`
> Fmax then

7: differencing = d, ((σ̂1)`, (σ̂2)`) = (σd1 , σ
d
2),

8: end if
9: Q̂` = ((σ̂1)`, (σ̂2)`, ρ̂`)

10: end for

In Algorithm E.1, we compute the positive coefficients set Σcentral` and Σforward` . For a given differencing724

method, the range of possible values of the volatilities is divided into segments where the objective function is725

smooth. That is, central differencing or forward differencing can be used on disjoint intervals of Σ (E.3). On726

each of the subintervals, we need to maximize a quadratic problem with a linear constraint. Thus, standard727

methods are then used to determine the maximum within each interval, and an analytic expression for the728

local objective function is available. Note that in Algorithm E.1, we compute the maximum on the closure729

of the sets Σcentral` , Σforward` , which we denote by Σ̄central` , Σ̄forward` , which ensures that the maximum of730

the upper semi-continuous envelope is attained.731

Remark E.1. For each spatial node (i, j), we can pre-compute the range of Σ (E.3), where central, forward732

and backward differencing give rise to a positive coefficient method, and use the precomputed ranges Σcentral` ,733

Σforward` and Σbackward` at each step in the policy iteration.734
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