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Abstract4

We propose the use of a mean–quadratic-variation criteria to determine an optimal trading strategy5

in the presence of price impact. We derive the Hamilton Jacobi Bellman (HJB) Partial Differential6

Equation (PDE) for the optimal strategy, assuming the underlying asset follows Geometric Brownian7

Motion (GBM) or Arithmetic Brownian Motion (ABM). The exact solution of the ABM formulation is8

in fact identical to the static (price-independent) approximate solution for the mean-variance objective9

function in Almgren and Chriss (2001). The optimal trading strategy in the GBM case is in general a10

function of the asset price. The static strategy determined in the ABM formulation turns out to be an11

excellent approximation for the GBM case, even when volatility is large.12
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1 Introduction15

A typical problem faced by an investment bank arises when buying or selling a large block of shares. If the16

trade is executed rapidly, then this can be expected to cause a significant price impact. For example, in the17

case of selling, this price impact will lower the average price received per share compared to the pretrade18

price. An obvious strategy is to break up the trade into a set of smaller blocks. This will lower the price19

impact, but now the trading takes place over a longer time horizon. Consequently, the seller is exposed to20

risk due to the stochastic movement of the stock price, relative to the pretrade price.21

Algorithmic trading strategies attempt to determine a trading schedule which optimizes a given objective22

function. One of the early papers on this topic (Bertsimas and Lo, 1998) considered the best trading strategy23

which minimizes the cost of trading over a fixed time. More recently, this problem has been posed in terms24

of a mean-variance tradeoff in continuous time (Almgren and Chriss, 2001; Almgren, 2003; Almgren et al.,25

2004; Engle and Ferstenberg, 2007; Lorenz, 2008; Lorenz and Almgren, 2011). Another possibility is to26

maximize an exponential or power law utility function (He and Mamaysky, 2005; Vath et al., 2007; Schied27

and Schoneborn, 2008). However, the mean-variance tradeoff has a simple intuitive interpretation, and is28

probably preferred by practitioners.29

∗This work was supported by the Natural Sciences and Engineering Research Council of Canada, and by a Morgan Stanley
Equity Market Microstructure Research Grant. The views expressed herein are solely those of the authors, and not those of
any other person or entity, including Morgan Stanley. Morgan Stanley is not responsible for any errors or omissions. Nothing
in this article should be construed as a recommendation by Morgan Stanley to buy or sell any security of any kind.
†David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1

paforsyt@uwaterloo.ca
‡Morgan Stanley, 1585 Broadway, New York, NY 10036, Shannon.Kennedy@MorganStanley.com
§David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1

sttse@uwaterloo.ca
¶Morgan Stanley, 1585 Broadway, New York, NY 10036, Heath.Windcliff@MorganStanley.com

1



While single period mean-variance optimization is straightforward to understand, multi-period mean-30

variance optimization is more complex. In particular, there are several formulations of multi-period mean-31

variance optimization in the literature. The formulation that aguably aligns best with performance measures32

used in practice is the mean-variance criteria as seen at the start of the trade execution. This formulation is33

termed the pre-commitment mean-variance formulation in the literature. (Basak and Chabakauri, 2010)34

One subtlety of the pre-commitment mean-variance formulation is that it gives rise to optimal strategies35

that are time-inconsistent. Consequently, the dynamic programming principle cannot be directly applied to36

solve for the optimal strategies. In view of this difficulty, various approximations to the pre-commitment37

mean-variance formulation have been proposed. Our work is a step toward understanding how such approx-38

imate strategies compare with the the truly optimal strategies.39

In particular, we offer a new perspective on the Almgren and Chriss (2001) approximation. The approach40

in Almgren and Chriss (2001) restricts attention to static strategies (i.e. do not use any information regarding41

the stock price evolution after the start of trading). For static strategies, it turns out that variance, which42

is the original risk measure intended to be minimized, becomes equal to the expected value of quadratic43

variation. Nevertheless, we emphasize that this equality, by itself, does not imply that the static solution44

in Almgren and Chriss (2001) is optimal for the quadratic variation risk measure. The subtle point here is45

that Almgren and Chriss (2001) does not study how dynamic strategies perform in terms of the quadratic46

variation risk measure.47

We thus suggest directly formulating the optimal trade execution problem in terms of a mean quadratic48

variation objective function. We discuss the conceptual simplicity of the mean quadratic variation formu-49

lation, and put forward the idea that quadratic variation is a sensible risk measure. We also discuss the50

properties of the optimal strategies under this risk measure. Our earlier paper (Forsyth, 2011) focuses on51

solving for the truly optimal solutions for the pre-commitment mean variance formulation. In addition, (Tse52

et al., 2011) compares the optimal strategies determined by the pre-commitment mean variance formulation53

and the mean quadratic variation formulation.54

In summary:55

• The mean quadratic variation formulation is conceptually simpler to understand than the pre-commitment56

mean variance formulation. In particular the mean quadratic variation objective leads to optimal57

strategies that are clearly time-consistent and can be easily obtained using the dynamic program-58

ming principle. In contrast, the pre-commitment mean variance formulation has optimal strategies59

that are time-inconsistent, and these strategies are considered unnatural by some authors (Basak and60

Chabakauri, 2010).61

• As a risk measure, quadratic variation has the property that it takes into account the trajectory of the62

liquidation profile, as opposed to variance which measures only the end result with no concern of how63

liquidation proceeds during the whole trading horizon. Alternatively, minimizing quadratic variation64

can also be seen as minimizing the volatility of the portfolio value. Note that one purpose of converting65

shares to cash is to make the portfolio value process less volatile.66

We also mention that Gatheral and Schied (2010) suggest time averaged value at risk as another risk measure67

that also leads to time-consistent strategies.68

The main contributions of this article are69

• We formulate the mean quadratic variation problem in which quadratic variation, rather than variance,70

is used as the risk measure. We argue that quadratic variation can be regarded as a reasonable risk71

measure in optimal trade execution. We derive the Hamilton Jacobi Bellman (HJB) partial differential72

equations (PDE) and provide numerical methods to solve for both the optimal strategies and the73

efficient frontier, with arbitrary constraints on the strategy.74

• We formulate the optimal trade execution problem assuming that the asset price dynamic follows either75

Geometric Brownian Motion (GBM) or Arithmetic Brownian Motion (ABM). We believe that GBM is76

a superior model since it can be used for both long and short trading horizons, and avoids the fallacy77
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of negative price scenarios that can appear in ABM. Nevertheless, we also study the ABM case since78

this allows us to compare our results with those in Almgren and Chriss (2001).79

• We provide a proof that the classic static solution in Almgren and Chriss (2001) is optimal under the80

mean quadratic variation formulation, even when optimization is over the class of dynamic strategies81

(in the ABM case). The static solution in Almgren and Chriss (2001) is originally obtained as an82

approximate solution to the pre-commitment mean variance problem by restricting attention to static83

strategies. As such, the static strategy is strictly suboptimal in the pre-commitment mean variance84

formulation, since the optimal strategies are dynamic (Forsyth, 2011; Lorenz and Almgren, 2006;85

Lorenz, 2008). Therefore, our proof shows that the classic static solution in Almgren and Chriss86

(2001) is actually an exact optimal solution to the mean quadratic variation problem assuming ABM.87

• We show that in the mean quadratic variation formulation, optimal strategies in the GBM case are88

qualitatively different from those in the ABM case. More specifically, optimal strategies are dynamic89

in the GBM case, whereas optimal strategies are static in the ABM case. This contrasts with the pre-90

commitment mean variance formulation in which optimal strategies are dynamic in both the GBM91

case and the ABM case.92

• Our numerical results show that if we use the optimal static strategies from the ABM case as approx-93

imate solutions for the GBM case, this results in an efficient frontier that is very close to the true94

efficient frontier. While the accuracy of this ABM approximation is obvious when the ABM and the95

GBM dynamics are close, it is surprising that the accuracy of the ABM approximation is excellent even96

when volatility is very large. We explain this in detail and note that the accuracy of this approximation97

does not hold in the pre-commitment mean variance formulation.98

2 Optimal Execution99

Let100

P = B +AS = Portfolio

S = Price of the underlying risky asset,

B = Balance of risk free bank account,

A = Number of shares of underlying asset.

The optimal execution problem over t ∈ [0, T ] has the initial condition101

S(0) = sinit, B(0) = 0, A(0) = αinit. (2.1)

If αinit > 0, the trader is liquidating a long position (selling). If αinit < 0, the trader is liquidating a short102

position (buying). In this article, for definiteness, we consider the selling case. At t = T ,103

S = S(T ), B = B(T ), A(T ) = 0, (2.2)

where B(T ) is the cash generated by selling shares and investing in the risk free bank account B, with a final104

liquidation at t = T− to ensure that A(T ) = 0. The objective of optimal execution is to maximize B(T ),105

while at the same time minimizing a certain risk measure.106

In this paper, we consider Markovian trading strategies v(·) that specify a trading rate v as a function of107

the current state, i.e. v(·) : (S(t), A(t), t) 7→ v = v(S(t), A(t), t) . Note that in using the shorthand notations108

v(·) for the mapping, and v for the value v = v(S(t), A(t), t), the dependence of v on the current state is109

implicit.110

By definition,111

dA(t) = v dt. (2.3)
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We assume that due to temporary price impact, selling shares at the rate v at the market price S(t) gives112

an execution price Sexec(v, t) ≤ S(t). It follows that113

dB(t) =
(
rB(t)− vSexec(v, t)

)
dt (2.4)

where r is the risk free rate.114

We suppose that the market price of the risky asset S follows a Geometric Brownian Motion (GBM) or115

arithmetic Brownian Motion (ABM), where the drift term is modified due to the permanent price impact of116

trading.117

In the GBM model, we assume118

dS(t) =
(
µ+ g(v)

)
S(t) dt+ σS(t) dW(t),

µ = drift rate,

g(v) is the permanent price impact function,

σ = volatility.

W(t) is a Wiener process under the real world measure. (2.5)

In the ABM model, we assume119

dS(t) =
(
µ+ g(v)

)
S(0) dt+ σS(0) dW(t) . (2.6)

3 Price Impact120

In this section we specify the permanent and temporary price impact functions used in this paper. We refer121

the reader to Almgren et al. (2004) for a discussion of the rationale behind these permanent and temporary122

price impact models.123

In both the GBM case and the ABM case, we use the following form for the permanent price impact124

g(v) = κpv,

κp is the permanent price impact factor . (3.1)

We take κp to be a constant. This form of permanent price impact eliminates round-trip arbitrage opportu-125

nities, as discussed in Appendix B.126

3.1 Geometric Brownian Motion127

In the GBM case, we assume the temporary price impact scales linearly with the asset price, i.e.128

Sexec(v, t) = f(v)S(t), (3.2)

where129

f(v) = [1 + κs sgn(v)] exp[κt sgn(v)|v|β ],

κs is the bid-ask spread parameter ,

κt is the temporary price impact factor,

β is the price impact exponent . (3.3)

Note that we assume κs < 1, so that Sexec(v, t) ≥ 0, regardless of the magnitude of v.130
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3.2 Arithmetic Brownian Motion131

In the GBM case, we assume the temporary price impact is asset-price-independent, i.e.132

Sexec(v, t) = S(t) + S(0)h(v), (3.4)

where133

h(v) = κs sgn(v) + κtv , (3.5)

to be in accordance with Almgren and Chriss (2001). Note that Sexec(v, t) may be negative for v → −∞,134

i.e. (3.5) is only valid for small trading rates.135

Temporary impact (3.4), (3.5) is related to (3.2), (3.3) as follows. Assuming β = 1, κt|v| � 1 and136

κtκs � 1, temporary impact of the form (3.3) is approximately137

f(v) ≈ 1 + κs sgn(v) + κtv (3.6)

by Taylor’s expansion. Therefore, the price impact (in dollar terms) is138

Sexec(v, t)− S(t) = f(v)S(t)− S(t) = S(t)[κs sgn(v) + κtv] ≈ S(0)[κs sgn(v) + κtv]

for S(t) ≈ S(0).139

4 Definition of liquidation value140

Given the state (S(T−), A(T−)) at the instant t = T− before the end of the trading horizon, we have one141

final liquidation (if necessary) so that the number of shares owned at t = T is A(T ) = 0. The liquidation142

value B(T ) after this final trade is defined to be1
143

B(T ) = B(T−) + lim
v→−∞

A(T−)Sexec(v, T
−)

=

∫ T−

0

er(T−t
′)
(
− vSexec(v, t′)

)
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−). (4.1)

In the GBM case, applying (3.2) and (3.3) to (4.1) gives144

B(T ) = B(T−). (4.2)

In the ABM case, applying (3.4) and (3.5) to (4.1) gives145

B(T ) = B(T−) ; A(T−) = 0

= −∞ ; otherwise (4.3)

Definition (4.1) in effect penalizes the strategy if A(T ) 6= 0, so that the optimal algorithm forces the146

liquidation profile towards A(T ) = 0. In the GBM case (4.2), the penalty is such that the shares A(T−) are147

simply discarded. In the ABM case (4.3), a large penalty is imposed.2148

1Note that we adopt the convention that B(0) = 0; see (2.1).
2In actual implementation, we would replace limv→−∞ by a finite vmin � 0 in the PDE initial condition. Also, in the

case of liquidating a short position (buying), which is not considered in this paper, equation (4.1) would be defined as B(T ) =
B(T−) + limv→∞ A(T−)Sexec(v, T−), and we would replace limv→∞ by a finite vmax � 0 in implementation.
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5 Mean Quadratic Variation formulation149

Quadratic variation has been used as an approximation of variance in the algorithmic trading literature150

(Almgren and Chriss, 2001; Lorenz and Almgren, 2006). This approximation, however, can be poor when151

the trading impact is relatively large, as explained in Appendix C and illustrated in Tse et al. (2011). Instead152

of using quadratic variation to approximate variance, it is conceptually simpler to regard quadratic variation153

as an alternative risk measure.154

5.1 Quadratic variation as a risk measure155

Formally, the quadratic variation risk measure is defined as156

E

[∫ T

t

(
A(t′)dS(t′)

)2]
. (5.1)

Informally, the risk measure definition (5.1) can be interpreted as the quadratic variation of the portfolio157

value process as follows: by expanding the square of dP (t′) = dB(t′)+d(A(t′)S(t′)) and ignoring higher-order158

terms, we have159 ∫ T

t

(
A(t′)dS(t′)

)2
=

∫ T

t

(
dP (t′)

)2
, (5.2)

when the trading velocity process v(t) is bounded.160

From the interpretation (5.2), minimizing quadratic variation clearly corresponds to minimizing volatility161

in the portfolio value process. The definition (5.1) shows that quadratic variation takes into account the162

trading trajectory A(t′) over the whole trading horizon. This is in contrast with using variance (V ar[B(T )])163

as a risk measure, which is independent of the trading trajectory A(t′) given the end result B(T ). We note164

that the idea of using quadratic variation as a risk measure was first suggested in Brugiere (1996).165

5.2 Objective functional and value function166

Now we specify the mean quadratic variation formulation as follows. For a fixed initial point (s, α, t) =167

(S(t), A(t), t) where t < T with B(t) = 0, trading strategy v(·), and risk aversion parameter λ, we define the168

objective functional169

J(s, α, t, v(·);λ) = Es,α,tv(·)

[
B(T )

]
− λEs,α,tv(·)

[∫ T

t

(
A(t′)dS(t′)

)2]
(5.3)

where170

B(T ) =

∫ T−

t

er(T−t
′)
(
− vSexec(v, t′)

)
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−) (5.4)

and Es,α,tv(·) [·] is the conditional expectation at the initial point (s, α, t) using the control v(·).171

The value function V̂ is defined as172

V̂ (s, α, t;λ) = sup
v(·)

J(s, α, t, v(·);λ). (5.5)

For a given initial state (s, α, t), we will henceforth use the notation v∗s,α,t,λ(·) to denote the optimal policy173

that maximizes the corresponding functional, i.e. J(s, α, t, v(·);λ).174
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5.3 Time Consistency of the optimal strategies175

Let (s1, α1, t1) be some state at time t1 and v∗s1,α1,t1,λ
(·) be the corresponding optimal strategy. Let (s2, α2, t2)176

be some other state at time t2 > t1 and v∗s2,α2,t2,λ
(·) be the corresponding optimal strategy.3177

Since the optimal controls satisfy the Bellman’s principle of optimality as shown in Appendix A, it follows178

that the optimal controls of (5.5) are time consistent in the sense that for the same state (s′, α′, t′) at a later179

time t′ > t2,180

v∗s1,α1,t1,λ(s′, α′, t′) = v∗s2,α2,t2,λ(s′, α′, t′) ; t′ ≥ t2 . (5.6)

In view of equation (5.6), we can drop the subscript and just write v∗(·).181

6 HJB Equation Formulation: GBM case182

For t < T , let V = V (s, α, τ = T − t;λ) = V̂ (s, α, t;λ). For notational simplicity, we drop the parameter183

λ from V henceforth, i.e. we simply write V = V (s, α, τ). Unless otherwise stated, we also restrict the184

admissible controls v(·) to be non-positive (i.e. only selling is permitted).185

6.1 Optimal Control186

The optimal control v∗(·) can be obtained by solving the following HJB PDE derived in Appendix A:187

Vτ = µsVs +
σ2s2

2
Vss − λσ2α2s2 + sup

v≤0

[
erτ (−vf(v))s+ g(v)sVs + vVα

]
. (6.1)

Note that V has so far been defined for τ > 0 only. Section 4 suggests that the initial condition for188

V (s, α, τ = 0) should be189

V (s, α, τ = 0) = lim
v→−∞

αsf(v) (6.2)

for the GBM model with temporary price impact (3.2).190

6.2 Expected Value191

In order to construct the efficient frontier, i.e. a plot of expected gain versus risk, we will need to compute192

the expected gain. Let Ŵ (s, α, t) be the expected gain from the strategy v∗(·) found by solving equation193

(6.1), i.e.194

Ŵ (s, α, t) = Es,α,tv∗(·)

[
B(T )

]
. (6.3)

Let W (s, α, τ = T − t) = Ŵ (s, α, t), and following the same steps as used to derive equation (6.1), (or simply195

setting λ = 0), we obtain196

Wτ = µsWs +
σ2s2

2
Wss + erτ

(
− v∗f(v∗)

)
s+ g(v∗)sWs + v∗Wα . (6.4)

The initial condition W (s, α, τ = 0) is determined using the same arguments as used to derive (6.2)197

W (s, α, τ = 0) = lim
v→−∞

αsf(v). (6.5)

3Note that while the initial point is changed from (s1, α1, t1) to (s2, α2, t2), the risk aversion level λ is kept constant.
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6.3 Construction of the Efficient Frontier198

For a given value of λ, we solve the nonlinear PDE (6.1), which gives us the optimal control v∗(·). With this199

optimal control v∗(·), we then solve the linear PDE (6.4). Let200

V0 = V (s = S(0), α = A(0), τ = T ) = Es,α,t=0
v∗(·)

[
B(T )− λ

∫ T

0

(
A(t′)dS(t′)

)2]
,

W0 = W (s = S(0), α = A(0), τ = T ) = Es,α,t=0
v∗(·)

[
B(T )

]
. (6.6)

In order to produce a plot of reward (expected) versus risk, we define risk so that it has the same dimensions201

as the expected gain, i.e.202

Risk =

(
Es,α,t=0
v∗(·)

[∫ T

0

(
A(t′)dS(t′)

)2])1/2

=

√
W0 − V0

λ
. (6.7)

from equations (6.6). Equations (6.6) and (6.7) give us a single point on the efficient frontier. Repeating the203

above computation for different values of λ allows us to trace out the entire efficient frontier.204

6.4 Localization and Boundary Conditions205

6.4.1 Optimal Control Equation (6.1)206

The original problem (6.1) is posed on the domain207

(s, α, τ) ∈ [0,∞]× [0, αinit]× [0, T ] (6.8)

and we allow v to take any non-positive value. For computational purposes, we localize this domain to208

Ω = [0, smax]× [0, αinit]× [0, T ] (6.9)

and impose v ∈ [vmin, 0] for some finite negative value vmin.209

At α = 0, we do not permit selling which would cause α < 0, therefore v = 0 and hence210

Vτ = µsVS +
σ2s2

2
Vss ; α = 0, (6.10)

which does not require a boundary condition. Also, no boundary condition is required at α = αinit since211

v ≤ 0.212

At s = 0, no boundary condition is needed and we simply solve213

Vτ = sup
v∈[vmin,0]

[
vVα

]
; s = 0 (6.11)

At s = smax, we make the assumption that V ' C(α, τ)s2, which can be justified by noting that the term214

λσ2α2s2 acts as a source term in equation (6.1). We also assume that the effect of any permanent price215

impact at s = smax can be ignored i.e. g(v) = 0 at s = smax. This gives216

Vτ = (2µ+ σ2)V − λσ2α2s2 + sup
v∈[vmin,0]

[
erτ (−vf(v))s+ vVα

]
; s = smax . (6.12)

Equation (6.12) is clearly an approximation. We will carry out numerical tests with varying smax to show217

that the error in this approximation can be made small in regions of interest.218

The initial condition at τ = 0 is given by equation (6.2).219
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6.4.2 Expected Value Equation (6.4)220

Similar to the situation for V , no boundary condition is needed for W at α = 0, α = αinit or s = 0. At221

s = smax, we assume W ' D(α, τ)s (based on the initial condition (6.5)) and g(v) = 0. Consequently,222

Wτ = µW + erτ (−v∗f(v∗))s+ v∗Wα ; s = smax. (6.13)

Again, equation (6.13) is clearly an approximation. We will verify that the effect of this is small for sufficiently223

large smax.224

The initial condition at τ = 0 is given by equation (6.5).225

7 HJB Equation Formulation: ABM case226

The derivation is similar to that in the GBM case. In this section, we show that by assuming asset-price-227

independent temporary price impact (3.4) and zero interest rate, the optimal strategy has no s-dependence.228

Under these assumptions, a derivation similar to that in Appendix A gives the HJB PDE229

Vτ = µS(0)Vs +
σ2S(0)2

2
Vss − λσ2α2S(0)2 + sup

v≤0

[
v(Vα − s)− vh(v)S(0) + g(v)S(0)Vs

]
. (7.1)

Note that the explicit s dependence in equation (7.1) appears only in the term v(Vα − s). Let230

Û(s, α, τ) = V (α, s, τ)− αs. (7.2)

Substituting equation (7.2) into equation (7.1) gives231

Ûτ = µS(0)(Ûs + α) +
σ2S(0)2

2
Ûss − λσ2α2S(0)2 + sup

v≤0

[
vÛα − vh(v)S(0) + g(v)S(0)

(
Ûs + α

)]
.

(7.3)

From equations (3.5) and (4.1), the initial condition for V is232

V (s, α, τ = 0) = lim
v→−∞

α(s+ S(0)h(v)). (7.4)

Therefore, from (7.2) we obtain233

Û(s, α, τ = 0) = lim
v→−∞

α(s+ S(0)h(v))− αs = lim
v→−∞

αS(0)h(v) . (7.5)

Now, note that equation (7.3) has no explicit s dependence, and that the initial condition (7.5) has no s234

dependence. It therefore follows that equation (7.3) with initial condition (7.5) can be satisfied by a function235

U(α, τ) = Û(s, α, τ) (7.6)

where U(α, τ) satisfies236

Uτ = µS(0)α− λσ2α2S(0)2 + sup
v≤0

[
vUα − vh(v)S(0) + g(v)S(0)α

]
, (7.7)

with237

U(α, τ = 0) = lim
v→−∞

αS(0)h(v) . (7.8)

Proposition 1 Assuming Arithmetic Brownian Motion (2.6), asset-price-independent temporary price im-238

pact (3.4), zero interest rate, and initial condition (7.4), the optimal control for equation (7.1) is static, even239

when optimization is over the class of dynamic strategies.240

Proof . The optimal control for equation (7.1) is same as the optimal control for equation (7.7), which is241

independent of s, i.e. v∗(·) : (α, τ) 7→ v∗ , hence the optimal control for problem (7.1) is also independent of242

s, i.e. static. �243
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7.1 Special case analytical solution of (7.7)244

In general, the PDE (7.7) has no known analytical solution. This section gives a special case analytical solu-245

tion under the additional assumptions of zero drift, unconstrained control and linear price impact functions.246

More formally, we make the following set of common assumptions 4
247

Assumption 7.1

dS(t) = g(v)S(0)dt+ σS(0)dW(t),

r = 0,

h(v) = κs sgn(v) + κtv,

g(v) = κpv,

v ∈ (−∞,∞) (7.9)

which gives the following result.248

Proposition 2 Under Assumptions 7.1, the optimal control for (7.7) is identical with the (continuous equiv-249

alent of the) static strategy in Almgren and Chriss (2001); Almgren (2009), i.e.250

v∗(α, τ) = −αK cosh (Kτ)

sinh (Kτ)
(7.10)

where K =
√
λσ2S(0)/κt.251

The value function U(α, τ) is252

U = E + λF , (7.11)

where253

E =
S(0)α

(
2κsf1(τ)2 + ακpf1(τ)2 + αλσ2S(0) τ + ακtKf1(τ)f2(τ)

)
−2f1(τ)2

,

F =
σ2S(0)

2
α2
(
−f3(τ)2f1(τ)− f1(τ) + 2 τ Kf3(τ)

)
4Kf1(τ)2f3(τ)

,

f1(τ) = sinh(Kτ) ,

f2(τ) = cosh(Kτ) ,

f3(τ) = exp(Kτ) .

(7.12)

Note that if κs = 0, then both E and F , and hence U are proportional to α2.254

Proof. Under Assumptions 7.1, the PDE (7.7) has the form255

Uτ = −λσ2α2S(0)2 + sup
v∈(−∞,∞)

[
vUα −

(
κsv sgn(v) + κtv

2
)
S(0) + κpvS(0)α

]
. (7.13)

Using an initial condition that is consistent with (7.8) for U(α, τ) gives256

U(α, 0) = 0 ; α = 0

= −∞ ; otherwise , (7.14)

by using the definitions (7.2) and (7.6). It can be verified by straightforward calculations that the value257

function (7.11) and the control (7.10) solves the HJB PDE (7.13), (7.14). �258

In general, we would like to restrict v from taking all real values. For example, in the case of selling, a259

natural constraint is v ≤ 0 (the default in this paper). This constraint may take effect if µ 6= 0, in which260

case the analytical solution will no longer be valid.261

4Note that the assumption of unconstrained control may not be desirable as it allows buying shares during stock liquidation.
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8 Approximations to pre-commitment mean variance262

As we mentioned in the introduction, the method typically used to evaluate the performance of an algorithmic263

execution strategy aligns well with the pre-commitment mean variance formulation. Here we give a brief but264

self-contained description of this formulation. We also discuss various approximations to this formulation.265

8.1 Pre-commitment mean variance266

For notational simplicity, we define x = (s, b, α) for a space state. Note that the state space is expanded to267

include b in this formulation, in contrast to the mean quadratic variation case. For a fixed initial point (x, t)268

where t < T , we define the functional269

JMV (x, t, v(·);λ) = Ex,tv(·)

[
B(T )

]
− λV arx,tv(·)

[
B(T )

]
, (8.1)

where V arx,tv(·)[·] is the variance at the initial point (x, t) using the control v(·). Let (x0, 0) = (sinit, 0, αinit, 0)270

be the initial state. The corresponding optimal strategy v∗x0,0,λ
(·) is termed the pre-commitment mean271

variance optimal strategy (Basak and Chabakauri, 2010). We note that the optimal strategy v∗x0,0,λ
(·) is272

dynamic, in both the GBM case (Forsyth, 2011) and the ABM case (Lorenz and Almgren, 2006; Lorenz,273

2008).274

The pre-commitment strategy is optimal in the following sense: suppose we carry out many thousands275

of trades. We then examine the post-trade data, and determine the realized mean return and the standard276

deviation. Assuming that the modeled dynamics very closely match the dynamics in the real world, the277

optimal pre-commitment strategy would result in the largest realized mean return, for a given standard278

deviation, compared to any other possible strategy.279

Although the pre-commitment mean variance formulation is consistent with evaluation of performance280

of algorithmic trading trading strategies in practice, these optimal strategies are time-inconsistent (Basak281

and Chabakauri, 2010; Wang and Forsyth, 2010; Forsyth, 2011; Wang and Forsyth, 2011a), a property that282

is considered unnatural by some authors (Basak and Chabakauri, 2010).283

8.1.1 Time-inconsistency of optimal strategies284

Let (x1, t1) be some state at time t1 and v∗x1,t1,λ
(·) be the corresponding optimal policy. Let (x2, t2) be some285

other state at time t2 > t1 and v∗x2,t2,λ
(·) be the corresponding optimal policy. We have time-inconsistency286

in the sense that287

v∗x1,t1,λ(x′, t′) 6= v∗x2,t2,λ(x′, t′) ; t′ ≥ t2 . (8.2)

As discussed in Basak and Chabakauri (2010), there is no direct dynamic programming principle for288

determining v∗x0,0,λ
(·) due to time-inconsistency. Forsyth (2011) uses a Lagrange multiplier method to solve289

for v∗x0,0,λ
(·).290

We now discuss various approximations to the pre-commitment mean variance problem that lead to291

time-consistent optimal strategies.292

8.2 Approximation 1: Restrict to static strategies293

The Almgren and Chriss (2001) approximation essentially restricts the admissible strategies to static strate-294

gies in optimizing (8.1). As discussed in the previous section, this is suboptimal, in both the GBM and295

the ABM case. It is interesting that, for this approximation problem of maximizing the mean variance296

functional (8.1) over static strategies (assuming ABM), the optimal strategies are time-consistent. This297

time-consistency can be verified using the formula (7.10).298
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8.3 Approximation 2: Use quadratic variation as risk measure299

Another approach is to approximate variance by quadratic variation, the accuracy of which is discussed in300

Appendix C. As discussed in Section 5.1, quadratic variation can be justified as a reasonable alternative301

risk measure. The current paper studies this approximation. Our more recent paper (Tse et al., 2011)302

compares optimal strategies in this approximation to the truly optimal strategies for the pre-commitment303

mean variance formulation. The time-consistency of this formulation is discussed in Section 5.3.304

8.4 Approximation 3: Restrict to time-consistent strategies305

If the only criticism of the pre-commitment mean variance formulation is that its optimal strategies are306

time-inconsistent, the optimization can be restricted to optimizing over time-consistent strategies. This is307

in some sense similar to Approximation 1, which optimizes over static strategies. However, the restriction308

to time-consistent strategies is more subtle, as we explain below.309

The restriction to static strategies is easy to understand since we can look at a single strategy v(·) and310

determine whether it is static or not. This is not the case for the restriction to time-consistent strategies.311

It is important to note that time-consistency concerns the relation between a continuum of strategies, as312

explained in Section 5.3 and 8.1.1, and cannot be inferred from examination of a single strategy v(·).313

Although it is more difficult to enforce time-consistency as a restriction (in terms of defining the cor-314

responding class of admissible strategies), it turns out that this is not necessary to solve for the optimal315

time-consistent solutions. Essentially, since the time-consistent strategies follow the Bellman’s principle of316

optimality by definition, the dynamic programming principle can be used to solve for the optimal time-317

consistent solutions. We refer readers to Basak and Chabakauri (2010) for details.318

From a computational perspective, the optimal time-consistent strategies are in fact more difficult to319

determine (Wang and Forsyth, 2011b) compared to the pre-commitment optimal strategies. We also note320

that pre-commitment and time consistent strategies are the same as T → 0 (Basak and Chabakauri, 2010).321

In some special cases, the optimal time consistent strategies are identical to the optimal strategies in the322

mean-quadratic variation formulation (Bjork et al., 2009).323

8.5 Connection between Approximation 1 and 2324

Approximation 1 restricts attention to static strategies. Approximation 2 approximates variance by quadratic325

variation. These two approximations have the connection that variance is the same as (the expected value326

of) quadratic variation for static strategies, i.e.327

V arx,t=0
v(·)

[
B(T )

]
= Ex,t=0

v(·)

[∫ T

0

(A(t′)dS(t′))
2
]

(8.3)

under some additional mild assumptions detailed in Appendix C.328

Nevertheless, we emphasize that this equality, by itself, does not imply that the static solution in Almgren329

and Chriss (2001) is optimal for the quadratic variation risk measure. The subtle point is that Almgren and330

Chriss (2001) does not study how dynamic strategies (i.e. use information regarding how the stock price331

evolves after the start of trading) perform in terms of the quadratic variation risk measure. In this paper,332

we provide a proof of this optimality. Recall that Section 7.1 shows that the strategy (7.10) solves (5.5),333

while Proposition 1 shows that no dynamic strategy is better than this static strategy.334

In general, the equality (8.3) does not hold, and quadratic variation is only an approximation to variance.335

Although the accuracy of this approximation is good when trading impact is small (compared to volatility),336

this approximation can be poor when trading impact is larger but still realistic. Our proof in Appendix C337

shows precisely what is ignored in this approximation. Examples in which the approximation is poor can be338

found in Tse et al. (2011).339

Remark 8.1 (Static as a restriction or as a property) It should be clear at this point that it is impor-340

tant to distinguish between whether the use of the concepts static or dynamic refer to the class of admissible341
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strategies, or to a property of the optimal control. In particular, even if the class of admissible controls is342

dynamic, the optimal control may turn out to be static. Proposition 1 is an example. Another example can343

be found in Schied et al. (2010).344

9 Numerical Method: GBM Case (6.1)345

We give a brief outline of the numerical method used to solve equation (6.1). We will use a semi-Lagrangian346

method, similar to the approach used in Chen and Forsyth (2007).347

Along the trajectory s = s(τ), α = α(τ) defined by348

ds

dτ
= −g(v)s

dα

dτ
= −v , (9.1)

equation (6.1) can be written as349

sup
v≤0

[
DV

Dτ
(v)− LV − erτ (−vf(v))s− λα2s2σ2

]
= 0 , (9.2)

where the operator LV is given by350

LV = µsVs +
σ2s2

2
Vss , (9.3)

and where the Lagrangian derivative DV
Dτ (v) is given by351

DV

Dτ
(v) = Vτ − Vsg(v)s− Vαv . (9.4)

The Lagrangian derivative is the rate of change of V along the trajectory (9.1).352

Define a set of nodes [s0, s1, ..., simax
], [α0, α1, ..., αkmax

], discrete times τn = n∆τ , and localize the control353

candidates to values in a finite interval [vmin, vmax]. Let V (si, αj , τ
n) denote the exact solution to equation354

(6.1) at point (si, αj , τ
n). Let V ni,j denote the discrete approximation to the exact solution V (si, αj , τ

n).355

We use standard finite difference methods (d’Halluin et al., 2005) to discretize the operator LV as given356

in (9.3). Let (LhV )ni,j denote the discrete value of the differential operator (9.3) at node (si, αj , τ
n). The357

operator (9.3) can be discretized using central, forward, or backward differencing in the s direction to give358

(LhV )ni,j = aiV
n
i−1,j + biV

n
i+1,j − (ai + bi)V

n
i,j , (9.5)

where ai and bi are determined using the algorithm in d’Halluin et al. (2005).359

Let vni,j denote the approximate value of the control variable v at mesh node (si, αj , τ
n). Then we360

approximate DV
Dτ (v) at (si, αj , τ

n+1) by the following361 (
DV

Dτ
(v)

)n+1

i,j

' 1

∆τ
(V n+1
i,j − V n

î,ĵ
) (9.6)

where V n
î,ĵ

is an approximation of V (sn
î
, αn

ĵ
, τn) obtained by linear interpolation of the discrete values V ni,j ,362

with (sn
î
, αn

ĵ
) given by solving equations (9.1) backwards in time for fixed vn+1

i,j to give363

sn
î

= si + sig(vn+1
i,j )∆τ +O(∆τ)2

αn
ĵ

= αj + vn+1
i,j ∆τ . (9.7)
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Our final discretization is then364

V n+1
i,j = sup

vn+1
i,j ∈[vmin,vmax]

[
V n
î,ĵ

+ ∆τ erτ
n+1

(−vn+1
i,j f(vn+1

i,j ))

]
+ ∆τ(LhV )n+1

i,j −∆τλ(αj)
2s2
iσ

2 .

(9.8)

Let365

∆smax = max
i
si+1 − si

∆αmax = max
j
αj+1 − αj , (9.9)

and define a discretization parameter h such that366

h =
∆αmax

C1
=

∆smax

C2
=

∆τ

C3
(9.10)

where Ci are positive constants. Note that we must solve a local optimization problem at each node at each367

time step in equation (9.8). In fact, we need to determine the global maximum of the local optimization368

problem. If the set of controls [vmin, vmax] is discretized with spacing h, then a linear search of the control369

space will converge to the viscosity solution of the HJB equation (6.1) (Wang and Forsyth, 2008). An370

alternative (and less computationally expensive) method is to use a one dimensional optimization algorithm371

(Brent, 1973) to determine the local optimal control. The difficulty here is that one dimensional optimization372

methods are not guaranteed to converge to the global maximum. We will carry out tests using both methods373

in the following.374

10 Numerical Method ABM Case (7.7)375

Similar to the derivation in the last section, (7.7) can be written as376

sup
v≤0

[
DU

Dτ
(v) + vh(v)S(0)− g(v)S(0)α

]
= µS(0)α− λα2S(0)2σ2 (10.1)

where the Lagrangian derivative DU
Dτ (v) = Uτ − Uαv.377

By integrating along the Lagrangian path and discretizing, we obtain378

Un+1
j = sup

vn+1
j ∈[vmin,vmax]

(
Un
ĵ

+ ∆τ
(
g(vn+1

j )S(0)αj − vn+1
j h(vn+1

j )S(0)
))

+ ∆τ

(
µS(0)αj − λα2

jS(0)2σ2

)
,

(10.2)

where we have used the notation Un+1
j = U(αj , τ

n+1), vn+1
j = vj(τ

n+1) and Un
ĵ
≈ U(αn

ĵ
, τn). Here αn

ĵ
is379

defined as in equation (9.7).380

Either linear or quadratic interpolation can be used in approximating Un
ĵ

. Linear schemes have the381

advantage that they are monotone and numerical solutions are guaranteed to converge to the viscosity382

solution of the HJB equation, whereas quadratic schemes may not converge to the viscosity solution. In the383

special case where the analytical solution (7.12) is known, our quadratic interpolation scheme does converge384

to the exact solution of the HJB equation (10.1).385

11 Numerical Examples386

We solve both the GBM problem (6.1) and the ABM problem (7.1). Recall that the efficient frontier is387

constructed as described in Section 6.3, where we define388

Risk =

(
Es,α,t=0
v∗(·)

[∫ T

0

(
A(t′)dS(t′)

)2])1/2

(11.1)
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Parameter Value
σ .40
T 1/12
µ 0.0
r 0.0
S(0) 100
A(0) 1.0
Action Sell
κp 0.0
κt .002
κs 0.0
β 1.0
vmin −105/T
vmax 0.0
Smax 5000

Table 1: Parameters for Case 1: selling an illiquid stock over a long trading horizon.

Refinement Time steps S nodes α nodes v nodes
0 100 67 41 30
1 200 133 81 59
2 400 265 161 117
3 800 529 321 233
4 1600 1057 641 465

Table 2: Grid and time step information for various levels of refinement for parametric case in Table 1.

to have the same units as expected gain.389

We will consider two cases. Case 1 considers an illiquid stock traded over a long time horizon (one month).390

We only consider the GBM model because the ABM model is unrealistic in this case. Case 2 considers a391

liquid stock traded over a short time horizon (one day). We consider both the GBM and the ABM model in392

this case and compare the results.393

11.1 Example 1: Illiquid Stock, Long Trading Horizon (GBM)394

The parameters for this case are shown in Table 1. The value of κt in Table 1 corresponds to a temporary395

price impact of about 240 bps for liquidating at a constant rate over the entire month. This would correspond396

to an illiquid stock. A relatively large volatility is also assumed, the value of σ in Table 1 corresponds to a397

standard deviation of about 1154 bps of S(T ).398

11.1.1 Convergence Tests399

We will first carry out some convergence tests, using the data in Table 1. The grid and time step information400

are given in Table 2401

As noted in Section 9, in general, we need to use a linear search to guarantee that the global maximum402

of the local optimization problem at each node in equation (9.8) is determined to O(h) for smooth functions.403

This guarantees convergence to the viscosity solution of equation (6.1).404

Tables 3 and 4 compare results using a linear search or a one dimensional optimization technique to405

solve the local optimization problem at each node. These tables clearly show that both methods converge406

to the same solution. We have verified that the one dimensional optimization method converges to the407
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Refinement Value Function Expected Gain Risk Control
0 91.8439869 95.80303404 4.449183728 -40.5
1 91.9609793 95.85387412 4.411856106 -41.25
2 92.0205568 95.88081381 4.39332277 -41.625
3 92.0510158 95.88846915 4.38032725 -41.8125

Table 3: Convergence test for using linear search of discrete trade rates for parametric case shown in Table
1. The grid and time step information for each refinement is given in Table 2. All values are reported at
s = S(0) = 100, α = A(0) = 1, τ = T for λ = 0.2. Value function is V as defined in (6.1). Expected gain is
W as defined in (6.6). Risk is

√
(W − V )/λ as defined in (6.7). Control is v∗ as defined in (6.4), which is

determined using a linear search. Compare with Table 5 which shows the result of using a one dimensional
optimization method to determine v∗.

Refinement Value Function Expected Gain Risk Control
0 91.8466222 95.80519281 4.448915945 -41.0986695
1 91.9616700 95.85496493 4.412082788 -41.4829134
2 92.0207373 95.88384474 4.394944527 -41.6657167
3 92.0510986 95.90026189 4.387005382 -41.7545063

Table 4: Convergence test for using a one dimensional optimization method for parametric case shown in
Table 1. Notations are as in Table 3 and results are computed in the same way except that the control is
determined using a one dimensional optimization method. Note that the values in the two tables appear to
converge to the same limit.

global optimum in many tests, which we will not report. In the following, we will use the one dimensional408

optimization method, since it is much less expensive, computationally.409

Recall that we made several approximations in order to determine boundary conditions at S = Smax.410

Table 5 shows the effect of increasing Smax, and verifies that the effect of these boundary condition approx-411

imations is negligible in regions of interest.412

Another test of convergence is to consider the special case analytic solution for λ = 0. In this case where413

expected gain is maximized regardless of risk, the optimal selling strategy should sell at a constant rate to414

minimize temporary trading impact. This can be proved by noting the parametric choice µ = r = 0 in415

Table 1 and the form of temporary price impact (3.3). Since µ = r = 0, and the constant liquidation rate is416

v = −1/T = −1/12, the expected gain will be (using the parameters in Table 1)417

E
[
e−κt/T

1

T

∫ T

0

S(t) dt
]
' 97.6286 (11.2)

Table 6 shows the results for the expected gains for λ = 0.0001. The table shows that the numerical results418

appear to be converging to the analytic solution for λ = 0.419

Refinement Value Function Expected Gain Risk Control
0 91.8466222 95.80519281 4.448915945 -41.0986695
1 91.9616700 95.85496493 4.412082788 -41.4829134
2 92.0207373 95.88384474 4.394944527 -41.6657167

Table 5: Test to confirm increasing Smax makes no difference for the parametric case as shown in Table
1. Notations are as in Table 4 and results are computed in the same way, except that this table uses
Smax = 20000 instead of Smax = 5000. Note that there is negligible difference between the two tables.
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Refinement Expected Gain
0 97.4841961
1 97.5447889
2 97.5807920
3 97.6017000
4 97.6136413

Table 6: Convergence to analytical solution for constant liquidation rate for parametric case shown in
Table 1. The grid and time step information for each refinement is given in Table 2. Expected gains W ,
as defined in (6.6), are reported at s = S(0) = 100, α = A(0) = 1, τ = T for λ = 0.0001 ≈ 0. Optimal
control is determined using a one dimensional optimization method. Expected gains appear to converge to
the analytical value 97.6286.

11.1.2 Efficient Frontier420

Figure 1 shows the efficient frontier traced out by the optimal trading strategies with different risk aversion421

level λ. Note that even the coarsest grid gives accurate results for expected gain values of interest.422

11.1.3 Optimal Trading Rates423

Figure 2 shows the optimal trading rate v∗(s, α, t;λ) as a function of asset price s. Note that the optimal424

strategy is slightly aggressive-in-the-money, i.e. the optimal strategy is to sell faster at larger s.425

11.1.4 Comparison with pre-commitment mean-variance solution426

The parametric case as shown in Table 1 is also studied in Forsyth (2011) which solves for the optimal427

strategies for the pre- commitment mean variance formulation. Here we briefly compare the two formulations428

from the perspective of numerical solution for the optimal controls. For more comprehensive comparison429

between the two formulations, we refer readers to (Tse et al., 2011).430

It is more difficult to numerically solve for the optimal strategies in the pre-commitment mean variance431

formulation. Essentially this is because the local objective as a function of trading rate is sometimes very432

flat, making it difficult to determine the maximizer numerically. This flatness of the objective function is433

related to the fact that the variance risk measure does not concern the trading trajectory A(t′) but only434

the end result B(T ) as we discussed in Section 5.1. In contrast, this flatness is not observed in the mean435

quadratic variation formulation.436

The numerical difficulties encountered in the pre-commitment mean variance formulation can be seen437

from two aspects. First, while both one dimensional optimization and linear search are able to find the438

maximizer in the mean quadratic variation formulation, as we discussed previously in this section, one439

dimensional optimization does not work well for the pre-commitment mean variance formulation and hence440

the more computationally expensive linear search method needs to be used. Second, in the pre-commitment441

mean variance formulation the optimal trading rate (as a function of asset price) is oscillatory, which reflects442

the near ill-posedness of this formulation (i.e. there are many strategies which give almost the same mean443

and variance). In contrast, the optimal trading rate is smooth in the mean quadratic variation formulation,444

as shown in Figure 2.445

11.2 Example 2: Liquid Stock, Short Trading Horizon446

The parameters for this case are shown in Table 7. The value of κt in Table 7 corresponds to a temporary447

price impact of about 5 bps for liquidating at a constant rate over the trading day. This would correspond to448

a liquid stock. The larger value of σ = 1.0 in Table 7 corresponds to a standard deviation of about 632 bps449

of S(T ). Therefore, this parametric case considers a situation where volatility is large compared to trading450

impact.451
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Figure 1: The efficient frontier for parametric case shown in Table 1. The grid and time step information
for each refinement is given in Table 2. Values of expected gain, as defined in (6.6), and risk, as defined in
(6.7) are reported at s = S(0) = 100, α = A(0) = 1, τ = T for various risk aversion level λ. Smaller values
of λ represent less risk-averse strategies which have larger risks and expected gains.
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Figure 2: Optimal trading rate v∗(s, α, t;λ) as a function of s at t = 0, α = 1, and λ = 0.2. The risk
aversion level λ = 0.2 corresponds to the point on the efficient frontier in Figure 1 with expected gain
95.9 and risk 4.4. Compare the trading rates with the constant liquidation rate v = −12. This is for the
parametric case shown in Table 1. The grid and time step information for each refinement is given in Table
2.
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Parameter Value
σ 1.0
T 1/250
κt 2× 10−6

Table 7: Parameters for Case 2: selling a liquid stock over a short trading horizon. Other parameters are
as given in Table 1.

Refinement Time steps S nodes α nodes v nodes
0 800 67 41 30
1 1600 133 81 59
2 3200 265 161 117
3 6400 529 321 233

Table 8: Grid and time step information for various levels of refinement for parametric case in Table 7.

For both the GBM case and the ABM case, the grid and time step information are given in Table 8.452

Recall that in the GBM case, we solve equation (6.1); in the ABM case, we solve equation (7.7).453

11.2.1 Geometric Brownian Motion454

The efficient frontier for the GBM case is shown in Figure 3. Note that even the coarsest grid gives accurate455

results for expected gain values of interest, similar to the parametric case in illiquid stock, long trading456

horizon case in Table 1. Convergence results are shown in Table 9 for various values of λ. We note that457

convergence appears to be at a first order rate. The optimal trading rates as a function of asset price are458

shown in Figure 3 for various values of λ. It shows that the optimal strategies are more aggressive-in-the-459

money (slope of the curves are larger) for larger values of λ.460

11.2.2 Arithmetic Brownian Motion461

The ABM case also uses the parameters in Table 7 with the form of temporary pricing impact changed to462

(3.5). Convergence results are shown in Table 10. Note that the numerical values appear to converge to the463

analytical solution. Optimal trading rates are not plotted for the ABM since they are independent of the464

asset price s and can be obtained in Table 10.465

11.2.3 Using optimal strategies from ABM as approximate solutions for GBM dynamics466

Section 11.2.1 assumes the stock price process follows GBM and solves for the optimal strategies, which are467

dynamic. Section 11.2.2 assumes the stock price process follows ABM and solves for the optimal strategies,468

which turn out to be static. In this section, we compare the performance of the strategies in these two cases,469

assuming the stock price process follows GBM and the temporary price impact is of the form (3.2), as in470

Section 11.2.1. Note that by making these assumptions, the GBM strategies are truly optimal whereas the471

ABM strategies are not. The reason for conducting this comparison is that the static strategies in 11.2.2472

have analytical solutions which can be considered as easy-to-compute approximate solutions to the optimal473

dynamic strategies in 11.2.1.474

This comparison is shown in Figure 5 where we compare the efficient frontiers obtained by the truly475

optimal dynamic strategies and the approximate static strategies. In Figure 5, the frontier labeled with476

“Exact Control” is the same as in Figure 3, the frontier labeled with “Approximate Control” is generated477

using the static strategy approximation. Surprisingly, the frontier generated by the approximate solution478

is virtually identical with the truly optimal one. This indicates that there is essentially no error, as far as479
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Figure 3: The efficient frontier for parametric case shown in Table 7 in the GBM case. The grid and time
step information for each refinement is given in Table 8. Values of expected gain and risk are reported at
s = S(0) = 100, α = A(0) = 1, τ = T for various risk aversion level λ. Smaller values of λ represent less
risk-averse strategies which have larger risks and expected gains.

Refinement Expected Gain Risk Control
λ = 100

1 92.942727 .284003 -69312.3
2 92.926803 .271555 -72483.6
3 92.925507 .265444 -74491.4

λ = 10
1 97.756612 .482818 -22205.4
2 97.602898 .476058 -22552.9
3 97.620839 .472658 -22718.4

λ = 1
1 99.287578 .847254 -7058.17
2 99.290223 .843065 -7090.36
3 99.291576 .840960 -7106.59

λ = .2
1 99.68109 1.26727 -3140.72
2 99.68241 1.26168 -3156.80
3 99.68308 1.25887 -3164.78

Table 9: Convergence test for using one dimensional optimization for parametric case shown in Table 7 in
the GBM case. The grid and time step information for each refinement is given in Table 8. Notations are
as in Table 3. All values are reported at s = S(0) = 100, α = A(0) = 1, τ = T for various values of λ. Note
that convergence appears to be at first order rate. Compare the trading rates with the constant liquidation
rate v = −250.
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Figure 4: Optimal trading rate v∗(s, α, t;λ) as a function of s at t = 0 and α = 1 for various values of λ.
This is for the parametric case shown in Table 7 in the GBM case. The grid and time step information for
each refinement is given in Table 8. Compare the trading rates with the constant liquidation rate v = −250.

Refinement Expected Gain Risk Control
λ = 100

1 92.336427 .304879 -70000.0
2 92.612649 .284365 -70341.5
3 92.770613 .274943 -70588.9

analytic 92.928932 .265915 -70710.7
λ = 10

1 97.694545 .493519 -22312.0
2 97.728951 .483026 -22352.6
3 97.746400 .477908 -22359.0

analytic 97.763932 .472871 -22360.7
λ = 1

1 99.281307 .853065 -7070.30
2 99.287096 .846951 -7070.88
3 99.289994 .843916 -7071.02

analytic 99.292893 .840896 -7071.07
λ = .2

1 99.678547 1.267777 -3174.84
2 99.681165 1.262605 -3168.52
3 99.682470 1.260019 -3165.41

analytic 99.683772 1.257433 -3162.28

Table 10: Convergence test for parametric case shown in Table 7 in the ABM case. The grid and time step
information for each refinement is given in Table 8. Notations are as in Table 3. All values are reported
at s = S(0) = 100, α = A(0) = 1, τ = T for various values of λ. Note that the numerical results appear to
converge to the analytical solution. Compare the trading rates with the constant liquidation rate v = −250.
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Figure 5: Comparison of the efficient frontier computed by solving equation (6.1) (exact control) compared
to constructing the efficient frontier using the control from the ABM approximation (7.7) (approximate
control). The asset price process follows GBM and the temporary price impact takes the form (3.2) in
computing both efficient frontiers.

the efficient frontier is concerned, even though the static strategies trade at a different rate than the truly480

optimal dynamic strategies trade.481

The accuracy of the static ABM strategies in approximating the dynamic GBM strategies can be explained482

as follows. At higher level of expected gains in Figure 5, both strategies must sell near the constant liquidation483

rate (throughout the entire trading horizon) to reduce trading impact, and therefore are similar. At lower484

level of expected gains, both strategies sell very quickly near t = 0, and actually finish most of the liquidation485

before the share price has time to move significently, i.e. most liquidation happens at S(t) ≈ S(0) = 100.486

Note that for the same level of expected gain, the two strategies trade at similar rates5 for s near 100, which487

implies that they trade at similar rates near t = 0. Consequently, the ABM approximation is also accurate488

for lower level of expected gain.489

The observation above suggests that by increasing only volatility (to values much larger than σ = 1490

considered here), the ABM approximation will still give efficient frontiers that are close to optimal for491

all risk levels. However, if volatility and temporary trading impacts are both increased substantially (to492

unrealistic levels), then we will see the sub-optimality of the ABM approximation at lower level of expected493

gains, though it is still accurate at higher level of expected gains. These conjectures are indeed confirmed494

by our numerical results, which are not reported here due to the unrealistic parameter values.495

The above discussion may give the wrong impression that it suffices to have the correct trading rate at496

s = 100 and being aggressive-in-the-money has no advantage. We emphasize, however, that this an over-497

simplification that is not true in general. When risk is measured by variance, instead of quadratic variation,498

being aggressive in the money can reduce risk substantially (Tse et al., 2011). In other words, the above499

simplification serendipitously happens to work when risk is measured by quadratic variation. This illustrates500

that quadratic variation and variance are different risk measures that lead to different optimal strategies, as501

we point out in Section 5.1 and elaborated in (Tse et al., 2011).502

5However, the difference increases as s moves away from 100. See Figure 4.
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12 Conclusion503

We have proposed a mean–quadratic-variation objective function for determining the optimal trade execution504

strategy. Quadratic variation as a risk measure takes account of the entire trading trajectory. This is in505

contrast with using variance as a risk measure which only considers the terminal portfolio value distribution.506

The static strategy in Almgren and Chriss (2001), which is originally derived as an approximate solution507

to the pre-commitment mean variance problem, turns out to be the truly optimal solution in the mean508

quadratic variation formulation (assuming ABM).509

We have developed numerical schemes for solution of the mean–quadratic-variation optimal control prob-510

lem, assuming either GBM or ABM. Any type of constraint can be imposed on the trading strategy. For511

example, the natural constraint when selling is that no intermediate buying is allowed.512

In the GBM case, the optimal strategy depends smoothly on the underlying asset price. Numerical513

difficulties seen in the pre-commitment mean-variance formulation (Forsyth, 2011) are not seen in the mean514

quadratic variation formulation. In the ABM case, the optimal strategies are static, and thus different515

from those in the GBM case. Surprisingly, it turns out that the static strategies can be used as excellent516

approximations for the GBM case, even when volatility is large. We note that this accuracy of the static517

approximation does not hold in the pre-commitment mean variance formulation.518

Finally, we emphasize that in general, mean quadratic variation and mean variance are not the same519

objective functions, and that the optimal strategies in each case can be significantly different. However,520

there are arguments to made for choosing each of these objective functions.521

A Optimal Control522

In this appendix, we give the steps used to derive equation (6.1). Using equation (2.5), then the risk term523

becomes524 ∫ T

t

(A(t′) dS(t′))
2

=

∫ T

t

σ2A(t′)2S(t′)2 dt′ , (A.1)

so that by equations (5.5) and (5.3) we have (using Es,α,tv(·)
[
Es+∆s,α+∆α,t+∆t
v(·) [·]

]
= Es,α,tv(·) [·])525

V̂ (s, α, t;λ) = sup
v(·)

Es,α,tv(·)

[
B(T )− λ

∫ T

t

(A(t′) dS(t′))
2
]

= sup
v(·)

Es,α,tv(·)

[∫ T

t

[
er(T−t

′)
(
− vSexec(v, t′)

)
− λσ2A(t′)2S(t′)2

]
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−)

]

= sup
v(·)

Es,α,tv(·)

[∫ t+∆t

t

[
er(T−t

′)
(
− vSexec(v, t′)

)
− λσ2A(t′)2S(t′)2

]
dt′

+ Es+∆s,α+∆α,t+∆t
v(·)

∫ T

t+∆t

[
er(T−t

′)
(
− vSexec(v, t′)

)
− λσ2A(t′)2S(t′)2

]
dt′

+ Es+∆s,α+∆α,t+∆t
v(·)

[
lim

v→−∞
A(T−)Sexec(v, T

−)

]]
(A.2)

Noting that for any control v(·) : (S(t′), A(t′), t′) 7→ v, t′ ≥ t+ ∆t,526

Es+∆s,α+∆α,t+∆t
v(·)

[∫ T

t+∆t

[
er(T−t

′)
(
− vSexec(v, t′)

)
− λσ2A(t′)2S(t′)2

]
dt′ + lim

v→−∞
A(T−)Sexec(v, T

−)

]
= J(s+ ∆s, α+ ∆α, t+ ∆t, v(·);λ)

≤ sup
v(·)

J(s+ ∆s, α+ ∆α, t+ ∆t, v(·);λ) = V̂ (s+ ∆s, α+ ∆α, t+ ∆t;λ). (A.3)
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with equality in the case of the optimal control v∗(·).527

From equations (A.2-A.3) and the form of the price impact (3.2),528

V̂ (s, α, t;λ) = sup
v(·)

Es,α,tv(·)

[
er(T−t)(−vf(v)s)∆t− λσ2α2s2∆t

+V̂ (s+ ∆s, α+ ∆α, t+ ∆t;λ)

]
+O((∆t)2). (A.4)

Defining529

∆V̂ = V̂ (s+ ∆s, α+ ∆α, t+ ∆t;λ)− V̂ (s, α, t;λ), (A.5)

and rearranging equation (A.4) gives530

0 = sup
v(·)

Es,α,tv(·)

[
er(T−t)(−vf(v)s)∆t− λσ2α2s2∆t+ ∆V̂

]
+O((∆t)2) . (A.6)

From equations (2.3) and (2.5), using Ito’s Lemma we obtain531

Es,α,tv(·) [∆V̂ ] = ∆t

[
V̂t + (µ+ g(v)sV̂s +

σ2s2

2
V̂ss + vV̂α

]
+O((∆t)3/2) . (A.7)

Let V = V (s, α, τ = T − t;λ) = V̂ (s, α, t;λ). Substituting equation (A.7) into equation (A.6), dividing532

by ∆t, and letting ∆t→ 0, then we obtain the HJB PDE for τ > 0533

Vτ = µsVs +
σ2s2

2
Vss − λσ2α2s2 + sup

v

[
erτ (−vf(v))s+ g(v)sVs + vVα

]
. (A.8)

B Form of Permanent Price Impact (3.1)534

Since temporary impact always leads to trading losses, there is no restriction on the functional form of535

the temporary impact (Huberman and Stanzl, 2004; Almgren et al., 2004). In contrast, the form of the536

permanent price impact must be restricted to ensure no-arbitrage, as noted by Huberman and Stanzl (2004).537

In this Appendix, we show that a permanent price impact function of the form (3.1) is consistent with the538

no-arbitrage condition of Huberman and Stanzl (2004), which basically states that the expected gain from539

a round trip trading strategy should be non-positive.540

Note that while previous work considered only Arithmetic Brownian Motion, we handle both cases here.541

Since the proofs are very similar, we only give full details for the GBM case here.542

In the following, we assume that there is no temporary price impact, since this is irrelevant in terms of no-543

arbitrage. Further, we assume that the deterministic drift term µ = 0 in equation (2.5), and g(v(t)) = κpv(t),544

with κp = constant.545

Consequently, we consider a process of the form546

dS(t) = κpv(t)S(t)dt+ σS(t)dW(t) . (B.1)

The solution of this SDE is547

S(T ) = S(0) exp

[
κp

∫ T

0

v(t) dt

]
exp

[
σW(T )− σ2T/2

]
. (B.2)

Noting that548 ∫ T

0

v(t) dt =

∫ T

0

dA(t)

dt
dt =

∫ T

0

dA(t) = A(T )−A(0) (B.3)
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then equation (B.2) becomes549

S(T ) = S(0) exp

[
κp(A(T )−A(0))

]
exp

[
σW(T )− σ2T/2

]
, (B.4)

and consequently550

E[S(T )] = S(0) exp

[
κp(A(T )−A(0))

]
. (B.5)

For a round trip trade, A(T ) = A(0), hence551

E[S(T )] = S(0) . (B.6)

Let R(t) be the revenue from a trading strategy v(t), so that552

dR(t) = −v(t)S(t) dt. (B.7)

Rearranging equation (B.1), we obtain553

v(t)S(t) dt =
dS(t)

κp
− σS(t)

κp
dW(t) . (B.8)

Substituting equation (B.8) into (B.7) gives554

R(T ) = −
∫ T

0

[
dS(t)

κp
− σS(t)

κp
dW(t)

]
= −S(T )− S(0)

κp
+

σ

κp

∫ T

0

S(t) dW(t) . (B.9)

Noting that555

E
[∫ T

0

S(t) dW(t)
]

= 0 , (B.10)

then, for a round trip trade (from equation (B.6))556

E[R(T )] = −E[S(T )]− S(0)

κp
= 0 . (B.11)

Consequently, the expected revenue for any round trip trade for a permanent price impact of the form (3.1)557

is zero, hence this precludes arbitrage. Note that equation (B.6) also holds in the ABM case, and the rest558

of the proof is similar.559

C Derivation of Equation (8.3)560

In this Appendix, we reconstruct the arguments used to derive equation (8.3). The reader should note the561

following assumptions:562

AS1 The underlying process S(t) has no drift and563

dS(t′) = σ(S(t′), t′) dW(t′) . (C.1)

AS2 The control v(·) is of the form v(·) : (S(t), A(t), t) 7→ v.564

AS3 r = 0, A(T−) = A(T ) = 0, and the temporary impact is of the form (3.4)565
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From equations (2.4), (3.4) we have that566

dB(t′) = −vS(t′)dt′ − S(0)vh(v)dt′ = −S(t′)dA(t′)− S(0)vh(v)dt′, (C.2)

Using the integration by part formula for stochastic integrals on the product A(t′)S(t′), we have567

−S(t′)dA(t′) = −d(S(t′)A(t′)) +A(t′)dS(t′) (C.3)

since dA(t′)dS(t′) = o(dt′). Consequently,568

dB(t′) = −d(S(t′)A(t′)) +A(t′)dS(t′)− S(0)vh(v)dt′. (C.4)

Integrating (C.4) from 0 to T , and noting A(T−) = A(T ) = 0, gives569

B(T ) = S(0)A(0) +

∫ T

0

A(t′)dS(t′)−
∫ T

0

S(0)vh(v)dt′ (C.5)

Note that the last term Bimpact ≡
∫ T

0
S(0)vh(v)dt′ =

∫ T
0
S(0)v(S(t′), A(t′), t′)h(v(S(t′), A(t′), t′))dt′ corre-570

sponds to the cost from nonzero trading impact and is stochastic in general. Now we make the assumption571

AS2* The control v(·) is of the form v(·) : (A(t), t) 7→ v, i.e. a static strategy that is independent of S(t).572

With this assumption, the term Bimpact =
∫ T

0
S(0)v(A(t′), t′)h(v(A(t′), t′))dt′ becomes deterministic. As a573

result, equation (C.5) implies574

V ar

[
B(T )

]
= V ar

[∫ T

0

A(t′)dS(t′)

]
= E

[(∫ T

0

A(t′)dS(t′)

)2]
= E

[(∫ T

0

A(t′)σ(S(t′), t′)dW(t′)

)2]
(C.6)

since the Ito integral has zero expectation. Now we have575

E

[(∫ T

0

A(t′)σ(S(t′), t′) dW(t′)

)2]
= E

[∫ T

0

(
A(t′)σ(S(t′), t′)

)2
dt′
]

= E

[(∫ T

0

A(t′)dS(t′)

)2]
, (C.7)

where the first equality is a result of the Ito isometry.576
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