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1 Introduction1

Inflation is now on everyone’s mind. We have just been through a long period of benign inflation,2

and low (real) short term interest rates. Some would argue that this has led to a bubble in asset3

prices. Now, after the Covid crisis, we are seeing high inflation statistics in most of the world.4

Going forward, we have to be cognizant of the risk of inflation. If we enter into a long period5

of even moderate inflation (i.e. something like the 5% per year that we observed (in Canada)6

during 1950-1983, see Hatch and White (1985)), will the traditional passive approach using a mix7

of capitalization weighted stock indexes and moderate term bonds still work?8

Our objective in this white paper is to filter the historical time series (1926-2022) to uncover9

periods of high, sustained inflation. We concatenate these high inflation regimes, to produce a series10

of returns which were observed in inflationary times. We then examine the performance of various11

asset allocation strategies, by bootstrapping returns from the high inflation series. We consider a12

long term investor, with an investment horizon of 30 years. This would be typical of an investor13

saving for retirement. This is also relevant for a 65-year old retiree planning an investment strategy14

to age 95.15

We can think of this concatenated series of high inflation regimes to be a stress test for a portfolio16

allocation strategy. We believe that the probability of a thirty year period of high inflation is low.17

However, it is instructive to see the effects of long term inflation on traditional allocation strategies.18

Our main conclusion is that an investor should use a mix of short-term bonds and an equal-19

weighted stock index, to mitigate inflationary effects. In the event that inflation does not materialize,20

this portfolio should still do reasonably well.21

2 Data22

We use data from the Center for Research in Security Prices (CRSP) on a monthly basis over the23

1926:1-2022:1 period.1 2 We also use the the U.S. CPI index, also supplied by CRSP.24

aDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
paforsyt@uwaterloo.ca, +1 519 888 4567 ext. 34415.

1The date convention is that, for example 1926:1 refers to January 1, 1926.
2More specifically, results presented here were calculated based on data from Historical Indexes, ©2022 Center for

Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data
Services (WRDS) was used in preparing this article. This service and the data available thereon constitute valuable
intellectual property and trade secrets of WRDS and/or its third-party suppliers.
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Our objective is to select high inflation periods as determined by the CPI. Monthly data is quite25

volatile, so we used the following filtering procedure. We use a moving window of k months, and26

we determine the cumulative CPI index log return (annualized) in this window. If the cumulative27

annualized CPI is greater than a cutoff, then all the months in the window are flagged as part of a28

high inflation regime. Note that some months may appear in more than one moving window. Any29

months which do not meet this criteria are considered to be in low inflation regimes. See Algorithm30

A.1 for the filtering pseudo-code.31

This approach requires specification of the cutoff, and the window size. The average annual32

inflation over the period 1926:1-2022:1 was 2.9%. In other words, inflation of about 3% was normal.33

After some experimentation, we used a cutoff of 5%. Figure 2.1 shows the filtering results for34

windows of size 12, 60 and 120 months. We can see that the five year window produces two obvious35

inflation regimes: 1940:8-1951:7 and 1968:9-1985:10, which correspond to well known market shocks36

(i.e. the second world war, and price controls; the oil price shocks and stagflation of the seventies).37

Increasing the window size to 10 years, resulted in similar looking plots as the five year window size,38

but the number of months in each window increased, and lowered the average inflation rate. Since39

our objective is to determine the effect of high inflation periods on allocation strategies, we decided40

to use the five year window results.41
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Figure 2.1: High inflation regimes, using the moving window method, with the window size shown.
The cutoff for high inflation regimes was 0.05. High inflation months have a label value of one, and
low inflation months have a label value of zero. CPI data in the range 1926:1-2022:1.

Table 2.1 shows the average annual inflation over the two regimes identified from the moving42

window filter.

Time Period Average Annualized Inflation
1940:8-1951:7 .0564
1968:9-1985:10 .0661

Table 2.1: Inflation regimes determined using a five year moving window with a cutoff of 0.05.

43

For possible investment assets, we considered the 30-day T-bill index (CRSP designation “t30ind”),44

and we also constructed a constant maturity ten year US treasury index. 3 4
45

3The 10-year Treasury index was generated from monthly returns from CRSP back to 1941 (CRSP designation
“b10ind”). The data for 1926-1941 were interpolated from annual returns in Homer and Sylla (2005).

4The 10-year treasury index is constructed by (a) buying a ten year treasury at the start of each month, (b)
collecting interest during the month, and then (c) selling the treasury at the end of the month. We repeat the process
again at the start of the next month. The gains in the index then reflect both interest and capital gains and losses.
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In addition, we also studied the Capitalization weighted index (CapWt) and the equal weight46

index (EqWt), also from CRSP.5 We remind the reader that the CRSP indexes are total return47

indexes, which include all distributions for all domestic stocks trading on major U.S. exchanges. All48

of these various indexes are in nominal terms, so we adjust them for inflation by using the U.S. CPI49

index, also supplied by CRSP.50

As an initial filter for these assets, we assume that each real (deflated) index follows geometric51

Brownian motion (GBM). For example, given an index with value S, then52

dS = µS dt+ σS dZ (2.1)

where dZ is the increment of a Wiener process. We use maximum likelihood to fit the drift rate53

µ (expected arithmetic return) and volatility σ in each regime, for each index, as shown in Table54

2.2. We also show a series constructed by: converting the indexes in each regime to returns,55

concatenating the two return series, and converting back to an index. This concatenated index does56

not, of course, correspond to an actual historical index, but is a pseudo index constructed from57

high-inflation regimes. This amounts to a worst case sequence of returns, that could plausibly be58

expected during a long period of high inflation.59

It is striking that in each regime in Table 2.2, the drift rate µ for the equal weight index is60

much larger than the drift rate for the capitalization weighted index. Observe that the geometric61

return (i.e. the median return assuming GBM) for the capitalization weighted index, in the period62

1968:9-1985:10, was only about one per cent per year.63

It is also noticeable that bonds performed very poorly in the period 1940:8-1951:7. As well,64

during the period 1968:9-1985:10, there was essentially no term premium for 10-year treasuries,65

compared with 30-day T-bills. In addition, the 10-year treasury index had a much higher volatility66

compared to the 30-day T-bill index. Looking at the concatenated series, it appears that 30-day67

T-bills, are arguably the defensive asset here, since the volatility of this index is quite low (but with68

a negative (real) drift rate).69

2.1 Bonds70

It is instructive to examine the real returns of short and long term bonds over the entire 1926:1-71

2022:1 period. These indexes are shown in Figure 2.2.72

We can observe the following from Figure 2.2.73

• Over the long term, short term T-bills are, at best, stores of real value. You can’t expect to74

generate real returns using short term bonds. But you won’t lose much either.75

• Long term bonds are sometimes very bad investments. For example, if you bought a 10 year76

treasury index in 1940, and held it until 1980, you would have lost about one-half of your real77

wealth.78

• This contrasts with the last 40 years, where long term bonds have been fantastic investments.79

However, this was due to falling interest rates and low inflation. We can’t expect this to80

continue.681

5The capitalization weighted total returns have the CRSP designation “vwretd”, and the equal weighted total
returns have the CRSP designation “ewretd”.

6Consider the risk parity idea applied to a portfolio consisting of a stock index, a long term bond index, and cash.
In this case, in an attempt to equal weight the risk, the final portfolio will be: long the stock index, and with a large
long term bond component, financed by borrowing cash. In other words, this will be a highly leveraged long term
bond and stock portfolio. We can see from Figure 2.2 that this was a great idea for the last 40 years. However, it is
unlikely that we can extrapolate the long term bond index forward for the next 40 years, based on the last 40 years.
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Index µ σ µ− σ2/2
1940:8-1951:7

CapWt 0.079 0.140 .069
EqWt 0.145 0.190 .127
10 Year Treasury -0.035 0.036 -.036
30-day T-bill -0.050 0.029 -.050

1968:9-1985:10
CapWt 0.026 0.164 .013
EqWt 0.065 0.220 .041
10 Year Treasury 0.011 0.093 .007
30-day T-bill 0.009 0.012 .009

Concatenated: 1940:8-1951:7 and 1968:9 - 1985:10
CapWt 0.049 0.156 .038
EqWt 0.098 0.209 .076
10 Year Treasury -0.008 0.076 -.011
30-day T-bill -0.014 0.022 -.014

Table 2.2: GBM parameters for the indexes shown. All indexes are real (deflated). µ is the expected
annualized arithmetic return. σ is the annualized volatility. (µ − σ2/2) is the annualized geometric
mean return (the median return assuming GBM).
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Figure 2.2: Short and long term constant maturity bond indexes, data in the range 1926:1-2022:1.
All indexes are deflated using the CPI.

Consequently, in the following, we will focus attention on 30-day T-bills, the capitalization82

weighted index, and the equal weight index.83

3 Bootstrap Resampling84

We will be testing allocation strategies using stationary block bootstrap resampling (Politis and85

Romano, 1994; Politis and White, 2004; Patton et al., 2009; Dichtl et al., 2016; Forsyth and Vetzal,86

2019; Ni et al., 2022). See Appendix B for detailed pseudo code for bootstrap resampling. Briefly,87

each bootstrap resample consists of (i) selecting a random starting date in the historical return88

series, (ii) then selecting a block (of random size) of consecutive returns from this start date, and89
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Data series Optimal expected
block size b̂ (months)

Real 30-day T-bill index 26
Real CRSP cap-weighted index (CapWt) 2
Real CRSP equal-weighted index (EqWt) 4

Table 3.1: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric distribution
Pr(b = k) = (1 − v)k−1v. The algorithm in Patton et al. (2009) is used to determine b̂. Sample
period: concatenated returns:1940:8-1951:7 and 1968:9-1985:10.

(iii) repeating this process until a sample of the total desired length is obtained.90

An important parameter is the expected blocksize, which, informally, is a measure of serial91

correlation in the return data. Table 3.1 shows estimates for the expected blocksize, for each return92

series, using the algorithm in Patton et al. (2009). It appears that the stock return data have very93

little serial correlation. However, the expected blocksize for the real 30-day T-bill index is about94

2 years. This is not surprising, since short term rates are primarily driven by central banks, and95

hence are quite sticky. This poses a bit of a problem with our concatenated series, since there is96

a break in the data between the two historical regimes of high inflation. However, we will show97

results using a range of blocksizes, including i.i.d. assumptions (i.e. blocksize equal to one month).98

We will see that the results are relatively insensitive to blocksize.99

3.1 Use of concatenated series100

We view it as unlikely that a period of high inflation will persist over a 30 year period. However,101

the two periods of sustained, high inflation, during the last 100 years, total to about 28 years.102

By concatenating these periods of high inflation into a lengthy pseudo series of continuous high103

inflation, we view this pseudo series as a stress test for allocation strategies. Note that each of the104

data series in the two high inflation regimes are actual historical time series. The only liberty we105

have taken from the historical record is to concatenate the returns of these two disjoint (in time)106

high inflation regimes.107

4 Investment Scenario108

The details of the investment scenario are given in Table 4.1. Briefly, we begin with an initial wealth109

of 1000, with no further cash injections and withdrawals. The investment horizon is thirty years,110

with annual rebalancing to a weight of 60% in stocks and 40% in bonds. We evaluate the investment111

results by examining the distribution of the final wealth WT at T = 30 years.112

5 More on Bootstrap Resampling113

As discussed, we will use bootstrap resampling (Politis and Romano, 1994; Politis and White, 2004;114

Patton et al., 2009; Dichtl et al., 2016), to analyze the performance of using the equal weight index115

compared to the capitalization weighted index, during periods of high inflation (our concatenated116

series: 1940:8-1951:7, 1968:9-1985:10).117

First, we examine the effect of the expected blocksize parameter in the bootstrap resampling118

algorithm. We will use a paired sampling approach, where we simultaneously draw returns from119
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Investment horizon T (years) 30.0
Equity market indexes CRSP cap weighted index (real)

CRSP equal weighted index (real)
Bond index 30-day T-bill (US) (real)
Index Samples Concatenated 1940:8-1951:7, 1968:9-1985:10
Initial portfolio wealth W0 1000
Rebalancing times (years) t = 0,1.0, 2.0, . . . , 29.0
Cash Injections/withdrawals None
Equity fraction range 0.60 at each rebalancing
Rebalancing interval (years) 1.0

Table 4.1: Investment scenario.

the bond and stock indexes.7 The algorithm in Politis and White (2004) was developed for single120

asset time series. It is therefore out of theory to apply the results in Table 3.1 to paired sampling.121

In Table 5.1, we examine the effect of different blocksizes on the statistics of stationary block122

bootstrap resampling. If we choose the blocksize based on the heuristic (.60 × (blocksizeequity) +123

.40× (blocksizebonds)) then a blocksize of one year seems reasonable.124

Expected blocksize (months) Median[WT ] E[WT ] std[WT ] ES (5%)
1 4161.0 5409.6 4506.6 994.5
3 4352.6 6207.1 6334.0 816.7
6 4423.2 6467.5 6881.4 752.3
12 4483.9 6478.7 6688.7 756.3
24 4547.7 6292.5 5969.0 820.5

Table 5.1: Effect of expected blocksize, on the statistics of the final wealth WT at T = 30 years. Con-
stant weight, scenario in Table 4.1. Equity weight: 0.60, rebalanced annually. Bond index: 30-day
T-bill. Equity index: equal weight. Concatenated series: 1940:8-1951:7, 1968:9-1985:10 (high infla-
tion regimes). All quantities are real (inflation adjusted). Initial wealth 1000. Bootstrap resampling,
106 resamples (Appendix A.1).

Perhaps a more visual way of analyzing the effect of the expected blocksize is shown in Figure125

5.1, where we show the cumulative distribution function (CDF) of the final wealth after 30 years, for126

different blocksizes. We show the CDF since this gives us a visualization of the entire final wealth127

distribution, not just a few summary statistics.128

Since the data frequency is at one month intervals, specifying a geometric mean expected block-129

size of one month means that the blocksize is always a constant one month. This effectively means130

that we are assuming that the data is i.i.d. However, the one-month results are an outlier, compared131

to the other choices of expected blocksize. There is hardly any difference between the CDFs for any132

choice of expected blocksize in the range 3-24 months. From this point on, we will use an expected133

blocksize of 12 months (one year).134

7This preserves correlation effects.
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Figure 5.1: Cumulative distribution function (CDF), final wealth WT at T = 30 years, effect of
expected blocksize. Constant weight, scenario in Table 4.1. Equity weight: 0.60, rebalanced annually.
Bond index: 30-day T-bill. Equity index: equal weight. Concatenated series: 1940:8-1951:7, 1968:9-
1985:10 (high inflation regimes). All quantities are real (inflation adjusted). Initial wealth 1000.
Bootstrap resampling, expected blocksize one year, 106 resamples (Appendix A.1).

6 Stochastic Dominance135

We remind the reader of the concept of first order stochastic dominance. Suppose have two invest-136

ment strategies, A and B. Consider the CDFs (cumulative distribution functions) of both strategies,137

as a function of the terminal wealth W . We denote the CDF of strategy A by FA(W ) and that of138

strategy B by FB(W ). If WT is a possible value of wealth at time T , then we can interpret the CDF139

FA(W ) as140

Prob(WT < W ) = FA(W ) . (6.1)

Strategy A stochastically dominates (in the first order sense) strategy B if141

FA(W ) ≤ FB(W ) , (6.2)

and there exists at least one point Ŵ such that FA(Ŵ ) < FB(Ŵ ). This means that strategy A142

never gives a lower level of terminal wealth at every level of probability, compared to strategy B.143

And there is at least one value of wealth such that strategy A achieves this wealth at a higher144

probability than strategy B. Any investor who has a preference for more final wealth rather than145

less will prefer strategy A.146

It is in fact rare to find that one strategy strictly dominates another strategy, so we have the147

concept of partial stochastic dominance (van Staden et al., 2021). Strategy A dominates B in a148

partial sense if149

FA(W ) ≤ FB(W ) ; Wmin ≤W ≤Wmax . (6.3)

This is obviously a practical criteria. IfWmax is very large (i.e. we would be worth billions), then we150

don’t care about stochastic dominance at extreme large wealth values (we won’t be able to spend151

all our wealth anyway). On the other hand, if Wmin is very small, then, under both strategy A and152

B, we are bankrupt, and so it doesn’t really matter if we have one cent in our pocket compared to153
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two cents. Or perhaps FA(Wmin) is so small,8 that these events have a tiny probability, so we don’t154

care about what happens in these cases either. For more discussion of this, see Forsyth (2022).155

7 Bootstrap Tests: equal weight vs. capitalization weight156

We consider the investment scenario described in Table 4.1. We used block bootstrap resampling157

of the concatenated CRSP data 1940:8-1951:7, 1968:9-1985:10. An expected blocksize of one year158

was specified, with 106 resamples. Figure 7.1 compares the use of the equal weight index and the159

capitalization weighted index for the stock component of the strategy. Remarkably, the strategy160

which uses the equal weight index appears to stochastically dominate the strategy which uses the161

capitalization index.162
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Figure 7.1: Cumulative distribution function of final real wealthW at T = 30 years, bootstrap resam-
pling expected blocksize one year, 106 resamples (Appendix A.1). T = 30 years. Data: concatenated
returns, 1940:8-1951:7, 1968:9-1985:10. Scenario in Table 4.1.

This is also reflected in the summary statistics in Table 7.1, which shows that the use of the163

equal weight index gives greatly increased values of E[WT ], Median[WT ]. We also show the expected164

shortfall at the 5% level (ES(5%)) which is simply the mean of the worst 5% of the outcomes. This165

is a measure of left tail risk. By this measure, the equal weight strategy produces a larger (better)166

result than the capitalization weighted index.167

However, the standard deviation (std[WT ]) of the equal weighted index is much larger that the168

standard deviation of the capitalization weighted index. This would normally be considered a red169

flag, and would likely generate a bad Sharpe ratio. However, this is an example of a case where170

the standard deviation is a poor measure of risk, since both upside and downside are penalized. If171

we look at the CDF plot Figure 7.1, bearing in mind Table 7.1, we can see that the large standard172

deviation of the equal weight strategy is due to the large right skew of the distribution, i.e. higher173

probabilities of obtaining very large wealth values.9174

8Recall the definition of FA(W ) in equation (6.1).
9Many years ago, I was sitting next to a banker on a flight to New York. I was amused by his comment: “Actually,

we like volatility when stocks go up.”
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Equity Index Median[WT ] E[WT ] std[WT ] ES (5%)
Capitalization weight 1890.8 2253.2 1474.2 534.2
Equal weight 4483.9 6478.7 6688.8 756.3

Table 7.1: Constant weight, scenario in Table 4.1. Equity weight: 0.60, rebalanced annually. Bond
index: 30-day T-bill. Concatenated series: 1940:8-1951:7, 1968:9-1985:10 (high inflation regimes).
All quantities are real (inflation adjusted). ES(5%) is the mean of the worst five per cent of the
outcomes. Bootstrap resampling, expected blocksize one year, 106 resamples (Appendix A.1). T = 30
years.

7.1 A Closer Look at the Left Tail175

But, perhaps we should examine the left tail in a bit more detail. Figure 7.2 shows a zoomed in176

portion of Figure 7.1. We can see that the equal weight strategy does not strictly dominate the177

cap weighted strategy, since the CDFs cross at a wealth of around 230, at a probability of about178

5× 10−4, so we have only partial stochastic dominance. However, bear in mind that Median[WT ]179

for the equal weight strategy is about 4484, and that we have an initial wealth of 1000. If we end180

up with wealth below 230 after 30 years of investing, then this is a very bad result. As a concrete181

example, the cap weighted strategy has Prob[WT < 150] = 3.4 × 10−4 while the equal weighted182

strategy has Prob[WT < 150] = 6.7× 10−4. Does this really matter? In some sense, at this wealth183

level, the cap weighted strategy is twice as good as the equal weight strategy, but both results are184

very bad, with extremely low probabilities.185

In fact, to get this in perspective, it is useful to look at Figure 7.1. Strictly speaking, we have186

only partial stochastic dominance of equal weight over cap weighted stock indexes, withWmin ' 230187

(see equation (6.3) ). However, if we look at Figure 7.1, we can see that W = 230 is very small on188

the scale of the x-axis values, and that Prob[WT < 230] (5× 10−4) is also very small, on the scale189

of the y-axis, for both strategies. This would suggest that any reasonable investor, on the basis of190

Figure 7.1, would choose the equal weight index.191

So, with some loss of rigor, we will refer to anything like Figure 7.1 as showing stochastic192

dominance, even though this is not strictly true. However, we have stochastic dominance for any193

practical purpose.194

8 CDFs for entire period 1926:1-2022:1195

Our results for inflationary times seem to suggest that an equal-weight stock index is the way to196

go. However, let’s review some CDF plots from a previous white paper (Forsyth, 2022). Figure197

8.1(a) shows the bootstrapped CDFs for the equal weight and cap weighted CRSP index for the198

entire period 1926:1-2022:1. We can see that, for the entire historical period, the equal weight index199

dominates the cap weighted index.200

However, Figure 8.1(b) compares the bootstrapped equal and cap weighted CRSP indexes, but201

this time only using the data in the range 1980:1-2022:1. The equal weight dominance has almost202

disappeared.203
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Figure 8.1: Cumulative distribution functions (CDFs) for cap weighted and equal weighted indexes,
as a function of final real wealth W at T = 30 years. Initial stake W0 = 1000, no cash injections
or withdrawals. Block bootstrap resampling, expected blocksize 2.0 years. 60% stocks, 40% bonds,
rebalanced annually. Bond index: 30 day US T-bills. Stock index: CRSP capitalization weighted or
CRSP equal weighted index. Data range shown. All indexes are deflated by the CPI. 106 resamples.

9 For and Against Equal Weighting204

9.1 Against Equal Weighting205

Clearly, an equal weighted portfolio will give a greater weight to small cap stocks than a capital-206

ization weighted portfolio. The fact that, for many years, small cap stocks outperformed large cap207

stocks was first noted in Banz (1981). However, the small cap effect seems to have largely disap-208

peared (Ahn et al., 2019). This, of course, would be consistent with basic financial reasoning: once209

everyone knows about a market anomaly, then everyone will trade to exploit this, and the effect210
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will disappear.211

So, the argument here would be that the equal weight outperformance observed during periods212

of high inflation is simply due to the (at the time) unknown small cap effect. This is also consistent213

with our bootstrap CDFs, which show very little improvement of the equal weight portfolio vs. the214

cap weighted portfolio for the last 40 years.215

9.2 For Equal Weighting216

See Plyakha et al. (2014); Tljaard and Mare (2021) and the references cited therein for a summary217

of many studies which are consistent with Figure 8.1(a): over the long term, equal weight indexes218

are superior to cap weighted indexes. Plyakha et al. (2014) argue that the outperformance of the219

equal weight index is partially due to the small cap factor, but there is also a significant effect due220

to rebalancing. In other words, the equal weight strategy is fundamentally contrarian: sell winners221

and buy losers. Observe that the multi-period optimal mean-variance strategy has this property:222

buy stocks and sell bonds when stocks lose; buy bonds and sell stocks when stocks gain (Forsyth223

and Vetzal, 2019; van Staden et al., 2021). Hence, the equal weight portfolio simply applies this224

idea to the stock basket. In Tljaard and Mare (2021), this diversification idea is discussed in detail.225

See also Edwards et al. (2018).226

Note that Tljaard and Mare (2021) agree that equal weight portfolios outperform in the long227

term, but also have underperformed for significant periods, in particular the last 10 years. They228

offer various reasons for this. In particular, the authors argue that the relative performance of the229

equal weight vs. the cap weight index will suffer in periods where the cap weighted portfolio becomes230

highly concentrated. The intuition behind this is clear: if a small number of companies become very231

successful over long periods, and dominate the cap weighted index, then an equal weighted portfolio232

will surely suffer. However, in this case, the cap weighted portfolio amounts to highly concentrated233

bets on a small number of stocks, which, historically, has been a bad idea.234

Oderda (2015) shows that, under certain assumptions, rule based portfolios (equal weight, min-235

imum variance) outperform capitalization weighted indexes. The determination of the optimal236

weights for these portfolios is independent of estimates of the expected returns of individual stocks.237

Hence this outperformance portfolio is robust to uncertainty in the expected return parameters.238

Coqueret and Andre (2022) use reinforcement learning to attempt to determined optimal factor239

portfolios. The end result of this learning exercise is essentially a 1/n portfolio, i.e. equal weighted240

in the factors.10 The authors provide the intuition that since financial data are dominated by noise,241

the best strategy is to be agnostic about factor return characteristics, and simply weight all factors242

equally.243

In Table 9.1, we show the historical annualized compound return and volatility for the CapWt244

and EqWt indexes, for the periods 2002:1-2012:1 and 2012:1-2022:1. We can see that the last245

decade was something of an anomaly, with the CapWt index outperforming the EqWt index by246

300 bps. However, during the turbulent period 2002:1-2012:1, the EqWt index outperformed the247

CapWt index by 480 bps. The small cap effect was well known by the decade 2002:1-2012:1, so it248

is doubtful that the small cap effect can explain this result.249

All this work leads to the conclusion that the historical outperformance of an equal weight250

portfolio is not simply due to the small cap effect.251

10In this case, there are n factors, so the 1/n rule simply allocates 1/n of the total wealth to each factor.
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Index Annualized log return σ

2002:1-2012:1
CapWt .016 .17
EqWt .064 .200

2012:1-2022:1
CapWt .118 .132
EqWt .088 .158

Table 9.1: Real (deflated) return, single historical path, dates shown.

10 Conclusion252

The historical evidence, based on bootstrapping returns during inflationary times, suggests that253

equal weight indexes significantly outperform capitalization weighed indexes. In addition, boot-254

strapped returns for the entire historical period of 1926:1-2022:1, show once again that equal weight255

indexes outperform. Even during the last 40 years (an unprecedented period of falling real interest256

rates, low inflation, and high performing FAANG stocks), equal weight indexes basically perform257

similarly to cap weighted indexes.258

The real question is whether the equal weight outperformance during historical periods is solely259

due to the small cap effect. If this is the case, then probably we can’t expect the equal weight index260

to be much protection during inflationary times. On the other hand, looking at the last 40 years261

only, it seems that you are not hurt by using an equal weight index.262

However, there is good evidence to suggest that a large portion of the equal weight outper-263

formance is due to the contrarian aspect of equal weighting. This also explains the lackluster264

performance of equal weighting during the last decade, where we have seen the cap weighted index265

become highly concentrated with tech stocks.11
266

Consequently, if you think that inflation will be an issue going forward, an equal weight stock267

index is a good bet. If you are wrong, and inflation turns out not to be an issue, than your equal268

weighted index will probably at least keep up with a cap weighted index.12 In fact, Tljaard and269

Mare (2021) suggests a truly optimal strategy is a dynamic mix of equal and cap weighted portfolios.270

However, we now have to pick the optimal weight.271

In the absence of any other information, perhaps we should use a portfolio with (i) 40% short272

term bonds (ii) 30% cap weighted stock index and (iii) 30% equal weighted index, and rebalance273

annually.274

11As of June 2022, the top five companies in the S&P 500 were: Apple, Microsoft, Amazon, Alphabet (class A and
C) and Tesla. In total, these companies accounted for over 20% of the market capitalization of the S&P 500.

12With the caveat that the equal weight strategy will do poorly if FAANG stocks rally and dominate the cap
weighted index for the next 30 years.
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Appendix275

A Windowed Inflation Filter276

Algorithm A.1: Pseudocode window inflation filter
Data:

CPI[i]; i = 1, . . . ,N /* CPI Index */
Cutoff /* High inflation cutoff: annualized */
∆t /* CPI index time interval */
K /* smoothing window size */

Result: Flag[i]; i = 1, . . . ,N /* = 1 high inflation month; = 0 otherwise */
/* initialization */
Flag[i] =0; i = 1, . . . ,N ;
for i = 1, . . . , N −K do

if log(CPI[i+K]/CPI[i])/(K ∗∆t) >Cutoff then
for j = 0, . . . ,K do

Flag[i+j] = 1 ;
end

end
end

B Bootstrap Algorithm277

Algorithm B.1 presents pseudocode for the stationary block bootstrap. See Ni et al. (2022) for more278

discussion concerning this algorithm. Note that the index must be converted to a series of returns279

before applying the bootstrap.280
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Algorithm B.1: Pseudocode for stationary block bootstrap
/* initialization */
bootstrap_samples = [ ];
/* loop until the total number of required samples are reached */
while True do

/* choose random starting index in [1,...,N], N is the index of the last
historical sample */

index = UniformRandom( 1, N );
/* actual blocksize follows a shifted geometric distribution with expected

value of exp_block_size */
blocksize = GeometricRandom( 1

exp_block_size );
for i = 0; i < blocksize; i = i+ 1 do

/* if the chosen block exceeds the range of the historical data array,
do a circular bootstrap */

if index + i > N then
bootstrap_samples.append( historical_data[ index + i - N ] );

else
bootstrap_samples.append( historical_data[ index + i ] );

end
if bootstrap_samples.len() == number_required then

return bootstrap_samples;
end

end
end
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