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Abstract4

The optimal trade execution problem is formulated in terms of a mean-variance tradeoff, as seen5

at the initial time. The mean-variance problem can be embedded in a Linear-Quadratic (LQ) optimal6

stochastic control problem, A semi-Lagrangian scheme is used to solve the resulting non-linear Hamilton7

Jacobi Bellman (HJB) PDE. This method is essentially independent of the form for the price impact8

functions. Provided a strong comparison property holds, we prove that the numerical scheme converges9

to the viscosity solution of the HJB PDE. Numerical examples are presented in terms of the efficient10

trading frontier and the trading strategy. The numerical results indicate that in some cases there are11

many different trading strategies which generate almost identical efficient frontiers.12
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1 Introduction19

A large institutional investor, when selling a large block of shares, is faced with the following dilemma. If the20

investor trades rapidly, then the actual cash received from the sale will be less than anticipated, due to the21

market impact of the trades. Market impact can be minimized by breaking up a large trade into a number22

of smaller blocks. However, in this case, the investor is exposed to the risk of price depreciation during the23

trading horizon.24

Recently, there has been considerable interest in algorithmic trading strategies. These are automated25

strategies for execution of trades with the objective of meeting pre-determined optimality criteria [14, 15].26

In this work, we consider an idealized model for price impact. In the case of selling shares, the market27

price will decrease as a function of the trading rate, while at the same time following a stochastic process. The28

optimal control problem is then to liquidate the portfolio over some fixed time, and maximize the expected29

cash receipts while minimizing the variance of the outcome [9, 1, 2, 26, 16, 28].30

An alternative approach is to pose this problem in terms of maximizing a power-law or exponential utility31

function [21, 32, 31]. Since a different objective function is used, the optimal strategies in [21, 32, 31] will,32

of course, be different from the strategy determined from the mean variance criteria. We will focus on the33

mean-variance approach in this work, due to its intuitive interpretation and popularity in industry.34
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In [1], path-independent or static strategies are suggested. The optimal strategies are those which sat-35

isfy a mean-variance optimality condition, recomputed at each trade time. However, in [28], the authors36

acknowledge that this strategy cannot be optimal in terms of the mean-variance tradeoff as measured at the37

initial time. This subtle distinction is discussed in [26, 27, 8]. In [8], the strategy of maximizing the mean-38

variance objective at the initial time is termed the pre-commitment policy, i.e. once the initial strategy (as39

a function of the state variables) has been determined at the initial time, the trader commits to this policy,40

even if the optimal mean variance policy computed at a later time differs from the pre-commitment policy.41

This contrasts with the time-consistent policy, whereby the trader optimizes the mean-variance tradeoff at42

each instant in time, assuming optimal mean-variance strategies at each later instant. The advantages and43

disadvantages of these two different approaches are discussed in [8]. In this paper, we focus solely on the44

pre-commitment strategy, which is the optimal policy in terms of mean-variance as seen at the initial time.45

A concrete example of the sense in which the pre-commitment strategy is optimal is the following.46

Suppose we are in an idealized world, where all our modelling assumptions (such as the form of the price47

impact functions, stochastic processes, and so on) are perfect. In this world, suppose we followed the pre-48

commitment strategy for many thousands of different trades. We then measure the standard deviation and49

expected gain (relative to the initial pre-trade state) averaged over the thousands of trades. Any other50

trading strategy (including the time-consistent strategy) would never produce a larger expected gain for a51

given standard deviation compared to the pre-commitment strategy.52

We formulate the optimal trading problem as an optimal stochastic control problem, where the objective53

is to maximize the mean-variance tradeoff as measured at the initial time. The mean variance objective54

function can be converted to linear-quadratic (LQ) objective function using a Lagrange multiplier method55

[24, 10, 34, 4, 20]. Standard dynamic programming can then be used to derive a Hamilton-Jacobi-Bellman56

(HJB) PDE. Note that previously this method has been used mainly as a tool for obtaining analytic solutions57

to multi-period mean-variance investment problems. Analytic solutions are, of course, not available for many58

problems.59

In this work, we the formulate the optimal trading problem in terms of the equivalent LQ formulation.60

We then use a numerical method to solve the resulting HJB equation for the optimal strategy. Our main61

contributions in this paper are62

• We formulate the numerical problem so that a single solve of the nonlinear HJB problem, and a single63

solve of a related linear PDE, generates the entire efficient trading frontier.64

• We develop a semi-Lagrangian scheme for solution of the HJB PDE and prove that this method is65

monotone, consistent and stable, hence converges to the viscosity solution of the HJB equation [7, 5]66

assuming that the HJB equation satisfies a strong comparison principle.67

• We assume geometric Brownian motion for the stochastic process of the underlying asset, and a specific68

form for the price impact functions. However, our numerical method is essentially independent of69

any particular form for the price impact functions, and can be easily generalized to other stochastic70

processes (e.g. jump diffusion, regime switching). The technique is also amenable to implementation71

on multi-processor architectures.72

• The trading problem is originally three dimensional. However, in some cases, the HJB PDE can be73

reduced to two dimensions using a similarity reduction. Our numerical formulation can be used for74

either the full three dimensional case, or for cases when the similarity reduction is valid, with minor75

modification.76

• The numerical results indicate that there are some cases there are many different trading strategies77

which generate almost the same efficient frontier.78
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2 Optimal Execution79

Let80

S = Price of the underlying risky asset
α = Number of shares of underlying asset
B = Risk free bank account . (2.1)

At any time t ∈ [0, T ] an investor has a portfolio Π given by81

Π(t) = B + αS . (2.2)

In order to handle both selling and buying cases symmetrically, we start off with αI > 0 shares if selling,82

and αI < 0 shares if buying. In other words, our objective is to liquidate a long position if selling, and to83

liquidate a short position if buying. More precisely84

t = 0→ B = 0, S = S0, α = αI

t = T → B = BL, S = ST , α = αT = 0
αI > 0 if selling
αI < 0 if buying (2.3)

where BL is the cash which is generated by selling/buying in [0, T ), with a final liquidation/purchase at85

t = T to ensure that the correct total number of shares are sold/bought. B acts as a path dependent86

variable which keeps track of the total receipts obtained thus far from selling/buying the underlying asset87

S. Our objective will be to maximize BL and minimize the risk, as measured by the variance (or standard88

deviation) of BL.89

2.1 Problem Formulation: Overview90

There are two popular formulations of the optimal trading problem. The impulse control formulation assumes91

that trades only take place at discrete points in time [21, 32]. However, this approach has the conceptual92

difficulty that the price impact of two discrete trades is independent of the time interval between trades.93

A better model would be based on impulse control (discrete trades) but include extra lag variables which94

would track the time interval between trades [29, 16]. However, this would be computationally expensive.95

As a compromise, we can assume continuous trading at an instantaneous trading rate v [28, 3]. This is96

unrealistic in the sense that real trading only takes place discretely. However, we can make the temporary97

price impact a function of the trade velocity, which introduces a simplified memory effect into the model,98

i.e. rapid trading has a larger temporary price impact than slower trading. We will use this model in the99

following.100

2.2 Problem Formulation: Details101

Let the trading rate v be102

v =
dα

dt
, (2.4)

where α is the number of shares in the portfolio (2.2).103

For definiteness, we will suppose that S follows geometric Brownian Motion (GBM), with a modification104

3



due to the permanent price impact of trading at rate v105

dS = (η + g(v))Sdt+ σSdZ

η is the drift rate of S
g(v) is the permanent price impact
σ is the volatility
dZ is the increment of a Wiener process . (2.5)

We use the following form for the permanent price impact106

g(v) = κpv

κp is the permanent price impact factor . (2.6)

We take κp to be a constant. Suppose η = 0, σ = 0 in equation (2.5). If X = logS, then from equations107

(2.5-2.6) we have108

X(t)−X(0) = κp

∫ t

0

v(u) du (2.7)

which means that X(t) = X(0) if a round-trip trade (
∫ t

0
v(u) du = 0) is executed. This form of permanent109

price impact eliminates round-trip arbitrage opportunities [22, 3].110

The bank account B is assumed to follow111

dB

dt
= rB − vS f(v) (2.8)

r is the risk-free return
f(v) is the temporary price impact and transaction cost function . (2.9)

The term vS f(v) represents the rate of cash expended to purchase shares at price S f(v) at a rate v. The112

temporary price impact and transaction cost function f(v) is assumed to be113

f(v) = [1 + κs sgn(v)] exp[κt sgn(v)|v|β ]
κs is the bid-ask spread parameter
κt is the temporary price impact factor
β is the price impact exponent . (2.10)

We shall refer to f(v) in the following as the temporary price impact function, although strictly speaking, we114

also include a transaction cost term as well. For various studies which suggest the form (2.10) see [25, 30, 3].115

Given the state variables (S,B, α) the instant before the end of trading t = T−, then we have one final116

trade (if necessary) so that the number of shares owned at t = T is αT = 0, as in equation (2.3). The117

liquidation value after this final trade BL = ΦL(S, α,B, αT ) is determined from a discrete form of equation118

(2.8) i.e.119

BL = ΦL(S,B, α, αT ) = B − vT (∆t)TSf(vT ) , (2.11)

where vT is given from120

vT =
αT − α
(∆t)T

=
−α

(∆t)T
(2.12)

where we can specify that the liquidation interval is very short, e.g. (∆t)T = 10−5 years. Note that effectively121

the liquidation value (2.11) penalizes the trader for not hitting the target α = αT at the end of trading. The122

optimal strategy will attempt to avoid this state (where α 6= αT ), hence the results are insensitive to (∆t)T123

if this value is selected sufficiently small. In the case of selling, BL will be a positive quantity obtained by124

selling αI shares. In the case of buying, BL will be negative, indicating a cash outflow to liquidate a short125

position of αI shares (i.e. buying |αI | shares).126
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2.3 The Optimal Strategy127

Let v(S,B, α, t) be a specified trading strategy. Let Et=0
v(·) [BL] be the expected gain from this strategy. Define128

the variance of the gain for this strategy as129

V art=0
v(·) [BL] = Et=0

v(·) [(BL)2]− (Et=0
v(·) [BL])2 . (2.13)

The control problem is then to determine the optimal strategy v∗(S,B, α, t) such that Et=0
v∗(·)[BL] = d, while130

minimizing the risk as measured by the variance. More formally, we seek the strategy v∗(·) which solves the131

problem132

minV art=0
v(·) [BL] = Et=0

v(·) [(BL)2]− d2

subject to
{
Et=0
v(·) [BL] = d

v(·) ∈ Z , (2.14)

where Z is the set of admissible controls. We emphasize here that the expectation and variance are as seen133

at t = 0.134

Problem (2.14) determines the best strategy given a specified Et=0
v(·) [BL] = d. Varying the expected value135

d traces out a curve in the expected value, standard deviation plane. This curve is known as an efficient136

frontier. Each point on the curve represents a trading strategy which is optimal in the sense that there137

is no other strategy which gives rise to a smaller risk for the given expected value of the trading gain.138

Consequently, any rational trader will only choose strategies which correspond to points on the efficient139

frontier. Different traders will, however, choose different points on the efficient frontier, which will depend140

on their risk preferences.141

2.4 Objective Function: Efficient Frontier142

Problem (2.14) is a convex optimization problem, and hence has a unique solution. We can eliminate the143

constraint in problem (2.14) by using a Lagrange multiplier [24, 10, 34, 4, 20], which we denote by γ. Problem144

(2.14) can then be posed as [11]145

max
γ

min
v(·)∈Z

Et=0
v(·)

[
(BL)2 − d2 − γ(Et=0

v(·) [BL]− d)
]
. (2.15)

For fixed γ, d, this is equivalent to finding the control v(·) which solves146

min
v(·)∈Z

Et=0
v(·) [(BL −

γ

2
)2] . (2.16)

Note that if for some fixed γ, v∗(·) is the optimal control of problem (2.16), then v∗(·) is also the optimal147

control of problem (2.14) with d = Et=0
v∗ [BL] [24, 10], where the notation Et=0

v∗ [·] refers to the expected value148

given the strategy v∗(·). Conversely, if there exists a solution to problem (2.14), with Et=0
v∗ [BL] = d, then149

there exists a γ which solves problem (2.16) with control v∗(·). We can now restrict attention to solving150

problem (2.16).151

For a given γ, finding the control v∗(·) which minimizes equation (2.16) gives us a single pair (Ev∗ [BL], V arv∗ [BL])152

on the variance minimizing efficient frontier. Varying γ allows us to trace out the entire frontier.153

Remark 2.1 (Efficient Frontier). The efficient frontier, as normally defined, is a portion of the variance154

minimizing frontier [10]. That is, given a point (Ev∗ [BL],
√
V arv∗ [BL]) on the efficient frontier, corre-155

sponding to control v∗(·), then there exists no other control v̄∗(·) such that V arv̄∗ [BL] = V arv∗ [BL] with156

Ev̄∗ [BL] > Ev∗ [BL]. Hence the points on the efficient frontier are Pareto optimal [35]. From a computa-157

tional perspective, once a set of points on the variance minimizing frontier are determined, then the efficient158

frontier can be be constructed by a simple sorting operation.159
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We will assume that the set of admissible controls is given by160

Z ∈ [vmin, vmax]
vmin ≤ 0 ≤ vmax (2.17)

If only selling is permitted, then, for example,161

vmin < 0
vmax = 0 . (2.18)

vmin, vmax are assumed to be bounded in the following.162

Bearing in mind that we are going to solve problem (2.16) by solving the corresponding Hamilton-Jacobi-163

Bellman control PDE, we would like to avoid having to do many PDE solves. Define (assuming γ = const.)164

B(t) = B(t)− γe−r(T−t)

2
. (2.19)

Then let165

BL = ΦL(S,B(t = T−), α, αT )

= ΦL(S,B(t = T−), α, αT )− γ

2
= BL −

γ

2
, (2.20)

so that problem (2.16) becomes, in terms of BL = BL − γ/2166

min
v(·)∈Z

Et=0[B2
L] . (2.21)

Note (from equations (2.8), (2.19)) that167

dB
dt

= rB − vS f(v) (2.22)

which has the same form as equation (2.8).168

However, we now have the γ dependence appearing at t = 0. Recall from equation (2.3) that B(t = 0) = 0,169

then170

t = 0→ B =
−γe−rT

2
, S = S0, α = αI . (2.23)

This is very convenient, in the PDE context. We simply determine the numerical solution for problem171

(2.21), which is independent of γ. We can then determine the solution for different discrete values of γ by172

examining the solution for different discrete values of B(t = 0). Since we normally solve the PDE for a range173

of discrete values of B, we can solve problem (2.21) once, and use this result to construct the entire variance174

minimizing efficient frontier.175

3 HJB Formulation: Overview176

3.1 Determination of Optimal Control177

Let V = V (S,B, α, τ = T − t) = Et[B2
L] and denote178

LV ≡ σ2S2

2
VSS + ηSVS . (3.1)
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Assuming process (2.5), and equations (2.4), (2.22), then following standard arguments [17], the solution to179

problem (2.21) is given from the solution to180

Vτ = LV + rBVB + min
v∈Z

[
−vSf(v)VB + vVα + g(v)SVS

]
Z = [vmin, vmax] (3.2)

with the initial condition (at τ = 0 or t = T )181

V (S,B, α, τ = 0) = B2
L , (3.3)

where BL is given from equation (2.20). Solution of this problem determines an optimal control v∗(S,B, α, τ)182

at each point (S,B, α, τ). We can use equation (2.19) to determine the control in terms of the variables183

(S,B, α, τ).184

3.2 Determination of Expected Value185

We need to determine Et=0
v∗ [BL] in order to determine the pair (Et=0

v∗ [BL], (Et=0
v∗ [B2

L]) which generates a186

point on the variance minimizing efficient frontier for a given γ.187

Let U = U(S,B, α, τ = T − t) = Etv∗ [BL]. The operator LU is defined as in equation (3.1). Let188

v∗(S,B, α, τ) be the optimal control from problem (3.2). Once again, assuming process (2.5), then U satisfies189

Uτ = LU + rBUB − v∗Sf(v∗)UB + v∗Uα + g(v∗)SUS (3.4)

with the initial condition190

U(S,B, α, τ = 0) = BL (3.5)

where BL is given from equation (2.20). Since the most costly part of the solution of equation (3.2) is the191

determination of the optimal control v∗, solution of equation (3.4) is very inexpensive, since v∗ is known.192

3.3 Construction of the Efficient Frontier193

Once we have solved problems (3.2) and (3.4) we can now construct the efficient frontier.194

We examine the solution values at τ = T (t = 0) for the initial values of (S, α) of interest. Define195

V0(B) = V (S = S0,B, α = αI , τ = T )
U0(B) = U(S = S0,B, α = αI , τ = T ) .

(3.6)

Note that196

V0(B) = Et=0
v∗ [B2

L]
U0(B) = Et=0

v∗ [BL] . (3.7)

From equation (2.23), a value of B at t = 0 or τ = T corresponds to the value of γ given by197

γ = −2erTB . (3.8)

Note that Et=0
v∗ [y(B)] for known v∗ is given from the solution to linear PDE (3.4), with initial condition198

y(B), so that Et=0
v∗ [const.] = const. Recall BL = BL − γ/2, so that from equations (3.7) we have199

V0(B) = Et=0
v∗ [B2

L]− γEt=0
v∗ [BL] +

γ2

4
U0(B) = Et=0

v∗ [BL]− γ

2
, (3.9)
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with γ = γ(B) from equation (3.8).200

Consequently, for given B, γ is given from equation (3.8), then Et=0
v∗ [B2

L] and Et=0
v∗ [BL] are obtained201

from equations (3.9). By examining the solution for different values of B, we trace out the entire variance202

minimizing efficient frontier.203

Remark 3.1 (Generation of the efficient points). As discussed in Remark 2.1, the points on the efficient204

frontier are, in general, a subset of the points on the variance minimizing frontier. Given a set of points205

on the variance minimizing frontier, the points are sorted in order of increasing expected value. Then these206

points are traversed in order from the highest expected value to the lowest expected value. Any points which207

have a higher variance compared to a previously examined point are rejected.208

3.4 Similarity Reduction209

For price impact functions of the form (2.6) and (2.10), payoffs (3.3) and (3.5), and assuming geometric210

Brownian Motion (2.5) then211

V (ξS, ξB, α, τ) = ξ2V (S,B, α, τ)
U(ξS, ξB, α, τ) = ξU(S,B, α, τ) . (3.10)

Consequently,212

V (S,B, α, τ) =
(
B
B∗

)2

V (
B∗S
B

,B∗, α, τ) (3.11)

U(S,B, α, τ) =
(
B
B∗

)
U(
B∗S
B

,B∗, α, τ) . (3.12)

and hence we need only solve for two fixed values of B∗, (one positive and one negative) and we can reduce213

the numerical computation to (essentially) a two dimensional problem (see Section 5.1).214

4 HJB Formulation: Details215

Consequently, the problem of determining the efficient frontier reduces to solving equations (3.2) and (3.4).216

4.1 Determination of the Optimal Control217

Equation (3.2) is218

Vτ = LV + rBVB + min
v∈Z

[
−vSf(v)VB + vVα + g(v)SVS

]
. (4.1)

The domain of equation (4.1) is219

(S,B, α, τ) ∈ [0,∞]× [−∞,+∞]× [αmin, αmax]× [0, T ] , (4.2)

where, for example αmin = min(0, αI), αmax = max(αI , 0) if we only allow monotonic buying/selling. We220

also typically normalize quantities so that |αI | = 1. For numerical purposes, we localize the domain (4.2) to221

(S,B, α, τ) ∈ [0, Smax]× [Bmin, Bmax]× [αmin, αmax]× [0, T ] . (4.3)

At α = αmin, αmax, we do not allow buying/selling which would cause α /∈ [αmin, αmax], so that222

Vτ = LV + rBVB + min
v∈Z−

[
−vSf(v)VB + vVα + g(v)SVS

]
α = αmax ; Z− = [vmin, 0] (4.4)

Vτ = LV + rBVB + min
v∈Z+

[
−vSf(v)VB + vVα + g(v)SVS

]
α = αmin ; Z+ = [0, vmax] . (4.5)
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At B = Bmin,Bmax, we can assume that equation (3.11) holds. In which case, we can replace VB in223

equation (4.1) by224

VB =
2
B
V − S

B
VS ; B = Bmin,Bmax . (4.6)

In general, this would be an approximation. However, in our case, equation (3.11) holds exactly. In fact, we225

will not need to consider boundary conditions at Bmin,Bmax since we will use equation (3.11) to effectively226

eliminate the B variable. We include equation (4.6) for generality.227

The initial condition is228

V (S,B, α, 0) = (BL)2 . (4.7)

At S = 0, no boundary condition is required for equation (4.1), we simply solve equation (4.1) with229

LV = 0. At S → ∞, consider the cases of buying and selling separately. In the case of selling, we would230

normally have 0 ≤ α ≤ αI , so that αf(v) → 0 if (∆t)T → 0 in equation (2.11). Hence BL ' B which231

is independent of S. For τ > 0, the optimal strategy for S large will attempt to find the solution which232

minimizes B2, so the value will also be independent of S as S →∞.233

In the case of buying, (S →∞)234

B2
L ' α2(Sf(vT ))2 . (4.8)

In this case, the payoff condition essentially penalizes the trader for not meeting the target value of αT = 0235

the instant before trading ends when S is large. The optimal strategy would therefore be to make sure α ' 0236

at t→ T . Hence the optimal control at τ > 0 when S →∞ should tend to force α = 0. In other words, from237

equations (2.11), (4.8), V (Smax,B, α, τ > 0) ' V (Smax,B, αT , τ) ' B2, which is independent of S. Hence, in238

both cases, we make the ansatz that239

VSS , VS → 0 ; S = Smax , (4.9)

so that equation (4.1) becomes240

Vτ = rBVB + min
v∈Z

[
−vSf(v)VB + vVα

]
; S = Smax . (4.10)

Equation (4.10) is clearly an approximation, but has the advantage that it is very easy to implement. We shall241

carry out various numerical tests with different values of Smax to show that the error in this approximation242

can be made small in regions of interest.243

4.2 Determination of the Expected Value244

Given the optimal trading strategy v∗ = v∗(S,B, α, τ) determined from equation (4.1), the expected value245

U = Et=0
v∗ [BL] is given from equation (3.4)246

Uτ = LU + rBUB − v∗Sf(v∗)VB + v∗Vα + g(v∗)SVS . (4.11)

At S = 0 we simply solve equation (4.11). From equation (4.4), at α = αmax, we must have v∗(S,B, αmax, τ) ≤247

0 hence no boundary condition is required at α = αmax. Similarly, at α = αmin, v∗(S,B, αmin, τ) ≥ 0, and no248

boundary condition is required at α = αmin. The boundary conditions at B = Bmin,Bmax can be eliminated249

using equation (3.12)250

UB =
1
B
U − S

B
US ; B = Bmin,Bmax . (4.12)

However, in this paper, the similarity reduction (3.12) is exact, hence we can eliminate the B variable, and251

thus no boundary condition at {Bmin,Bmax} is required.252
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Following similar arguments as used in deriving equation (4.10), we assume US , USS → 0 as S → Smax,253

hence equation (4.11) becomes254

Uτ = rBUB − v∗Sf(v∗)VB + v∗Vα ; S = Smax . (4.13)

The payoff condition is255

U(S,B, α, 0) = BL . (4.14)

5 Discretization: An Informal Approach256

We first provide an informal discretization of equation (4.1) using a semi-Lagrangian approach. We prove257

that this is a consistent discretization in Section A.3. Equation (4.11) is discretized in a similar fashion.258

The reader is referred to the references in [12] for more details concerning semi-Lagrangian methods for HJB259

equations.260

Along the trajectory S = S(τ),B = B(τ), α = α(τ) defined by261

dS

dτ
= −g(v)S

dB
dτ

= − (rB − vSf(v))

dα

dτ
= −v , (5.1)

equation (4.1) can be written as262

max
v∈Z

DV

Dτ
= LV , (5.2)

where the Lagrangian derivative DV/Dτ is given by263

DV

Dτ
= Vτ − VSg(v)S − VB (rB − vSf(v))− Vαv . (5.3)

The Lagrangian derivative is the rate of change of V along the trajectory (5.1).264

Define a set of nodes [S0, S1, ..., Simax
], [B0,B1, ...,Bjmax

], [α0, α1, ..., αkmax
], and discrete times τn = n∆τ .265

Let V (Si,Bj , αk, τn) denote the exact solution to equation (4.1) at point (Si,Bj , αk, τn). Let V ni,j,k denote266

the discrete approximation to the exact solution V (Si,Bj , αk, τn).267

We use standard finite difference methods [13] to discretize the operator LV as given in (3.1). Let268

(LhV )ni,j,k denote the discrete value of the differential operator (3.1) at node (Si,Bj , αk, τn). The operator269

(3.1) can be discretized using central, forward, or backward differencing in the S direction to give270

(LhV )ni,j,k = aiV
n
i−1,j,k + biV

n
i+1,j,k − (ai + bi)V ni,j,k , i < imax, (5.4)

where ai and bi are determined using an algorithm in [13]. The algorithm guarantees ai and bi satisfy the271

following positive coefficient condition:272

ai ≥ 0 ; bi ≥ 0 , i = 0, . . . , imax. (5.5)

The boundary conditions will be taken into account by setting273

a0 = aimax = 0
b0 = bimax = 0 . (5.6)

Define the vector V nj,k = [V n0,j,k, ..., V
n
imax,j,k

]t, then Lh is an imax + 1× imax + 1 matrix such that (LhV nj,k)i is274

given by equation (5.4).275
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Let vni,j,k denote the approximate value of the control variable v at mesh node (Si,Bj , αk, τn). Then we276

approximate DV/Dτ at (Si,Bj , αk, τn+1) by the following277 (
DV

Dτ

)n+1

i,j,k

' 1
∆τ

(V n+1
i,j,k − V

n
î,ĵ,k̂

) (5.7)

where V n
î,ĵ,k̂

is an approximation of V (Sn
î
,Bn

ĵ
, αn

k̂
, τn) obtained by linear interpolation of the discrete values278

V ni,j,k, with (Sn
î
,Bn

ĵ
, αn

k̂
) given by solving equations (5.1) backwards in time, from τn+1 to τn, for fixed vn+1

i,j,k279

to give (noting that g(vn+1
imax,j,k

) = 0 from equation (4.10))280

Sn
î

= Si exp[g(vn+1
i,j,k)∆τ ] ; i < iimax

= Si ; i = iimax

Bn
ĵ

= Bj exp[r∆τ ]− vn+1
i,j,kSif(vn+1

i,j,k)
(
er∆τ − eg(v

n+1
i,j,k)∆τ

r − g(vn+1
i,j,k)

)
αn
k̂

= αk + vn+1
i,j,k∆τ . (5.8)

Equation (5.8) is equivalent to O((∆τ)2) to281

Sn
î

= Si + Sig(vn+1
i,j,k)∆τ +O(∆τ)2 ; i < imax

Bn
ĵ

= Bj +
(
rBj − vn+1

i,j,kSif(vn+1
i,j,k)

)
∆τ +O(∆τ)2

αn
k̂

= αk + vn+1
i,j,k∆τ . (5.9)

For numerical purposes, we use equation (5.8) since this form ensures, for example, that Sn
î
≥ 0, regardless282

of timestep size. We will use the limiting form (5.9) when carrying out our consistency analysis.283

All the information about the price impact function is embedded in equation (5.8). This means that the284

form of the price impact functions can be easily altered, with minimal changes to an implementation.285

Let Zn+1
i,j,k ⊆ Z denote the set of possible values for vn+1

i,j,k such that (Sn
î
,Bn

ĵ
, αn

k̂
) remains inside the286

computational domain. In other words, vn+1
i,j,k ∈ Z

n+1
i,j,k ensures that287

0 ≤ Sn
î
≤ Simax

α0 ≤ αnk̂ ≤ αkmax
. (5.10)

Note that we do not impose any constraints to ensure Bn
ĵ
∈ [Bmin,Bmax]. We will essentially eliminate the288

B variable using the similarity reduction (3.12).289

We approximate the HJB PDE (4.1) and the boundary conditions (4.4-4.5), and (4.10) by290

V n+1
i,j,k = min

vn+1
i,j,k∈Z

n+1
i,j,k

V n
î,ĵ,k̂

+ ∆τ(LhV )n+1
i,j,k

(v∗)n+1
i,j,k ∈ arg min

vn+1
i,j,k∈Z

n+1
i,j,k

V n
î,ĵ,k̂

. (5.11)

At τ0 = 0 we have the payoff condition (3.3)291

V 0
i,j,k = ((BL)i,j,k)2 . (5.12)

Once the optimal control (v∗)n+1
i,j,k = v∗(Si,Bj , αk, τn+1) is determined from the solution to equation (5.11),292

then the solution to equation (4.13) is given by solving the linear PDE293

Un+1
i,j,k =

{
Un
î,ĵ,k̂

}
v=(v∗)n+1

i,j,k

+ ∆τ(LhU)n+1
i,j,k , (5.13)

with payoff condition294

U0
i,j,k = (BL)i,j,k . (5.14)
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5.1 Discrete Similarity Reduction295

If the similarity reduction (3.12) is valid (which is the case for the price impact functions, payoff and price296

process assumed in this work), we can reduce the number of nodes needed in the B direction to a finite297

number, independent of the mesh size.298

Choose B∗ > 0, let Bj ∈ Bset = {−B∗,+B∗}, i.e. we have only two nodes in the discrete B grid. Further,299

let B0 = −B∗,B1 = +B∗. If Bn
ĵ
> 0 then we evaluate V n

î,ĵ,k̂
, Un

î,ĵ,k̂
by300

V n
î,ĵ,k̂

=
(Bn

ĵ

B∗

)2

V n
î∗,1,k̂

Un
î,ĵ,k̂

=
(Bn

ĵ

B∗

)
Un
î∗,1,k̂

Sî∗ =
B∗Sî
Bn
ĵ

(5.15)

where V n
î∗,1,k̂

refers to a linear interpolant of V n at the node (Sî∗ ,B∗, αk̂).301

If Bn
ĵ
< 0 then we evaluate V n

î,ĵ,k̂
by302

V n
î,ĵ,k̂

=
( Bn

ĵ

−B∗

)2

V n
î∗,0,k̂

Un
î,ĵ,k̂

=
( Bn

ĵ

−B∗

)
Un
î∗,0,k̂

Sî∗ =
−B∗Sî
Bn
ĵ

. (5.16)

Note that use of the similarity reduction as in equations (5.15-5.16) eliminates the need for applying a303

boundary condition at Bmin,Bmax. We can exclude the case Bn
ĵ

= 0 since (from equation (5.9))304

|Bn
ĵ
| = |B∗|(1 +O(∆τ)) . (5.17)

Remark 5.1 (Reduction to a Two Dimensional Problem). We can proceed more formally to eliminate the305

variable B. If the similarity reduction (3.12) is valid, then we can define a function χ(z, α, τ) such that306

V (S,B, α, τ) = B2χ(S/B, α, τ)
= B2χ(z, α, τ)

zmin ≤ z ≤ zmax ; z =
S

B
(5.18)

Substituting equation (5.18) into equation (3.2) with payoff (3.3) gives an HJB equation for χ(z, α, τ). How-307

ever, we will not follow this approach here. From an implementation point of view, application of the308

similarity reduction is simply a special (trivial) case of a full three dimensional implementation. There is no309

need for a separate implementation to handle the cases where the similarity reduction is valid/invalid. In310

addition, it is convenient to deal with the physical variables (S,B, α), when dealing with boundary conditions,311

price impact functions and so on. Finally, our convergence proofs are given for the case of the similarity312

reduction. However, since we use the variables (S,B, α, τ), these proofs can be easily extended to the case313

where the similarity reduction is not valid.314

The one complicating factor resulting from not carrying out the formal reduction to a two dimensional315

problem concerns the appropriate set of test functions to use in defining consistency in the viscosity solution316

sense. Since the problem is inherently two dimensional, this means that the test functions should be smooth,317

differentiable functions ψ(z, α, τ). We cannot use arbitrary three dimensional test functions φ(S,B, α, τ), but318
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in view of equation (5.18), (which we use to define the interpolation operators (5.15-5.16)) we should use319

test functions of the form320

φ(S,B, α, τ) = B2ψ(S/B, α, τ) . (5.19)

Let x = (S,B, α, τ), then we can write equation (5.19) as321

φ = φ(x) = φ(x, ψ(x)) = φ(x, ψ(S/B, α, τ)) . (5.20)

5.2 Solution of the Local Optimization Problem322

Recall equation (5.11)323

V n+1
i,j,k = min

vn+1
i,j,k∈Z

n+1
i,j,k

V n
î,ĵ,k̂

+ ∆τ(LhV )n+1
i,j,k . (5.21)

An obvious way to solve the local optimization problem is to use a standard one-dimensional algorithm.324

However, we found this to be unreliable, since the local objective function has multiple local minima (this325

will be discussed in more detail later). Instead, we discretize the range of controls. For example, consider the326

set of controls Z = [vmin, vmax] for a point in the interior of the computational domain. Let Ẑ = {v0, v1, ..., vk}327

with v0 = vmin, vk = vmax and maxi vi+1 − vi = O(h). Then, if φ is a smooth test function and f(v), g(v)328

are continuous functions (which we assume to be the case) then329 ∣∣∣∣φτ − Lφ− rBφB −min
v∈Ẑ

[
−vSf(v)φB + vφα + g(v)SφS

]
−
(
φτ − Lφ− rBφB −min

v∈Z

[
−vSf(v)φB + vφα + g(v)SφS

])∣∣∣∣
→ 0 ; as h→ 0 . (5.22)

Consequently, replacing Z by Ẑ is a consistent approximation [33]. Our actual numerical algorithm uses330

Zn+1
i,j,k ⊆ Ẑ, and the minimum in equation (5.21) is found by linear search. Note that this approximation331

would be O(h) if f(v), g(v) are Lipshitz continuous.332

6 Convergence to the Viscosity Solution333

Provided a strong comparison result for the PDE applies, [7, 5] demonstrate that a numerical scheme will334

converge to the viscosity solution of the equation if it is l∞ stable, monotone, and pointwise consistent. In335

Appendix A, we prove the convergence of our numerical scheme (5.11) to the viscosity solution of problem336

(4.1) associated with boundary conditions (4.4-4.5), (4.10) by verifying these three properties.337

The definition of consistency in the viscosity solution sense [5] appears to be somewhat complex. However,338

as can be seen in Appendix A, this definition is particularly useful in the context of a semi-Lagrangian339

discretization, since there are nodes in strips near the boundaries where the discretization is not consistent340

in the classical sense for arbitrary mesh/timestep sizes.341

7 Optimal Liquidation Example: Short Trading Horizon342

We use the parameters shown in Table 7.1, for an example where the entire stock position is to be liquidated343

in one day. Equations (3.2) and (3.4) are solved numerically using a semi-Lagrangian method described in344

Section 5. A similarity reduction is used to reduce the problem to a two dimensional S × α grid, with two345

nodes (for all mesh/timestep sizes) in the B direction, as described in Section 5.1.346

Table 7.2 shows the number of nodes and timesteps used in the convergence study. Table 7.3 shows the347

value of Et=0
v∗ [B2

L] at t = 0, S = 100, α = 1, B = −100 for several levels of refinement. Convergence appears348

to be at a first order rate. Increasing the size of Smax resulted in no change to the solution to eight digits.349
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Parameter Value
σ 1.0
T 1/250 years
η 0.0
r 0.0
S0 100
αI 1.0
κp 0.0
κt 2× 10−6

κs 0.0
β 1.0
Action Sell
vmin -1000/T
vmax 0.0
Smax 20000
(∆t)T (2.12) 10−6 years

Table 7.1: Parameters for optimal execution example, short trading horizon.

Timesteps S nodes α nodes B nodes v nodes Refinement Level
25 98 41 77 30 0
50 195 81 153 59 1
100 389 161 305 117 2
200 777 321 609 233 3
400 1553 641 1217 465 4

Table 7.2: Grid and timestep data for convergence studies. If a similarity reduction is used, then the B
grid has only two nodes for any refinement level.

Refinement Level Value
0 1.668460
1 1.319408
2 1.176402
3 1.094543
4 1.054693

Table 7.3: Value of Et=0
v∗ [B2

L] at t = 0, S = 100, α = 1, B = −100. Data in Table 7.1. Discretization data
is given in Table 7.2.
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Figure 7.1: The efficient frontier for optimal execution (sell case), using the data in Table 7.1. The vertical
axis represents the expected average share price obtained. Initial stock price S0 = 100. Discretization details
given in Table 7.2. Similarity reduction used.

The efficient frontier is shown in Figure 7.1. This Figure shows the expected average amount obtained350

per share versus the standard deviation. The pre-trade share price is $100. The results in Figure 7.1 were351

obtained using the similarity reduction.352

For comparative purposes, we also show the efficient frontier in Figure 7.2, obtained using the full353

three dimensional PDE (no similarity reduction). Due to memory requirements, we can only show three354

levels of refinement. Note that the full three dimensional PDE uses a discretization in the B direction.355

Recall that the use of a similarity reduction (as described in Section 3.4) effectively means that there is no356

discretization error in the B direction. Hence we can expect that the full three dimensional PDE solve will357

show larger discretization errors, compared to the solution obtained using the similarity reduction, for the358

same refinement level. As shown in Figure 7.2, the full three dimensional solution is converging to the same359

efficient frontier as the similarity reduction solution, but more slowly and at much greater computational360

cost.361

Figure 7.3 shows Et=0
v∗ [B2

L], B = −100. This value of B = −100 corresponds to γ = 200. Assuming we362

are at the initial point (S = 100, B = 0, α = 1), this value of γ corresponds to the point363

Expected Gain = 99.295
Standard Deviation = 0.7469 (7.1)

on the curve shown in Figure 7.1.364

7.1 Optimal Strategy: Uniqueness365

From Figure 7.3 we can see that there is a large region for S > 100 where366

Vα ' 0 ; VS ' 0 ; V ' 0 (7.2)

which then implies, using equation (4.6), that VB ' 0. Hence, in the flat region in Figure 7.3, Vα ' 0,367

VS ' 0, and VB ' 0.368
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Figure 7.2: The efficient frontier for optimal execution (sell case), using the data in Table 7.1. The vertical
axis represents the expected average share price obtained. Initial stock price S0 = 100. Discretization details
given in Table 7.2. Results are obtained by solving the full three dimensional PDE. The curve labelled ”Sim
Red” was computed using the similarity reduction method (as in Figure 7.1).
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Figure 7.4: Optimal trading rate at t = 0.0, B = 0, α = 1, as a function of S. This is the optimal strategy
for the point on the efficient frontier given by equation (7.1). Note that the constant trading rate which
meets the liquidation objective is v = −250. Data in Table 7.1. Discretization details given in Table 7.2.

Recall equation (3.2)369

Vτ = LV + rBVB + min
v∈[vmin,vmax]

[
−vSf(v)VB + vVα + g(v)SVS

]
. (7.3)

If VS = VB = Vα = 0, then the optimal control can be any value v ∈ [vmin, vmax]. Clearly there are large370

regions where the optimal strategy is not unique.371

As an extreme example, one way to achieve minimal risk is to immediately sell all stock at an infinite372

rate, which results in zero expected gain, and zero standard deviation. However, this strategy is not unique.373

Another possibility is to do nothing until t = T−, and then to sell at an infinite rate. This will also result374

in zero gain and zero standard deviation. There are infinitely many strategies which produce the identical375

result. Hence, in general, the optimal strategy is not unique, but the value function is unique.376

7.2 Optimal Trading Strategy377

Figure 7.4 shows the optimal trading rate at t = 0.0, B = −100, α = 1, as a function of S. This is the378

optimal strategy for the point on the efficient frontier given by equation (7.1). We can interpret this curve379

as follows. Given the initial data (S = 100, α = 1, B = 0, t = 0), this curve shows the optimal trading rate if380

the asset price suddenly changes to the value of S shown. Note that this particular strategy is the rate which381

minimizes (2.16) for the value of γ which results in (7.1). To put Figure 7.4 in perspective, the constant382

trading rate which meets the liquidation objective is v = −1/T = −250.383

The optimal trading rate behaves roughly as expected [28]. As the asset price increases, the trading rate384

should also increase. In other words, some of the unexpected gain in stock price can be spent to reduce the385

standard deviation. Recall that the strategy maximizes (2.16) as seen at the initial time.386

However, note the sawtooth pattern in the optimal trading rate for S > 75. This does not appear to be387

an artifact of the discretization, since this pattern seems to persist for small mesh sizes.388

It is perhaps not immediately obvious how a smooth value function as given in Figure 7.3 can produce389

the non-smooth trading strategy shown in Figure 7.4. Recall that a local optimization problem (5.21) is390

solved at each node to determine the optimal trade rate. A careful analysis of the objective function at391

the points corresponding to the sawtooth pattern in Figure 7.4 revealed that the value function was very392
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Figure 7.5: Left plot: the efficient frontier for optimal execution (sell case), using the data in Table 7.1.
The vertical axis represents the expected average share price obtained. Initial stock price S0 = 100. The
curves are computed with refinement level 4 (see Table 7.2). The two curves are computed using the set
of trade rates in equation (7.4) (Discrete Trade Rate), and the approximation to continuous trading rates
obtained by discretizing [vmin, vmax] with 465 nodes (Continuous Trade Rate). Right plot: the optimal
trading rates corresponding to the efficient frontiers in the left plot.

flat, with multiple local minima. Although the value function is a smooth function of S, the optimal trade393

amount (v∆t) is not a smooth function of S.394

This suggests that the optimal value is not very sensitive to the control at these points.395

7.3 Discrete Trade Rates396

In order to explore the effect of the sawtooth pattern on the optimal trade rates, the optimal strategy was397

recomputed using a fixed number of discrete trading rates. The rates were (in units of 1/T )398

Trade rates = {−1000,−500.,−100.,−50.,−40.,−30.,
−25,−20.,−15.,−10.,−9.,−8.,−7.,−6.,
−5.,−4.5,−4.,−3.5,−3.,−2.5,−2.,−1.5,

−1.25,−1.0,−.75,−.5,−.25, 0.} (7.4)

These discrete trade rates were fixed, and not changed for finer grids. Recall that for the continuous case,399

the spacing of the discrete trading rates was divided by two on each grid refinement. On the finest grid400

(1553×641) the interval [−vmin, vmax] was discretized using 465 nodes. Note that there are only 27 discrete401

trading rates in the set of nodes in equation (7.4). The efficient frontier using both these possible sets of402

trading rates is shown in Figure 7.5 (left plot). The two curves are almost indistinguishable.403

This has an interesting practical benefit. If h is the mesh/timestep size parameter (see equation (A.1)),404

then the method developed here has complexity O(1/h4). One might expect a complexity of O(1/h3) but405

the need to solve the local optimization problem using a linear search generates the extra power of 1/h.406

However, from Figure 7.5, it would appear that we can determine the efficient frontier to a practical level of407

accuracy using a mesh independent set of trading rates, which would lower the complexity to O(1/h3).408

Figure 7.5 (right plot) also shows the optimal trading rates corresponding to the efficient frontiers shown409

in Figure 7.5 (left plot). It would appear that there are many strategies which generate very similar efficient410
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Parameter Value
σ .40
T 1/12 years
η .10
r 0.05
S0 100
αsell 1.0
κp 0.01
κt .069
κs 0.01
β .5
Action Sell
vmin -25/T
vmax 0.0
Smax 20000
(∆t)T (2.12) 10−9 years

Table 8.1: Parameters for optimal execution example, long trading horizon.

frontiers. It is likely that the sawtooth pattern in Figure 7.4 is due to the ill-posed nature of the optimal411

strategy.412

8 Liquidation Example: Long Trading Horizon413

Table 8.1 shows the data used for a second example. Note that β in equation (2.10) is set to β = .5. Similar414

values of β have been reported in [25].415

Figure 8.1 shows the efficient frontier. Figure 8.2 shows the the optimal trading rate at t = 0.0, B = −100,416

α = 1, as a function of S. The trade rates are given for a point on the efficient frontier corresponding to417

(γ = 200.83)418

Expected Gain = 95.6
Standard Deviation = 3.47 . (8.1)

Once again, we see that the efficient frontier is smooth, but that the optimal trading rates show the same419

sawtooth pattern as observed in Figure 7.4. This indicates that the optimal trading rates are somewhat ill420

posed.421

9 Conclusion422

We have formulated the problem of determining the efficient frontier (and corresponding optimal strategy) in423

terms of an equivalent LQ problem. We need only solve a single nonlinear HJB equation (and an associated424

linear PDE) to construct the entire efficient frontier.425

The HJB equation is discretized using a semi-Lagrangian approach. Assuming that the HJB equation426

satisfies a strong comparison property, then we have proven convergence to the viscosity solution by showing427

that the scheme is monotone, consistent and stable. Note that in this case, it is useful to use consistency in428

the viscosity solution sense [7, 5] since the semi-Lagrangian method is not classically consistent (for arbitrary429

grid sizes) at points near the boundaries of the computational domain.430

The semi-Lagrangian discretization separates the model of the underlying stochastic process from the431

model of price impact. Changing the particular model of price impact amounts to changing a single function432

in the implementation. The semi-Lagrangian method is also highly amenable to parallel implementation.433
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Figure 8.1: The efficient frontier for optimal execution (sell case), using the data in Table 8.1. The vertical
axis represents the expected average share price obtained. Initial stock price S0 = 100. Discretization details
given in Table 7.2.
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Figure 8.2: Optimal trading rate at t = 0.0, B = 0, α = 1, as a function of S. This is the optimal strategy
for the point on the efficient frontier given by equation (8.1). Note that the constant trading rate which
meets the liquidation objective is v = −12. Data in Table 8.1. Discretization details given in Table 7.2.
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The efficient frontiers computed using the method developed in this work are consistent with intuition.434

However, the optimal trading rates, as a function of the asset price at the initial time, show an unexpected435

sawtooth pattern for large asset prices. A detailed analysis of the numerical results shows that that there436

are many strategies which give virtually the same value function. Hence, the numerical problem for the437

optimal strategy (as opposed to the efficient frontier) appears to be ill-posed. Note that this ill-posedness438

seems to be a particular property of the pre-commitment mean-variance objective function, and is not seen439

if alternative objective functions are used, such as a utility function [31] or mean-quadratic variation [19].440

However, this ill-posedness in terms of the strategy is not particularly disturbing in practice. The end441

result is that there are many strategies which give essentially the same efficient frontier, which is the measure442

of practical importance. This also indicates that it is possible to vary the trading rates in an unpredictable443

pattern, which may be useful to avoid signalling trading strategies, yet still achieve a mean variance efficient444

result.445

A Convergence to the Viscosity Solution of (4.1)446

In this Appendix, we will verify that the discrete scheme (5.11) is consistent, stable and monotone, which447

ensures convergence to the viscosity solution of (4.1) associated with boundary conditions (4.4-4.5), (4.10).448

We will assume that the similarity reduction equations (5.15) and (5.16) are used in the following analysis.449

A.1 Some Preliminary Results450

It will be convenient to define ∆Smax = maxi
(
Si+1−Si

)
, ∆Smin = mini

(
Si+1−Si

)
, ∆αmax = maxj

(
αk+1−451

αk
)
, ∆αmin = mink

(
αk+1 − αk

)
. We assume that there is a mesh size/timestep parameter h such that452

∆Smax = C1h ; ∆αmax = C2h ; ∆τ = C3h ; ∆Smin = C ′1h ; ∆αmin = C ′2h. (A.1)

where C1, C
′
1, C2, C

′
2, C3 are constants independent of h.453

If test function φ is of the form (5.19-5.20), then we can write454

φ(S,B, α, τ, ψ(S,B, α, τ)) = B2ψ(S/B, α, τ) . (A.2)

where we assume that ψ(S/B, α, τ) = ψ(z, α, τ) is a smooth function of (z, α, τ), which has bounded455

derivatives with respect to (z, α, τ) on [zmin, zmax] × [αmin, αmax] × [0, T ]. Note that since |Bj | > 0, and456

Bĵ = Bj(1 + O(h)), then φ has bounded derivatives with respect to (S,B, α, τ) for B near B0,B1, for h457

sufficiently small, since ψ has bounded derivatives with respect to (z, α, τ).458

For more compact notation, we will also define459

xni,j,k = (Si,Bj , αk, τn)
φ(S,B, α, τ, ψ(S,B, α, τ)) = φ(x, ψ(x))

φni,j,k = φ(xni,j,k) = φ(xni,j,k, ψ(xni,j,k)) . (A.3)

Taylor series (see [13]) gives460

(Lhφ)ni,j,k = (Lφ)ni,j,k +O(h) . (A.4)

and if ξ is a constant, we also have (noting equation (A.2))461

φ(x, ψ(x) + ξ)ni,j,k = φni,j,k + B2
j ξ , (A.5)

and462

(Lh(φ(x, ψ + ξ))ni,j,k = (Lφ)ni,j,k +O(h) . (A.6)
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Assuming φ is of the form (A.2) and noting interpolation scheme (5.15-5.16) we obtain, using equations463

(5.8-5.9)464

φn
î,ĵ,k̂

= φ

(
Si exp[g(vn+1

i,j,k∆τ ],Bj exp[r∆τ ]− vn+1
i,j,kSif(vn+1

i,j,k)
(
er∆τ − eg(v

n+1
i,j,k)∆τ

r − g(vn+1
i,j,k)

)
αk + vn+1

i,j,k∆τ, τn
)

+O(h2)

= φ

(
Si + Sig(vn+1

i,j,k)∆τ,Bj + (rBj − vn+1
i,j,kSif(vn+1

i,j,k))∆τ, αk + vn+1
i,j,k∆τ, τn

)
+O(h2) .

(A.7)

Noting that465 (Bn
ĵ

Bj

)2

= 1 +O(h) (A.8)

and that if ξ is a constant, then the linear interpolation in equation (5.15-5.16) is exact for constants, then466

we obtain467

φ(x, ψ(x) + ξ)n
î,ĵ,k̂

=

φ

(
Si + Sig(vn+1

i,j,k)∆τ,Bj + (rBj − vn+1
i,j,kSif(vn+1

i,j,k))∆τ, αk + vn+1
i,j,k∆τ, τn

)
+O(h2) + B2

j ξ(1 +O(h))
(A.9)

A.2 Stability468

Definition A.1 (l∞ stability). Discretization (5.11) is l∞ stable if469

‖V n+1‖∞ ≤ C4 , (A.10)

for 0 ≤ n ≤ N − 1 as h→ 0, where C4 is a constant independent of h. Here ‖V n+1‖∞ = maxi,j,k |V n+1
i,j,k |.470

Lemma A.1 (l∞ stability). If the discretization (5.4) satisfies the positive coefficient condition (5.5) and471

linear interpolation is used to compute V n
î,ĵ,k̂

, then the scheme (5.11) with payoff (5.12), using the similarity472

reduction (5.15-5.16), satisfies473

‖V n‖∞ ≤ e2rT ‖V 0‖∞ (A.11)

for 0 ≤ n ≤ N = T/∆τ as h→ 0.474

Proof. First, note that from payoff condition (5.12) we have 0 ≤ V 0
i,j,k ≤ ‖B2

L‖∞, which is bounded since the475

computational domain is bounded.476

Now, suppose that477

0 ≤ V ni,j,k ≤ ‖V n‖∞ . (A.12)

Define478

V n+
i,j,k = min

vn+1
i,j,k∈Z

n+1
i,j,k

V n
î,ĵ,k̂

. (A.13)

Since linear interpolation is used, then from equation (A.12), V n+
i,j,k ≥ 0. Since vn+1

i,j,k = 0 ∈ Zn+1
i,j,k , then from479

equations (5.8), (5.15-5.16) and the fact that linear interpolation is used to compute V n
î∗,j,k̂

, we have that480

0 ≤ V n+
i,j,k ≤ e2r∆τ‖V n‖∞.481
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Since discretization (5.4) is a positive coefficient method, a straightforward maximum analysis shows that482

0 ≤ V n+1
i,j,k ≤ ‖V n+‖∞

≤ e2r∆τ‖V n‖∞ ≤ e2rT ‖V 0‖∞ . (A.14)

483

A.3 Consistency484

Let485

Hn+1
i,j,k

(
h, V n+1

i,j,k ,
{
V n+1
l,m,p

}
l 6=i
m6=j
p 6=k

,
{
V ni,j,k

})

=
1

∆τ

[
V n+1
i,j,k − min

vn+1
i,j,k∈Z

n+1
i,j,k

V n
î,ĵ,k̂
−∆τ(LhV )n+1

i,j,k

]
(A.15)

where486 {
V n+1
l,m,p

}
l 6=i
m 6=j
p 6=k

(A.16)

is the set of values V n+1
l,m,p, l 6= i, l = 0, . . . , imax and m 6= j, m = 0, . . . , jmax, p 6= k, p = 0, . . . , kmax, and487 {

V ni,j,k
}

is the set of values V ni,j,k, i = 0, . . . , imax, j = 0, . . . , jmax, k = 0, . . . , kmax.488

We can then define the complete discrete scheme as489

Gn+1
i,j,k

(
h, V n+1

i,j,k ,
{
V n+1
l,m,p

}
l 6=i
m 6=j
p 6=k

,
{
V ni,j,k

})

≡

{
Hn+1
i,j,k if 0 ≤ Si ≤ Simax , Bj ∈ Bset, αmin ≤ αk ≤ αmax, 0 < τn+1 ≤ T

V n+1
i,j,k −

(
(BL)i,j,k

)2 if 0 ≤ Si ≤ Simax , Bj ∈ Bset, αmin ≤ αk ≤ αmax, τn+1 = 0

= 0 .

(A.17)

Remark A.1. We have written equation (A.15) as if we find the exact minimum at each node. In practice,490

we find the approximate minimum as described in Section 5.2. To avoid notational complexity, we will491

carry out our analysis assuming the algorithm determines the exact minimum. However, in view of equation492

(5.22), the use of the approximate minimum is a consistent approximation to the original problem, as long493

as the node spacing in [vmin, vmax] tends to zero as h→ 0 [33].494

Let Ω be the set of points (S,B, α, τ) such that Ω = [0, Smax]×Bset × [αmin, αmax]× [0, T ]. The domain495

Ω can divided into the subregions496

Ωin = [0, Smax)× Bset × (αmin, αmax)× (0, T ]
Ωαmin = [0, Smax)× Bset × {αmin} × (0, T ]
Ωαmax = [0, Smax)× Bset × {αmax} × (0, T ]
ΩSmax = {Smax} × Bset × (αmin, αmax)× (0, T ]

ΩSmaxαmin = {Smax} × Bset × {αmin} × (0, T ]
ΩSmaxαmax = {Smax} × Bset × {αmax} × (0, T ]

Ωτ0 = [0, Smax]× Bset × [αmin, αmax)× {0},

(A.18)

where Ωin represents the interior region, and Ωαmin ,Ωαmax ,ΩSmax ,Ωτ0 ,ΩSmaxαmax ,ΩSmaxαmin denote the bound-497

ary regions. If x = (S,B, α, τ), let DV (x) = (VS , VB, Vα, Vτ ) and D2V (x) = VSS . Let us define the following498
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operators:499

Fin
(
D2V (x), DV (x), V (x),x

)
= Vτ − LV − rBVB −min

v∈Z

[
−vSf(v)VB + vVα + g(v)SVS

]
Fαmin

(
D2V (x), DV (x), V (x),x

)
= Vτ − LV − rBVB − min

v∈Z+

[
−vSf(v)VB + vVα + g(v)SVS

]
Fαmax

(
D2V (x), DV (x), V (x),x

)
= Vτ − LV − rBVB − min

v∈Z−

[
−vSf(v)VB + vVα + g(v)SVS

]
FSmax

(
D2V (x), DV (x), V (x),x

)
= Vτ − rBVB −min

v∈Z

[
−vSf(v)VB + vVα

]
FSmaxαmin

(
D2V (x), DV (x), V (x),x

)
= Vτ − rBVB − min

v∈Z+

[
−vSf(v)VB + vVα

]
FSmaxαmax

(
D2V (x), DV (x), V (x),x

)
= Vτ − rBVB − min

v∈Z−

[
−vSf(v)VB + vVα

]
Fτ0

(
D2V (x), DV (x), V (x),x

)
= V − B2

L

(A.19)

Then the problem (4.1-4.10) can be combined into one equation as follows:500

F
(
D2V (x), DV (x), V (x),x

)
= 0 for all x = (S,B, α, τ) ∈ Ω , (A.20)

where F is defined by501

F =



Fin
(
D2V (x), DV (x), V (x),x

)
if x ∈ Ωin,

Fαmin

(
D2V (x), DV (x), V (x),x

)
if x ∈ Ωαmin ,

Fαmax

(
D2V (x), DV (x), V (x),x

)
if x ∈ Ωαmax ,

FSmax

(
D2V (x), DV (x), V (x),x

)
if x ∈ ΩSmax ,

FSmaxαmax

(
D2V (x), DV (x), V (x),x

)
if x ∈ ΩSmaxαmax ,

FSmaxαmin

(
D2V (x), DV (x), V (x),x

)
if x ∈ ΩSmaxαmin ,

Fτ0

(
V (x),x

)
if x ∈ Ωτ0 .

(A.21)

In order to demonstrate consistency, we first need some intermediate results. For given ∆τ , consider the502

continuous form of equations (5.8)503

Ŝ = S exp[g(v)∆τ ]

B̂ = B exp[r∆τ ]− vSf(v)
(
er∆τ − eg(v)∆τ

r − g(v)

)
α̂ = α+ v∆τ

v ∈ [vmin, vmax] . (A.22)

Consider the domain504

ΩZ′(∆τ) ⊆ [0, Smax]× Bset × (αmin, αmax)× (0, T ] (A.23)

where (Ŝ, α̂) /∈ [0, Smax]× [αmin, αmax]. In other words, for points in ΩZ′ , the range of possible values of v505

in equation (A.22) would have to be restricted to less than the full range [vmin, vmax] in order to ensure that506

0 ≤ Ŝ ≤ Smax αmin ≤ α̂ ≤ αmax . (A.24)

For example, the region507

αmax − vmax∆τ < α < αmax

αmin < α < αmin − vmin∆τ , (A.25)
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will be in ΩZ′ . In general, ΩZ′ will consist of small strips near the boundaries of Ω.508

We define the set Z ′(x, h) ⊆ Z such that if x ∈ ΩZ′ , then v ∈ Z ′(x, h) ensures that equation (A.24) is509

satisfied. We define the operator510

FZ′
(
D2V (x), DV (x), V (x),x

)
= Vτ − LV − rBVB − min

v∈Z′

[
−vSf(v)VB + vVα + g(v)SVS

]
; x ∈ ΩZ′ , S < Smax

= Vτ − rBVB min
v∈Z′

[
−vSf(v)VB + vVα

]
; x ∈ ΩZ′ , S = Smax .

(A.26)

Lemma A.2. For any smooth test function of the form511

φ(x, ψ(x) = B2ψ(z, α, τ)

z =
S

B
(A.27)

where ψ has bounded derivatives with respect to (z, α, τ) for (S,B, α, τ) ∈ Ω, and512

Simax−1 < Simaxe
−g(vmax)∆τ (A.28)

then513

Gn+1
i,j,k

(
h, φ

(
x, ψ(x) + ξ

)n+1

i,j,k
,
{
φ
(
x, ψ(x) + ξ

)n+1

l,m,p

}
l 6=i
m6=j
p 6=k

,
{
φ
(
x, ψ(x) + ξ

)n
i,j,k

})

=



Fin +O(h) +O(ξ) if xn+1
i,j,k ∈ Ωin\ΩZ′

Fαmin +O(h) +O(ξ) if xn+1
i,j,k ∈ Ωαmin

Fαmax +O(h) +O(ξ) if xn+1
i,j,k ∈ Ωαmax

FSmax +O(h) +O(ξ) if xn+1
i,j,k ∈ ΩSmax\ΩZ′

FSmaxαmax +O(h) +O(ξ) if xn+1
i,j,k ∈ ΩSmaxαmax

FSmaxαmin +O(h) +O(ξ) if xn+1
i,j,k ∈ ΩSmaxαmin

FZ′ +O(h) +O(ξ) if xn+1
i,j,k ∈ ΩZ′

Fτ0 +O(ξ) if xn+1
i,j,k ∈ Ωτ0

(A.29)

where ξ is a constant, and Fin, Fαmin , Fαmax , FSmax , FZ′ , Fτ0 , FSmaxαmax , FSmaxαmin are functions of (D2φ(x), Dφ(x), φ(x),x).514

Remark A.2. Condition A.28 is a very mild restriction on the placement of node Simax−1 and is not515

practically restrictive. This condition ensures that, for example, if xn+1
i,j,k ∈ Ωαmin or xn+1

i,j,k ∈ Ωαmax , then516

xn+1
i,j,k /∈ ΩZ′ .517
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Proof. Consider the case x ∈ Ωin\ΩZ′ . From equations (A.4), (A.5), (A.6), (A.9), we obtain518

1
∆τ

[
φ(x, ψ(x) + ξ)n+1

i,j,k − min
vn+1

i,j,k∈Z
n+1
i,j,k

φ(x, ψ(x) + ξ)n
î,ĵ,k̂
−∆τ(Lh(φ(x, ψ + ξ))n+1

i,j,k

]
=

1
∆τ

[
φn+1
i,j,k − φ

n
i,j,k − min

vn+1
i,j,k∈Z

n+1
i,j,k

{
(φS)ni,j,kSig(vn+1

i,j,k)∆τ

+(φB)ni,j,k(rBj − vn+1
i,j,kSif(vn+1

i,j,k))∆τ + (φα)ni,j,kv
n+1
i,j,k∆τ +O(h2) +O(hξ)

}]
− (Lφ)n+1

i,j,k +O(h)

= (φτ )n+1
i,j,k − (Lφ)n+1

i,j,k − min
vn+1

i,j,k∈Z
n+1
i,j,k

{
(φS)n+1

i,j,kSig(vn+1
i,j,k) + (φB)n+1

i,j,k(rBj − vn+1
i,j,kSif(vn+1

i,j,k))

+(φα)ni,j,kv
n+1
i,j,k +O(ξ) +O(h)

}
+O(h)

=
[
φτ − Lφ−min

v∈Z

{
φSSg(v) + φB(rB − vSf(v)) + φαv

}]n+1

i,j,k

+O(ξ) +O(h) . (A.30)

where we have taken the O(h), O(ξ) terms out of the min since they are bounded functions of vn+1
i,j,k (see519

[12]). As a result, we have520

Gn+1
i,j,k

(
h, φ

(
x, ψ(x) + ξ

)n+1

i,j,k
,
{
φ
(
x, ψ(x) + ξ

)n+1

l,m,p

}
l 6=i
m6=j
p 6=k

,
{
φ
(
x, ψ(x) + ξ

)n
i,j,k

})
= Fin(D2φ(x), Dφ(x), φ(x),x)n+1

i,j,k +O(h) +O(ξ) if xn+1
i,j,k ∈ Ωin\ΩZ′ .

(A.31)

The rest of the results in equation (A.29) follow using similar arguments.521

Recall the following definitions of upper and lower semi-continuous envelopes522

Definition A.2. If C is a closed subset of RN , and f(x) : C → R is a function of x defined in C, then the523

upper semi-continuous envelope f∗(x) and the lower semi-continuous envelope f∗(x) are defined by524

f∗(x) = lim sup
y→x
y∈C

f(y) and f∗(x) = lim inf
y→x
y∈C

f(y) . (A.32)

Lemma A.3 (Consistency). Assuming all the conditions in Lemma A.2 are satisfied, then the scheme525

(A.17) is consistent with the HJB equation (4.1), (4.4), (4.5), (4.7), (4.10) in Ω according to the definition526

in [7, 5]. That is, for all x̂ = (Ŝ, B̂, α̂, τ̂) ∈ Ω and any function φ(x, ψ(x)) of the form φ(x, ψ(x) =527

B2ψ(z, α, τ), z = S/B, where ψ has bounded derivatives with respect to (z, α, τ) for (S,B, α, τ) ∈ Ω, and528

xn+1
i,j,k = (Si,Bj , αk, τn+1), we have529

lim sup
h→0

xn+1
i,j,k→x̂

ξ→0

Gn+1
i,j,k

(
h, φ

(
x, ψ(x) + ξ

)n+1

i,j,k
,
{
φ
(
x, ψ(x) + ξ

)n+1

l,m,p

}
l 6=i
m6=j
p 6=k

,
{
φ
(
x, ψ(x) + ξ

)n
i,j,k

})

≤ F ∗
(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
,

(A.33)

and530

lim inf
h→0

xn+1
i,j,k→x̂

ξ→0

Gn+1
i,j,k

(
h, φ

(
x, ψ(x) + ξ

)n+1

i,j,k
,
{
φ
(
x, ψ(x) + ξ

)n+1

l,m,p

}
l 6=i
m6=j
p 6=k

,
{
φ
(
x, ψ(x) + ξ

)n
i,j,k

})

≥ F∗
(
D2φ(x̂), Dφ(x̂), φ(x̂), x̂

)
.

(A.34)
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Proof. According to the definition of lim inf, there exist sequences hq, iq, jq, kq, nq, ξq such that531

hq → 0, ξq → 0, xq ≡
(
Siq ,Bjq , αkq , τ

nq+1
)
→ (Ŝ, B̂, α̂, τ̂) as q →∞, (A.35)

and532

lim inf
q→∞

Gnq+1
iq,jq,kq

(
hq, φ

(
x, ψ(x) + ξq

)nq+1

iq,jq,kq
,
{
φ
(
x, ψ(x) + ξq

)nq+1

l,m,p

}
l 6=iq
m6=jq
p 6=kq

,
{
φ
(
x, ψ(x) + ξq

)nq

iq,jq,kq

})

= lim inf
h→0

xn+1
i,j,k→x̂

ξ→0

Gn+1
i,j,k

(
h, φ

(
x, ψ(x) + ξ

)n+1

i,j,k
,
{
φ
(
x, ψ(x) + ξ

)n+1

l,m,p

}
l 6=i
m6=j
p 6=k

,
{
φ
(
x, ψ(x) + ξ

)n
i,j,k

})
.

(A.36)

Consider the case where x̂ ∈ Ωαmin i.e.533

x̂ = (S,B, αmin, τ)
τ ∈ (0, T ] ; S < Smax . (A.37)

Choose q sufficiently large so that534

0 ≤ Siq < Smax ; αmin ≤ αkq
< αmax − vmax(∆τ)q . (A.38)

For xq satisfying condition (A.38), and using Lemma A.2, we have535

Gnq+1
iq,jq,kq

(
hq, φ

(
x, ψ(x) + ξq

)nq+1

iq,jq,kq
,
{
φ
(
x, ψ(x) + ξq

)n+1

l,m,p

}
l 6=iq
m6=jq
p 6=kq

,
{
φ
(
x, ψ(x) + ξq

)nq

iq,jq,kq

})

=

 Fin(D2φ(xq), Dφ(xq), φ(xq),xq) +O(hq) +O(ξq) if xq ∈ Ωin\ΩZ′
Fαmin(D2φ(xq), Dφ(xq), φ(xq),xq) +O(hq) +O(ξq) if xq ∈ Ωαmin

FZ′(D2φ(xq), Dφ(xq), φ(xq),xq) +O(hq) +O(ξq) if xq ∈ ΩZ′

(A.39)

For xq satisfying (A.38), since Z+ ⊆ Z ′ ⊆ Z, it follows from equations (A.19) and (A.26) that536

Fin(D2φ(xq), Dφ(xq), φ(xq),xq) ≥ FZ′(D2φ(xq), Dφ(xq), φ(xq),xq)
≥ Fαmin(D2φ(xq), Dφ(xq), φ(xq),xq) . (A.40)

We then have537

lim inf
q→∞

Gnq+1
iq,jq,kq

(
hq, φ

(
x, ψ(x) + ξq

)nq+1

iq,jq,kq
,
{
φ
(
x, ψ(x) + ξq

)n+1

l,m,p

}
l 6=iq
m6=jq
p 6=kq

,
{
φ
(
x, ψ(x) + ξq

)nq

iq,jq,kq

})
≥ lim inf

q→∞
Fαmin((D2φ(xq), Dφ(xq), φ(xq),xq) + lim sup

q→∞
[O(hq) +O(ξq)]

≥ F∗(D2φ(x̂), Dφ(x̂), φ(x̂), x̂) ,

(A.41)

where the last step follows since Fαmin , Fin are continuous functions of their arguments for smooth test538

functions, and Fαmin ≤ Fin.539

Let hq, iq, jq, kq, nq, ξq be sequences satisfying (A.35), such that540

lim sup
q→∞

Gnq+1
iq,jq,kq

(
hq, φ

(
x, ψ(x) + ξq

)nq+1

iq,jq,kq
,
{
φ
(
x, ψ(x) + ξq

)nq+1

l,m,p

}
l 6=iq
m 6=jq
p 6=kq

,
{
φ
(
x, ψ(x) + ξq

)nq

iq,jq,kq

})

= lim sup
h→0

xn+1
i,j,k→x̂

ξ→0

Gn+1
i,j,k

(
h, φ

(
x, ψ(x) + ξ

)n+1

i,j,k
,
{
φ
(
x, ψ(x) + ξ

)n+1

l,m,p

}
l 6=i
m6=j
p 6=k

,
{
φ
(
x, ψ(x) + ξ

)n
i,j,k

})
.

(A.42)
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Take q sufficiently large so that condition (A.38) are satisfied. It follows from equations (A.40) that541

FZ′(D2φ(xq), Dφ(xq), φ(xq),xq) ≤ Fin(D2φ(xq), Dφ(xq), φ(xq),xq)
if xq ∈ ΩZ′ (A.43)

hence542

lim sup
q→∞

Gnq+1
iq,jq,kq

(
hq, φ

(
x, ψ(x) + ξq

)nq+1

iq,jq,kq
,
{
φ
(
x, ψ(x) + ξq

)n+1

l,m,p

}
l 6=iq
m6=jq
p 6=kq

,
{
φ
(
x, ψ(x) + ξq

)nq

iq,jq,kq

})
≤ lim sup

q→∞
F ((D2φ(xq), Dφ(xq), φ(xq),xq) + lim sup

q→∞
[O(hq) +O(ξq)]

≤ F ∗(D2φ(x̂), Dφ(x̂), φ(x̂), x̂) .

(A.44)

Similar arguments can be used to prove (A.33-A.34) for any x̂ in Ω.543

Remark A.3 (Need for Definition of Consistency [7]). Note that in view of equation (A.39), there exist544

points near the boundaries where the discretized equations are never consistent in the classical sense with545

equations (4.1), (4.4-4.5) and (4.10). Classical consistency would require that Z ′ = ∅, which could only be546

achieved by placing restrictions on the timestep and (∆α)min. These artificial restrictions are not required547

for the more relaxed definition of consistency (A.33-A.34).548

A.4 Monotonicity549

Using the methods in [18] it is straightforward to show show that scheme (A.17) is monotone.550

Lemma A.4. If the discretization (5.4) is a positive coefficient discretization, and interpolation scheme551

(5.15-5.16) is used with linear interpolation in the S × α plane, then discretization (A.17) satisfies552

Gn+1
i,j,k

(
h, V n+1

i,j,k ,
{
Xn+1
l,m,p

}
l 6=i
m6=j
p 6=k

,
{
Xn
i,j,k

})
≤ Gn+1

i,j,k

(
h, V n+1

i,j,k ,
{
Y n+1
l,m,p

}
l 6=i
m 6=j
p 6=k

,
{
Y ni,j,k

})
; for all Xn

i,j,k ≥ Y ni,j,k,∀i, j, k, n .
(A.45)

Note that if the similarity reduction (3.12) is valid, then we can replace Xn
i,j,k by Xn

m,0,p, X
n
m,1,p, and553

Y ni,j,k by Y nm,0,p, Y
n
m,1,p, using equations (5.15-5.16). Hence it follows from Lemma A.4 that the discretization554

is monotone in terms of Xn
m,0,p, X

n
m,1,p, ∀m, p, n. Since Xn

m,0,p, X
n
m,1,p are essentially the discretized values555

of ψ(S/B, α, τ) in equation (5.18), we have the precise form of monotonicity required in [7].556

A.5 Convergence557

We make the assumption that there exists a unique, continuous viscosity solution to equation (3.2) with558

boundary conditions (4.4-4.5 ), (4.10), (4.7), at least in Ωin. This follows if the equation and boundary559

conditions satisfy a strong comparison property.560

Assumption A.1. If u and v are an upper semi-continuous subsolution and a lower semi-continuous su-561

persolution of the pricing equation (3.2) associated with the boundary conditions (4.4-4.5 ), (4.10), (4.7),562

then563

u ≤ v ; (S,B, α, τ) ∈ Ωin. (A.46)

A strong comparison result was proven in [6] for a a general problem similar to equation (3.2). However,564

we violate some of the assumptions required in [6] (i.e. the domain is not smooth).565

We can now state the following result566
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Theorem A.1 (Convergence). Assume that scheme (A.17) satisfies all the conditions required by Lemmas567

A.1, A.3, A.4, and that Assumption A.1 holds, then scheme (A.17) converges to the unique, continuous568

viscosity solution to problem (3.2), with boundary conditions (4.4-4.5), (4.10), (4.7), for (S,B, α, τ) ∈ Ωin.569

Proof. This follows from the results in [7, 5].570

Remark A.4. Note that as discussed in [23], at points on the boundary where the PDE degenerates, it is571

possible that loss of boundary data may occur, and the solution can be discontinuous at these points. Hence,572

in general, we can only assume that strong comparison holds for points in the interior of the solution domain.573

In this situation, we should consider the computed solution to be the limit as we approach the boundary points574

from the interior.575

B Convergence of the Expected Value576

Given the optimal control determined from the solution to equation (5.11), then equation (5.13) is a dis-577

cretization of the linear PDE (4.11) with a classical solution. The discretization (5.13) is easily seen to be578

consistent. It is perhaps not immediately obvious that scheme (5.13) is l∞ stable, in view of the similarity579

reduction (5.15-5.16), with the control determined from equation (3.2). Note that |Bn
ĵ
/B∗| may be greater580

than unity (see equations (5.15-5.16)). However, we note that581

Uni,j,k ' Et=0
v∗ [BL]

V ni,j,k ' Et=0
v∗ [(BL)2] (B.1)

so that if V ni,j,k is bounded, then582

V ar[BL] = Et=0
v∗ [(BL)2]− (Et=0

v∗ [BL])2 ≥ 0 . (B.2)

would imply a bound on (Uni,j,k)2.583

Stability in the l∞ norm for Uni,j,k is a consequence of the following Lemma.584

Lemma B.1 (Stability of scheme (5.13)). If Un+1 is given by (5.13), with the discrete optimal control585

determined by the solution to equation (5.11), a positive coefficient method is used to discretize the operator586

L as in equation (5.4), the discrete similarity interpolation operators are given by equations (5.15-5.16), with587

linear interpolation in the S × α plane, and the payoff conditions given by equations (5.12) and (5.14), then588

(Uni,j,k)2 ≤ V ni,j,k ; ∀i, j, k, n . (B.3)

Proof. Define V nj,k = [V n0,j,k, ..., Vimax,j,k]t, with Lh being the imax + 1× imax + 1 matrix defined in equation589

(5.4). Write equations (5.11) and (5.13) as590

[I −∆τLh]V n+1
j,k = V n+

j,k ; V n+
i,j,k = min

vn+1
i,j,k∈Z

n+1
i,j,k

V n
î,ĵ,k̂

(v∗)n+1
i,j,k ∈ arg min

vn+1
i,j,k∈Z

n+1
i,j,k

V n
î,ĵ,k̂

[I −∆τLh]Un+1
j,k = Un+

j,k ; Un+
i,j,k =

{
Un
î,ĵ,k̂

}
(v∗)n+1

i,j,k

. (B.4)

Since [I −∆τLh] is a diagonally dominant M matrix, and rowsum(Lh) = 0, then591

[I −∆τLh]−1 = G∑
l

Gi,l = 1 ; 0 ≤ Gi,l ≤ 1 . (B.5)
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Assume (Un+
i,j,k)2 ≤ V n+

i,j,k, then since (Jenson’s inequality)592 (∑
l

Gi,lU
n+
l,j,k

)2

≤
∑
l

Gi,l(Un+
l,j,k)2 (B.6)

we have that (Un+1
i,j,k )2 ≤ V n+1

i,j,k . Using the interpolation operators (5.15-5.16) and the definitions of U (n+1)+, V (n+1)+
593

we can see that (U (n+1)+
i,j,k )2 ≤ V (n+1)+

i,j,k . Finally, we have (U0
i,j,k)2 = V 0

i,j,k.594

Since V n+1 is l∞ stable from Lemma A.1, it follows from Lemma B.1 that Un+1 is l∞ stable.595

Remark B.1. Note that Lemma B.1 is true (in general) only if [I − ∆τLh] is an M matrix, and linear596

interpolation is used in operators (5.15-5.16).597
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