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Abstract1

We consider the holder of an individual tontine retirement account, with maximum and2

minimum withdrawal amounts (per year) specified. The tontine account holder initiates the3

account at age 65 and earns mortality credits while alive, but forfeits all wealth in the account4

upon death. The holder wants to maximize total withdrawals and minimize expected shortfall at5

the end of the retirement horizon of 30 years (i.e. it is assumed that the holder survives to age 95).6

The holder controls the amount withdrawn each year and the fraction of the retirement portfolio7

invested in stocks and bonds. The optimal controls are determined based on a parametric8

model fitted to almost a century of market data. The optimal control algorithm is based on9

dynamic programming and the solution of a partial integro differential equation (PIDE) using10

Fourier methods. The optimal strategy (based on the parametric model) is tested out of sample11

using stationary block bootstrap resampling of the historical data. In terms of an expected12

total withdrawal, expected shortfall (EW-ES) efficient frontier, the tontine overlay dramatically13

outperforms an optimal strategy (without the tontine overlay), which in turn outperforms a14

constant weight strategy with withdrawals based on the ubiquitous four per cent rule.15

Keywords: tontine, decumulation, expected shortfall, optimal stochastic control16

JEL codes: G11, G2217
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1 Introduction19

It is now commonplace to observe that defined benefit (DB) plans are disappearing. A recent OECD20

study (OECD, 2019) observes that less than 50% of pension assets in 2018 were held in DB plans in21

over 80% of countries reporting. Of course, the level of assets in defined contribution (DC) plans is22

a lagging indicator, since historically many employees were covered by traditional DB plans. These23

traditional DB plans still have a sizeable share of pension assets, simply because these plans have24

accumulated contributions over a longer period of time.25

Consider the typical case of a DC plan investor upon retirement. Assuming that the investor has26

managed to accumulate a reasonable amount in her DC plan, the investor now faces the problem27
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of determining a decumulation strategy, i.e. how to invest and spend during retirement. It is often28

suggested that retirees should purchase annuities, but this is quite unpopular (Peijnenburg et al.,29

2016). MacDonald et al. (2013) note that this avoidance of annuities can be entirely rational.30

A major concern of DC plan investors during the decumulation phase is running out of savings.31

Possibly the most widely cited benchmark strategy is the 4% rule (Bengen, 1994). This rule posits a32

retiree who invests in a portfolio of 50% stocks and 50% bonds, rebalanced annually, and withdraws33

4% of the original portfolio value each year (adjusted for inflation). This strategy would have34

never depleted the portfolio over any rolling 30-year historical period tested by Bengen on US data.35

This rule has been revisited many times. For example, Guyton and Klinger (2006) suggest several36

heuristic modifications involving withdrawal amounts and investment strategies.37

Another approach has been suggested by Waring and Siegel (2015), which they term an Annually38

Recalculated Virtual Annuity (ARVA) strategy. The idea is that the amount withdrawn in any given39

year should be based on the cash flows from a virtual (i.e. theoretical) fixed term annuity that could40

be purchased using the existing value of the portfolio. In this case the DC plan can never run out41

of cash, but the withdrawal amounts can become arbitrarily small.42

Turning to asset allocation strategies, Irlam (2014) used dynamic programming methods to43

conclude that deterministic (i.e. glide path) allocation strategies are sub-optimal. Of course, the44

asset allocation strategy and the withdrawal strategy are intimately linked. A more systematic45

approach to the decumulation problem involves formulating decumulation strategies as a problem46

in optimal stochastic control. The objective function for this problem involves a measure of risk and47

reward, which are, of course, conflicting measures. Forsyth (2022b) uses the withdrawal amount48

and the asset allocation (fraction in stocks and bonds) as controls. The measure of reward is the49

total (real) accumulated withdrawal amounts over a 30-year period. The withdrawal amounts have50

minimum and maximum constraints, hence there is a risk of depleting the portfolio. The measure51

of risk is the expected shortfall at the 5% level, of the (real) value of the portfolio at the 30-year52

mark. Utilizing both withdrawal amounts and asset allocation as controls considerably reduces the53

risk of portfolio depletion compared to fixed allocation or fixed withdrawal strategies.54

A recent innovation in retirement planning involves the use of modern tontines (see, e.g. Donnelly55

et al., 2014; Donnelly, 2015; Milevsky and Salisbury, 2015; Fullmer, 2019; Weinert and Gründl,56

2021; Winter and Planchet, 2022; Milevsky, 2022). In a tontine, the investor makes an irrevocable57

investment in a pooled fund for a fixed time frame. If the investor dies during the time horizon of58

the investment, the investor’s portfolio is divided amongst the remaining (living) members of the59

fund. If the investor survives until the end of the time horizon, then she will earn mortality credits60

from those members who have passed away, in addition to the return on her investment portfolio.61

Note that in some tontine formulations (e.g. Donnelly et al., 2014)) there is a final mortality credit62

paid to the estate of the deceased, while in other formulations (e.g. Fullmer, 2019)) there is no final63

payment. Unlike an annuity, there are no guaranteed cash flows, since the funds are typically64

invested in risky assets. Moreover, the mortality credits received are stochastic, depending on the65

realized mortality of investors in the pool. Since there are no guarantees, the expected cash flows66

from a tontine are larger than for an annuity with the same initial investment. Some authors have67

argued that the annuity puzzle should be replaced by the tontine puzzle, i.e. since tontines seem to68

very efficient products for pooling longevity risk, it is puzzling that the tontine market is still in69

its infancy (Chen and Rach, 2022). However, as noted by sources such as Milevsky and Salisbury70

(2015), it is important to distinguish between two components of mortality risk. Idiosyncratic71

mortality risk is related to the probability of death in a period for any individual plan member in72

accordance with a specified mortality table, while systematic mortality risk considers the mortality73

experience of the pool as a whole, i.e. whether or not the aggregate number of deaths in a period is74

roughly equal to that predicted by the mortality table. The potential issue for a tontine is that if75
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longevity improves for the pool as a whole beyond that projected in the mortality table, then the76

mortality credits received will be lower (or received later) than anticipated. Tontines offer insurance77

only against the idiosyncratic component of mortality risk. This is in contrast to annuities, which78

offer protection against both components. However, as noted by Milevsky and Salisbury (2015), the79

extra insurance provided by annuities makes them more costly than tontines, and investors choosing80

between tontines and annuities would have to judge whether the additional longevity protection of81

an annuity is worth the associated higher cost.82

83

Pooled funds with tontine characteristics have been in use for some time. The variable annuity84

funds offered by TIAA1, the University of British Columbia pension plan2, and the Australian85

Q-super fund3 can all be viewed as having tontine characteristics. In the Canadian context, the86

Purpose Longevity Plan4 was launched in 2021 and the Guardian Capital Modern Tontine a year87

later. Key similarities are that both use a mutual fund structure, restrict participation into age88

cohorts to be actuarially fair with a small pool size, are non-transferable and have redemption risk.89

The Purpose plan is more like an annuity that offers income for life that is enhanced by mortality90

credits, but without any guarantees. This contrasts with the Guardian Capital product5 which91

accumulates mortality credits over 20 years and then pays out a lump sum to hedge against the risk92

of investors outliving their capital. This has more in common with term insurance but benefits the93

living.94

We should also mention that retail investors may find the concept of a tontine appealing, sim-95

ply due to the peer-to-peer model for managing longevity risk, which is also consistent with the96

trend towards financial disintermediation.6 However, tontines may also require changes to exist-97

ing legislation in some jurisdictions (MacDonald et al., 2021). There have also been suggestions98

for government management of tontine accounts (Fullmer and Forman, 2022; Fuentes et al., 2022).99

The attractiveness of tontines from a behavioral finance perspective is discussed in Chen et al.100

(2021). See Bär and Gatzert (2023) for an overview comparison of modern tontines with existing101

decumulation products.102

Our focus in this article is on individual tontine accounts (Fullmer, 2019), whereby the investor103

has full control over the asset allocation in her account. We also allow the investor to control the104

withdrawal amount from the account, subject to maximum and minimum constraints. Usually it105

is suggested that withdrawal amounts from a tontine account cannot be increased to avoid moral106

hazard issues.7 However, we view the maximum withdrawal as the desired withdrawal, allowing107

temporary reductions in withdrawals to minimize sequence of return risk and probability of ruin.108

Consider an investor whose objective function uses reward as measured by total expected accu-109

mulated (real) withdrawals (EW) over a 30-year period. As a measure of risk, the investor uses the110

expected shortfall (ES) of the portfolio at the 30-year point. We define the expected shortfall to be111

the mean of the worst 5% of the outcomes after 30 years. The investor’s controls are the amount112

1https://www.tiaa.org/public/
2https://faculty.pensions.ubc.ca/
3https://qsuper.qld.gov.au/. However, the Q-super fund takes the approach of averaging mortality cred-

its over the entire pool, giving age-independent mortality credits. This appears to violate actuarial fair-
ness https://i3-invest.com/2021/04/behind-qsupers-retirement-design/. The Q-super fund is perhaps
more properly termed a collective defined contribution (CDC) fund. CDCs (https://www.ft.com/content/
10448b2c-1141-4d2e-943c-70cce2caec52) have been criticized for lack of transparency and fairness.

4https://www.retirewithlongevity.com/fund
5https://www.guardiancapital.com/investmentsolutions/guardpath-modern-tontine-trust/
6See van Benthem et al. (2018) for an experiment with setting up a tontine using blockchain techniques.
7An obvious case would be if an investor was given a medical diagnosis with a high probability of a poor outcome,

at which point the investor would withdraw all remaining funds in her account.
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withdrawn each year and the allocations to stocks and bonds. The investor follows an optimal113

strategy to maximize this objective function.114

Alternatively, the investor can use the same objective function with the same controls, but this115

time add a tontine overlay (i.e. the investor is part of a pooled tontine). The investor retains control116

over the withdrawals (subject of course to the same maximum and minimum constraints) and the117

investment allocation strategy. Of course, we expect that the investor who uses the tontine overlay118

would achieve a better result than without the overlay, due to the mortality credits earned (we119

assume that the investor does not pass away during the 30-year horizon). However, this does not120

come without a cost. If the investor passes away during the horizon, then her portfolio is forfeited.121

Therefore, the investor must be compensated with a sizeable reduction in the risk of portfolio122

depletion, compared to the no-tontine overlay case. The objective of this article is to quantify this123

reduction, assuming optimal policies are followed in each case.124

More precisely, we consider a 65-year old retiree who can invest in a portfolio consisting of a125

stock index and a bond index, with yearly withdrawals and rebalancing. The investor seeks to126

maximize the multi-objective function in terms of the risk and reward measures described above,127

evaluated at the 30-year horizon (i.e. when the investor is 95).128

We calibrate a parametric stochastic model for real (i.e. inflation-adjusted) stock and bond129

returns to almost a century of market data. We then solve the optimal stochastic control problem130

numerically, using dynamic programming. Robustness of the controls is then tested using block131

bootstrap resampling of the historical data.132

Our main conclusion is that for a reasonable specification of acceptable tail risk (i.e. expected133

shortfall), the expected total cumulative withdrawals (EW) are considerably larger with the tontine134

overlay, compared to without the overlay. This conclusion holds even if the tontine overlay has135

fees of the order of 50-100 basis points (bps) per year. Consequently, if the retiree has no bequest136

motive, and is primarily concerned with the risk of depleting her account, then a tontine overlay is137

an attractive solution.138

It is also interesting to note that the optimal control for the withdrawal amount is (to a good139

approximation) a bang-bang control, i.e. it is only optimal to withdraw either the maximum or140

minimum amount in any year. The allocation control essentially starts off with 40-50% allocation141

to stocks. The median allocation control then rapidly reduces the fraction in equities to a very small142

amount after 5 − 10 years. The median withdrawal control starts off at the minimum withdrawal143

amount, and then rapidly increases withdrawals to the maximum after 2 − 5 years. The precise144

timing of the switch from minimum withdrawal to maximum withdrawal depends on how much145

depletion risk (ES) the investor is prepared to take.146

2 Problem Setting147

In order to be consistent with practitioner literature, we will consider the scenario set out in Bengen148

(1994). This scenario posits that the retiree desires fixed (real) minimum cash flows and that the149

cash flows are desired over a fixed planning horizon. The investor’s primary concern is that of150

exhausting savings during the planning horizon. We conjecture that the reason that the Bengen151

rule continues to be very popular in practice is that it directly addresses the typical concerns of152

retirees (see, e.g. Ameriks et al., 2001; Scott et al., 2009; Pfau, 2015; Ruthbah, 2022; Daily et al.,153

2023).154

It may seem counterintuitive to use a fixed, relatively long term planning horizon (usually 30155

years for a 65 year old retiree). Based on current mortality tables, the probability of a 65-year old156

Canadian male reaching the age of 95 is about 0.13. A 95-year old male has only a one in six chance157
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of reaching his 100th birthday.158

However, surveys show that retirees fear exhausting their savings more than death (Hill, 2016).159

Along these lines Pfau (2018) writes:160

“Play the long game. A retirement income plan should be based on planning to live, not161

planning to die. A long life will be expensive to support, and it should take precedence162

over death planning.”163

Therefore, use of a long, fixed planning horizon has become the default test of the risk of running164

out of funds.165

It is also of interest to not only estimate the probability of ruin but also the size of the shortfall.166

To this end, we allow the retiree to continue to withdraw the minimum desired cash flows under a167

stochastic scenario where savings are exhausted. This debt accumulates at the borrowing rate. This168

allows us to measure the size of the shortfall for this scenario. We use the mean of the worst 5%169

of the outcomes as a quantitative measure of shortfall. A negative shortfall signals that the retiree170

has run out of cash and has an accumulated debt. An accumulated debt of one dollar at age 95171

is certainly less concerning than a debt of $100,000 at that time. Although we are measuring the172

shortfall at the same point in time, the case with a more negative shortfall is likely due to having173

run out of money earlier and having debt accumulate. This can occur due to the forced minimum174

annual withdrawals. Effectively, the accumulated debt in this case penalizes strategies which run175

out of cash early during the planning horizon.176

How would this work in practice? Basically, we assume that the investor divides his wealth177

into mental accounts, containing funds intended for different purposes (e.g. current spending or178

future needs). The standard life cycle model assumes that all wealth is completely fungible. In179

contrast, the behavioral approach posits that all wealth is not fungible, and that mental bucketing180

is commonplace (Shefrin and Thaler, 1988). In particular, we will assume that the investor has181

mortgage-free residential real estate, which is in a separate mental account. This real estate is to182

be considered a hedge of last resort, if needed.8 If the investments work out well, or if the retiree183

passes away, this real estate can be considered as a bequest.184

It is commonplace in actuarial applications to mortality-weight cash flows. While this is clearly185

appropriate for annuity providers, it does not seem to be very informative for an individual retiree.186

Consider the perspective of a 65-year old male with median life expectancy of about 87. The187

standard mortality-weighting approach would weight the minimum cash flows at 22 years after188

retirement by one half. However, if the retiree is planning to live rather than planning to die, he189

needs the entire minimum cash flow at age 87, not half of it.190

As noted above, we assume that the investor trades off the reward of total real withdrawals over191

the 30-year horizon with the risk of expected shortfall at the end of the horizon. This risk/reward192

tradeoff is reminiscent of the tradeoff between expected return and standard deviation from tradi-193

tional portfolio theory, but with different measures of risk and reward. An obvious alternative would194

be to specify a utility function. Most prior academic studies involving various forms of tontines have195

done so, typically assuming constant relative risk aversion (CRRA) utility (see, e.g. Milevsky and196

Salisbury, 2015; 2016; Bernhardt and Donnelly, 2019; Chen et al., 2019; 2021). However, we believe197

it is useful to consider an objective function based on the expected withdrawal, expected shortfall198

criteria. First, utility functions in principle should include all of the investor’s wealth, but this199

would be incompatible with the mental accounts framework discussed above. Second, related to the200

inclusion of the entire amount of the investor’s wealth, utility functions often have infinite marginal201

8Pfeiffer et al. (2013) discuss how a reverse mortgage can be used to hedge the risk of exhausting savings.
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utility of wealth at zero. This means that the investor would always avoid reducing wealth to zero.9202

However, this is incompatible with a minimum withdrawal constraint: if the investor must withdraw203

some funds each year, there is inevitably some chance of insolvency if the investor survives long204

enough. Third, we believe that in practice it is easier to communicate with retired clients if the205

discussion is framed in terms of monetary amounts, which can be directly compared to the value of206

a residential real estate hedge.207

208

3 Overview of Individual Tontine Accounts209

3.1 Intuition210

We give a brief overview of modern tontines in this section. We restrict attention to the case of211

an individual tontine account (Fullmer, 2019), which is a constituent of a perpetual tontine pool.212

Consider a pool of m investors, who are alive at time ti−1. Let vji be the balance in the portfolio213

of investor j at time ti. We assume that vji ≥ 0. In a tontine, if investor j participates in a tontine214

pool in time interval (ti−1, ti), and investor j dies in that interval, then her portfolio vji is forfeited215

and given to the surviving members of the pool in the form of mortality credits (gains). Suppose216

that the probability that j dies in (ti−1, ti) is qji−1.217

Consider tontine members j = 1, . . . ,m who are alive at ti−1. Let

1ji =

{
1 Investor j is alive at ti−1 and alive at ti

0 Investor j is alive at ti−1 and dead at ti

Ei−1[1
j
i ] = 1− qji−1 , (3.1)

where Ei−1[·] denotes an expectation operator conditional on mortality information known at ti−1.218

Let the tontine gain (mortality credit) for investor j, conditional on 1ji = 1, for the period219

(ti−1, ti), paid out at time ti, be denoted by cji . The tontine will be a fair game if, for each player220

j, the expected gain from participating in the tontine is zero10,221

−vjiEi−1[1− 1ji ] + Ei−1[1
j
i ] · E

j
i−1[c

j
i ] = 0 , (3.2)222

where223

Ej
i−1[·] ≡ Ei−1[ ·

∣∣1ji = 1; {vji }
m
j=1] (3.3)224

i.e. conditional on member j being alive at ti, with known (realized) values of investment accounts225

{vji }mj=1. This is because the member enters into the pool at ti−1, with unknown mortality states226

of the other members of the pool at ti. However, the mortality credits are divided up based on the227

realized investment accounts at ti. From equation (3.2) this gives228

Ej
i−1[c

j
i ] =

Gain rate︷ ︸︸ ︷(
qji−1

1− qji−1

)
vji . (3.4)229

9Of course, the origin of the utility function can be shifted so that infinite marginal utility is obtained at a finite
negative value of wealth. However, this just shifts the problem, unless the negative wealth value is set to the total
maximum amount of withdrawals, which will underpenalize running out of savings.

10This assumes no fees or transaction costs. In practice, such expenses will result in an expected gain of less than
zero.
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We emphasize that vji are unknown at ti−1 since we allow investment in risky assets. However, in230

terms of fairness, we only require that the realized investment proceeds are reallocated fairly, taking231

into account random mortality.232

Note that the right hand side of equation (3.4) is independent of the other members’ accounts233

in the pool, their investment strategies, and their mortality status. This is surprising and counter-234

intuitive, as the expectation operator on the left hand side as defined in equation (3.3) does depend235

on the values of other members’ accounts and implicitly their investment strategies, since these236

determine the account values at the end of the period. In fact, it is easy to construct somewhat237

pathological cases where equation (3.4) will fail. For example, suppose that every investor other238

than j invests their entire account value in losing lottery tickets, driving their account values to239

zero. If every other investor’s account value is zero, that would include the accounts of investors240

who pass away during the period and there would be no tontine gains to be distributed to investor241

j. Underlying the apparent independence of the right hand side of equation (3.4) from the values242

of other members’ accounts are implicit assumptions that any member’s gain is small compared to243

the overall expected amount of mortality credits available and that the pool is sufficiently large so244

that the realized amount of mortality credits is approximately equal to the expected amount. This245

small bias condition is stated more precisely below (see Condition 3.1) with additional discussion246

in Remark 3.4.247

We also have the budget rule that the total of the tontine gains distributed is equal to the total248

amounts forfeited249
m∑
j=1

1ji c
j
i =

m∑
j=1

(1− 1ji )v
j
i . (3.5)250

Let251

Ωi = {{1ji}
m
j=1, {v

j
i }

m
j=1} . (3.6)252

In general cji = cji (Ωi

∣∣1ji = 1).253

Remark 3.1 (No tontine gains to members who have died). Note that equation (3.2) assumes254

that no tontine gains accrue to members who have just died. This will maximize tontine gains of255

survivors, which is the focus of the current study. Several previous studies have specified payments256

to the estates of members who die in (ti−1,ti) (see, e.g. Bernhardt and Donnelly, 2018; Hieber and257

Lucas, 2022; Denuit et al., 2022).258

We can always write cji as259

cji =

(
qji−1

1− qji−1

)
vji Hj

i (Ωi

∣∣1ji = 1) , (3.7)260

for some function Hj
i (Ωi

∣∣1ji = 1). Then the fairness condition (3.4) becomes261

Ej
i−1[H

j
i ] = 1 . (3.8)262

It is also desirable to impose the condition that in each period a surviving investor is never made263

worse off by participating in a tontine pool, i.e. the tontine gain is non-negative264

Hj
i (Ωi

∣∣1ji = 1) ≥ 0 . (3.9)265

It is convenient to summarize the essential tontine properties. These properties are largely the266

same as in Hieber and Lucas (2022), with the exception that there are no payments to the estates267

of deceased members.268
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Property 3.1 (Tontine Properties). The desirable properties of a tontine are269

(i) Fairness: Ej
i−1[H

j
i ] = 1 ; j = 1, . . . ,m (see equation (3.8)).270

(ii) Budget constraint (3.5).271

(iii) Tontine gain non-negativity: Hj
i ≥ 0 ; j = 1, . . . ,m.272

Sharing rules which satisfy Property 3.1 are discussed in Sabin (2010; 2011), and sharing rules for273

the case where payments are made to just deceased members are described in, for example Bernhardt274

and Donnelly (2018), Hieber and Lucas (2022), and Denuit et al. (2022), and the references therein.275

3.2 A Simplified Approach276

One of the downsides of sharing rules which exactly satisfy Property 3.1 for finite-sized pools is that277

these rules are somewhat complex. Many of these exact rules require processing deaths one at a278

time. It is argued in Sabin and Forman (2016) and Fullmer and Sabin (2019) that complex sharing279

rules can impede consumer acceptance. These authors argue that it is sufficient to have simple rules280

which satisfy Property 3.1(i)-(iii) in the limit of large, perpetual pools.281

3.2.1 Group Gain282

In the terminology of Sabin and Forman (2016), we define the group gain Gi as283

Gi =

∑
k(1− 1ki )v

k
i∑

k 1
k
i

( qki−1

1−qki−1

)
vki

. (3.10)284

Note that the Gi is the same for all members j. Gi has the convenient interpretation as being the285

ratio of the total realized mortality credits to the total expected credits for survivors.286

Sabin and Forman (2016) suggest the following simplified sharing rule287

cji =

(
qji−1

1− qji−1

)
vji Gi , (3.11)288

which uses the group gain Gi in place of the function Hj
i in equation (3.7). By assumption, vji ≥ 0,289

hence Property 3.1(iii) is satisfied.290

The total tontine gains are

Total Tontine Gains =
m∑
j=1

1ji c
j
i = Gi

m∑
j=1

1ji

(
qji−1

1− qji−1

)
vji

=

m∑
j=1

(1− 1ji )v
j
i = Total Forfeited , (3.12)

hence Property 3.1(ii) is satisfied.291

In essence, the group gain Gi in equation (3.10) is a scaling factor to adjust for actual deaths292

compared to expected deaths, as suggested in Piggott et al. (2005) and Qiao and Sherris (2013).293

Remark 3.2 (
∑m

j=1 1
j
i c

j
i = 0). Note that equation (3.10) is undefined if all members die in (ti−1,ti).294

We assume that the tontine is large (in terms of members) and perpetual (i.e. open to new members),295

so that the probability of all members dying in a period is negligible. For mathematical complete-296

ness, we can suppose that if all members die in (ti−1,ti), we collapse the tontine, and distribute all297

remaining account values vji to the estates of members j.298
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However, in general Property 3.1(i) will not be satisfied for a finite-sized pool, i.e.299

∃j s.t. Ej
i−1[Gi

∣∣1ji = 1] < 1, j ∈ {1, · · · ,m} . (3.13)300

This means that there is a bias that favors some members over others, i.e. some members have a301

negative expected gain, implying that other members must have a positive expected gain. This302

is illustrated in Winter and Planchet (2022), using an example with a pool consisting of a large303

number of young investors (with small individual portfolios), and a single elderly member with a304

large portfolio. The elderly member effectively subsidizes the younger members. Sabin and Forman305

(2016) show that the bias is negligible under the following conditions:306

Condition 3.1 (Small bias condition). Suppose that:307

(a) the pool of participants in the tontine is sufficiently large; and308

(b) the expected amount forfeited by all members is large compared to any member’s nominal gain,309

i.e.310 (
vji

qji−1

1− qji−1

)
≪

∑
k

qki−1v
k
i ; j = 1, . . . ,m . (3.14)311

Then the bias is negligibly small (Sabin and Forman, 2016).312

Equation (3.14) is essentially a diversification requirement: no member of the pool has an313

abnormally large share of the total pool capital. In addition, of course, if the pool is sufficiently314

large, then the actual number of deaths in (ti−1, ti) will converge to the expected number of deaths.315

In Fullmer and Sabin (2019), simulations were carried out to determine the magnitude of the316

volatility of Gi under practical sizes of tontine pools. Given a tontine pool of 15,000 members,317

with varying ages, initial capital, and randomly assigned investment policies (i.e. the bond/stock318

split), the simulations showed that E[Gi] ≃ 1 and that the standard deviation was about 0.1. This319

standard deviation at each ti actually resulted in a smaller effect over a long term (assuming that320

the tontine member lived long enough). This is simply because everybody dies eventually, so that321

if fewer deaths than expected are observed in a year, then more deaths will be observed in later322

years, and vice versa. More detailed analysis of the probability density of Gi is given in Denuit and323

Vernic (2018), with a slightly different use of the factor qji .324

Henceforth we will assume that the pool is sufficiently large and that it satisfies the diversity325

condition (3.14), so that there is no significant error in assuming that Gi ≡ 1. More precisely, our326

optimal control problem will be formulated assuming that327

cji =

(
qji−1

1− qji−1

)
vji . (3.15)328

As a sanity check, we also carry out a test where we simulate the effect of randomly varying G,329

based on the statistics of the simulations in Fullmer and Sabin (2019). Our results show that the330

effect of randomness in G can be safely ignored for a reasonably sized tontine pool. To be more331

precise, we will modify equation (3.15) so that332

cji =

(
qji−1

1− qji−1

)
vji Ĝi . (3.16)333

where Ĝi is a random variable. We will give a numerical example showing the effects of randomness334

of Ĝi in Monte Carlo simulations. However, our computation of the optimal strategy will always335

assume Gi ≡ 1.336
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For notational convenience, we define the tontine gain rate at ti for investor j as337

(Tg
i )

j =

(
qji−1

1− qji−1

)
. (3.17)338

In our optimal control formulation, we will typically drop the superscript j from equation (3.17),339

Tg
i =

(
qi−1

1− qi−1

)
, (3.18)340

since we will consider a given investor j with conditional mortality probability of qi−1 in (ti−1, ti).341

Using this notation, equation (3.15) becomes (for a fixed investor j)342

ci = Tg
i vi . (3.19)343

344

Remark 3.3 (Other sharing rules which satisfy Property 3.1(i)-(iii)). We have used sharing rule345

(3.11) as an example of a practical scheme, which only approximately satisfies Property 3.1(i)-346

(iii). However, our optimal control formulation will also apply to any sharing rule which satisfies347

Property 3.1(i)-(iii), provided that the pool is large enough so that var[Hj
i ] is small, where var[·]348

denotes variance.349

350

351

Remark 3.4 (Effect of investment decisions of other members in the pool). Provided the small352

bias condition (Condition 3.1) holds, it does not matter what investment strategy is followed by any353

given investor in period (ti−1, ti). Each investor can choose whatever policy they like, since only the354

observed final portfolio value at ti matters.11 At first glance, the idea that the investment strategies355

of other pool members do not affect the strategy of the individual investor seems counter-intuitive.356

However, it is important to realize that it is the reallocation of the realized forfeiture amounts that357

matters. We provide some brief intuition here; for further discussion, see Fullmer and Sabin (2019)358

and Winter and Planchet (2022) and references cited therein.359

Assuming that equation (3.8) holds with sufficient accuracy (and with the group gain Gi in place360

of the function Hj
i ), then each member’s expected gain will be given by equation (3.4). Consider361

an aggressive investor in a pool dominated by conservative investors. Assume that the aggressive362

investor has a larger account balance than the conservative investors. Since the aggressive investor’s363

stake is larger, she will get a larger share of the (smaller) forfeitures. In addition, if var(Gi) is364

small, then the realized mortality credits will be close to the expected value (3.4). Moreover, we will365

show that the optimal strategy for an individual investor (computed assuming Gi ≡ 1) is robust to366

volatile Gi.367

368

369

11Observe that our earlier pathological lottery example would violate the small bias condition: investor j (the only
investor who doesn’t invest entirely in losing lottery tickets) has the entire pool capital after the lottery since the
account value for every other member of the pool goes to zero.
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3.3 Systematic Risk370

It is worth emphasizing again the distinction made in the Introduction between the idiosyncratic371

and systematic components of mortality risk. The idiosyncratic mortality risk can be made small if372

the pool of investors is sufficiently large. The same cannot be said for systematic mortality risk, e.g.373

unexpected mortality improvement. To be precise, the members of the pool bear the systematic risk374

that E[Gi] will be significantly less than one, perhaps due to medical advances. As noted above,375

traditional annuities provide protection against both idiosyncratic and systematic, but at higher376

cost compared to tontines (Milevsky and Salisbury, 2015).377

In principle, it is possible to assume a stochastic process for mortality improvement (see, e.g.378

Gemmo et al., 2020), and then solve the optimal control problem with this additional risk factor.379

However, this would be computationally infeasible for our current approach based on partial differ-380

ential equations. Alternatively, machine learning techniques appear to be a promising method for381

solving high dimensional control problems in finance (see, e.g. Li and Forsyth, 2019; Ni et al., 2022;382

van Staden et al., 2023; Chen et al., 2023), and this might be an approach for including systematic383

mortality risk in this case. However, this is beyond the scope of the current work.384

3.4 Variable Withdrawals385

We will allow the individual tontine member to withdraw variable amounts, subject to minimum386

and maximum constraints. We remind the reader that if a tontine pool is strictly actuarially fair,387

then in theory there are no constraints on withdrawals and injections of cash (Bräutigam et al.,388

2017).389

However, in practice, since pools are finite sized, heterogeneous, and mortality credits are not390

distributed at infinitesimal intervals, we do not allow arbitrarily large withdrawals. This avoids391

moral hazard issues.392

Since we have a minimum withdrawal amount in each time period, there is a risk of running out393

of cash. We assume that if the minimum withdrawal exceeds the available amount in the tontine394

account, the tontine account goes to zero, all trading in this account ceases, and the remaining part395

of the withdrawal (and any subsequent withdrawals) is funded by debt, which accumulates at the396

borrowing rate. Of course, insolvent investors will not receive any mortality credits.397

In practice, if the tontine account becomes zero, the retiree has to fund expenses from another398

source. We implicitly assume that the tontine member has other assets which can be used to399

fund this minimum consumption level (e.g. real estate). Of course, we aim to make this a very400

improbable event. In fact, this is the reason why we allow variable withdrawals. We can regard401

the upper bound on the withdrawals as the desired consumption level, but we allow the tontine402

member to reduce (hopefully only temporarily) their withdrawals, to minimize risk of depletion of403

their tontine account.404

3.5 Money Back Guarantees405

In practice, we observe that many tontine funds offer a money back guarantee.12 This is usually406

specified as a return of the initial (nominal) investment less any withdrawals (if the sum is non-407

negative) at the time of death. We do not consider such guarantees in this work, focusing on the408

pure tontine aspect, which has no guarantees and presumably the highest possible expected total409

withdrawals. A money back guarantee would have to be hedged, which would reduce returns. In410

12https://qsuper.qld.gov.au/.
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practice, this guarantee could be priced separately, and added as an overlay to the tontine investment411

if desired.412

3.6 Survivor Benefits413

Many DB plans have survivor benefits which are received by a surviving spouse. A typical case414

would involve the surviving spouse receiving 60% − 75% of the yearly pension after the DB plan415

holder dies.416

Consider the following case of a male, same-sex couple, both of whom are exactly the same age.417

As an extreme case, suppose the survivor benefit is 100% of the tontine cash flows, which continue418

until the survivor dies. From the CPM2014 table from the Canadian Institute of Actuaries13, the419

probability that an 85-year old Canadian male dies before reaching the age of 86 is about .076.420

Assuming that the mortality probabilities are independent for both spouses, then the probability421

that both 85-year old spouses die before reaching age 86, conditional on both living to age 85 is422

(.076)2 ≃ .0053. From equation (3.17), the tontine gain rate per year is423

tontine gain rate =
.0053

1− .0053
≃ .0053 . (3.20)424

We will assume in our numerical examples that the base case fee charged for managing the425

tontine is 50 bps per year. This means that net of fees, there are essentially no tontine gains for426

our hypothetical couple for the first 20 years of retirement, which is surely undesirable. Once one427

of the partners passes away, the tontine gain rate will, of course, take a jump in value.428

As another extreme case, suppose that the surviving spouse receives 50% of the tontine cash429

flows. In this case, the total cash flows accruing to this couple are exactly the same as those that430

would have resulted from dividing the original total wealth in half and then having each spouse431

invest in their own individual tontine.432

It is possible to determine the distribution of the cash flows for a survivor benefit which is433

intermediate to these edge cases. However, this requires additional state variables in our optimal434

control problem, and is probably best tackled using a machine learning approach (Li and Forsyth,435

2019; Ni et al., 2022). We will leave this case for future work, and focus attention on the individual436

tontine case with no survivor benefit. Note that in the tontine context, survivor benefits are typically437

provided by a separate insurance overlay.14
438

4 Formulation439

We assume that the investor has access to two funds: a broad market stock index fund and a constant440

maturity bond index fund. The investment horizon is T . Let St and Bt respectively denote the441

real (inflation adjusted) amounts invested in the stock index and the bond index respectively. In442

general, these amounts will depend on the investor’s strategy over time, as well as changes in the443

real unit prices of the assets. In the absence of an investor determined control (i.e. cash withdrawals444

or rebalancing), all changes in St and Bt result from changes in asset prices. We model the stock445

index as following a jump diffusion.446

In addition, we follow the usual practitioner approach and directly model the returns of the447

constant maturity bond index as a stochastic process (see, e.g. Lin et al., 2015; MacMinn et al.,448

2014). Consistent with the stock index, we will assume that the constant maturity bond index449

13www.cia-ica.ca/docs/default-source/2014/214013e.pdf.
14https://i3-invest.com/2021/04/behind-qsupers-retirement-design/.
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also follows a jump diffusion. Empirical justification for this can be found in Forsyth et al. (2022),450

Appendix A. This will also be discussed in Section 9.451

Let St− = S(t − ϵ), ϵ → 0+, i.e. t− is the instant of time before t, and let ξs be a random452

number representing a jump multiplier. When a jump occurs, St = ξsSt− . Allowing for jumps453

permits modelling of non-normal asset returns. We assume that log(ξs) follows a double exponential454

distribution (Kou, 2002; Kou and Wang, 2004). If a jump occurs, us is the probability of an upward455

jump, while 1− us is the chance of a downward jump. The density function for y = log(ξs) is456

fs(y) = usηs1e
−ηs1y1y≥0 + (1− us)ηs2e

ηs2y1y<0 . (4.1)

We also define457

γsξ = E[ξs − 1] =
usηs1
ηs1 − 1

+
(1− us)ηs2
ηs2 + 1

− 1 . (4.2)

In the absence of control, St evolves according to458

dSt

St−
=

(
µs − λs

ξγ
s
ξ

)
dt+ σs dZs + d

 πs
t∑

i=1

(ξsi − 1)

 , (4.3)459

where µs is the (uncompensated) drift rate, σs is the volatility, dZs is the increment of a Wiener460

process, πs
t is a Poisson process with positive intensity parameter λs

ξ, and ξsi are i.i.d. positive461

random variables having distribution (4.1). Moreover, ξsi , π
s
t , and Zs are assumed to all be mutually462

independent.463

Similarly, let the amount in the bond index be Bt− = B(t−ϵ), ϵ → 0+. In the absence of control,464

Bt evolves as465

dBt

Bt−
=

(
µb − λb

ξγ
b
ξ + µb

c1{Bt−<0}

)
dt+ σb dZb + d

 πb
t∑

i=1

(ξbi − 1)

 , (4.4)466

where the terms in equation (4.4) are defined analogously to equation (4.3). In particular, πb
t is a467

Poisson process with positive intensity parameter λb
ξ, and ξbi has distribution468

f b(y = log ξb) = ubηb1e
−ηb1y1y≥0 + (1− ub)ηb2e

ηb2y1y<0 , (4.5)

and γbξ = E[ξb−1]. ξbi , π
b
t , and Zb are assumed to all be mutually independent. The term µb

c1{Bt−<0}469

in equation (4.4) represents the extra cost of borrowing (the spread).470

The diffusion processes are correlated, i.e. dZs ·dZb = ρsb dt. The stock and bond jump processes471

are assumed mutually independent. See Forsyth (2020b) for justification of the assumption of stock-472

bond jump independence.473

We define the investor’s total wealth at time t as474

Total wealth ≡ Wt = St +Bt. (4.6)475

The term “total wealth” refers to the sum of the values of the investor’s tontine account plus476

any accumulated debt arising from insolvency due to the minimum required withdrawals. This is477

perhaps a bit misleading since it excludes the value of any additional assets that the investor has478

such as real estate or the value of government benefits, but it simplifies our exposition. We impose479

the constraints that (assuming solvency) shorting stock and using leverage (i.e. borrowing) are not480

permitted. As noted above, in case of insolvency, the portfolio is liquidated, trading stops and debt481

accumulates at the borrowing rate.482
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5 Notational Conventions483

Consider a set of discrete withdrawal/rebalancing times T484

T = {t0 = 0 < t1 < t2 < . . . < tM = T} (5.1)485

where we assume that ti − ti−1 = ∆t = T/M is constant for simplicity. To avoid subscript clutter,486

in the following, we will occasionally use the notation St ≡ S(t), Bt ≡ B(t) and Wt ≡ W (t). Let487

the inception time of the investment be t0 = 0. We let T be the set of withdrawal/rebalancing488

times, as defined in equation (5.1). At each rebalancing time ti, i = 0, 1, . . . ,M − 1, the investor489

(i) withdraws an amount of cash qi from the portfolio, and then (ii) rebalances the portfolio. At490

tM = T , the portfolio is liquidated and no cash flow occurs. For notational completeness, this is491

enforced by specifying qM = 0.492

In the following, given a time dependent function f(t), we will use the shorthand notation493

f(t+i ) ≡ lim
ϵ→0+

f(ti + ϵ) ; f(t−i ) ≡ lim
ϵ→0+

f(ti − ϵ) . (5.2)494

Let495

(∆t)i =

{
∆t i = 1, . . .M,

0 i = 0 or W (t−i ) ≤ 0
. (5.3)496

We assume that a tontine fee of Tf per unit time is charged at t ∈ T , based on the total portfolio497

value at t−i , after tontine gains but before withdrawals.15 Recalling the definition of tontine gain498

rate Tg
i in equation (3.18), we modify this definition to enforce no tontine gain at t = 0,499

Tg
i =


(

qi−1

1−qi−1

)
i = 1, . . . ,M

0 i = 0 or W (t−i ) ≤ 0
. (5.4)500

Then W (t+i ) is given by501

W (t+i ) =

(
S(t−i ) +B(t−i )

)(
1 + Tg

i

)
exp(−(∆t)iTf )− qi ; i ∈ T , (5.5)502

where we recall that qM ≡ 0 and (∆t)0 ≡ 0. With some abuse of notation, we define503

W (t−i ) =

(
S(t−i ) +B(t−i )

)(
1 + Tg

i

)
exp(−(∆t)iTf ) (5.6)504

as the total portfolio value, after tontine gains and tontine fees, the instant before withdrawals and505

rebalancing at ti.506

Typically, DC plan savings are held in a tax-advantaged account, with no taxes triggered by507

rebalancing. With infrequent (e.g. yearly) rebalancing, we also expect other transaction costs, apart508

from the tontine fees, to be small, and hence can be ignored. It is possible to include transaction509

costs, but at the expense of increased computational cost (van Staden et al., 2018).510

We denote the multi-dimensional controlled underlying process by X (t) = (S (t) , B (t)), t ∈511

[0,T ] and the realized state of the system by x = (s, b). Let the rebalancing control pi(·) be the512

fraction invested in the stock index at the rebalancing date ti, i.e.513

pi
(
X(t−i )

)
= p

(
X(t−i ), ti

)
=

S(t+i )

S(t+i ) +B(t+i )
. (5.7)514

15We are implicitly assuming here that the investor is solvent here and thus remains in the tontine pool, paying
fees and receiving mortality credits.
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Let the withdrawal control qi(·) be the amount withdrawn at time ti, i.e. qi
(
X(t−i )

)
= q

(
X(t−i ), ti

)
.515

Formally, the controls depend on the state of the investment portfolio, before the rebalancing occurs,516

i.e. pi(·) = p
(
X(t−i ), ti

)
= p

(
X−

i , ti
)
, and qi(·) = q

(
X(t−i ), ti

)
= q

(
X−

i , ti
)
, ti ∈ T , where T is the517

set of rebalancing times.518

However, it will be convenient to note that in our case, we find the optimal control pi(·) amongst519

all strategies with constant wealth (after withdrawal of cash). Hence, with some abuse of notation,520

we will now consider pi(·) to be function of wealth after withdrawal of cash521

W (t−i ) =


(
S(t−i ) +B(t−i )

)(
1 + Tg

i

)
exp

(
−(∆t)iTf

)
if
(
S(t−i ) +B(t−i )

)
> 0(

S(t−i ) +B(t−i )

)
otherwise

W (t+i ) = W (t−i )− qi(·)
pi(·) = p(W (t+i ), ti)

S(t+i ) = S+
i = pi(W

+
i ) W+

i

B(t+i ) = B+
i = (1− pi(W

+
i )) W+

i . (5.8)

Note that the control for pi(·) depends only W+
i . Since pi(·) = pi(W

−
i − qi), then it follows that522

qi(·) = qi(W
−
i ) , (5.9)523

which we discuss further in Section 8.524

A control at time ti, is then given by the pair (qi(·), pi(·)) where the notation (·) denotes that525

the control is a function of the state. Let Z represent the set of admissible values of the controls526

(qi(·), pi(·)). We impose no-shorting, no-leverage constraints (assuming solvency). We also impose527

maximum and minimum values for the withdrawals. We apply the constraint that in the event of528

insolvency due to withdrawals (W (t+i ) < 0), trading ceases and debt (negative wealth) accumulates529

at the appropriate borrowing rate of return (i.e. a spread over the bond rate). We also specify that530

the stock assets are liquidated at t = tM .531

More precisely, let W+
i be the wealth after withdrawal of cash, and W−

i be the total wealth532

before withdrawals (but after fees and tontine cash flows), then define533

Zq(W
−
i , ti) =


[qmin,qmax] ti ∈ T ; ti ̸= tM ; W−

i ≥ qmax

[qmin,max(qmin,W
−
i )] ti ∈ T ; t ̸= tM ; W−

i < qmax

{0} ti = tM

, (5.10)534

Zp(W
+
i ,ti) =


[0,1] W+

i > 0 ; ti ∈ T ; ti ̸= tM

{0} W+
i ≤ 0 ; ti ∈ T ; ti ̸= tM

{0} ti = tM

. (5.11)535

536

The rather complicated expression in equation (5.10) imposes the assumption that as wealth537

becomes small, the retiree (i) tries to avoid insolvency as much as possible and (ii) in the event of538

insolvency, withdraws only qmin.539

The set of admissible values for (qi,pi), ti ∈ T , can then be written as540

(qi,pi) ∈ Z(W−
i ,W+

i ,ti) = Zq(W
−
i , ti)×Zp(W

+
i ,ti) . (5.12)541
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For implementation purposes, we have written equation (5.12) in terms of the wealth after with-542

drawal of cash. However, we remind the reader that since W+
i = W−

i − qi, the controls are formally543

a function of the state X(t−i ) before the control is applied.544

The admissible control set A can then be written as545

A =

{
(qi, pi)0≤i≤M : (pi, qi) ∈ Z(W−

i ,W+
i ,ti)

}
. (5.13)546

An admissible control P ∈ A can be written as547

P = {(qi(·), pi(·)) : i = 0, . . . ,M} . (5.14)548

We also define Pn ≡ Ptn ⊂ P as the tail of the set of controls in [tn, tn+1, . . . , tM ], i.e.549

Pn = {(qn(·), pn(·)), . . . , (qM (·), pM (·))} . (5.15)550

For notational completeness, we also define the tail of the admissible control set An as551

An =

{
(qi, pi)n≤i≤M : (qi, pi) ∈ Z(W−

i ,W+
i ,ti)

}
, (5.16)552

so that Pn ∈ An.553

6 Risk and Reward554

6.1 Risk: Definition of Expected Shortfall (ES)555

Let g(WT ) be the probability density function of wealth WT at t = T . Suppose556 ∫ W ∗
α

−∞
g(WT ) dWT = α, (6.1)

i.e. Pr [WT > W ∗
α] = 1 − α. We can interpret W ∗

α as the Value at Risk (VAR) at level α. For557

example, if α = .05, then 95% of the outcomes have WT > W ∗
α. If W ∗

α is sufficiently large and558

positive, this suggests very low risk of running out of savings.16 The Expected Shortfall (ES) at559

level α is then560

ESα =

∫W ∗
α

−∞ WT g(WT ) dWT

α
, (6.2)

which is the mean of the worst α fraction of outcomes. Typically α ∈ {.01, .05}. The definition of ES561

in equation (6.2) uses the probability density of the final wealth distribution, not the density of loss.562

Hence, in our case, a larger value of ES (i.e. a larger value of average worst case terminal wealth) is563

desired. The negative of ES is commonly referred to as Conditional Value at Risk (CVAR).564

Define X+
0 = X(t+0 ), X

−
0 = X(t−0 ). Given an expectation under control P, EP [·], as noted by565

Rockafellar and Uryasev (2000), ESα can be alternatively written as566

ESα(X
−
0 , t−0 ) = sup

W ∗
E

X+
0 ,t+0

P0

[
W ∗ +

1

α
min(WT −W ∗, 0)

]
. (6.3)567

The admissible set for W ∗ in equation (6.3) is over the set of possible values for WT .568

16In practice, the negative of W ∗
α is often the reported VAR.
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The notation ESα(X
−
0 , t−0 ) emphasizes that ESα is as seen at (X−

0 , t−0 ). In other words, this569

is the pre-commitment ESα. A strategy based purely on optimizing the pre-commitment value of570

ESα at time zero is time-inconsistent, hence has been termed by many as non-implementable, since571

the investor has an incentive to deviate from the time zero pre-commitment strategy at t > 0.572

However, in the following, we will consider the pre-commitment strategy merely as a device to573

determine an appropriate level of W ∗ in equation (6.3). If we fix W ∗ ∀t > 0, then this strategy is574

the induced time-consistent strategy (Strub et al., 2019; Forsyth, 2020a; Cui et al., 2022) and hence575

is implementable. We delay further discussion of this subtle point to Appendix A.576

An alternative measure of risk could be based on variability of withdrawals (Forsyth et al.,577

2020). However, we note that we have constraints on the minimum and maximum withdrawals, so578

that variability is mitigated. We also assume that given these constraints, the retiree is primarily579

concerned with the risk of depleting savings, which is well measured by ES.580

6.2 A Measure of Reward: Expected Total Withdrawals (EW)581

We will use expected total withdrawals as a measure of reward in the following. More precisely, we582

define EW (expected withdrawals) as583

EW(X−
0 , t−0 ) = E

X+
0 ,t+0

P0

[ M∑
i=0

qi

]
, (6.4)584

where we assume that the investor survives for the entire decumulation period, consistent with the585

Bengen (1994) scenario.586

Note that there is no discounting term in equation (6.4) (recall that all quantities are real, i.e.587

inflation-adjusted). It is straightforward to introduce discounting, but we view setting the real588

discount rate to zero to be a reasonable and conservative choice. See Forsyth (2022b) for further589

comments.590

7 Problem EW-ES591

Since expected withdrawals (EW) and expected shortfall (ES) are conflicting measures, we use592

a scalarization technique to find the Pareto points for this multi-objective optimization problem.593

Informally, for a given scalarization parameter κ > 0, we seek to find the control P0 that maximizes594

EW(X−
0 , t−0 ) + κ ESα(X

−
0 , t−0 ) . (7.1)595

More precisely, we define the pre-commitment EW-ES problem (PCESt0(κ)) problem in terms596

of the value function J(s,b,t−0 )597
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(PCESt0 (κ)) : J
(
s,b, t−0

)
= sup

P0∈A
sup
W ∗

{
E

X+
0 ,t+0

P0

[
M∑
i=0

qi + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

)

+ ϵWT

∣∣∣∣X(t−0 ) = (s,b)

]}
(7.2)

subject to



(St, Bt) follow processes (4.3) and (4.4); t /∈ T
W+

ℓ = W−
ℓ − qℓ ; X+

ℓ = (S+
ℓ , B

+
ℓ )

W−
ℓ =

(
S(t−i ) +B(t−i )

)(
1 + Tg

i

)
exp(−

(
∆t)iTf

)
S+
ℓ = pℓ(·)W+

ℓ ; B+
ℓ = (1− pℓ(·))W+

ℓ

(qℓ(·), pℓ(·)) ∈ Z(W−
ℓ ,W+

ℓ ,tℓ)

ℓ = 0, . . . ,M ; tℓ ∈ T

. (7.3)

Note that we have added the extra term E
X+

0 ,t+0
P0

[ϵWT ] to equation (7.2). If we have a maximum598

withdrawal constraint, and if Wt ≫ W ∗ as t → T , the controls become ill-posed. In this fortunate599

state for the investor, we can break investment policy ties either by setting ϵ < 0, which will force600

investments in bonds, or by setting ϵ > 0, which will force investments into stocks. Choosing |ϵ| ≪ 1601

ensures that this term only has an effect if Wt ≫ W ∗ and t → T . See Forsyth (2022b) for more602

discussion of this.603

Interchange the sup sup(·) in equation (7.2), so that value function J
(
s,b, t−0

)
can be written as604

J
(
s,b, t−0

)
= sup

W ∗
sup
P0∈A

{
E

X+
0 ,t+0

P0

[
M∑
i=0

qi + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

)

+ ϵWT

∣∣∣∣X(t−0 ) = (s,b)

]}
. (7.4)

Noting that the inner supremum in equation (7.4) is a continuous function of W ∗ and that the
optimal value of W ∗ in equation (7.4) is bounded17, then define

W∗(s,b) = argmax
W ∗

{
sup
P0∈A

{
E

X+
0 ,t+0

P0

[
M∑
i=0

qi + κ

(
W ∗ +

1

α
min(WT −W ∗, 0)

)

+ ϵWT

∣∣∣∣X(t−0 ) = (s,b)

]}
. (7.5)

See Forsyth (2020a) for an extensive discussion concerning pre-commitment and time consistent ES605

strategies. We summarize the relevant results from that discussion in Appendix A.606

8 Formulation as a Dynamic Program607

We use the method in Forsyth (2020a) to solve problem We (7.4). write equation (7.4) as608

J(s,b,t−0 ) = sup
W ∗

V (s,b,W ∗, 0−) , (8.1)609

17This is the same as noting that a finite value at risk exists. Assuming 0 < α < 1, this is easily shown since our
investment strategy uses no leverage and no-shorting.
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where the auxiliary function V (s, b,W ∗, t) is defined as

V (s,b,W ∗, t−n ) = sup
Pn∈An

{
EX̂+

n ,t+n
Pn

[
M∑
i=n

qi + κ

(
W ∗ +

1

α
min((WT −W ∗),0)

)

+ ϵWT

∣∣∣∣X̂(t−n ) = (s,b,W ∗)

]}
. (8.2)

subject to



(St, Bt) follow processes (4.3) and (4.4); t /∈ T
W+

ℓ = W−
ℓ − qℓ ; X+

ℓ = (S+
ℓ , B

+
ℓ ,W

∗)

W−
ℓ =

(
S(t−i ) +B(t−i )

)(
1 + Tg

i

)
exp(−(∆t)iTf )

S+
ℓ = pℓ(·)W+

ℓ ; B+
ℓ = (1− pℓ(·))W+

ℓ

(qℓ(·), pℓ(·)) ∈ Z(W−
ℓ ,W+

ℓ ,tℓ)

ℓ = n, . . . ,M ; tℓ ∈ T

. (8.3)

We have now decomposed the original problem (7.4) into two steps:610

• For given initial cash W0, and a fixed value of W ∗, solve problem (8.2) using dynamic pro-611

gramming to determine V (0,W0,W
∗, 0−).612

• Solve problem (7.4) by maximizing over W ∗
613

J(0,W0, 0
−) = sup

W ∗
V (0,W0,W

∗, 0−) . (8.4)614

8.1 Dynamic Programming Solution of Problem (8.2)615

We give a brief overview of the method described in detail in (Forsyth, 2022b). Apply the dynamic
programming principle to tn ∈ T

V (s,b,W ∗, t−n ) = sup
q∈Zq(w−,tn)

{
sup

p∈Zp(w−−q,tn)

[
q+ V ((w− − q)p, (w− − q)(1− p),W ∗, t+n )

]}
= sup

q∈Zq(w−,tn)

{
q+

[
sup

p∈Zp(w−−q,tn)

V ((w− − q)p, (w− − q)(1− p),W ∗, t+n )

]}
w− = (s+ b)

(
1 + Tg

i

)
exp(−(∆t)iTf ) . (8.5)

For computational purposes, we define616

Ṽ (w, tn,W
∗) =

[
sup

p∈Zp(w,tn)
V (wp, w(1− p),W ∗, t+n )

]
. (8.6)617

Equation (8.5) now becomes

V (s,b,W ∗, t−n ) = sup
q∈Zq(w−,tn)

{
q+

[
Ṽ ((w− − q),W ∗, t+n )

]}
w− = (s+ b)

(
1 + Tg

i

)
exp(−(∆t)iTf ) . (8.7)

19



This approach effectively replaces a two dimensional optimization for (qn, pn), to two sequential
one dimensional optimizations. From equations (8.6-8.7), it is clear that the optimal pair (qn, pn)
is such that

qn = qn(w
−,W ∗)

w− = (s+ b)

(
1 + Tg

i

)
exp(−(∆t)iTf )

pn = pn(w,W
∗)

w = w− − qn . (8.8)

In other words, the optimal withdrawal control qn is only a function of total wealth (after tontine618

gains and fees) before withdrawals. The optimal control pn is a function only of total wealth after619

withdrawals, tontine gains, and fees.620

At t = T , we have621

V (s, b,W ∗,T+) = κ

(
W ∗ +

min((s+ b−W ∗), 0)

α

)
+ ϵ(s+ b) . (8.9)622

At points in between rebalancing times, i.e. t /∈ T , the usual arguments (from SDEs (4.3-4.4), and
Forsyth (2022b)) give

Vt +
(σs)2s2

2
Vss + (µs − λs

ξγ
s
ξ )sVs + λs

ξ

∫ +∞

−∞
V (eys, b, t)fs(y) dy +

(σb)2b2

2
Vbb

+ (µb + µb
c1{b<0} − λb

ξγ
b
ξ)bVb + λb

ξ

∫ +∞

−∞
V (s, eyb, t)f b(y) dy − (λs

ξ + λb
ξ)V + ρsbσ

sσbsbVsb = 0 ,

s ≥ 0 ; b ≥ 0 . (8.10)

In case of insolvency18 s = 0, b < 0 and then

Vt +
(σb)2b2

2
Vbb + (µb + µb

c1{b<0} − λb
ξγ

b
ξ)bVb + λb

ξ

∫ +∞

−∞
V (0, eyb, t)f b(y) dy − λb

ξV = 0 ,

s = 0 ; b < 0 . (8.11)

It will be convenient for computational purposes to re-write equation (8.11) in terms of debt
b̂ = −b when b < 0. Now let V̂ (b̂, t) = V (0, b,t), b < 0, b = −b̂ in equation (8.11) to give

V̂t +
(σb)2b̂2

2
V̂b̂b̂ + (µb + µb

c − λb
ξγ

b
ξ)b̂V̂b̂ + λb

ξ

∫ +∞

−∞
V̂ (ey b̂,t)f b(y) dy − λb

ξV̂ = 0 ,

s = 0 ; b < 0 ; b̂ = −b . (8.12)

Note that equation (8.12) is now amenable to a transformation of the form x̂ = log b̂ since b̂ > 0,623

which is required when using a Fourier method (Forsyth and Labahn, 2019; Forsyth, 2022b) to solve624

equation (8.12).625

After rebalancing, if b ≥ 0, then b cannot become negative, since b = 0 is a barrier in equation626

(8.11). However, b can become negative after withdrawals, in which case b remains in the state627

18Insolvency can only occur due to the minimum withdrawals specified.
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b < 0, where equation (8.12) applies, unless there is an injection of cash to move to a state with628

b > 0. The terminal condition for equation (8.12) is629

V̂ (b̂,W ∗,T+) = κ

(
W ∗ +

min((−b̂−W ∗), 0)

α

)
+ ϵ(−b̂) ; b̂ > 0 . (8.13)630

A brief overview of the numerical algorithms is given in Appendix B, along with a numerical con-631

vergence verification.632

9 Data633

We use data from the Center for Research in Security Prices (CRSP) on a monthly basis over the634

1926:1-2020:12 period.19 Our base case tests use the CRSP US 30 day T-bill for the bond asset635

and the CRSP value-weighted total return index for the stock asset. This latter index includes all636

distributions for all domestic stocks trading on major U.S. exchanges. All of these various indexes637

are in nominal terms, so we adjust them for inflation by using the U.S. CPI index, also supplied by638

CRSP. We use real indexes since investors funding retirement spending should be focused on real639

(not nominal) wealth goals.640

We use the threshold technique (Mancini, 2009; Cont and Mancini, 2011; Dang and Forsyth,641

2016) to estimate the parameters for the parametric stochastic process models. Since the index data642

is in real terms, all parameters reflect real returns. Table 9.1 shows the results of calibrating the643

models to the historical data. The correlation ρsb is computed by removing any returns which occur644

at times corresponding to jumps in either series, and then using the sample covariance. Further645

discussion of the validity of assuming that the stock and bond jumps are independent is given in646

Forsyth (2020b).647

648

Remark 9.1 (Jump diffusion for 30-day T-bill). In MacMinn et al. (2014), it is assumed that the649

corporate constant maturity bond index follows a jump diffusion process, while the three month T-bill650

index follows a pure diffusion. However, in Forsyth et al. (2022), use of the filtering algorithm (Cont651

and Mancini, 2011) actually identifies more jumps in the 30 day T-bill index than are observed in652

the stock index. Furthermore, the empirical return histograms in Forsyth et al. (2022) show the653

higher peaks and fatter tails characteristic of a jump diffusion. Note that in our case, in contrast654

to MacMinn et al. (2014), we use real (adjusted for inflation) time series, which may cause greater655

non-normality of returns. The filtering test described in Forsyth et al. (2022) applied to the inflation656

adjusted T-bill data over 1926:1-2020:12 (1140 monthly data points) shows 47 events which exceed657

three standard deviations from the mean. Assuming normality, we would expect to observe at most658

4 such events.659

660

661

Remark 9.2 (Choice of 30-day T-bill for the bond index). It might be argued that the bond index662

should hold longer-dated bonds such as 10-year Treasuries since this would allow the investor to663

harvest the term premium. Long-term bonds have enjoyed high real returns over the last 30 years664

19More specifically, results presented here were calculated based on data from Historical Indexes, ©2020 Center for
Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data
Services (WRDS) was used in preparing this article. This service and the data available thereon constitute valuable
intellectual property and trade secrets of WRDS and/or its third-party suppliers.
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CRSP µs σs λs us ηs1 ηs2 ρsb

0.08912 0.1460 0.3263 0.2258 4.3625 5.5335 0.08420

30-day T-bill µb σb λb ub ηb1 ηb2 ρsb

0.0046 0.0130 0.5053 0.3958 65.801 57.793 0.08420

Table 9.1: Estimated annualized parameters for double exponential jump diffusion model. Value-
weighted CRSP index, 30-day T-bill index deflated by the CPI. Sample period 1926:1 to 2020:12.

due to decreasing real interest rates during that period. However, it is unlikely that this will continue665

to be true over the next 30 years. Hatch and White (1985) study the real returns of equities,666

short-term T-bills, and long-term corporate and government bonds, over the period 1950-1983 and667

conclude that, in both Canada and the US, only equities and short-term T-bills had non-negative real668

returns. Inflation (both US and Canada) averaged about 4.75% per year over the period 1950-1983.669

If one imagines that the next 30 years will be a period with inflationary pressures, this suggests670

that the defensive asset should be short-term T-bills. However, there is nothing in our methodology671

that prevents us from using other underlying bonds in the bond index. We emphasize that we are672

considering inflation-adjusted returns here, and that the historical real return of short-term T-bills673

over 1926:1-2020:12 is approximately zero. Hence our use of T-bills as the defensive asset is a674

conservative approach going forward.675

676

677

Remark 9.3 (Sensitivity to Calibrated Parameters). It might be argued that the stochastic processes678

(4.3-4.4) are simplistic, and perhaps inappropriate. However, we will test the optimal strategies679

(computed assuming processes (4.3-4.4) with calibrated parameters in Table 9.1 ) using bootstrap680

resampled historical data (see Section 10 below). The computed strategy seems surprisingly robust to681

model misspecification. Similar results have been noted for the case of multi-period mean-variance682

controls (van Staden et al., 2021).683

684

685

10 Historical Market686

We compute and store the optimal controls based on the parametric model (4.3-4.4) as for the687

synthetic market case. However, we compute statistical quantities using the stored controls, but688

using bootstrapped historical return data directly. In this case, we make no assumptions concerning689

the stochastic processes followed by the stock and bond indices. We remind the reader that all690

returns are inflation-adjusted. We use the stationary block bootstrap method (Politis and Romano,691

1994; Politis and White, 2004; Patton et al., 2009; Cogneau and Zakalmouline, 2013; Dichtl et al.,692

2016; Cavaglia et al., 2022; Simonian and Martirosyan, 2022; Anarkulova et al., 2022). A key693

parameter is the expected blocksize. Sampling the data in blocks accounts for serial correlation in694

the data series. We use the algorithm in Patton et al. (2009) to determine the optimal blocksize695

for the bond and stock returns separately, see Table 10.1. We use a paired sampling approach696

to simultaneously draw returns from both time series. In this case, a reasonable estimate for the697
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Data series Optimal expected
block size b̂ (months)

Real 30-day T-bill index 50.6
Real CRSP value-weighted index 3.42

Table 10.1: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric distribution
Pr(b = k) = (1 − v)k−1v. The algorithm in Patton et al. (2009) is used to determine b̂. Historical
data range 1926:1-2020:12.

blocksize for the paired resampling algorithm would be about 2.0 years. We will give results for a698

range of blocksizes as a check on the robustness of the bootstrap results. Detailed pseudo-code for699

block bootstrap resampling is given in Forsyth and Vetzal (2019).700

11 Investment Scenario701

Table 11.1 shows our base case investment scenario. We use thousands of dollars as our units of702

wealth. For example, a withdrawal of 40 per year corresponds to $40,000 per year (all values are703

real, i.e. inflation-adjusted), with an initial wealth of 1000 (i.e. $1,000,000). This would correspond704

to the use of the four per cent rule (Bengen, 1994). Our base case scenario assumes a fee of 50 bps705

per year for the tontine overlay. See Chen et al. (2021) for a discussion of tontine fees.706

As a motivating example, we consider a 65-year old Canadian retiree with a pre-retirement salary707

of $100,000 per year, with $1,000,000 in a DC savings account. Government benefits are assumed to708

amount to about $20,000 per year (real). The retiree needs the DC plan to generate at least $40,000709

per year (real), so that the DC plan and government benefits together replace 60% of pre-retirement710

income. We assume that the retiree owns mortgage-free real estate worth about $400,000. In an711

act of mental accounting, the retiree plans to use the real estate as a longevity hedge, which could712

be monetized using a reverse mortgage. In the event that the longevity hedge is not needed, the713

real-estate will be a bequest. Of course, the retiree would like to withdraw more than $40,000 per714

year from the DC plan, but has no use for withdrawals greater than $80,000 per year. We further715

assume that the real estate holdings can generate $200,000 through a reverse mortgage. Hence, as a716

rough rule of thumb any expected shortfall at T = 30 years greater than −$200,000 is an acceptable717

level of risk.718

Our view that personal real estate is not fungible with investment assets (unless investment719

assets are depleted) is consistent with the behavioral life cycle approach originally described in720

Shefrin and Thaler (1988) and Thaler (1990). In this framework, investors divide their wealth into721

separate “mental accounts” containing funds intended for different purposes such as current spending722

or future need.723

We take the view of a 65-year old retiree, who wants to maximize her total withdrawals and724

minimize the risk of running out of savings, assuming that she lives to the age of 95. We also assume725

that the retiree has no bequest motive.726

Recall that Bengen (1994) attempted to determine a safe real withdrawal rate, and constant727

allocation strategy, such that the probability of running out of cash after 30 years of retirement was728

small. In other words, Bengen (1994) maximized total withdrawals over a 30 year period, assuming729

that the retiree survived for the entire 30 years. This is, of course, a conservative assumption.730

In our case, we are essentially answering the same question. The key difference here is that we731

allow for (i) dynamic asset allocation, (ii) variable withdrawals (within limits) and (iii) a possible732
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tontine overlay.733

Retiree 65-year old Canadian male
Tontine Gain Tg equation (3.18)
Group Gain G ( see equation (3.16 ) ) 1.0
Mortality table CPM 2014
Investment horizon T (years) 30.0
Equity market index CRSP Cap-weighted index (real)
Bond index 30-day T-bill (US) (real)
Initial portfolio value W0 1000
Cash withdrawal/rebalancing times t = 0,1.0, 2.0, . . . , 29.0
Maximum withdrawal (per year) qmax = 80
Minimum withdrawal (per year) qmin = 40
Equity fraction range [0,1]
Borrowing spread µb

c 0.02
Rebalancing interval (years) 1.0
α (EW-ES) .05
Fees Tf (see equation (5.5)) 50 bps per year
Stabilization ϵ (see equation (7.2)) −10−4

Market parameters See Table 9.1

Table 11.1: Input data for examples. Monetary units: thousands of dollars. CPM2014 is the
mortality table from the Canadian Institute of Actuaries.

12 Constant Withdrawal, Constant Equity Fraction734

As a preliminary example, in this section we present results for the scenario in Table 11.1, except735

that a constant withdrawal of 40 per year is specified, along with a constant weight in stocks at736

each rebalancing date.737

Table 12.1 gives the results for various values of the constant weight equity fraction in the738

synthetic market. The best result20 for ES (the largest value) occurs at the rather low constant739

equity weight of p = 0.1, with ES = −239. Table 12.2 gives similar results, this time using bootstrap740

resampling of the historical data (the historical market). Here the best value of ES = −305 occurs741

for a constant equity fraction of p = 0.4. Consequently, in both the historical and synthetic market,742

the constant weight, constant withdrawal strategy fails to meet our risk criteria of ES > −200.743

These simulations indicate that there is significant depletion risk for the constant withdrawal,744

constant weight strategy suggested in Bengen (1994).745

13 Synthetic Market Efficient Frontiers746

Figure 13.1 shows the efficient EW-ES frontiers computed in the synthetic market for the following747

cases:748

Tontine: the case in Table 11.1. The control is computed using the algorithm in Section 8 and749

then stored, and used in Monte Carlo simulations. The detailed frontier is given in Table D.1.750

20Recall that ES is defined in terms of the left tail mean of final wealth (not losses) hence a larger value is preferred.
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Equity fraction p E[
∑

i qi]/T ES (5%) Median[WT ]

0.0 40 -302.57 -150.56
0.1 40 -238.62 -6.82
0.2 40 -245.48 168.10
0.3 40 -280.27 386.05
0.4 40 -330.37 649.58
0.5 40 -391.61 958.33
0.6 40 -461.54 1312.17
0.7 40 -538.04 1706.49
0.8 40 -619.31 2135.24

Table 12.1: Constant weight, constant withdrawals, synthetic market results. No tontine gains.
Stock index: real capitalization weighted CRSP stocks; bond index: real 30-day T-bills. Parameters
from Table 9.1. Scenario in Table 11.1. Units: thousands of dollars. Statistics based on 2.56 × 106

Monte Carlo simulation runs. T = 30 years.

Equity fraction p E[
∑

i qi]/T ES (5%) Median[WT ]

0.0 40 -508.44 -155.04
0.1 40 -418.02 -10.98
0.2 40 -350.00 164.75
0.3 40 -312.24 382.16
0.4 40 -305.52 649.04
0.5 40 -326.40 966.61
0.6 40 -370.18 1336.31
0.7 40 -432.55 1759.66
0.8 40 -509.00 2232.29

Table 12.2: Constant weight, constant withdrawals, historical market. No tontine gains. Historical
data range 1926:1-2020:12. Constant withdrawals are 40 per year. Stock index: real capitalization
weighted CRSP stocks; bond index: real 30-day T-bills. Scenario in Table 11.1. Units: thousands
of dollars. Statistics based on 106 bootstrap simulation runs. Expected blocksize = 2 years. T = 30
years.

No Tontine: the case in Table 11.1, but without any tontine gains The control is computed and751

stored, and then used in Monte Carlo simulations The detailed frontier is given in Table D.2.752

Const q=40, Const p: The best single point from Table 12.1, based on Monte Carlo simulations.753

Note that all these strategies produce a minimum withdrawal of 40 per year (i.e. 4% real of754

the initial investment) for 30 years. However, the best result for the constant weight strategies was755

(EW,ES) = (40,−239) This can be improved significantly by optimizing over withdrawals and asset756

allocation, but with no tontine gains. For example, from Table D.2, the nearest point with roughly757

the same level of risk is (EW,ES) = (58,− 242). However, the improvement with optimal controls758

and tontine gains is remarkable. For example, it seems reasonable to target a value of ES ≃ 0.759

From Table D.1, we note the point (EW,ES) = (69,47), which is dramatically better than any No760

Tontine Pareto point. This can also be seen from the large outperformance in the EW-ES frontier761

compared to the No Tontine case in Figure 13.1 .762
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Figure 13.1: Frontiers generated from the synthetic market. Parameters based on real CRSP index,
real 30-day T-bills (see Table 9.1). Tontine case is as in Table 11.1. The No Tontine case uses
the same scenario, but with no tontine gains, and no fees. The Const q, Const p case has q = 40,
p = 0.10, with no tontine gains, which is the best result from Table 12.1, assuming no tontine gains,
and no fees. Units: thousands of dollars.

13.1 Effect of Fees763

Figure 13.2 shows the effect of varying the annual fee in the synthetic market, for the scenario in764

Table 11.1. Recall that the base case specified a fee of 50 bps per year. Assuming a shortfall target765

of ES ≃ 0, then the effect of fees in the range 0 − 100 bps is quite modest. Even with annual fees766

of 100 bps, the Tontine case still significantly outperforms the No Tontine case (which is assumed767

to have no fees).768
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Figure 13.2: Effect of varying fees charged for the Tontine, basis points (bps) per year. Frontiers
generated from the synthetic market. Parameters based on real CRSP index, real 30-day T-bills (see
Table 9.1). Base case Tontine is as in Table 11.1 (fees 50 bps per year). The No Tontine case uses
the same scenario, but with no tontine gains, and no fees. Units: thousands of dollars.

13.2 Effect of Random G769

Recall the definition of the group gain Gi at time ti in equation (3.10). Basically, the group gain770

is used to ensure that the total amount of mortality credits disbursed is exactly equal to the total771
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amount forfeited by tontine participants who have died in (ti−1, ti).772

If Condition 3.1 holds, then we expect that randomly varying Gi will have a small cumulative773

effect. In Fullmer and Sabin (2019) and Winter and Planchet (2022), the authors create synthetic774

tontine pools where the investors have different initial wealth, ages, genders, and investment strate-775

gies. These pools are perpetual, i.e. new members join as original members die. It is assumed that776

the investors can only select an asset allocation strategy from a stock index and a bond index, both777

of which follow a geometric Brownian motion (GBM).778

The payout rules are different from those suggested in this paper, but it is instructive to observe779

the following. In Fullmer and Sabin (2019), the perpetual tontine pool has 15,000 investors in780

steady-state. After the initial start-up period, the expected value of the group gain Gi at each781

rebalancing time is close to unity, with a standard deviation of about 0.1. Fullmer and Sabin (2019)782

also note that there is essentially no correlation between investment returns and the group gain.783

Further simulations were carried out in Winter and Planchet (2022), using the same sharing rule784

as in Fullmer and Sabin (2019) for a single period (one year), with 500− 1,000− 5,000 participants.785

The investors had different allocation amounts with ages from 40− 70, but all participants had the786

same investment strategy. The variance of Gi was negligible for the pool with 5,000 initial investors.787

The Fullmer and Sabin (2019) study, with the additional variability of random asset allocation to788

risky assets, had a low standard deviation for Gi at around 15,000 participants. Consequently, it789

would appear that the number of participants required to be reasonably sure that the assumption790

that var(Gi) is small is in the range of 5,000-15,000, depending on restrictions for individual asset791

allocation.792

Figure 13.3 shows the effect of randomly varying Gi. The curve labeled G = 1.0 is the base case793

EW-ES curve from the scenario in Table 11.1, in the synthetic market (parameters in Table 9.1).794

The controls from this base case are stored, and then used in Monte Carlo simulations, where G is795

assumed to have a normal distribution with mean one, and standard deviation of 0.1. The EW-ES796

curves for both cases essentially overlap, except for very large values of ES, which are not of any797

practical interest. We get essentially the same result if we use a uniform distribution for G with798

E[G] = 1, with the same standard deviation. This is not surprising, since, assuming that the value799

function is smooth, then a simple Taylor series argument shows that, for any assumed distribution800

of G with mean one, the effect of randomness of G is a second order effect in the standard deviation.801

Of course, we cannot determine the actual distribution of G without a detailed knowledge of the802

characteristics of the tontine pool. In fact, if we knew the distribution, we could include it in the803

formulation of the optimal control problem. However, knowledge of the distribution of G is unlikely804

to be available to pool participants in practice.805

Nevertheless, the simulations in Fullmer and Sabin (2019) and Winter and Planchet (2022),806

coupled with our results as shown in Figure 13.3, suggest that for a sufficiently large, diversified807

pool of investors the effects of randomly varying G are negligible. Note that we are only considering808

idiosyncratic mortality risk here, not systematic risk, e.g. unexpected mortality improvement.809

14 Bootstrapped Results810

As discussed in Section 10, a key parameter in the stationary block bootstrap technique is the811

expected blocksize. In Figure 14.1(a), we show the results of the following test. We compute and812

store the optimal controls, based on the synthetic market. Then we use these controls, but carry813

out tests on bootstrapped historical data. The efficient frontiers in Figure 14.1(a), for ES < 1000814

essentially overlap for all expected blocksizes in the range 0.5− 5.0 years. Since it is probably not815

of interest to aim for an ES of 1000 (which is one million dollars) at age 95, this indicates that the816
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Figure 13.3: Effect of randomly varying group gain G (Section 3.2.1). Frontiers generated from the
synthetic market. Parameters based on real CRSP index, real 30-day T-bills (see Table 9.1). Base case
Tontine (G = 1.0) is as in Table 11.1. Random G case uses the control computed for the base case,
but in the Monte Carlo simulation, G is normally distributed with mean one and standard deviation
0.1. Units: thousands of dollars.

computed strategy is robust to parameter uncertainty.817

Figure 14.1(b) compares the efficient frontier tested in the historical market (expected blocksize818

2 years), with the efficient frontier in the synthetic market. We observe that the synthetic and819

historical curves overlap for ES < 1000, which again verifies that the controls are robust to data820

uncertainty. The efficient frontiers/points for the No Tontine case and the constant weight, constant821

withdrawal strategy (computed in the historical market) are also shown. The Tontine overlay822

continues to outperform the No Tontine case by a wide margin.823

15 Detailed Historical Market Results: EW-ES Controls824

In this section, we examine some detailed characteristics of the optimal EW-ES strategy, tested in825

the historical market for the scenario in Table 11.1. Figure 15.1 shows the percentiles of fraction in826

stocks, wealth, and withdrawals versus time for the EW-ES control with κ = 0.18, with (EW,ES) =827

(69, 204). To put this in perspective, recall that this strategy never withdraws less than 40 per year.828

Compare this to the best case for a constant withdrawal, constant weight strategy (no tontine)829

from Table 12.2, which has (EW,ES) = (40,−306), or to the optimal EW-ES strategy, but with no830

tontine, from Table E.2, which has (EW,ES) = (70,− 806).831

Figure 15.1(a) shows that the median optimal fraction in stocks starts at about 0.60, then drops832

to about 0.20 at 15 years, finally ending up at zero in year 26. Figure 15.1(b) indicates that for the833

years in the span of 20− 30, the median and fifth percentiles of wealth are fairly tightly clustered,834

with the fifth percentile being well above zero at all times. The optimal withdrawal percentiles835

are shown in Figure 15.1(c). The median withdrawal starts at 40 per year, then increases to the836

maximum withdrawal of 80 in years 3− 4, and remains at 80 for the remainder of the 30-year time837

horizon.838

Figure 15.2 shows the optimal control heat maps for the fraction in stocks and withdrawal839

amounts, for the scenario in Table 11.1. Figure 15.2(a) shows a smooth behavior of the optimal840

fraction in stocks as a function of (W,t). This can be compared with the equivalent heat map for the841

EW-ES control in Forsyth (2022b) (no tontine gains), which is much more aggressive at changing842

the asset allocation in response to changing wealth amounts. The smoothness of the controls in843
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Figure 14.1: Optimal strategy determined by solving Problem 7.2 in the synthetic market, parameters
in Table 9.1. Control stored and then tested in bootstrapped historical market. Inflation adjusted
data, 1926:1-2020:12. Non-Pareto points eliminated. Expected blocksize (Blk, years) used in the
bootstrap resampling method also shown. Units: thousands of dollars. The const q, const p case had
(p,q) = (0.4, 40) (no tontine gains). This is the best result for the constant (p,q) case, shown in
Table 12.2.

Figure 15.2(a) appears to be due to the rapid de-risking of a strategy which includes tontine gains,844

which provides a natural protection against sudden stock index drops. The upper blue zone in845

Figure 15.2(a) is de-risking due to the fact that, with sufficiently large wealth, there is essentially846

no probability of running out of cash even at the maximum withdrawal amount. The use of the847

stabilization factor ϵ = −10−4 forces the strategy to increase the weight in bonds for large values of848

wealth (see equation (7.2)).21 The lower red zone is in response to extremely poor wealth outcomes,849

which means that the optimal strategy is to invest 100% in stocks and hope for the best. However,850

this is an extremely unlikely outcome, as can be verified from Figure 15.1(b).851

From Figure 15.2(b), we can observe that the optimal withdrawal strategy is essentially a bang-852

bang control, i.e. withdraw at either the maximum or minimum amount per year. This is not853

unexpected, as discussed in Appendix C. We also note that this type of strategy has been suggested854

previously, based on heuristic reasoning.22
855

16 Discussion856

Traditional annuities with true inflation protection are unavailable in Canada.23 Since inflation is857

expected to be a major factor in the coming years, inflation protection is a valuable aspect of the858

optimal EW-ES strategy, with a tontine overlay.24 This strategy has an expected real withdrawal859

rate, over 30 years, of about 7% of the initial capital (per annum), never withdraws less than 4% of860

21“When you have won the game, stop playing,” – William Bernstein.
22“If we have a good year, we take a trip to China, . . . if we have a bad year, we stay home and play canasta,”

retired professor Peter Ponzo, discussing his DC plan withdrawal strategy https://www.theglobeandmail.com/
report-on-business/math-prof-tests-investing-formulas-strategies/article22397218/.

23Some providers advertise annuities with inflation protection, however this is simply an escalating nominal payout,
based on a fixed escalation rate.

24Examination of historical periods of high inflation suggests that a portfolio of short term T-bills and an equal
weight stock index generates significant positive real returns, see Forsyth (2022a).
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Figure 15.1: Scenario in Table 11.1. EW-ES control computed from problem EW-ES Problem (7.2).
Parameters based on the real CRSP index, and real 30-day T-bills (see Table 9.1). Control computed
and stored from the Problem (7.2) in the synthetic market. Control used in the historical market,
106 bootstrap samples. qmin = 40, qmax = 80 (per year), κ = 0.18. W ∗ = 385. Units: thousands of
dollars.

(a) Fraction in stocks (b) Withdrawals

Figure 15.2: Optimal EW-ES. Heat map of controls: fraction in stocks and withdrawals, computed
from Problem EW-ES (7.1). Real capitalization weighted CRSP index, and real 30-day T-bills. Sce-
nario given in Table 11.1. Control computed and stored from the Problem 7.2 in the synthetic market.
qmin = 40, qmax = 80 (per year). κ = 0.18. W ∗ = 385. ϵ = −10−4. Normalized withdrawal
(q − qmin)/(qmax − qmin). Units: thousands of dollars.

initial capital per annum, and a positive ES (expected shortfall) at the 5% level after 30 years.861

Consequently, if we consider a retiree with no bequest motive, then joining a tontine pool and862

following an optimal EW-ES strategy is potentially an excellent alternative to a life annuity. Hence,863

it could be argued that going forward, the EW-ES optimal tontine pool strategy has less risk864

than a conventional annuity. However, this implicitly assumes that the idiosyncratic portion of865

mortality risk is much more significant than the systematic portion, as the tontine pool provides866

protection against the first component while a traditional annuity in principle protects against both867

components.868

Another point to consider is that the reason that the tontine approach has a higher mean (and869

median) payout is that it is not guaranteed. There is some flexibility in the withdrawal amounts,870

30



and the portfolio contains risky assets. However, the ultimate risk, as measured by the expected871

shortfall at year 30, is very small. We can also see that the median payout rises rapidly to the872

maximum withdrawal rate (8% real of the initial investment) within 3-4 years of retirement, and873

stays at the maximum for the remainder of the 30-year horizon.874

As well, the investor forfeits the entire portfolio in the event of death. Although this is often875

considered a drawback, we remind the reader that annuities and defined benefit (DB) plans have876

this same property (restricting attention to a single retiree with no guarantee period).25 Of course,877

it is possible to overlay various guarantees on to the tontine pool, e.g. a guarantee period, a money878

back guarantee, or joint and survivor benefits. The cost of these guarantees would, of course, reduce879

the expected annual withdrawals.880

These results are robust to fees in the range of 50-100 bps per year. The long term results are881

also insensitive to random group gains.26
882

However, the tontine gains (after fees) are comparatively small for retirees in the 65-70 age range.883

This suggests that it may be optimal to delay joining a tontine until the investor has attained an884

age of 70 or more.885

Although we have explicitly excluded a bequest motive from our considerations, note that the886

median withdrawal strategy rapidly ramps up to the maximum withdrawal within a few years of887

retirement, and remains there for the entire remaining retirement period. Although it is commonly888

postulated that retirement consumption follows a U-shaped pattern, recent studies indicate that889

real retirement consumption falls with age (at least in countries which do not have large end of life890

expenses)(Brancati et al., 2015). In this case, the withdrawals which occur towards the end of the891

retirement period may exceed consumption. This allows the retiree to use these excess cash flows892

as a living bequest to relatives or charities.893

17 Conclusions894

DC plan decumulation strategies are typically based on some variant of the four per cent rule895

(Bengen, 1994). However, bootstrap tests of these rules using historical data show a significant risk896

of running out of savings at the end of a 30-year retirement planning horizon.897

This risk can be significantly reduced by using optimal stochastic control methods, where the898

controls are the asset allocation strategy and the withdrawal amounts (subject to maximum and899

minimum constraints)(Forsyth, 2022b; Forsyth et al., 2020).900

However, if we assume the retiree couples an optimal allocation/withdrawal strategy with par-901

ticipation in a tontine fund, then the risk of portfolio depletion after 30 years is virtually eliminated.902

At the same time, the cumulative total withdrawals are considerably increased compared with the903

previous two strategies. Of course, this comes at a price: the retiree forfeits her portfolio upon904

death. Hence the tontine overlay is most appealing to investors who have no bequest motivation,905

or who manage bequests using other funds.906

We should also note that individual tontine accounts allow for complete flexibility in asset907

allocation strategies and do not require purchase of expensive investment products. These accounts908

are essentially peer-to-peer longevity risk management tools. Consequently, the custodian of these909

accounts bears no risk, and incurs only bookkeeping costs. Hence the fees charged by the custodian910

of these accounts can be very low. If desired, the retiree can pay for additional investment advice911

in a completely transparent manner.912

25Moshe Milevsky, an advocate of modern tontines, is quoted in the Toronto Star (April 13, 2021) as noting that
“If you give up some of your money when you die, you can get more when you are alive.”

26The randomness of the group gain is due to fact that real tontine pools will be finite and heterogeneous.
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However, a potentially significant caveat to our main conclusions is that we have ignored sys-913

tematic mortality risk (e.g. unexpected improvement in life expectancies). Modelling this would914

require taking into account an additional risk factor, which we leave as a topic of future work.915
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Appendix922

A Induced Time Consistent Strategy923

Denote the investor’s initial wealth at t0 by W−
0 . Then we have the following result:924

Proposition A.1 (Pre-commitment strategy equivalence to a time consistent policy for an alterna-
tive objective function). The pre-commitment EW-ES strategy P∗ determined by solving J(0,W0, t

−
0 )

(with W∗(0,W−
0 ) from equation (7.5)) is the time consistent strategy for the equivalent problem

TCEQ (with fixed W∗(0,W−
0 )), with value function J̃(s,b,t) defined by

(TCEQtn (κ/α)) : J̃
(
s,b, t−n

)
= sup

Pn∈A

{
EX+

n ,t+n
Pn

[
M∑
i=n

qi +
κ

α
min(WT −W∗(0,W−

0 ),0)

∣∣∣∣X(t−n ) = (s,b)

]}
. (A.1)

Proof. This follows similar steps as in Forsyth (2020a), proof of Proposition 6.2, with the exception925

that the reward in Forsyth (2020a) is expected terminal wealth, while here the reward is total926

withdrawals.927

Remark A.1 (An Implementable Strategy). Given an initial level of wealth W−
0 at t0, then the928

optimal control27 for the pre-commitment problem (7.2) is the same optimal control for the time929

consistent problem28 (TCEQtn (κ/α)) (A.1), ∀t > 0. Hence we can regard problem (TCEQtn (κ/α))930

as the EW-ES induced time consistent strategy. Thus, the induced strategy is implementable, in the931

sense that the investor has no incentive to deviate from the strategy computed at time zero, at later932

times (Forsyth, 2020a).933

Remark A.2 (EW-ES Induced Time Consistent Strategy). In the following, we will consider the934

actual strategy followed by the investor for any t > 0 as given by the induced time consistent strategy935

(TCEQtn (κ/α)) in equation (A.1), with a fixed value of W∗(0,W−
0 ), which is identical to the EW-936

ES strategy at time zero. Hence, we will refer to this strategy in the following as the EW-ES strategy,937

with the understanding that this refers to strategy (TCEQtn (κ/α)) for any t > 0.938

B Numerical Techniques939

We solve problems (7.2) using the techniques described in detail in Forsyth and Labahn (2019);940

Forsyth (2020a; 2022b). We give only a brief overview here.941

We localize the infinite domain to (s,b) ∈ [smin, smax] × [bmin, bmax], and discretize [bmin,bmax]942

using an equally spaced log b grid, with nb nodes. Similarly, we discretize [smin, smax] on an equally943

spaced log s grid, with ns nodes. Localization errors are minimized using the domain extension944

method in Forsyth and Labahn (2019).945

At rebalancing dates, we solve the local optimization problem (8.7) by discretizing (q(·), p(·)) and946

using exhaustive search. Between rebalancing dates, we solve the two dimensional partial integro-947

differential equation (PIDE) (8.10 ) using Fourier methods (Forsyth and Labahn, 2019; Forsyth,948

27To be perfectly precise here, in the event that the control is non-unique, we impose a tie-breaking strategy to
generate a unique control.

28Assuming that the same tie breaking strategy is used as for the pre-commitment problem.
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2022b). Finally, the optimization problem (8.4) is solved using a one-dimensional optimization949

technique.950

We used the value ϵ = −10−4 in equation (8.2), which forces the investment strategy to be bond951

heavy if the remaining wealth in the investor’s account is large, and t → T . Using this small value of952

gave the same results as ϵ = 0 for the summary statistics, to four digits. This is simply because the953

states with very large wealth have low probability. However, this stabilization procedure produced954

smoother heat maps for large wealth values, without altering the summary statistics appreciably.955

B.1 Convergence Test: Synthetic Market956

We compute and store the optimal controls from solving Problem 7.2 using the parametric model957

of the stock and bond processes. We then use the stored controls in Monte Carlo simulations to958

generate statistical results. As a robustness check, we also use the stored controls and simulate959

results using bootstrap resampling of historical data.960

Table B.1 shows a detailed convergence test for the base case problem given in Table 11.1, for the961

EW-ES problem. The results are given for a sequence of grid sizes, for the dynamic programming962

algorithm in Section 8 and Appendix B. The dynamic programming algorithm appears to converge963

at roughly a second order rate. The optimal control computed using dynamic programming is stored,964

and then used in Monte Carlo computations. The Monte Carlo results are in good agreement with965

the dynamic programming solution. For all the numerical examples, we will use the 2048 × 2048966

grid, since this seems to be accurate enough for our purposes.967

Algorithm in Section 8 and Appendix B Monte Carlo

Grid ES (5%) E[
∑

i qi]/M Value Function ES (5%) E[
∑

i qi]/M

512× 512 108.13 67.99 2059.60 123.26 68.04
1024× 1024 158.88 67.79 2063.19 164.45 67.81
2048× 2048 201.88 67.56 2064.27 203.87 67.56
4096× 4096 206.56 67.54 2064.54 207.70 67.54

Table B.1: Convergence test, real stock index: deflated real capitalization weighted CRSP, real bond
index: deflated 30 day T-bills. Scenario in Table 11.1. Parameters in Table 9.1. The Monte Carlo
method used 2.56× 106 simulations. The MC method used the control from the algorithm in Section
8. κ = 0.185, α = .05. Grid refers to the grid used in the Algorithm in Section B: nx × nb, where
nx is the number of nodes in the log s direction, and nb is the number of nodes in the log b direction.
Units: thousands of dollars (real). M is the total number of withdrawals (rebalancing dates).

C Continuous Withdrawal/Rebalancing Limit968

In order to develop some intuition about the nature of the optimal controls, we will examine the969

limit as the rebalancing interval becomes vanishingly small.970

Proposition C.1 (Bang-bang withdrawal control in the continuous withdrawal limit). Assume that971

• the stock and bond processes follow (4.3) and (4.4),972

• the portfolio is continuously rebalanced, and withdrawals occur at a continuous (finite) rate973

q̂ ∈ [q̂min, q̂max],974
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Algorithm in Section 8 and Appendix B Monte Carlo

Grid ES (5%) E[
∑

i qi]/T Value Function ES (5%) E[
∑

i qi]/M

512× 512 -203.31 54.08 860.033 -191.99 53.96
1024× 1024 -191.40 53.58 889.613 -188.07 53.53
2048× 2048 -188.91 53.57 898.712 -188.14 53.55
4096× 4096 -188.04 53.54 901.106 -187.95 53.53

Table B.2: No tontine case. Convergence test, real stock index: deflated real capitalization weighted
CRSP, real bond index: deflated 30 day T-bills. Scenario in Table 11.1, but no tontine. Parameters
in Table 9.1. The Monte Carlo method used 2.56× 106 simulations. The MC method used the control
from the algorithm in Section 8. κ = 3.75, α = .05. Grid refers to the grid used in the Algorithm in
Section B: nx × nb, where nx is the number of nodes in the log s direction, and nb is the number of
nodes in the log b direction. Units: thousands of dollars (real). M is the total number of withdrawals
(rebalancing dates). W ∗ = −106.476 on the finest grid.

• the HJB equation for the EW-ES problem in the continuous rebalancing limit has bounded975

derivatives w.r.t. total wealth,976

• in the event of ties for the control q̂, the smallest withdrawal is selected,977

then the optimal withdrawal control q̂∗(·) for the EW-ES problem (PCESt0(κ)) and for the EW-LS978

problem (EWLSt0 (κ̂)) is bang-bang, q̂∗ ∈ {q̂min, q̂max}.979

Proof. This follows the same steps as in Forsyth (2022b).980

Remark C.1 (Bang-bang control for discrete rebalancing/withdrawals). Proposition C.1 suggests981

that, for sufficiently small rebalancing intervals, we can expect the optimal q control (finite withdrawal982

amount) to be bang-bang, i.e. it is only optimal to withdraw either the maximum amount qmax or983

the minimum amount qmin. However, it is not clear that this will continue to be true for the case984

of yearly rebalancing (which we specify in our numerical examples), and finite amount controls q.985

In fact, we do observe that the finite amount control q is very close to bang-bang in our numerical986

experiments, even for yearly rebalancing.987

D Detailed Efficient Frontiers: Synthetic Market988
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κ E[
∑

i qi]/T ES(5%) Median[WT ] W ∗

0.15 70.06 -309.569 189.48 0.490
0.17 70.04 -270.13 185.19 0.489
0.18 68.51 46.77 599.42 385.28
0.185 67.56 203.87 820.65 585.97
0.20 66.41 384.76 1058.40 802.40
0.25 63.85 732.34 1517.04 1220.33
0.30 62.22 912.29 1754.40 1439.83
0.50 58.48 1209.40 2120.59 1802.19
1.0 54.81 1372.46 2327.42 2021.22
10.0 48.96 1457.52 2484.58 2151.79
∞ 40.00 1460.76 2885.85 2173.04

Table D.1: EW-ES synthetic market results for optimal strategies, assuming the scenario given in
Table 11.1. Tontine gains assumed. Stock index: real capitalization weighted CRSP stocks; bond
index: real 30-day T-bills. Parameters from Table 9.1. Units: thousands of dollars. Statistics based
on 2.56 × 106 Monte Carlo simulation runs. Control is computed using the Algorithm in Section 8
and Appendix B, stored, and then used in the Monte Carlo simulations. qmin = 0.40, qmax = 80
(annually). T = 30 years, ϵ = −10−4.

κ E[
∑

i qi]/T ES(5%) Median[WT ] W ∗

0.180 69.17 -823.76 -2.51 -691.81
1.0 61.38 -319.66 -39.47 -229.18
1.5 58.98 -260.92 -65.88 -179.60
1.75 57.97 -242.34 -74.74 -161.25
2.5 55.86 -211.03 -81.44 -132.87
3.75 53.55 -188.14 -81.11 -107.00
5.0 52.08 -177.88 -78.39 -90.10
6.25 51.29 -173.59 -79.08 -89.03
7.5 50.72 -171.05 -79.30 -88.25
10.0 49.89 -168.16 -78.77 -87.18
100.0 46.41 -162.86 -68.28 -77.47
∞ 40.00 -162.67 +5.72 -76.00

Table D.2: EW-ES synthetic market results for optimal strategies, assuming the scenario given in
Table 11.1. No tontine gains assumed. Stock index: real capitalization weighted CRSP stocks; bond
index: real 30-day T-bills. Parameters from Table 9.1. Units: thousands of dollars. Statistics based
on 2.56 × 106 Monte Carlo simulation runs. Control is computed using the Algorithm in Section 8
and Appendix B, stored, and then used in the Monte Carlo simulations. qmin = 0.40, qmax = 80
(annually). T = 30 years, ϵ = −10−4.
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κ E[
∑

i qi]/T ES(5%) Median[WT ]

0.15 71.25 -165.23 157.16
0.17 71.01 -138.15 153.13
0.18 68.94 204.20 573.29
0.185 67.99 369.26 769.96
0.20 66.64 546.98 1038.07
0.25 63.84 863.20 1500.51
0.30 62.08 1011.55 1739.21
0.5 58.13 1211.18 2115.22
1.0 54.50 1285.93 2330.33
10.0 49.42 1275.98 2485.58
∞ 40.00 1280.97 2892.41

Table E.1: EW-ES historical market results for optimal strategies, assuming the scenario given in
Table 11.1. Tontine gains assumed. Stock index: real capitalization weighted CRSP stocks; bond index:
real 30-day T-bills. Parameters from Table 9.1. Units: thousands of dollars. Statistics based on 106

bootstrap simulation runs. Expected blocksize = 2 years. Control is computed using the Algorithm in
Section 8 and Appendix B, stored, and then used in the bootstrap simulations. qmin = 40, qmax = 80
(annually). T = 30 years, ϵ = −10−4.

κ E[
∑

i qi]/T ES(5%) Median[WT ]

0.18 69.91 -805.65 -31.84
1.0 61.77 -290.03 -40.87
1.5 59.21 -248.15 -77.26
1.75 58.16 -235.46 -78.50
2.5 56.02 -219.00 -81.84
3.75 53.78 -209.90 -80.68
5.0 52.43 -207.15 -77.25
6.25 51.74 -209.02 -78.11
7.5 51.26 -210.38 -78.48
10.0 50.58 -212.41 -77.95
100.0 47.72 -217.82 -67.91
∞ 40.00 -219.16 +17.34

Table E.2: EW-ES historical market results for optimal strategies, assuming the scenario given
in Table 11.1. No Tontine gains assumed. Stock index: real capitalization weighted CRSP stocks;
bond index: real 30-day T-bills. Parameters from Table 9.1. Units: thousands of dollars. Statistics
based on 106 bootstrap simulation runs. Expected blocksize = 2 years. Control is computed using the
Algorithm in Section 8 and Appendix B, stored, and then used in the bootstrap simulations. qmin = 40,
qmax = 80 (annually). T = 30 years, ϵ = −10−4.
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