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Abstract

Many debt issues contain an embedded call option that allows the issuer to redeem the bond
at specified dates for a specified price. The issuer is typically required to provide advance notice
of a decision to exercise this call option. The valuation of these contracts is an interesting
numerical exercise because discontinuities may arise in the bond value or its derivative at call
and/or notice dates. Recently, it has been suggested that finite difference methods cannot be
used to price callable bonds requiring notice (Büttler, 1995; Büttler and Waldvogel, 1996). Poor
accuracy was attributed to discontinuities and difficulties in handling boundary conditions. As
an alternative, a semi-analytical method using Green’s functions for valuing callable bonds with
notice was proposed (Büttler and Waldvogel, 1996). Unfortunately, the Green’s function method
is limited to special cases. Consequently, it is desirable to develop a more general approach.
We provide this by using more advanced techniques such as flux limiters to obtain an accurate
numerical partial differential equation method. Finally, in a typical pricing model (Cox et al.,
1985) an inappropriate financial condition is required in order to properly specify boundary
conditions for the associated PDE. We show that a small perturbation of such a model is free
from such artificial conditions.
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1 Introduction

Interest rate derivative securities comprise the largest segment of the over-the-counter derivatives
market, having a total notional amount outstanding in excess of $60 trillion at the end of 1999 (Bank
for International Settlements, 2000). A large number of different models have been proposed to value
and hedge these securities. It is beyond the scope of this paper to review this literature. Interested
readers are referred to sources such as Hughston (1996) or Hull (2000) for further information
and references. There are, however, two general approaches. The first begins with a model for
the evolution of the instantaneous risk free interest rate r and proceeds via hedging arguments to
obtain a partial differential equation (PDE) which can be solved subject to appropriate boundary
conditions to value interest rate derivative securities. Two well-known examples of this approach
are contained in the papers by Vasicek (1977) and Cox et al. (hereafter CIR) (1985). While
this approach is fairly straightforward, it suffers from the drawback that it is not automatically
consistent with observed market prices for bonds. One way to circumvent this is to make some of the
parameters in the model time-dependent, as suggested by Hull and White (1990) among others. The
second approach, originated by Heath et al. (1992), involves modelling the movements of the entire
yield curve from the start. Since this takes the current term structure as an input to the model,
there is no need for time-dependent parameters. Unfortunately, this approach produces models
which are in general path-dependent and very difficult to implement. The only general purpose
technique which can be used for these types of models is Monte Carlo simulation. This suffers from
the drawback of being relatively slow. Moreover, Monte Carlo methods are typically problematic to
apply for American-style securities. Consequently, some authors have devoted attention to special
cases which are either Markovian or which have the property that the path-dependency can be
captured by a small number of additional state variables (e.g. Ritchken and Sankarasubramanian,
1995; Bhar et al., 2000).

Our focus in this paper is on callable bonds. A callable bond is a simple coupon-bearing bond
with an embedded option that allows the issuer to call the bond back at specified future dates
for a specified price. We concentrate on the first approach described above, where we have a
PDE representation of the value of the contract. By solving the PDE backward in time, optimal
decision making can be modelled in a straightforward manner. It is worth noting, however, that
our methods could be applied to special cases of the second approach such as Bhar et al. (2000). In
addition, although we concentrate on default risk free contracts, under certain assumptions callable
corporate debt issues subject to default risk could be handled by replacing the risk free rate r with
a risk-adjusted version, as in Duffie and Singleton (1999).

In practice, most callable bonds require that the issuer provide advance notice of a decision to
exercise the embedded call. A typical notice period would be in the range of one to four months.
Though often ignored in the literature (e.g. Brennan and Schwartz, 1977), this prior notice feature
has several interesting implications:

1. Discontinuities can arise in either the solution profile for a callable bond or its derivative
with respect to r at call and/or notice dates. As will be discussed in greater detail below,
this can produce problems such as spurious oscillations with numerical valuation schemes
if not handled appropriately. Indeed, Büttler (1995) suggested that it was not possible to
accurately value this type of contract using standard numerical PDE methods. We show that
this conclusion does not hold if an alternative discretization scheme is used. It also is worth
pointing out that our methods are applicable to any case where advance notice of exercise
must be provided. For example, putable bond contracts also often have this feature (Crabbe
and Nikoulis, 1997).
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2. The standard description of the optimal call policy for the issuer is to call the bond as soon
as its value reaches the call price (Brennan and Schwartz, 1977, p. 75). As noted by Bliss
and Ronn (1998), this is no longer correct when advance notice must be provided.1 As
an alternative, Bliss and Ronn introduce a “threshold volatility” level and compare it to
prevailing implied volatilities in order to determine whether calling is optimal when advance
notification is required. This approach requires iterative numerical searching to determine
the inputs for this volatility comparison. By contrast, the approach proposed in this paper
and described in further detail below avoids this searching and thus appears (to us at least)
to be simpler.

It is possible to derive an analytic expression for the Green’s function of the contingent claim
PDE for certain specific interest rate models. Büttler and Waldvogel (1996) follow this line and
develop a semi-analytic method for valuing callable bonds with notice. In addition to only being
applicable for specific models, this approach suffers from the drawback that the parameters of
the models are assumed to be constant. This precludes the use of time-dependent parameters to
calibrate the model to the current term structure. Our fully numerical approach is not limited
in this way. It is straightforward to extend the methods described in this paper to cases where
the Green’s function cannot be determined analytically, as well as to cases with time-dependent
parameters, or to models with more than one factor such as versions of the models proposed by
CIR (1985) or Duffie and Kan (1996) (among many others) which have two or three state variables.
However, in this paper we concentrate on single factor models with constant parameters which allow
for solutions using the Green’s function method of Büttler and Waldvogel (1996). This permits
comparison with our discretized PDE technique.

Finally, when considering numerical PDE methods, issues arise with regard to the discretization
of the boundary conditions. In particular, when we study single factor interest rate models with
positive interest rate domains such as that of CIR (1985), we need to analyze carefully the boundary
condition at r = 0 in order to avoid unneccessary restrictions on our models. We show that a slightly
perturbed CIR model avoids such restrictions and allows for a simple discretization at the boundary.

The outline of this paper is as follows. Section 2 describes the modelling framework and intro-
duces some definitions. Section 3 discusses two methods to solve the PDE model. In Section 4, we
study the boundary condition at r = 0 for a single factor interest rate model. Section 5 contains
numerical results, and conclusions are provided in Section 6.

2 Background

To fix ideas and notation, consider a single factor model. This factor is the instantaneous risk free
interest rate r which is assumed to follow a stochastic process of the form

dr = f(r, t)dt+ σ(r, t)rβdz, (1)

where f(r, t) is the instantaneous drift, σ(r, t)rβ is the instantaneous volatility, and dz is the
increment of a Wiener process. Note that equation (1) contains the well-known models of Vasicek
(1977) and CIR (1985) as special cases. In particular, if f(r, t) is specified to be mean-reverting

1There are other factors which can also cause the standard description of the optimal call policy to be incorrect.
Examples include market imperfections such as transactions costs (Mauer, 1993) or, in the case of corporate bonds,
capital structure changes (Longstaff and Tuckman, 1994). We ignore these alternative factors below, concentrating
exclusively on the effect of the advance notice provision and assuming that the issuer seeks to minimize the value of
the contract.
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and independent of time t, and σ(r, t) is a constant, then the restriction β = 0 produces the Vasicek
model and β = 1/2 corresponds to the CIR model. Based on standard hedging arguments, a PDE
for the value P (r, T ) of an interest rate contingent claim is

Pτ =
1
2
σ(r, τ)2r2βPrr + (f(r, τ) + σ(r, τ)q(r, τ)rβ)Pr − rP, (2)

where τ = T − t represents time evolving backward from the expiration date of the claim T to the
current time t and q(r, τ) is the market price of interest rate risk.

Various different types of claims can be valued by specifying suitable boundary and initial
conditions and solving the backward (in time) equation (2). Before considering some examples, we
remark that in equation (2) the term

1
2
σ(r, τ)2r2βPrr

is a diffusion term, while

(f(r, τ) + σ(r, τ)q(r, τ)rβ)Pr

is a first-order hyperbolic convective term. This latter term propagates information with a velocity
of −(f(r, t) + σ(r, t)q(r, τ)rβ). If it is large relative to the diffusion term, equation (2) is said to
be convection-dominant. It can then become difficult to solve accurately using standard numerical
methods.

The simplest type of claim which can be valued using equation (2) is a T year zero coupon bond
paying some fixed principal amount at maturity. This contract would involve the initial condition

P (r, τ = 0) = Principal.

The boundary conditions will depend on the particular interest rate model considered. These will
be discussed in further detail below. A slightly less trivial example is a coupon-bearing bond,
paying C (in dollars) at times tci for i = 1, . . . ,M where M is the number of coupon payments
prior to the maturity date T , plus a final coupon payment at T . The initial condition becomes

P (r, τ = 0) = Principal + C.

We then solve equation (2), enforcing the constraint

P (r, τ+
ci ) = P (r, τ−ci ) + C (3)

at each coupon payment date, where τ+
ci (τ−ci ) is the value of the bond an instant after (before) the

coupon payment.
We now turn to our main topic of callable bonds. Following Büttler and Waldvogel (1996), we

distinguish three types of these contracts:

1. European callable bond: the issuer has the right to call the bond at only one date (typically
the last coupon date before maturity).

2. American callable bond: the issuer may call the bond at any time.

3. Semi-American callable bond: the issuer has the right to call the bond at one of a specified
set of dates (usually coinciding with coupon dates). This type of contract is also known as a
Bermudan callable bond.
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Note that in the American/Bermudan cases, there is usually a “lock-out” period, defined as the
length of time from issuance until the first possible call date. A representative lock-out period
might be five years, but the range is from as short as a month to more than ten years. The most
common type is the semi-American contract, and we will concentrate primarily on this case in the
following.

For simplicity, however, we will first discuss the European case with a single possible call date,
this being the last coupon date prior to maturity. We denote this call/coupon date by tcM going
forward in time and define τcM = T − tcM . Similarly, the notice date is tnM , and τnM = T − tnM .
Going backward in time, we also define τ+

nM
(τ−nM ) as the time immediately after (before) the notice

date (see Figure 1). The value of this European callable bond K(r, T ) can be calculated as follows.
Let X(tcM ) denote the call price. As noted above, we will assume that it is optimal for the issuer
to minimize the value of the contract. Thus, the issuer will exercise the option if the value of the
callable bond exceeds the prevailing present value of the call price plus the coupon payment. The
interest rate at the notice date tnM where the issuer is indifferent between exercising the option
or not doing so is called the “break-even” interest rate, rb. This rate may be found by setting the
value of the callable bond immediately before the notice date (going backward in time) equal to
the discounted value of the call price

[X(tcM ) + C]P (rb, τnM − τcM )−K(rb, τ−nM ) = 0, (4)

where K(rb, τ−nM ) denotes the value of the callable bond an instant before the notice date and
where P (r, τ) is the discrete solution of equation (2) with initial condition P (r, 0) = 1 (thus,
P (r, τnM − τcM ) is the value at τnM of a zero coupon bond maturing at τcM with face value of
unity).

Once the break-even interest rate is found we need to update the price of the callable bond. For
the typical contractual specification, this should happen at the notice date. This will be referred
to as “Method 1” in this paper. Hence, the value of the callable bond an instant after the notice
date (solving backward in time) is

Kmethod1(r, τ+
nM

) =

{
[X + C]P (r, τnM − τcM ) if r ≤ rb,
K(r, τ−nM ) otherwise.

(5)

Then, we solve equation (2) with Kmethod1(r, τ+
nM

) as the initial condition at t = tnM back to the
present time t = t0, adding coupon payments along the way as described in equation (3). This type
of approach appears to have been followed by Büttler and Waldvogel (1996). However, it is puzzling
to note that Büttler (1995, p. 379) stated that updating the solution creates a discontinuity. This
is because a discontinuity cannot occur in this situation since the solution is updated at τ = τnM by
taking K(r, τ+

nM
) = min([X +C]P (r, τnM − τcM ),K(r, τ−nM )). A representative example illustrating

this for a particular case of the Vasicek (1977) model is provided in Figure 2(a). As the figure reveals,
there is no discontinuity in the solution profile, although there is in the derivative of the solution.
This could cause difficulties in obtaining accurate numerical estimates of hedging parameters unless
certain precautions are taken.

In order to provide a more stringent test for our numerical methods, it is instructive to consider
a slight variation of the typical callable bond contract. For the standard contract, recall that the
issuer announces on the notice date whether or not the bond will be called at the next call date. The
variation which we will study provides the issuer with some additional optionality, and thus will
lead to higher valuations for the embedded call feature. On the notice date, the issuer announces
that the bond will be called at the next call date if the prevailing value of r at the call date is less
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than or equal to some level r̂. This will create a discontinuity in the solution profile at the call date.
This will be referred to as “Method 2”. From the issuer’s perspective, the choice of r̂ presents an
interesting optimization problem. To solve this would require using higher dimensional methods,
and is beyond the scope of this paper. As our main purpose here is to study the numerical effects
of discontinuities, we shall simply assume that r̂ = rb, i.e. the issuer selects the same rate as the
break-even rate used in Method 1.

Figures 2(b) and 2(c) illustrate the discontinuity that arises using Method 2. For this contract,
the price of the callable bond an instant after the call date (going backward in time) is given by

Kmethod2(r, τ+
cM

) =

{
[X + C] if r ≤ rb,
K(r, τ−cM ) otherwise.

(6)

We then solve equation (2) with Kmethod2(r, τ+
cM

) as the initial condition at tcM back to the present
time t0, incorporating coupon payments as required.

We can now generalize these approaches to the more complicated and common case of the
semi-American callable bond. Suppose we have a T year bond with M coupon payments prior
to T and N < M call dates that coincide with the last N coupon payment dates before T . We
denote the coupon dates by tci , i = 1, . . . ,M and the notice dates by tnj , j = 1, . . . , N . Similarly,
τnj = T − tnj represents the time from the maturity date to notice date j, while τci = T − tci
represents the time from the maturity date to coupon date i. As for the European callable bond,
we work backward in time. An outline of the algorithm is as follows:

1. Solve equation (2) from T to tcM with initial condition

K(r, τ = 0) = Principal + C.

The solution is denoted by K(r, τ−cM ).

2. Add the coupon payment to the solution

K(r, τ+
cM

) = K(r, τ+
cM

) + C.

3. Solve for the present value of the call price

[X(tcM ) + C]P (r, τnM − τcM ),

from the call date τcM to the notice date τ−nM . Also solve (2) with K(r, τ+
cM

) as initial condition
for the same period, and denote the solution an instant before the notice date by K(r, τ−nM ).
Next compute the break-even interest rate using

[X(tcM ) + C]P (rb, τnM − τcM )−K(rb, τ−nM ) = 0.

Apply the solution updating method appropriate for either type of contract specification (i.e.
Method 1 or Method 2) and solve equation (2) to the next coupon payment.

4. Repeat steps 2-3 for the remaining call dates.

5. Solve back to the present t0, adding coupon payments at the remaining coupon dates as in
equation (3).
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3 Solving the One Factor Interest Rate Model

In this section, we discuss two methods to solve the PDE (2) for semi-American callable bonds with
notice. We begin by reviewing the Green’s function approach suggested by Büttler and Waldvogel
(1996). For our particular problem (2), the Green’s function G(r, τ, r′, τ ′) is defined as the solution
of

Gτ =
1
2
σ2r2βGrr +

(
f(r, τ) + σ(r, τ)rβq(r, τ)

)
Gr − rG+ δ(r′ − r, τ ′ − τ), (7)

where δ(r′ − r, τ ′ − τ) is the Dirac delta function and τ ′ = T − t′. The solution of equation (2) at
any given time (r, τ) is given by

P (r, τ) =
∫

Ω
G(r, τ, r′, τ ′ = 0)Φ(r′, τ ′ = 0)dr′, (8)

where Φ(r′, τ ′) represents the payoff function and Ω is the domain of r. For example, a zero coupon
bond paying a principal amount of $1 can be valued by solving

P (r, τ) =
∫

Ω
G(r, τ, r′, τ ′ = 0)dr′. (9)

A general algorithm for pricing semi-American callable bonds was presented in Section 2. In
the context of this particular method, we:

1. Solve equation (7) from T to tcM , with initial condition K(r, τ = 0) = Principal + C:

K(r, τ−cM ) =
∫

Ω
G(r, τcM , r

′, τ ′ = 0)K(r, τ = 0)dr′.

2. Add the coupon payment to the solution

K(r, τ+
cM

) = K(r, τ−cM ) + C.

3. Solve for the present value of the call price

[X(tcM ) + C]P (r, τnM − τcM ),

from the call date τcM to the notice date τ−nM

P (r, τnM − τcM ) =
∫

Ω
G(r, τnM − τcM , r

′, τ ′ = 0)[X(tcM ) + C]dr′.

Also solve (7) with K(r, τ+
cM

) as initial condition for the same period. The solution an instant
before the notice date is K(r, τ−nM ) is given by

K(r, τ−nM ) =
∫

Ω
G(r, τnM − τcM , r

′, τ ′ = 0)K(r, τ+
cM

)dr′.

Then compute the break-even interest rate by solving

[X(tcM ) + C]P (rb, τnM − τcM )−K(rb, τ−nM ) = 0.

Apply either Method 1 or Method 2 to update the solution and solve equation (7) to the next
coupon payment.
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4. Repeat steps 2-3 for the remaining call dates.

5. Solve back to t0, adding coupon payments at remaining coupon dates along the way.

Of course, applying this algorithm requires that we know the Green’s function G. This is only
available in special cases. The two cases considered by Büttler and Waldvogel (1996) are the
single factor models of Vasicek (1977) and CIR (1985) with constant parameters. The Green’s
functions for these two models have appeared in various papers in the literature (e.g. Jamshidian,
1987; Beaglehole and Tenney, 1991). In addition to a lack of generality, there are other potential
deficiencies with this approach. When valuing semi-American callable bonds, we need a separate
numerical integration for each coupon payment. With each integration introducing errors, it can
become very difficult to obtain accurate solutions. Moreover, the method is not directly applicable
to American type contracts. Since one of our objectives is to develop a general numerical PDE
method for valuing a variety of contracts, we will use this Green’s function approach to provide
validation tests for our numerical PDE approach.

We will now describe a second technique for solving equation (2). This numerical PDE approach
involves discretizing the equation using a finite volume method (Kröner, 1997). This is a powerful
and flexible approach which is popular in the field of computational fluid dynamics. It is particularly
useful for equations with convection-dominance. As we shall see, this is characteristic of interest
rate models with mean-reversion. A detailed analysis of finite volume methods in the context of
financial applications can be found in Zvan et al. (2000). Letting Pni denote the value of the claim
at interest rate node ri at time level n, the discretization can be written as

Ai

(
Pn+1
i − Pni

∆τ

)
=

γ

∑
j∈ηi

αij(Pn+1
j − Pn+1

i ) +
∑
j∈ηi

~Lij · ~ViPn+1
ij+ 1

2

− riAiPn+1
i

+

(1− γ)

∑
j∈ηi

αij(Pnj − Pni ) +
∑
j∈ηi

~Lij · ~ViPnij+ 1
2

− riAiPni

 , (10)

where

Ai =
ri+1 − ri−1

2
,

ηi = {i+ 1, i− 1},
∆τ = τn+1 − τn,
γ = temporal weighting (0 ≤ γ ≤ 1),

Pn+1
ij+ 1

2

= value of P at the face between nodes i and j,

αij =
σ(ri, τ)2r2β

i

2|rj − ri|
,

~Vi = −(f(ri, τ) + σ(ri, τ)q(ri, τ)rβi )̂i,

~Lij =

{
−î if j = i+ 1
+î if j = i− 1

,

î = unit vector in the positive r direction.
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The temporal weighting parameter determines the type of method as follows: when γ = 1 we have
a fully implicit method, for γ = 1/2 we have a Crank-Nicolson method, and for γ = 0 we have a
fully explicit method. Also, note that discretization (10) allows for a non-uniformly spaced grid.
Numerical efficiency is enhanced by having a fine grid spacing near regions of interest (e.g. close to
the current value of r) and a coarse spacing far away from such regions.

In order to mitigate the negative potential effects of convection-dominance, we use a van Leer
flux limiter in (10) to define Pij+ 1

2
(see Zvan, Forsyth, and Vetzal, 1998, for details). In the

Appendix, we derive the conditions under which

Pij+ 1
2

=


Pn+1
i +

φ

(
qn+1

ij+ 1
2

)
2 (Pn+1

j − Pn+1
i ) if ~Lij · ~Vi ≤ 0

Pn+1
j +

φ

(
qn+1

ji+ 1
2

)
2 (Pn+1

i − Pn+1
j ) if ~Lij · ~Vi > 0

(11)

with fully implicit temporal weighting on a non-uniform grid produces a positive coefficient dis-
cretization. This is useful in suppressing spurious oscillations arising from discontinuities. Here

φ

(
qn+1
ij+ 1

2

)
is the limiter function and

qij+ 1
2

=
Pn+1
i − Pn+1

2upij

Pn+1
j − Pn+1

i

.

The location of the second upstream point is given in Figure 3. In the fully implicit case (γ = 1),
for discretization (10) we require

1−
φ
(
qn+1
ji

)
2

≥ 0 and
φ

(
qn+1
ij+ 1

2

)
2qn+1
ij+ 1

2

≥ 0 (12)

to ensure that we have a positive coefficient scheme. If a Crank-Nicolson method is used, in addition
to conditions (12), we also have a condition on the allowed timestep size to ensure we still have a
positive coefficient scheme (see Zvan et al. (2000)).

4 Boundary Conditions

To complete our discretization, we need to specify boundary conditions. In the Vasicek model, this
is straightforward. In this model r is assumed to follow a mean-reverting process of the form

dr = κ(θ − r)dt+ σdz, (13)

where κ denotes the speed of adjustment and θ is reversion level. Moreover, the market price of
interest rate risk is specified as a constant q(r, τ) = q. As a result, for this particular model equation
(2) can be written

Pτ =
1
2
σ2Prr + (κ(θ − r) + σq)Pr − rP. (14)

In equation (13) the diffusion term is nonzero at r = 0, so it is possible for r to become negative. This
means that the interest rate domain for this model is from −∞ to +∞. No boundary condition
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needs to be imposed to solve equation (14) as |r| → ∞ since the first order term dominates
here, corresponding to information flow away from the origin. This convection-dominance for large
absolute values of r means that flux limiting techniques should be used to alleviate possible problems
with spurious oscillations. Intuitively, the reason why no boundary conditions are required is that
even though the PDE (14) is formally parabolic, it behaves numerically like a hyperbolic equation
for extreme absolute values of r.

In the single factor CIR model, the interest rate process is

dr = κ(θ − r)dt+ σ
√
rdz. (15)

The market price of interest rate risk is specified as q(r, τ) = −q̂r/σ
√
r, where q̂ is a constant,

implying that in this case the PDE (2) takes the form

Pτ =
1
2
σ2rPrr + (κ(θ − r)− q̂r)Pr − rP. (16)

The domain of definition for this model is r = [0,∞). As r →∞, P (τ, r →∞) = 0. The situation
as r → 0 is somewhat more complicated, however.

Letting r → 0 in equation (16), we obtain

Pτ = κθPr. (17)

Assuming κθ ≥ 0, equation (17) is a first order hyperbolic equation with outgoing characteristic.
This suggests that no boundary condition should be required at r = 0. However, at any finite
(positive) distance from the origin, there is still a diffusion (parabolic) term in equation (16).
Consequently, we expect that if the diffusion term tends to zero sufficiently rapidly as r → 0, then
equation (16) is essentially hyperbolic at r = 0, so that no boundary condition is required. However,
if the diffusion term does not tend to zero sufficiently rapidly, then equation (16) will require a
boundary condition at r = 0. This issue is resolved as a special case of results in Feller (1951).
There it is shown that for the CIR one factor model (16), no boundary condition is required at
r = 0 if 2κθ/σ2 ≥ 1.

From a financial point of view this is still not satisfactory. It does not make any sense to impose
a condition at r = 0 since this would imply that the price of a bond at r = 0 can be arbitrarily
specified. As such, the restriction 2κθ/σ2 ≥ 1 seems artificial and unnecessary. It follows from the
results of Oleinik and Radkevic (1973) that for any equation of the form

Pτ = a(r)Prr + b(r)Pr + c(r)P

no boundary condition is required at r = 0 as long as limr→0(b(r) − ar(r)) ≥ 0. Note that these
conditions have been generalized in Houston et al. (2000). For the CIR model this is just our
condition that 2κθ/σ2 ≥ 1.

The conditions of Oleinik and Radkevic lead one to naturally consider a perturbed version of
the CIR model, which we will call the ε-CIR model. This is a stochastic model for the short term
interest rate of the form

dr = κ(θ − r)dt+ σ
√
r1+εdz, (18)

where |ε| � 1. This ε-CIR process is practically indistinguishable from the case ε = 0, for any
r > 0, for |ε| sufficiently small. To simplify notation, in the following we will assume that the
market price of interest rate risk is zero (or, alternatively, that process (18) is specified under the
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risk-neutral measure). Using standard arguments, we obtain the following PDE for the price of an
interest rate contingent claim

Pτ =
1
2
σ2r1+εPrr + κ(θ − r)Pr − rP. (19)

Since limr→0(κ(θ − r)− 1
2σ

2(1 + ε)rε = κθ > 0 we see that process (18) has the desirable property
that no boundary is required at r = 0 for the corresponding PDE when ε > 0. Indeed this property
combined with the fact that it agrees with the CIR model as ε → 0 is the reason we consider this
perturbed model in the first place.

However, for our purposes it is not enough to know that there is no boundary required at r = 0
since we still need to know how to discretize (19) at r = 0. A naive argument implies that this
can be done by discretizing equation (17). However, because of the limiting procedures that we
are using one needs to carefully determine if this is indeed the case. In order to check this we look
at the power series solutions of the linear ordinary differential equations (ODEs) determined via
separation of variables and then take the limit as ε→ 0.

Let ε = 1/m with m an integer. If P (r, τ) = y(r)w(τ), then we obtain

wτ = λw,

and
1
2
σ2r1+1/myrr + κ(θ − r)yr − (r + λ)y = 0, (20)

where λ is independent of r and τ . We are interested in the behaviour of our solution as r → 0 and
so we investigate equation (20) by looking at series solutions. The change of variables r = xm gives

1
2
σ2

m2
x3−myxx +

(
1
2
σ2

m2
x2−m(1−m) +

κθ

m
x1−m − κ

m
x

)
yx − (xm + λ)y = 0. (21)

In this case the point x = 0 is an irregular singular point (Ritger and Rose, 1968), which implies
that we need to look for series solutions of the form

y(x) = xα exp(b/xζ)
∞∑
i=0

aix
i.

Here ζ corresponds to a slope of Newton’s polygon (Davenport et al., 1989) and b is the solution
of the corresponding characteristic equation. Using standard techniques for solving linear ODEs
with irregular singular points (Davenport et al., 1989) along with some rather tedious algebra, we
obtain a general solution of the form y(x) = C1y1(x) + C2y2(x), where

y1(x) = 1 +
λ

κθ
xm +O(x2m), (22)

y2(x) = xm+1 exp
(
m

2κθ
σ2x

)[
1 +

(
m+ 1
m

)
σ2

2κθ
x+O(xm+1)

]
. (23)

Substitution back to the original variable via x = r1/m gives y(r) = C1y1(r) + C2y2(r), where

y1(r) = 1 +
λ

κθ
r +O(r2), (24)

y2(r) = r(m+1)/m exp
(
m

2κθ
σ2

r−1/m

)[
1 +

(
m+ 1
m

)
σ2

2κθ
r1/m +O(r1+1/m)

]
= r1+ε exp

(
1
ε

2κθ
σ2

r−ε
)[

1 + (ε+ 1)
σ2

2κθ
rε +O(r1+ε)

]
. (25)
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Note that, for any fixed ε > 0,

lim
r→0

I(r)︷ ︸︸ ︷(
r1+ε exp

(
2κθ
σ2

r−ε

ε

))
=∞ (26)

and hence y2(r) is unbounded at r = 0. Consequently, if we require that the solution to equation
(19) be bounded as r → 0, we must exclude y2(r).

Consider now equation (17) and let P̂ (r, τ) = ŷ(r) · w(τ) be a solution of this PDE. Then we
obtain the two equations

wτ = λw,

κθŷr = λŷ. (27)

This implies that

ŷ(r) = Q exp(
λ

κθ
r) = Q(1 +

λ

κθ
r +O(r2))

for a constant Q. Therefore the bounded solution (24) agrees asymptotically as r → 0 (up to O(r2))
with the solution of equation (27). It then follows that in order to obtain convergence to the finite
solution of (19) as ε→ 0, it is only necessary to discretize equation (17) appropriately at r = 0.

We can complete our discretization now as follows. In the fully implicit case (γ = 1), at i = 0
(i.e. r = 0), equation (10) becomes

A0
Pn+1

0 − Pn0
∆τ

=
∑
j∈η0

~L0j · ~V0P
n+1
0j+ 1

2

. (28)

Assuming that ~V0 · î < 0, we obtain

A0
Pn+1

0 − Pn0
∆τ

= | ~V0|

Pn+1
1 +

φ

(
qn+1

10+ 1
2

)
2

(
Pn+1

0 − Pn+1
1

)+ Pn+1
0 | ~V0|, (29)

where we have used pure upstream weighting for the outgoing flux at r = 0. Equation (29) can be
written

Pn+1
0

1− | ~V0|
∆τ
A0

φ

(
qn+1

10+ 1
2

)
2

+ | ~V0|
∆τ
A0

 = Pn0 + | ~V0|
∆τ
A0

1−
φ

(
qn+1

10+ 1
2

)
2

Pn+1
1 , (30)

or

Pn+1
0

1 + | ~V0|
∆τ
A0

1−
φ

(
qn+1

10+ 1
2

)
2


 = Pn0 + | ~V0|

∆τ
A0

1−
φ

(
qn+1

10+ 1
2

)
2

Pn+1
1 . (31)
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Vasicek CIR Year Call Price
Maturity T 20.172 years κ 0.44178462 0.54958046 1–5 $1.000
Coupon C 4.25% σ 0.13264223 0.38757496 6 $1.005
Principal $1.000 θ 0.0348468515 0.0348468515 7 $1.010
Notice period 0.1666 years q, q̂ 0.21166329 -0.40663675 8 $1.015

9 $1.020
10 $1.025

Table 1: Input data used for the models considered. The data are as given in Büttler and Waldvogel
(1996). Note that the years for the call prices run backwards in time, so for example the bond is
callable at a price of $1.025 ten years before maturity. Coupon payments are on an annual basis.

This will be a positive coefficient method. At i = 0, if the usual limiter conditions are satisfied, it
follows immediately from equation (31) that

Pn+1
0 ≤ max(Pn0 , P

n+1
1 ) and Pn+1

0 ≥ min(Pn0 , P
n+1
1 ). (32)

In the Appendix, we show that (for γ = 1)

Pn+1
i ≤ max(Pn+1

j∈ηi , P
n
i ) for i 6= 0 (33)

and

Pn+1
i ≥ 1

1 + ri∆τ
min(Pn+1

j∈ηi , P
n
i ) for i 6= 0. (34)

In practice, we truncate the computational domain from [0,∞) to [0, rmax), where rmax is chosen
to be sufficiently large that computed values are not appreciably affected by the upper boundary.
Note that maxi(P 0

i ) = Principal + C. We then have

0 ≤ Pn+1
i ≤ Principal + number of coupon payments× C ∀i, n,

so that discretization (10) produces stable bounded solutions.
It is straightforward to consider the case where γ = 1

2 (Crank-Nicolson timestepping). As well as
the usual flux limiter conditions, we also obtain a condition on the timestep size in order to obtain
a positive coefficient discretization. This derivation is algebraically tedious, and not particularly
illuminating, so we omit the details here.

5 Results

In order to facilitate comparison with the Green’s function approach of Büttler and Waldvogel
(1996), we concentrate on the Vasicek and CIR models. Unless stated otherwise, we use Büttler
and Waldvogel’s input data (summarized in Table 1). Crank-Nicolson time weighting (γ = 1/2
in discretization (10)) was used. The discrete system of equations is nonlinear due to the use of
a flux limiter, and was solved with Newton iteration with a convergence tolerance of 10−5. The
Jacobian was solved using a direct method. We also used the automatic timestep selector defined
by Johnson (1987); an initial timestep is given and the next timestep is computed according to

τn+2 − τn+1

τn+1 − τn
=

d

maxi
|Pn+1
i −Pni |

max(1,|Pni |)

, (35)
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where d specifies the maximum relative change allowed. Recall that for the Vasicek model, the
PDE is defined on the domain r ∈ (−∞,∞), while for the CIR model r ∈ [0,−∞). In practice, the
computational domain is truncated to r ∈ [−rmax,+rmax] for the Vasicek model and r ∈ [0,+rmax]
for the CIR model. All the tests were run on a Sun Ultra Sparc and the CPU times are reported
in seconds.

5.1 The Effects of a Discontinuity in the Solution

We begin by considering the issues raised by the presence of a discontinuity in the solution. We
will consider here only the CIR model, since similar conclusions can be deduced for the Vasicek
model. Recall from Section 2 that using Method 2 to update the numerical solution will introduce
a discontinuity at each call date. This can drastically reduce the accuracy of the discretization
scheme unless certain precautions are taken.

It is well-known that Crank-Nicolson schemes are unconditionally stable. However, this property
does not prevent spurious oscillations from forming unless certain conditions are met (Zvan, Vetzal,
and Forsyth, 1998). Figures 4(a) and 4(b) illustrate what can happen when the first timestep chosen
is too large. Even though the plot for the callable bond price in Figure 4(a) looks reasonable, there
are slight oscillations present which become significantly amplified in the “delta” (i.e. ∂P/∂r) of
the callable bond (Figure 4(b)). Since delta is important for hedging purposes, methods should be
used which do not permit these oscillations to develop.

To explore this effect further, consider the following extreme example. The underlying asset is a
6 year zero-coupon bond that can only be called 1 year before maturity and the notice period is 4.5
years. Apart from this, we use the CIR interest rate model parameters from Table 1. This contract
is quite unrealistic, but it serves to illustrate numerical difficulties in an extreme case. Figures 5(a)
and 5(b) show oscillations in the solution profile for the bond price that again are amplified in the
bond delta.

One way to avoid the oscillations is to use a fully implicit method for a small number of timesteps
after any discontinuities arise and Crank-Nicolson thereafter. This technique has been described by
Rannacher (1984). It restores quadratic convergence, even in the presence of discontinuities. We
applied this method using two fully implicit timesteps after the call date to the extreme example
from Figure 5, and obtained the results shown in Figure 6. Even in this extreme case, the oscillations
have vanished. Returning to the more realistic callable bond described in Table 1, as we would
expect the use of the Rannacher technique removes the oscillations in this case as well (see Figure 7).

In order to obtain quadratic convergence in the presence of discontinuities, Rannacher (1984)
suggests that the actual initial condition should be replaced by its L2 projection onto the space
of basis functions. We experimented with this smoothing method (projection onto linear basis
functions), but did not notice any difference between smoothed and non-smoothed initial conditions.
We note that a variable timestepping algorithm is used here, unlike the constant timestep used in
Rannacher (1984). Since we always start with a very small timestep after the call date, we believe
that this explains our observations.

It might be supposed that the discontinuity will reduce the solution’s accuracy. To mitigate this
possible problem, we added points around the discontinuity by creating an automatic refinement
mechanism as follows. First, find the break-even interest rate rb, i.e. rb ∈ [ri, ri+1]. Then uniformly
add n nodes in [ri−1, ri+2], and interpolate the solution onto this locally refined grid. The break-
even value rb is recomputed. Since rb changes over time, it would be computationally expensive to
keep these extra points. Thus, each time rb is computed the grid is brought back to its original
state and new nodes are added only near the current rb. Experiments indicated that since the
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discontinuities were quite small, accuracy of the solution was not noticeably improved using adaptive
mesh refinement (if Rannacher’s method was used). Note that using local refinement will make
oscillations worse, since ∆t/∆r2 will be larger. Consequently, all examples presented in the following
used a non-adaptive grid combined with the Rannacher technique.

5.2 Convergence & Validation

We validate our finite volume approach by demonstrating the convergence of prices for the Vasicek
and CIR models. We consider different interest rate domains, and for each domain we double the
number of points three times. For each test, as we double the number of points we cut both the
initial timestep and the maximum relative change d (as in equation (35)) in half. In each case
we computed the price of the callable bond using both Method 1 and Method 2 as described in
Section 2. Table 2 contains the results.

The results demonstrate that our approach can accurately value callable bonds in a reasonable
computational time when we consider a sufficiently large domain. In particular, we observe that
a computational domain with r ∈ [−1, 1] and 680 points is accurate to about five figures for the
Vasicek model. We will use this domain and mesh/timestep parameters in subsequent Vasicek
examples. Similarly, Table 2 demonstrates that a computational domain of r ∈ [0, 2.5] and 306
nodes gives results correct to about four figures for the CIR model. This domain and mesh/timestep
parameters will be used in subsequent CIR examples.

In Table 3, we compare the results computed in this work using a numerical PDE approach
and Method 1 to the results in Büttler and Waldvogel (1996), where the semi-analytical Green’s
function technique was used. In the case of the CIR model, we obtain excellent agreement for both
the straight bond and the callable bond. However, for the Vasicek model, the results in Büttler
and Waldvogel (1996) and in this work agree only in the case of the straight bond. For the callable
bond, our results do not agree with those of Büttler and Waldvogel (1996).

As an additional check on the Vasicek results, we computed the price of the callable bond (for
both Method 1 and Method 2), using the Green’s function technique described in Section 3. We
experimented with different integration rules and found that the composite Simpson’s rule was the
most effective (the solutions were accurate to 4-5 digits). Convergence testing is summarized in
Table 4. Note that we used the same interest rate domains as in Table 2. Comparing Table 4 with
the value of a callable bond at r = .05 in Table 3, we see that for the same level of accuracy we
needed about 1000 nodes for the Green’s function integration, but only about 330 nodes for the
finite volume method.

Table 5 summarizes our results for the Vasicek model, using both Method 1 and Method 2.
The table shows that both the Green’s function and the numerical PDE approach are in excellent
agreement with each other for both methods. However, the results for Method 1 do not correspond
very closely with those in Büttler and Waldvogel (1996). We are unable to account for this dis-
agreement. There may be some subtle misunderstanding on our part concerning the input data
and parameters used in Büttler and Waldvogel (1996). Nevertheless, it would appear that for well
defined input data, the numerical PDE approach converges rapidly to the correct solution, for both
the Vasicek and the CIR models.

5.3 Some Further Results

We computed the value of a callable bond for both the Vasicek and CIR models using different
numbers of call dates (up to ten), with other data as in Table 1. With a single call date, the bond
is callable at the final coupon payment prior to maturity; with two call dates, it can be called at

15



t0 T

tnM

tcMtcM−1tc1

τcM

τnM

τ+
nM

τ−nM

τ0

Figure 1: Time line representation of a European callable bond. T is the maturity date, t0 is the
present time, τ0 = T − t0 is the length of time until maturity, and the coupon dates prior to T are
tci , i = 1, . . . ,M . The call date is tcM , and the notice date is tnM . In the backward direction, the
time immediately before (after) the notice date is τ−nM (τ+

nM ).
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(a) The solution for the callable bond if the
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(b) The solution for the callable bond if the
price is updated using Method 2, i.e. at the
call date.
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Figure 2: Updating the solution for a European callable bond using Method 1 and Method 2. The
case shown is for the Vasicek model, using the input data defined in Table 1.
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Figure 3: Schematic representation of the finite volume method.
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Figure 4: Results for finite volume method with 306 points for the interest rate domain [0, 2.5]
with initial timestep 0.002 and maximum relative change allowed d = 0.02. Results are for the CIR
model with input data from Table 1. Method 2 was used to update the solution at the call dates.
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Figure 5: Price and delta of a 6 year callable bond that can be called 1 year before the maturity
date. The notice period is 4.5 years. The results are for the finite volume method with 306 points
for the interest rate domain [0, 2.5] with initial timestep 0.2 and maximum relative change allowed
d = 0.2. Results are for the CIR model using Method 2 to update the solution at the call date.
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Figure 6: Price and delta of a 6 year callable bond that can be called 1 year before the maturity
date. The notice period is 4.5 years. The results are for the finite volume method with 306 points
for the interest rate domain [0, 2.5] with initial timestep 0.2 and maximum relative change allowed
d = 0.2. Results are for the CIR model using Method 2 to update the solution at the call date. The
method of Rannacher (1984) was used with two fully implicit timesteps immediately after the call
date, and Crank-Nicolson otherwise.
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Figure 7: Results for finite volume method with 306 points for the interest rate domain [0, 2.5]
with initial timestep 0.002 and maximum relative change allowed d = 0.02. Results are for the CIR
model with input data from Table 1. Method 2 was used to update the solution at the call dates.
The method of Rannacher (1984) was used with two fully implicit timesteps immediately after the
call date, and Crank-Nicolson otherwise.
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Method 1 Method 2
Number of Initial Maximum Computed CPU Computed CPU
Grid Points Time Step Change d Value (sec.) Value (sec.)

Vasicek Model
r ∈ [−0.5, 0.5]

120 8.10−3 0.08 0.76563 1.22 0.75912 1.14
280 4.10−3 0.04 0.76567 2.72 0.75912 2.62
580 2.10−3 0.02 0.76596 5.78 0.75913 5.41

1200 1.10−3 0.01 0.76568 13.56 0.75914 12.07
r ∈ [−1.0, 1.0]

140 8.10−3 0.08 0.77846 1.54 0.77184 1.40
330 4.10−3 0.04 0.77864 3.24 0.77184 3.16
680 2.10−3 0.02 0.77868 6.92 0.77203 6.37

1400 1.10−3 0.01 0.77869 14.96 0.77204 13.87
r ∈ [−1.5, 1.5]

150 8.10−3 0.08 0.77846 1.62 0.77184 1.48
350 4.10−3 0.04 0.77864 3.42 0.77198 3.17
730 2.10−3 0.02 0.77868 6.97 0.77203 6.80

1500 1.10−3 0.01 0.77869 16.36 0.77204 15.06
CIR Model
r ∈ [0.0, 1.5]

81 8.10−3 0.08 0.85051 0.63 0.84913 0.63
161 4.10−3 0.04 0.84978 1.30 0.84841 1.16
301 2.10−3 0.02 0.84972 2.29 0.84830 2.30
621 1.10−3 0.01 0.84972 4.98 0.84829 5.16

r ∈ [0.0, 2.5]
86 8.10−3 0.08 0.85060 0.65 0.84920 0.67

166 4.10−3 0.04 0.84987 1.49 0.84847 1.25
306 2.10−3 0.02 0.84980 2.37 0.84837 2.29
626 1.10−3 0.01 0.84980 5.06 0.84835 5.08

r ∈ [0.0, 3.5]
87 8.10−3 0.08 0.85060 0.96 0.84920 0.65

167 4.10−3 0.04 0.84987 1.95 0.84847 1.20
307 2.10−3 0.02 0.84980 2.38 0.84837 2.28
627 1.10−3 0.01 0.84980 5.07 0.84835 5.14

Table 2: Convergence results for the Vasicek and CIR models. The input data is from Table 1.
The computed values are given for r = .05.
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This work Büttler and Waldvogel (1996)
r Straight Bond Callable Bond Straight Bond Callable Bond

Vasicek Model
0.01 0.92739 0.84282 0.9274 0.8556
0.02 0.90892 0.82627 0.9089 0.8338
0.03 0.89084 0.81007 0.8908 0.8223
0.04 0.87315 0.79420 0.8731 0.8062
0.05 0.85583 0.77868 0.8558 0.7904
0.06 0.83887 0.76348 0.8389 0.7749
0.07 0.82228 0.74860 0.8223 0.7598
0.08 0.80604 0.73403 0.8060 0.7450
0.09 0.79014 0.71977 0.7901 0.7305
0.10 0.77458 0.70578 0.7746 0.7163
0.11 0.75935 0.69214 0.7594 0.7024
0.12 0.74444 0.67875 0.7445 0.6888
0.13 0.72985 0.66565 0.7299 0.6755
0.14 0.71556 0.65283 0.7156 0.6625
0.15 0.70158 0.64027 0.7016 0.6497
0.16 0.68789 0.62798 0.6879 0.6372
0.17 0.67450 0.61594 0.6745 0.6250
0.18 0.66138 0.60416 0.6614 0.6130
0.19 0.64854 0.59262 0.6486 0.6013
0.20 0.63597 0.58132 0.6360 0.5898

CIR Model
0.01 0.95527 0.93926 0.9552 0.9392
0.02 0.93155 0.91598 0.9315 0.9159
0.03 0.90846 0.89333 0.9084 0.8933
0.04 0.88599 0.87127 0.8859 0.8712
0.05 0.86411 0.84980 0.8641 0.8498
0.06 0.84281 0.82890 0.8428 0.8289
0.07 0.82207 0.80855 0.8220 0.8085
0.08 0.80188 0.78874 0.8018 0.7887
0.09 0.78223 0.76945 0.7822 0.7694
0.10 0.76309 0.75067 0.7631 0.7507
0.11 0.74446 0.73238 0.7444 0.7324
0.12 0.72633 0.71458 0.7263 0.7146
0.13 0.70867 0.69725 0.7086 0.6973
0.14 0.69147 0.68038 0.6915 0.6804
0.15 0.67473 0.66394 0.6747 0.6640
0.16 0.65844 0.64795 0.6584 0.6480
0.17 0.64257 0.63237 0.6426 0.6324
0.18 0.62711 0.61720 0.6271 0.6172
0.19 0.61207 0.60243 0.6121 0.6025
0.20 0.59742 0.58805 0.5974 0.5881

Table 3: Comparison of our results with those of Büttler and Waldvogel (1996) using input data
from Table 1.
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Vasicek Model (Green’s Function Approach)
Number of Method 1 Method 2
Grid Points Value CPU (sec.) Value CPU (sec.)

r ∈ [−0.5, 0.5]
100 0.77542 1.93 0.76826 2.78
200 0.78329 7.60 0.76886 11.1
500 0.77580 47.4 0.76916 69.3

1000 0.77588 189.9 0.76922 276.9
r ∈ [−1.0, 1.0]

200 0.77908 7.66 0.77190 11.1
400 0.78647 30.5 0.77971 44.5

1000 0.77870 190.6 0.77205 278.0
2000 0.77870 763.3 0.77202 1112.4

r ∈ [−1.5, 1.5]
300 0.77907 17.4 0.77189 25.2
600 0.77878 69.3 0.77205 101.2

1500 0.77870 432.1 0.77202 629.2
2400 0.77870 1734.9 0.77202 2520.5

Table 4: Convergence tests for the Vasicek model using the Green’s function approach of Büttler
and Waldvogel (1996). The input data used is contained in Table 1. Results are for r = .05.

This work Büttler and
Method 1 Method 2 Waldvogel

r Finite Volume Green’s Function Finite Volume Green’s Function (1996)
0.01 0.84282 0.84285 0.83555 0.83556 0.8556
0.02 0.82627 0.82630 0.81916 0.81917 0.8338
0.03 0.81007 0.81009 0.80311 0.80313 0.8223
0.04 0.79420 0.79423 0.78741 0.78743 0.8062
0.05 0.77868 0.77870 0.77203 0.77205 0.7904
0.06 0.76348 0.76350 0.75698 0.75700 0.7749
0.07 0.74860 0.74862 0.74225 0.74226 0.7598
0.08 0.73403 0.73405 0.72782 0.72784 0.7450
0.09 0.71977 0.71979 0.71370 0.71372 0.7305
0.10 0.70578 0.70583 0.69987 0.69989 0.7163
0.11 0.69214 0.69216 0.68634 0.68635 0.7024
0.12 0.67875 0.67878 0.67308 0.67310 0.6888
0.13 0.66565 0.66568 0.66011 0.66013 0.6755
0.14 0.65283 0.65285 0.64741 0.64743 0.6625
0.15 0.64027 0.64030 0.63497 0.63499 0.6497
0.16 0.62798 0.62800 0.62280 0.62282 0.6372
0.17 0.61594 0.61597 0.61088 0.61090 0.6250
0.18 0.60416 0.60418 0.59921 0.59923 0.6130
0.19 0.59262 0.59264 0.58778 0.58780 0.6013
0.20 0.58132 0.58135 0.57659 0.57661 0.5898

Table 5: Comparison of finite volume approach with our implementation of Büttler and Waldvogel
(1996)’s Green’s function method and the results reported in Büttler and Waldvogel (1996). The
input data used is contained in Table 1.
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Vasicek CIR
Number of Break-even Value CPU Break-even Value CPU
Call Dates Interest Rate (sec.) Interest Rate (sec.)

1 0.02707322 0.84328 4.01 0.03389193 0.85838 1.93
2 -0.01013280 0.83244 4.31 0.01792222 0.85420 2.10
3 -0.03657688 0.82297 4.55 0.00978074 0.85155 2.35
4 -0.05703286 0.81456 4.85 0.00487097 0.85019 2.38
5 -0.07352697 0.80696 5.10 0.00156474 0.84980 2.62
6 -0.09102469 0.80034 5.33 n.a. 0.84980 2.81
7 -0.10484371 0.79433 5.57 n.a. 0.84980 2.83
8 -0.11656572 0.78877 5.90 n.a. 0.84980 2.85
9 -0.12673856 0.78358 6.16 n.a. 0.84980 2.87
10 -0.13569428 0.77868 6.48 n.a. 0.84980 2.91

Table 6: Callable bond values and break-even interest rates for the Vasicek and CIR models, with
different number of call dates. The solution is updated using Method 1 to facilitate comparison with
results reported in Büttler and Waldvogel (1996). The break-even interest rates are for the first call
date (going forward in time). The values are reported for r = .05.
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Figure 8: Value of embedded call option for various numbers of call dates. The input data are
given in Table 1.

the last two coupon payments before T , and so on. The results are shown in Table 6. Intuitively,
we expect that as the number of call dates increases, the value of the callable bond will decrease.
In other words, the value of the embedded call option,

Embedded Option = Pbond − Pcallable bond,

increases with the number of call dates. This is illustrated in Figure 8. We used Method 1 to
model the call policy in order to have results comparable with Büttler and Waldvogel (1996). As
can be seen in Table 6, we obtain negative break-even interest rates for the Vasicek model. For
the CIR model, there is no break-even interest rate when there are more than five call dates. In
other words, it is not optimal to call the bond for any value of r before the fifth coupon date prior
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Vasicek CIR
Number of Method 1 Method 2 Method 1 Method 2
Call Dates

1 0.84328 0.84219 0.85838 0.85780
2 0.83244 0.83043 0.85420 0.85309
3 0.82297 0.82017 0.85155 0.85002
4 0.81456 0.81106 0.85019 0.84837
5 0.80696 0.80284 0.84980 0.84837
6 0.80034 0.79566 0.84980 0.84837
7 0.79433 0.78913 0.84980 0.84837
8 0.78877 0.78307 0.84980 0.84837
9 0.78358 0.77739 0.84980 0.84837
10 0.77868 0.77203 0.84980 0.84837

Table 7: Comparison of Method 1 vs. Method 2 for computing the value of a callable bond for
various numbers of call dates. Values are given for r = .05.
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Figure 9: Comparison of Method 1 vs. Method 2 for valuation of embedded call option with different
numbers of call dates. The input data are given in Table 1.

to maturity. As a result, the value of the callable bond does not change when the number of call
dates increases beyond five.

It is worth observing that we find that values of callable bonds computed using Method 1 are
higher than those using Method 2. This is illustrated in Table 7 and Figure 9. As noted above, this
is to be expected since the issuer has some additional optionality under Method 2. The resulting
higher valuation for the call feature is then reflected in a lower valuation for the callable bond.

6 Conclusions

In contrast to the claims by Büttler (1995) and Büttler and Waldvogel (1996), we find that a fully
numerical PDE method can be used to accurately and efficiently determine the price of callable
bonds with notice. The fully numerical PDE method can be used in cases where the analytic
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Green’s function cannot be determined, which would normally be the case when time-dependent
parameters are used to match the initial term structure. The PDE method converges approximately
quadratically, even in the presence of the discontinuity introduced at the call date if Method 2 is
used to update the solution. It is, however, important to use an appropriate discretization method
for cases where the PDE becomes convection-dominant, both to avoid spurious oscillations, and
to ensure that correct boundary conditions are applied. It is also necessary to use the method
described in Rannacher (1984) for timestepping, in order to suppress oscillations in delta induced
by the discontinuity.

We have also carried out an analysis of the boundary condition required at r = 0 for the CIR
model. As formally specified, the CIR model may require a boundary condition at r = 0 for certain
parameter values. We have proposed a perturbed problem which does not require a boundary
condition at r = 0. We have then utilized a discretization method which ensures convergence of the
numerical algorithm for the perturbed problem and which does not require a boundary condition
at r = 0.

Appendix

In this appendix, we will derive the conditions under which discretization scheme (10) produces a
positive coefficient scheme for the PDE (2). In general, a positive coefficient method ensures that
spurious oscillations will not be generated. In this appendix, we follow the arguments given in Zvan
et al. (2000), which we provide here for the convenience of the reader. For simplicity we will only
consider the fully implicit case (γ=1); the Crank-Nicolson case (γ = 1

2) can be derived analogously
(Zvan, Forsyth, and Vetzal, 1998). Substituting γ = 1 into (10) gives
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where φ
(
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2

)
is the limiter function (see Zvan, Forsyth, and Vetzal, 1998) and
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we can rewrite (38) as
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If we require all of the coefficients of P in (41) to be positive, then we must ensure that
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If conditions (45) and (44) are met, then all coefficients of P in (41) are positive and we can employ
the maximum principle. By defining Pmax
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i ), we can rewrite equation (41) as
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This simplifies to
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