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Abstract

Discretized singular control problems in finance result in highly nonlinear algebraic equations
which must be solved at each timestep. We consider a singular stochastic control problem arising
in pricing a Guaranteed Minimum Withdrawal Benefit (GMWB), where the underlying asset
is assumed to follow a jump diffusion process. We use a scaled direct control formulation of
the singular control problem and examine the conditions required to ensure that a fast fixed
point policy iteration scheme converges. Our methods take advantage of the special structure
of the GMWB problem in order to obtain a rapidly convergent iteration. The direct control
method has a scaling parameter which must be set by the user. We give estimates for bounds
on the scaling parameter so that convergence can be expected in the presence of round-off error.
Example computations verify that these estimates are of the correct order. Finally, we compare
the scaled direct control formulation to a formulation based on an improved version of the
penalty method. We show that the scaled direct control method has some advantages over the
penalty method.

Keywords: HJB equation, singular control, scaled direct control, iterative methods, jump
diffusion
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1 Introduction

Stochastic control problems arise in many financial applications, often in one of two forms: impulse
control [6] and singular control [22, 18, 9]. The main computational cost of solution of an impulse
control problem is the search for a global minimum along trajectories emanating from each node
[6]. In contrast, discretization of singular control formulations requires the solution of a system
of nonlinear algebraic equations at each timestep, which is a significant computational hurdle. In
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this article, we consider the singular control formulation of a particular financial contract, the
Guaranteed Minimum Withdrawal Benefit (GMWB) contract [17, 9, 13] and provide an efficient
method for numerically pricing such a contract. Although we focus specifically on GMWB problems
here, our results and methods of analysis are applicable to many other singular control problems
in finance.

It is worthwhile to note that there are several approaches for solution of singular stochastic
control problems. Markov chain methods [16, 12, 5] are essentially explicit finite difference schemes,
and hence suffer from the usual timestep limitations due to stability considerations. Another
approach is based on front tracking, whereby the boundaries between different regions (in our
case the finite and infinite withdrawal domains) are tracked, usually by enforcing some some type
of smooth pasting condition [15]. This method becomes complex if the different regions become
multiply connected. We restrict attention in the following to methods which are unconditionally
stable, and do not require explicit tracking of internal boundaries.

The GMWB pricing problem requires the solution of a Hamilton Jacobi Bellman (HJB) Varia-
tional Inequality (VI). It is necessary to discretize this HJB VI so that convergence to the viscosity
solution is ensured [2, 1]. Generally, the viscosity solution of the HJB VI can be shown to be the
solution of the contract valuation problem posed as a dynamic program, which is the financially
relevant solution. In [9, 13], a penalty method is used to discretize the HJB VI arising from a
GMWB contract. This method is shown to be monotone, consistent and l∞ stable [13], and hence
convergence to the viscosity solution is ensured assuming a strong comparison property holds.
The authors in [13] use a fully implicit timestepping method which guarantees an unconditionally
monotone discretization. The method gives rise to a nonlinear system of algebraic equations at
each timestep.

In this paper we use a scaled direct control method for solving the singular control formulation
of the GMWB problem. The direct control technique was previously suggested for solving American
option type problems [14, 4]. In addition, we consider the case where the underlying risky asset
follows a jump diffusion process [8]. The method makes use of a fully implicit discretization which
is shown to be monotone, consistent and l∞ stable. We introduce a scaling factor in our direct
control formulation, which allows us to solve the associated nonlinear algebraic equations using the
fixed-point policy iteration method of [14].

Our discretization of the singular control GMWB problem has a special structure that also
allows for rapid solution of the associated nonlinear algebraic equations. We present a block matrix
fixed-point policy iteration scheme for solving the nonlinear algebraic equations and show that it
has the same convergence properties as fixed-point policy iteration. Numerical experiments imply
that the number of iterations required for convergence of the block method is an order of magnitude
less than required for the full matrix version. In an Appendix we also present a block matrix fixed-
point policy iteration scheme for the algebraic equations that arise from the discretization of the
penalty method. This allows us to properly compare the scaled direct control and penalty methods
on an equal footing.

The direct control technique (and also the penalty method) require the specification of a pa-
rameter which may affect solution accuracy and convergence of the iteration. We carry out an
analysis of this parameter (for both formulations). We estimate bounds for the scaling factor (di-
rect control) and the penalty factor (penalty method) so that convergence can be expected in the
presence of roundoff error. Numerical experiments verify that these bounds are of the correct order
of magnitude. Both the analysis and the experimental results indicate that the useful numerical
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range of the scaling parameter (direct control) is much larger than for the penalty factor (penalty
method).

The block matrix fixed-point policy iteration for the GMWB problem also has the advantage
of being relatively simple to implement. Indeed the primary tools needed are a tridiagonal matrix
solver and a procedure for finding maxima of finite sets of values.

The remainder of the paper is organized as follows. The following section gives the details of a
GMWB contract and its formulation as a singular stochastic control problem. Section 3 gives the
discretization of the scaled direct control form of the HJB VI and describes the nonlinear algebraic
equations that need to be solved at every timestep. In Section 4 we show that the fixed-point policy
iteration algorithm of [14] can be used to solve the nonlinear equations in full matrix form. Section
5 describes a block matrix fixed-point policy iteration method and gives the details for verifying
the necessary convergence properties. Section 6 considers the case where floating point arithmetic
impacts the mathematical results. Numerical tests are presented in the following section. The
paper ends with a conclusion and an Appendix, with the Appendix giving details of the block
matrix fixed point method as applied to the penalty method, the discretization details and finally
some floating point error analysis needed in the main text.

2 Singular Control Formulation of the GMWB Problem

2.1 Motivation

Many holders of a defined contribution pension plan are responsible for investing a portfolio of
assets which generate cash flows during their retirement. A GMWB contract consists of an initial
lump sum payment to an insurance companys which is then invested in risky assets. The holder is
allowed to withdraw a specified amount each year of the contract, regardless of the performance of
the risky asset, with withdrawals above the contract rate being subject to a penalty. At the end
of the contract, the holder receives any investment amount remaining. Thus the holder of such a
contract receives a minimum guaranteed yearly income, but can also participate in market gains.
In return for providing this guarantee, the insurance company charges a proportional fee, which is
extracted from the risky investment portfolio. The pricing problem is to determine the proportional
fee that needs to be charged.

2.2 Formulation

Dai et al [9] formulated the GMWB pricing problem using a singular stochastic control formula-
tion under the assumption that the underlying risky asset follows a constant volatility geometric
Brownian motion process. In this section we review an extension to the Dai formulation given in
Huang et al [13] where the risky asset is assumed to follow a jump diffusion process. The dynamics
of the underlying asset W is given by the following stochastic differential equation

dW = (r − η − λρ)Wdt+ σWdZ + (ξ − 1)Wdq + dA, if W > 0 (2.1)

dW = 0, if W = 0, (2.2)

where dZ is the increment of a Weiner process and A is the investor’s virtual guarantee withdrawal
account. In the above, r is the risk free rate, σ is the volatility and η the fee charged for the
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guarantee. The variable λ is the jump intensity representing the mean arrival rate of the Poisson
process:

dq =

{
0 with probability 1− λdt
1 with probability λdt

, (2.3)

with ξ a random variable representing the jump size of W . We assume that ξ follows a log-normal
distribution p(ξ) given by

p(ξ) =
1√

2πζξ
exp
(
−(log(ξ)− ν)2

2ζ2

)
, (2.4)

with parameters ζ and ν, ρ = E[ξ − 1], where E[·] is the expectation, and E[ξ] = exp(ν + ζ2/2)
given the distribution function p(ξ) in (2.4).

The second variable in a GMWB contract is the investor’s virtual guarantee account A. The
withdrawal feature is modeled with parameters G, the contractual withdrawal rate and κ < 1, the
proportional penalty charge. Define τ = T − t where t is the forward time, and T is the expiry time
of the contract and set V = V (W,A, τ) to be the no arbitrage value of the guarantee. Generalizing
the formulation in [17, 9, 14] to the case with a stochastic jump process (2.1), the value of the
guarantee is given from the solution to the following singular control problem

min

[
Vτ − LV − λJ V −Gmax(FV, 0) , κ−FV

]
= 0 . (2.5)

Here the operators L,F ,J are defined as

LV =
σ2

2
W 2VWW + (r − η − λρ)WVW − (r + λ)V

=
σ2

2
W 2DWWV + (r − η − λρ)WDWV − (r + λ)V

FV = 1− VW − VA = 1−DWV −DAV

J V =

∫ ∞
0

V (ξW,A, τ)p(ξ) dξ , (2.6)

while DA, DW , and DWW denote the usual partial derivative operators.

2.3 The Scaled Direct Control form of the Pricing Problem

The control form of equation (2.5) is given by

min
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
ψ(κ−FV ) + (1− ψ)(Vτ − LV − λJ V − ϕGFV )

]
= 0 . (2.7)

Observe that that the term κ−FV is dimensionless whereas Vτ−LV −Gmax(FV, 0) has dimensions
of currency/time. Hence equation (2.7) compares quantities having different units. Of course, in
exact arithmetic, this is not an issue of importance. However, an iterative procedure for solution of
the discretized equations will involve a test comparing two (in general) non-zero quantities. Hence
scaling becomes important. Consequently, we introduce a scaling factor Π > 0 into equation (2.7)

min
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
Πψ(κ−FV ) + (1− ψ)(Vτ − LV − λJ V − ϕGFV )

]
= 0 . (2.8)
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Remark 2.1 (Scaling Factor). By introducing a scaling factor with dimension of currency/time,
we ensure the comparison in equation (2.8) is conducted on two items with the same units. Of
course, this still leaves the size of the scaling factor as arbitrary. We will exploit this fact to ensure
that convergence of our iterative method can be guaranteed with a suitable choice for Π.

Problem (2.5), or equivalently, (2.8) is solved on the computational domain

(W,A, τ) ∈ [0,Wmax)× [0, ω0]× [0, T ] , (2.9)

where ω0 denotes the initial premium. At expiry time τ = 0, the value of the contract is

V (W,A, τ = 0) = max

[
W, (1− κ)A

]
. (2.10)

Other boundary conditions are

min

[
Vτ − rV −Gmax(1− VA, 0), κ− (1− VA)

]
= 0 ; W = 0 ,

V (Wmax, A, τ) = e−ητWmax ; W = Wmax ,

VWW → 0 ; W →Wmax ,

Vτ = LV − λJ V ; A = 0 . (2.11)

The boundary condition at W = 0 is a variational inequality which normally can also be solved
as a control equation. No boundary condition is required at A = ω0. For details concerning
the derivation of equation (2.5), we refer readers to [17, 6, 7, 9, 13]. The condition VWW → 0,
W → Wmax assumes linear behaviour of the solution for W → Wmax. This condition was used
in [10, 24] so that the combined jump terms vanish, which eliminates the necessity of estimating
values outside the computational domain.

2.4 No-arbitrage Fee

Since no fee is paid up-front, the insurance company needs to charge a proportional fee η (see
equation (2.1)), such that the value of the contract is equal to the initial premium. If ω0 denotes
this initial premium and V (η;W,A, τ) is the value of the contract as a function of η, then the
no-arbitrage fee is the solution to the equation

V (η;ω0, ω0, T ) = ω0 . (2.12)

3 GMWB: Discretization

In order to solve equation (2.8), we discretize each equation over a finite grid in the W×A plane. De-
fine a set of nodes in the W direction {W1,W2, ...,Wimax} and in the A direction {A1, A2, ..., Ajmax}.
Denote the nth timestep by τn = n∆τ and let V n

i,j be the approximate solution of equation (2.8)
at (Wi, Aj , τ

n). We discretize equation (2.8) using fully implicit timestepping and central, forward
and backward differencing so that the positive coefficient condition is satisfied [11, 13, 25]. For
efficiency, central differencing is used as much as possible [25].

Let Lh,Fh,DhW ,DhA (defined in Appendix B.1 and B.2) be the discrete forms of the operators
L,F ,DW ,DA, respectively and let J h be the discretized J operator. The integral term J V is
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discretized via transformation into a correlation integral combined with a use of the midpoint rule
as described in detail in [10, 24].

Equation (2.8) is then written in the discrete form

(1− ψi,j)
(

1

∆τ
V n+1
i,j − LhV n+1

i,j + ϕi,jG(DhWV n+1
i,j +DhAV n+1

i,j )

)
+ Π ψi,j(DhWV n+1

i,j +DhAV n+1
i,j )

= (1− ψi,j)
1

∆τ
V n
i,j + Π ψi,j(1− κ) + (1− ψi,j)

(
λ[J hV n+1]i,j + ϕi,jG

)
(3.1)

where

{ϕi,j , ψi,j} ∈ arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

{
Π ψ(κ−FhV n+1

i,j )− (1− ψ)

(
V n+1
i,j − V n

i,j

∆τ

−
(
LhV n+1

i,j + λ[J hV n+1]i,j + ϕGFhV n+1
i,j

))}
. (3.2)

We can also rewrite equation (3.1) in an equivalent form (replacing DhA by a backward difference)

(1− ψi,j)
(

1

∆τ
V n+1
i,j − LhV n+1

i,j + ϕi,jG(
V n+1
i,j

∆A−j
+DhWV n+1

i,j )

)
+ Π ψi,j(

V n+1
i,j

∆A−j
+DhWV n+1

i,j )

= (1− ψi,j)
1

∆τ
V n
i,j + Π ψi,j(1− κ+

V n+1
i,j−1

∆A−j
)

+(1− ψi,j)
(
λ[J hV n+1]i,j + ϕi,jG(

V n+1
i,j−1

∆A−j
+ 1)

)
(3.3)

where ∆A−j = Aj −Aj−1.
The boundary conditions at W = Wmax translate into the discrete equations

Vimax,j = e−ητ
n
Wmax, (3.4)

which we approximate by

(
1

∆τ
+ η)V n+1

imax,j
=

1

∆τ
V n
imax,j ; V 0

imax,j = Wmax . (3.5)

At W = 0, equation (3.1) holds with DhW ≡ 0. At A = 0, equation (3.1) holds with ϕi,j = 0,
ψi,j = 0.

Remark 3.1. Using the methods as in [13] it is straightforward to show that scheme (3.1) is
monotone, consistent and l∞ stable.

3.1 Matrix Form of the Discretized Equations

Equations (3.1-3.3) are discretized using fully implicit method timestepping. The resulting set of
discrete algebraic equations then needs to be solved. We do this via a modified version of policy
iteration.

6



Let N = imax × jmax be the size of the W ×A plane grid and set

v∗,j = (v1,j , v2,j , . . . , vimax,j)
′ and v = ((v∗,1)′, (v∗,2)′, . . . , (v∗,jmax)′)′ (3.6)

where v∗,j is of length imax and v is of length N . Similarly, we can write the controls as vectors

q∗,j = (q1,j , q2,j , . . . , qimax,j)
′ and q = ((q∗,1)′, (q∗,2)′, . . . , (q∗,jmax)′)′ (3.7)

where qi,j ∈ Q =
{

(ϕ,ψ) | ϕ ∈ {0, 1}, ψ ∈ {0, 1}, ϕψ = 0
}
. Let

` = i+ (j − 1)imax with 1 ≤ i ≤ imax and 1 ≤ j ≤ jmax, (3.8)

so that

[v∗,j ]i = vi,j

= v` with ` = i+ (j − 1)imax . (3.9)

As a result, we will sometimes refer to the same entry in the N-length vector v as v` or vi,j , with the
reference being clear from the context. It is also convenient to represent the algebraic equations by
matrix notation. In this paper we use boldface capital letter T to represent an N ×N matrix with
entries [T]`,m = T`,m. We will also refer to the jth imax× imax subblock of T using the notation Tj.
These subblocks will be defined in later sections.

At each timestep, we must solve for the unknowns V n+1
i,j . We can write these equations in

nonlinear matrix form as follows. Let [v∗,j ]i = V n+1
i,j . Then, as generalized in [14], the algebraic

equations at each timestep can be written as:

sup
q∈Q

{
−T(q)v + c(q)

}
= 0 , (3.10)

where Q is a set of controls and for y = (y1, y2, . . . , yN )′ we have

[T(qk)y]` = [Tky]` = (1− ψk` )

(
1

∆τ
y` − Lhy` + ϕk`G(DhW y` +DhAy`)

)
+ Π ψk` (DhW y` +DhAy`)− (1− ψk` )λ[J hy]`[

c(qk, V n)
]
`

= (1− ψk` )
1

∆τ
V n
` + Π ψk` (1− κ) . (3.11)

Due to the nature of the jump term J [10] the matrix T is dense, which makes the standard
policy iteration algorithm inefficient. To avoid this problem, we split T into two components A−B
such that A is sparse, and B is dense. Here

[A(qk)y]` = [Aky]` = (1− ψk` )

(
1

∆τ
y` − Lhy` + ϕk`G(DhW y` +DhAy`)

)
+ Π ψk` (DhW y` +DhAy`)[

B(qk)y
]
`

=
[
Bky

]
`

= (1− ψk` )λ[J hy]` . (3.12)

Remark 3.2. (Structure of T(q), c(q)) It is important to observe that [T(q)]`,m, [A(q)]`,m, [B(q)]`,m,
[c(q)]` depend only on q`. This is typical of discretized HJB equations.
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Assuming that Q is a finite set, or that Q is compact and T(q) is an upper semi-continuous
function of q, then equation (3.10) is interpreted as

T(q∗)v =
[
A(q∗)−B(q∗)

]
v = c(q∗)

with q∗` = arg max
q`∈Q

{
−T(q)v + c(q)

}
`

= arg max
q`∈Q

{
−
[
A(q)−B(q)

]
v + c(q)

}
`

. (3.13)

Thus the problem has a potentially different control for each row of the linear system. Note that
equation (3.10) is highly nonlinear.

Splitting the sparse and dense components implies that, rather than using the traditional policy
iteration to solve the nonlinear system in (3.10), a fixed point policy iteration will be used. This
has been shown to be more efficient [14] than the standard policy iteration. In Algorithm 1, each
iteration requires a sparse solve, and a dense matrix vector multiply, Bvk. The latter can be carried
out efficiently using an FFT as shown in [10].

Algorithm 1 Fixed Point-Policy Iteration

1: vk = (v)k with v0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do

3: qk` = arg max
q`∈Q

{
−
[
A(q)−B(q)

]
vk + c(q)

}
`

4: Solve A(qk)vk+1 = B(qk)vk + C(qk)

5: if k > 0 and max
`

|vk+1
` − vk` |

max
[
scale, vk+1

`

] < tolerance then

6: break from the iteration
7: end if
8: end for

The factor scale in Algorithm 1 ensures that unrealistic levels of accuracy are not required for
small values of the solution. For example, if the option is priced in dollars, a typical value would
be scale = 1.

4 Full Matrix Form

While splitting our full matrix into components as in (3.12) does improve the linear solution step
4 in Algorithm 1, we need to ensure that the ixed point policy iteration will converge. Suffi-
cient conditions for convergence of the fixed point policy iteration were determined in [14]. These
requirements are summarized in Condition 4.1.

Condition 4.1. The matrices A(q),B(q) and vector c(q) satisfy:

(i) The matrices A(q) and A(q)−B(q) are M matrices.

(ii) The vector c(q) and matrices A, B, and ‖A−1(q)‖∞ are bounded, independent of q.

(iii) There is a constant C1 < 1 such that

‖A−1(qk)B(qk−1)‖∞ ≤ C1 and ‖A−1(qk)B(qk)‖∞ ≤ C1. (4.1)
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Remark 4.1. We remind the reader that a matrix A is an M matrix if A is nonsingular, A has
non-positive off-diagonals, and A−1 ≥ 0 [23].

Theorem 4.1 (Convergence of Scheme). If the matrices A(q),B(q) and vector c(q) satisfy Con-
dition 4.1, then the scheme in Algorithm 1 converges to the unique solution of equation (3.13), for
any initial iterate vk.

Proof. We give a brief sketch of this proof here, and refer the reader to [14] for details. The basic
idea of the proof of Theorem 4.1 is to show the algorithm generates a convergence sequence by
re-arranging Algorithm 1 as:

A(qk)(vk+1 − vk) =−A(qk)vk + B(qk)vk + c(qk) (4.2)

= B(qk−1)(vk − vk−1) +
[
−A(qk)vk + B(qk)vk + c(qk)

]
−
[
−A(qk−1)vk + B(qk−1)vk + c(qk−1)

]
. (4.3)

The proof proceeds by noting that qk maximizes
[
−A(qk)vk + B(qk)vk + c(qk)

]
from line 3 in

Algorithm 1. Consequently[
−A(qk)vk + B(qk)vk + c(qk)

]
−
[
−A(qk−1)vk + B(qk−1)vk + c(qk−1)

]
≥ 0 (4.4)

and thus (since A−1 ≥ 0)

(vk+1 − vk) ≥ A−1(qk)B(qk−1)(vk − vk−1). (4.5)

Since ‖A−1(qk)B(qk−1)‖∞ ≤ C1 < 1, the sequence vk can be shown to be convergent [14]. If
limk→∞ v

k = v∗, then it is easily seen from equation (4.2) that v∗ is a solution of equation (3.10).
Uniqueness follows from the M matrix property of (A(q)−B(q)) [19, 4, 14].

Remark 4.2. The proof of Theorem 4.1 gives some idea of what might go wrong in floating point
environments. Namely, in exact arithmetic, equation (4.4) is always true. However, in floating
point arithmetic, equation (4.4) is not always true and indeed convergence does not always hold in
such environments. We discuss this further in a later section.

4.1 Verification of Conditions 4.1

In this subsection we verify that Conditions 4.1 are satisfied for our Direct Control discretization,
at least when the scaling parameter is large enough. Unfortunately, the technique used in [14] to
verify these conditions does not work in this case as there are zero row sums in the matrix A.

It is useful to separate the diagonal blocks from the lower triangular part of A by

[Ak
Dy]` = (1− ψk` )

(
1

∆τ
y` − Lhy` + ϕk`G

(
DhW y` +

y`

∆A−j

))
+ Π ψk`

(
DhW y` +

y`

∆A−j

)
[Ak

Ly]` = −(1− ψk` )ϕk`G

(
y`−imax

∆A−j

)
−Πψk`

(
y`−imax

∆A−j

)
. (4.6)

Then Ak = Ak
D + Ak

L for each k.

9



Proposition 4.1. Suppose a positive coefficient discretization [11] is used and the jump operator
J h is discretized using the method in [10]. Furthermore assume there is linear behavior of the
solution for i ≥ î [10, 24]. Then discretization (3.11) satisfies

(a) B(q) ≥ 0,

(b) The `th row sum for B(qk) is

Row Sum ` ( B(q) ) ≤

{
(1− ψk` )λ 1 < i < î

0 i = î, ..., imax

(4.7)

(c) The `th row sum for AD(qk) is

Row Sum ` ( AD(qk)) =


(1− ψk` )

(
1

∆τ + (r + λ) + ϕk`G
1

∆A−j

)
+ ψk`Π 1

∆A−j
1 < i < î

(1− ψk` )
(

1
∆τ + r + ϕk`G

1
∆A−j

)
+ ψk`Π 1

∆A−j
i = 1; î ≤ i < imax

1
∆τ + η i = 1; i = imax

(4.8)

(d) The matrices A(q)−B(q) and A(q) in equation (3.11) are M matrices.

Proof. The construction of B(q) using the discretization of J V as detailed in [10] implies that∑
`

[J h]µ,` ≤ 1 and [J h]µ,` ≥ 0 . (4.9)

This holds since p(ξ) in (2.6) is a probability density function. When the grid node (i, j) satisfies
i > î then the `th row of B(q) is identically zero [10, 24]. This gives (a) and (b).

In order to prove (c), we first observe that

DhWW 1 = 0 ; DhW 1 = 0 ; ; DhA1 = 0

and Lh1 =

{
−(r + λ) 1 < i < î

−r i = 1; î ≤ i < imax

(4.10)

The row sum of AD is [AD(qk)e]i with e = (1, ..., 1)′, and consequently (c) follows using results
(4.10), for 1 < i < imax. When i = imax then from the boundary assignment of equation (3.5), the
row sum is just (1/∆τ + η).

To prove (d), note that A(q) = AD(q) + AL(q) with AD(q) block diagonal and AL(q) lower
triangular. From (c), the row sums of AD(q) are strictly positive, and off-diagonals are non-positive
since a positive coefficient discretization is used. Hence AD(q) consists of diagonal blocks, each of
which is a strictly diagonally dominant M matrix. Since AL(q) is non-positive, a straightforward
computation shows that A(q) is non-singular and that A−1(q) ≥ 0. A similar argument shows that
A(q)−B(q) is also an M matrix.

The following Lemma will be useful later on.
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Lemma 4.1. Suppose A is a strictly diagonally dominant M matrix and B ≥ 0. Then

‖A−1B‖∞ ≤ max
i

Row Sum i (B)

Row Sum i (A)
. (4.11)

Proof. See [14].

Lemma 4.2. Suppose the discretization for the GMWB direct control method satisfies the condi-
tions required for Proposition 4.1, and in addition

Π > Amaxλ
1 + (r + λ)∆τ

1 + r∆τ
. (4.12)

Then the matrices A,B satisfy Condition 4.1, and hence from Theorem 4.1, Algorithm 1 converges.

Proof. We need to show that there is a constant C1 such that

‖A−1(qk)B(qp)‖∞ ≤ C1 , (4.13)

where p = k, k − 1. Consider an arbitrary vector z, and a vector y such that

A(qk)y = B(qp)z . (4.14)

Then condition (4.13) is equivalent to requiring that

max
‖z‖∞ 6=0

[
‖y‖∞
‖z‖∞

]
≤ C1 < 1 (4.15)

From equation (3.11), we can see that [Ae]` = 0; i < î, ψk` = 1, and hence we are obliged to use a
different method from that in [14] to prove this result.

First, note that[
A(qk)y

]
`

= [B(qp)z ]l ; ` = i+ (j − 1) ∗ imax ; 1 < i < î (4.16)[
A(qk)y

]
`

= 0 ; ` = i+ (j − 1) ∗ imax ; i = 1; i ≥ î (4.17)

due to the linear behaviour assumed for i ≥ î [10]. Define a bounding grid function ŷ

[ŷ]` =
‖z‖∞λ∆τ

1 + (r + λ)∆τ
+Aj

‖z‖∞λ
Π

; ` = i+ (j − 1) ∗ imax . (4.18)

Noting properties (4.10), and

DhWAj = 0 ; DhAAj = 1 , (4.19)

and substituting equation (4.18) into equation (3.11) gives[
A(qk)ŷ

]
`
≥ ‖z‖∞λ ; 1 < i < î (4.20)[

A(qk)ŷ
]
`
≥ 0 ; i = 1; i ≥ î. (4.21)
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Subtracting equation (4.16) from equation (4.20) yields (noting properties (a) and (b) of B in
Proposition 4.1) [

A(qk) (ŷ − y)
]
`
≥ ‖z‖∞λ− [B(qp)z]`

≥ ‖z‖∞λ− ‖z‖∞λ
= 0 ; 1 < i < î . (4.22)

Similarly, subtracting equation (4.17) from equation (4.21) gives[
A(qk) (ŷ − y)

]
`
≥ 0 ; i = 1; i ≥ î . (4.23)

Thus in all cases

A(qk) (ŷ − y) ≥ 0 . (4.24)

Since A(qk) is an M matrix, we have that y ≤ ŷ. A similar argument gives y ≥ −ŷ. Hence

‖y‖∞ ≤
‖z‖∞λ∆τ

1 + (r + λ)∆τ
+Amax

‖z‖∞λ
Π

. (4.25)

As we require that ‖y‖∞ < ‖z‖∞, the condition on Π then becomes

Π > Amaxλ
1 + (r + λ)∆τ

1 + r∆τ
. (4.26)

5 Block Matrix Form

Let v∗,j = V n+1
∗,j , and let (v∗,j)

k be the kth iterate for v∗,j . From the boundary condition (2.11), we
can observe that v∗,1 can be computed without any knowledge of interior nodes in the computational
domain. To ensure a positive coefficient discretization, the DhA term is always backward differenced,
hence v∗,j depends only on v∗,j−1 for j > 1. This special structure of the system makes the iteration
more efficient when we solve v∗,j before proceeding to solve v∗,j+1. We can write the full matrix
system in (3.11) in block form as

A1 0 · · · 0
0 A2(q∗,2) · · · 0
...

...
. . .

...
0 0 · · · Ajmax(q∗,jmax)



v∗,1
v∗,2
...
v∗,jmax



=


B1 0 · · · 0
0 B2(q∗,2) · · · 0
...

...
. . .

...
0 0 · · · Bjmax(q∗,jmax)



v∗,1
v∗,2
...
v∗,jmax

+


c∗,1(V n)
c∗,2(q∗,2, v∗,1, V

n))
...
c∗,jmax(q∗,jmax , v∗,jmax−1, V

n))

 , (5.1)

with

qi,j = arg max
qi,j∈Q

{
−Aj(q∗,j)v∗,j + Bj(q∗,j)v∗,j + c∗,j(q∗,j , v∗,j−1, V

n)

}
i

. (5.2)

12



Note that A1,B1, c∗,1 are independent of q. Each smaller block matrix system Ajv∗,j = Bjv∗,j+
cj is then resolved by using a fixed point policy iteration as in Algorithm 1 with the previous
computed vn+1

∗,j−1 appearing only in c∗,j . The detailed procedure is given in Algorithm 2.

Algorithm 2 Block Matrix Fixed Point Policy Iteration

1: Solve v∗,1 from A1v∗,1 = B1v∗,1 + c1(V n)
2: for j = 2, 3, . . . , jmax do
3: With initial solution (v∗,j)

0 = V n
∗,j , use Algorithm 1 to solve v∗,j from

supq∗,j

{
−Aj(q∗,j)v∗,j + Bj(q∗,j)v∗,j + c∗,j(q∗,j , v∗,j−1, V

n)

}
= 0

4: end for

We represent the discretization (3.3) in terms of matrices Aj,Bj and vector cj , given by

[Aj(ϕ
k
∗,j , ψ

k
∗,j)u∗,j ]i = [Aj

ku∗,j ]i = (1− ψki,j)
(

1

∆τ
ui,j − Lhui,j + ϕki,jG(

ui,j

∆A−j
+DhWui,j)

)
+ψki,jΠ G(

ui,j

∆A−j
+DhWui,j)[

Bj(ϕ
k
∗,j , ψ

k
∗,j)u∗,j

]
i

= [Bj
ku∗,j ]i = (1− ψki,j)λ[J hj u∗,j ]i[

cj(ϕ
k
∗,j , ψ

k
∗,j , u∗,j−1, V

n)
]
i

= [c∗,j ]
k
i = (1− ψn+1

i,j )
1

∆τ
V n
i,j + Π ψn+1

i,j (1− κ+
un+1
i,j−1

∆A−j
) (5.3)

with controls

qki,j =
(
ϕki,j , ψ

k
i,j

)
∈ arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
−Aj(ϕ∗,j , ψ∗,j)u∗,j + Bj(ϕ∗,j , ψ∗,j)u∗,j

+c∗,j(ϕ∗,j , ψ∗,j , u∗,j−1, V
n)

]
i

. (5.4)

The discretized equations (3.3) then result in the set of equations

−Aju∗,j + Bju∗,j + c∗,j = 0 , j = 1

sup
qi,j∈Q

[
−Aj(q∗,j)u∗,j + Bj(q∗,j)u∗,j + c∗,j(q∗,j , u∗,j−1)

]
i

= 0 , j = 2, 3, . . . , jmax (5.5)

Note that our discretization using central, forward and backward differencing implies that for
each i we have

[Aj
ku∗,j ]i = −αiui−1,j + γiui,j − βiui+1,j (5.6)

and where αi, βi, γi are all nonnegative. Thus the block diagonals are in tridiagonal form

Aj =


γi −βi
−αi γi −βi

. . .
. . .

. . .

−αi γi −βi
−αi γi

 . (5.7)
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5.1 Convergence Conditions for Block Form

Proposition 5.1. Suppose a positive coefficient discretization [11] is used and the jump operator
J h is discretized using the method in [10] with linear behaviour assumed for i ≥ î [10, 24]. Then

(a) Bj(q
k
∗,j) ≥ 0,

(b) The ith row sums for Aj(q
k
∗,j) and Bj(q

k
∗,j) are

Row Sum i ( Aj(q
k
∗,j) ) =



(1− ψki,j)
(

1
∆τ + (r + λ) + ϕki,jG

1
∆A−j

)
+ ψki,jΠ

1
∆A−j

1 < i < î

(1− ψki,j)
(

1
∆τ + r + ϕki,jG

1
∆A−j

)
+ ψki,jΠ

1
∆A−j

i = 1;

î ≤ i < imax

1
∆τ + η i = imax

Row Sum i ( Bj(q
k
∗,j) ) ≤

{
(1− ψki,j)λ 1 < i < î

0 i = 1; i = î, . . . , imax ,
(5.8)

(c) The matrices Aj(q∗,j)−Bj(q∗,j) and Aj(q∗,j) in equation (5.5) are strictly diagonally dominant
M matrices.

Proof. The proof follows using similar arguments as in the proof of Proposition 4.1.

Define ∆Amax = maxj [Aj − Aj−1]. The following Lemma gives the conditions under which
Algorithm 2 converges.

Lemma 5.1. If the discretization for the GMWB direct method satisfies the conditions required
for Proposition 5.1 and Π > λ∆Amax , then the matrices Aj,Bj defined in equation (5.5) satisfy
Condition 4.1, hence Algorithm 2 converges from Theorem 4.1.

Proof. Suppose that

max
i

Row Sum i Bj(q
k
∗,j)

Row Sum i Aj(q
k
∗,j)

=
Row Sum p Bj(q

k
∗,j)

Row Sum p Aj(q
k
∗,j)

. (5.9)

If 1 < p < î and ψkp,j = 0, then Lemma 4.1 and Proposition 5.1 implies

‖Aj
−1(qk∗,j)Bj(q

k
∗,j)‖∞ ≤

λ

1
∆τ + (r + λ) +

ϕk
p,jG

∆A−j

< 1 (5.10)

When p = 1, p ≥ î or ψkp,j = 1, Row Sum p (Bj(q
k
∗,j)) = 0. In either case bound (5.10) holds.

If 1 < p < î, ψk−1
p,j = 0 and ψkp,j = 1

‖Aj
−1(qk∗,j)Bj(q

k−1
∗,j )‖∞ ≤

λ

Π 1
∆A−j

<
∆A−j

∆Amax
≤ 1 . (5.11)

In all other cases, ‖Aj
−1(qk∗,j)Bj(q

k−1
∗,j )‖∞ ≤ C1 < 1 unconditionally. Repeating the above argument

setting Bj(q∗,j) to the identity shows that ‖Aj
−1(q∗,j)‖∞ is bounded independent of q.
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Remark 5.1. Choosing a scaling factor which satisfies condition (iii) in Condition 4.1 means that
this same scaling factor must be used in the optimization step in line 3 of Algorithm 1. Consequently,
choosing different scaling factors will result, in general, in different choices for the control at each
iteration.

Remark 5.2. The fact that each Aj is a tridiagonal matrix simplifies the linear solving step in
each fixed-point policy iteration step. In particular, implementation of the block method is quite
straightforward.

6 Floating Point Considerations

6.1 Floating Point Considerations: General Results

During the course of our numerical experiments, we observed that, even if the conditions (4.1)
were satisfied, Algorithm 1 sometimes failed to converge for certain values of the direct control
scaling factor. This non-convergence was a result of the oscillatory behavior of the iterates. These
oscillations were above the level of the convergence tolerance, hence the scheme did not terminate.

Testing Algorithm 1 with B = 0 was revealing. In this case, we can see that in exact arithmetic,
equations (4.4-4.5) show that the iterates are monotone non-decreasing, that is, oscillations cannot
occur. However, in floating point arithmetic, equation (4.4) is not always true. In [13] (no jump
case), this problem was ameliorated by forcing the right hand side of equation (4.2) to always be
non-negative. However, we cannot use this approach here, when B 6= 0.

Let fl(x) be the floating point representation of a real number x. Define the error vector ∆ekδ
generated by the unit roundoff δ.

∆ekδ = fl
(
−A(qk)vk + B(qk)vk + c(qk)

)
−
[
−A(qk)vk + B(qk)vk + c(qk)

]
(6.1)

The floating point error in the fixed point policy iteration is dominated by the computation
in equation (6.1), since the computation of these terms involves computing numerical derivatives
of vk. Numerical experiments showed that this source of error far outweighed any other source of
floating point error (for example, the linear equation solve).

Note that in [3, 20], the effect of propagation of errors in policy iteration is discussed. However,
in those works the error bound depended on the effective discount rate. In our context, the effective
discount rate tends to unity as the mesh is refined. Hence the upper bound for the accumulated
error in [3, 20] becomes infinite in this limit.

Consequently, we will adopt a somewhat informal, but instructive, approach in analyzing these
errors in the following. Suppose that in exact arithmetic Algorithm 1 would terminate at step k+1.
Let vk, vk+1 be the iterates computed in exact arithmetic, and let ∆vkδ be the floating point error
in vk+1 generated by ∆ekδ at step k. Then, from equations (4.2), (6.1),

A(qk)
[
(vk+1 − vk) + ∆vkδ

]
=
[
−A(qk)vk + B(qk)vk + c(qk)

]
+ ∆ekδ , (6.2)

which gives ∆vkδ = A−1(qk)∆ekδ . Clearly, problems will arise if

|(∆vkδ )`|
max(scale, |vk+1

` |)
> tolerance (6.3)
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since, even if |
[
(vk+1 − vk)

]
`
| is small, the iteration will not converge according to the criteria in

Algorithm 1.
Consequently, we can estimate bounds for parameters that will minimize the effect of floating

point errors by requiring that

max
`

[
|(∆vkδ )`|

max(|vk+1
` |, scale)

]
= max

`

[
[A−1(qk)∆ekδ ]`

max(|vk+1
` |, scale)

]
< tolerance . (6.4)

A rigorous bound for condition (6.4) is too pessimistic to be useful. We make the following approx-
imation

max
`

[
[A−1(qk)∆ekδ ]`

max(|vk+1
` |, scale)

]
' max

`

[
‖A−1(qk)‖∞|∆ekδ |`

max(|vk` |, scale)

]
, (6.5)

so that requirement (6.4) is estimated as

max
`

[
‖A−1(qk)‖∞|∆ekδ |`

max(|vk` |, scale)

]
< tolerance . (6.6)

6.2 Floating Point Considerations: Scaled Direct Control

For the Scaled Direct Control approach, the worst case floating point error in equation (6.1) (for
Π large) will be generated by the term

Π
(

1− κ− (DhW vki,j +DhW vki,j)
)
. (6.7)

The worst roundoff error in this term occurs in the area where the grid is fine, where we subtract two
nearly equal numbers. This error is then magnified by dividing by the grid spacing and multiplying
by Π. In Appendix C.3, we obtain the following result (equation (C.20)),∣∣∣∣[∆ekδ]i,j

∣∣∣∣ ≤ 4δΠ(
1

∆Wmin
+

1

∆Amin
) max(|vki,j |, scale) , (6.8)

where ∆Wmin = mini(Wi−Wi−1) and ∆Amin = minj(Aj−Aj−1). From Lemma 4.1, and Proposition
5.1 we obtain

‖Aj
−1(qk∗,j)‖∞ ≤ max

p

1

1
∆τ + (r + λ) +

ϕk
p,jG

∆A−j

< ∆τ. (6.9)

Consequently, from equations (6.12) and (6.9) we obtain

‖Aj
−1(qk∗,j)‖∞[∆ekδ ]i,j ≤ 4Πδ∆τ(

1

∆Wmin
+

1

∆Amin
) max(|vki,j |, scale) . (6.10)

Now substitute equations (6.10) into equation (6.6) to obtain (where we consider Π → ∞ when
estimating ‖Aj

−1‖∞)

Π <
(tolerance

4δ

)(∆Wmin

∆τ

)( 1

1 + ∆Amin
∆Wmin

)
. (6.11)
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Conversely, if Π is small, then the worst case floating point error will be generated by the term
1
2σ

2W 2
i DhWWV

n+1
i,j in equation (3.1), since this term involves a numerical second derivative. (See

the definition of L in equation (2.6)). From the result in Appendix C, equation (C.21), we have

|(∆ekδ )i,j | ≤ 4δ
σ2W 2

i

(∆Wmin)2
i

max(scale, |vi,j |) , (6.12)

where (∆Wmin)i = min(Wi+1 − Wi,Wi − Wi−1). From Lemma 4.1, using Proposition 5.1, and
considering the case where Π→ 0, we obtain

‖Aj
−1(qk∗,j)‖∞ ≤ ∆Amax

Π
(6.13)

where ∆Amax = maxj(Aj −Aj−1). Substituting (6.12) and (6.13) into (6.6) then gives

Π > 4σ2∆Amax

(
W 2
i

(∆Wmin)2
i

)(
δ

tolerance

)
, (6.14)

where

max
i

(
W 2
i

(∆Wmin)2
i

)
=

W 2
i

(∆Wmin)2
i

. (6.15)

Combining equation Lemma 5.1 and (6.14) we obtain

Π > max

[
λ∆Amax, 4σ2∆Amax

(
W 2
i

(∆Wmin)2
i

)(
δ

tolerance

)]
. (6.16)

In order to later compare the scaled direct control method with the penalty method [9, 13], let
C∗ be the dimensionless constant

Π = C∗
ω0

∆τ
. (6.17)

The upper and lower bounds of C∗ for the scaled direct control method are then (from equations
(6.11), (6.16), (6.17)),

C∗ > max

[
λ∆Amax∆τ

ω0
, 4

(
σ2∆Amax∆τ

ω0

)(
W 2
i

(∆Wmin)2
i

)(
δ

tolerance

)]
,

C∗ <
1

4

(
tolerance

δ

)(
∆Wmin

∆ω0

)(
1

1 + ∆Amin
∆Wmin

)
. (6.18)

7 Numerical Results

In this section, we present the results for pricing a sample GMWB contract using our block formula-
tion of the scaled direct control method. At the same time we compare these results to an improved
version of the penalty method [14] as given in the Appendix. The results are presented in Table
7.1 with the jump diffusion parameters given in Table 7.2 and where Table 7.3 gives the mesh size
and timestep parameters. In the localized computational domain Ω = [0,Wmax] × [0, ω0] × [0, T ],
we set Wmax = 103ω0. Experiments with larger values of Wmax produced no change in the solution
to eight digits.
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Example GMWB Contract

Parameter Value

Expiry time T 10.0 years
Interest rate r 0.05
Maximum no penalty withdrawal rate G 10 per year
Withdrawal penalty κ 0.10
Initial lump-sum premium ω0 100
Initial guarantee account balance A(0) 100
Initial personal annuity account balance W (0) 100

Table 7.1: A sample GMWB contract parameters used in the numerical experiments

Parameter Value

ζ .45
ν -.9
λ .1

Table 7.2: Jump diffusion parameters.

Level W Nodes A Nodes Time steps ∆Wmin ∆Amin ∆Amax ∆τ

0 63 56 60 1 1 2 0.16667
1 125 111 120 0.5 0.5 1 0.08333
2 249 221 240 0.25 0.25 0.5 0.04167
3 497 441 480 0.125 0.125 0.25 0.02083
4 993 881 960 0.0625 0.0625 0.125 0.01042
5 1985 1761 1920 0.03125 0.03125 0.0625 0.00521

Table 7.3: Grid and timestep data for convergence experiments

18



Refinement Penalty Method Scaled Direct Control Method
Level Value Itns/step Ratio Value Itns/step Ratio

Algorithm 1 Full Matrix Iteration

0 100.19905 83.90 N/A 101.19906 57.63 N/A
1 100.33789 189.72 N/A 100.33789 100.83 N/A

Algorithm 2 Block Matrix Iteration

0 101.19905 4.28 N/A 101.19906 4.13 N/A
1 100.33789 4.16 N/A 100.33789 4.09 N/A
2 100.08441 4.03 3.40 100.08441 3.98 3.40
3 100.02144 3.89 4.03 100.02145 3.93 4.03
4 100.00498 3.89 3.82 100.00498 3.89 3.82
5 100.00003 3.88 3.33 100.00003 3.87 3.33

Table 7.4: Convergence experiments for the GMWB guarantee value at t = 0 and W = A =
ω0 = 100 using the penalty method, see Appendix A, (ε = 104ω0/∆τ) and scaled direct control
method. Contract parameters are given in Table 7.1. Volatility σ = 0.3 and fair insurance fee
η = 0.045452043 are imposed. Itns/step refers to the average number of iterations per timestep for
the lines 2 − 4 in Algorithm 2 and lines 2 − 9 in Algorithm 1 respectively. Ratio is the ratio of
successive changes in the solution as the mesh/timesteps are refined. Since the no-arbitrage fee is
imposed, the numerical solution should converge to V alue = ω0 = 100.

7.1 Convergence Results

Table 7.4 presents the convergence results for the GMWB for the scaled direct control and penalty
methods. Both full matrix fixed point policy iteration scheme as described in Algorithm 1 and block
matrix fixed point policy iteration scheme as described in Algorithm 2 are used. The no arbitrage
fee used in the example was determined by using Newton iteration [13, 14] to solve equation (2.12).
The scaling factor parameter is set to Π = 103 in Algorithm 1, and so satisfies Condition (4.26)
and Π = 1 in Algorithm 2, which satisfies Condition (6.18). The penalty parameter (Appendix A)
was set to ε = 104ω0/∆τ . We use an outer Newton iteration to solve equation (2.12) for the no-
arbitrage fee (relative convergence tolerance of 10−8). The fixed point policy iteration convergence
tolerance is set to 10−6.

The results show that both the scaled direct control and penalty methods converge with the
computed results from both methods agreeing to seven digits. The number of iterations for the full
matrix fixed point policy iteration scheme is an order magnitude larger than the number of iterations
for the block matrix fixed point policy iteration scheme for both methods. This is because the full
matrix iteration does not take advantage of the special structure of the matrix by computing vn+1

∗,j
before computing vn+1

∗,j−1. The ratio of computational cost for these two methods is approximately
equal to the ratio of iterations per timestep.

In the following, because of efficiency considerations, we will consider only the block matrix
scheme.
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7.2 Effect of Scaling Factor Π and Penalty Parameter ε [13]

In Section 6.2, we expressed the scaling factor Π in terms of a dimensionless parameter C∗ as in
(6.17). Note that the scaled direct control method does not require the existence of a constant
C such that 1/Π = C∆τ (see [13] for details). Writing Π = C∗ω0/∆τ is only for the purpose of
comparing the scaled direct control method with the penalty method.

We refer to the bound on C∗ imposed by effect of floating point arithmetic as a Type I bound.
The bound on C∗ imposed by requiring that ‖A−1(qk)B(qk−1)‖∞ < 1, will be referred to as a Type
II bound.

Table 7.5 compares the GMWB value priced by both scaled direct control and penalty methods
when C∗ ∈ [10−9, 107]. The left two columns show the estimated bounds of C∗ from equations
(A.15) and (6.18). Recall the definition of i from equation (6.15). The finest grids are around node
(W = 100, A = 100), so we set Wi = 100, in the estimate of the floating point errors in equation
(6.18). We take double precision machine epsilon to be δ = 1.11 × 10−16. The ”N/A” entries in
the table indicate that the iterative scheme did not satisfy the convergence criteria in Algorithm 1
after 6000 iterations.

For the entries where the computed values have asterisks, although the convergence criterion in
line 3 of Algorithm 1 was satisfied, we view these results as unreliable. Note that the convergence
criterion in Algorithm 1 is not able to clearly distinguish between very slowly diverging sequences
and truly converging sequences. We remind the reader that the Type II bound from Lemma 5.1 is
a sufficient condition for convergence in exact arithmetic, from Condition 4.1. However, choosing a
C∗ smaller than the estimated lower bound of C∗ from bound (6.18) produces questionable results.
It is obvious the values with asterisks deviate somewhat from the other values.

In the previous numerical examples, the lower bound for the scaling factor Π is dominated by a
Type II bound. To see the effect of Type I lower bound in isolation, we remove the jump diffusion
from the underlying asset model (e.g. λ = 0). Consequently, ‖A−1(qk)B(qk−1)‖∞ < 1 always holds
since B(qk) = 0 for all k and hence the Type II bound disappears.

Table 7.6 shows the GMWB values priced at refinement level 5 (λ = 0). Without the presence
of Type II bound, we can further decrease the scaling factor by three orders of magnitude. The
estimated Type I lower bound for C∗ is remarkably close to the experimental result.

Remark 7.1 (Range of Values). These examples clearly show that the range of useful values of the
scaling parameter for the scaled direct control method is much larger than the range of useful values
for the penalty parameter in the penalty method.

In Appendix D, we report some further numerical experiments which confirm that our estimates
for the upper and lower bounds for the scaling factor are of the correct order.

A GMWB contract holder is perhaps more interested in the optimal withdrawal strategy. Figure
7.1 shows contour plots of the optimal withdrawal strategy at various times. The top two plots in
Figure 7.1 are generated by both the scaled direct control and penalty methods. It can be observed
that these contour plots are very similar.

The other plots in Figure 7.1 are generated by the scaled direct control method. It is interesting
to observe that the top left corner infinite withdrawal region is almost time-invariant, except when
the contract is close to expiration. The no withdrawal region widens as time moves forward. These
results are consistent with the discrete withdrawal computations in [7].
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tolerance = 10−6 Scaled Direct Control Penalty Method
Type Bound Π or 1/ε Value Itns/step Value Itns/step

I 0.67× 10−9ω0/∆τ 10−9ω0/∆τ N/A N/A
10−8ω0/∆τ 99.999992∗ 4.03
10−7ω0/∆τ 99.999992∗ 3.97

II 0.33× 10−6ω0/∆τ 10−6ω0/∆τ 100.00003 3.94
. . . . . . . . . . . .

10−1ω0/∆τ 100.00003 3.82 99.969172 3.83
100ω0/∆τ 100.00003 3.83 99.996899 3.85
101ω0/∆τ 100.00003 3.87 99.999715 3.87
102ω0/∆τ 100.00003 3.88 99.999998 3.88
103ω0/∆τ 100.00003 3.88 100.00002 3.88
104ω0/∆τ 100.00003 3.88 100.00003 3.88
105ω0/∆τ 100.00003 3.88 100.00003 3.88

I 0.35× 106ω0/∆τ 106ω0/∆τ 100.00003 3.88 100.00002 3.88
107ω0/∆τ N/A N/A N/A N/A

Table 7.5: The effect of the scaling factor Π and penalty parameter (Appendix A) 1/ε in terms of
C∗ on pricing the GMWB guarantee at refinement level 5. σ = 0.3,W = A = 100 and t = 0. Fair
insurance fee (i.e. η = 0.045452043) is imposed. Contract parameters are given in Table 7.1. Jump
diffusion parameters are given in Table 7.2. Itns/step refers to the average number of iterations per
timestep for the lines 2 − 4 in Algorithm 2. Type I bounds refer to bounds based on floating point
considerations. Type II bounds refer to sufficient conditions for convergence in exact arithmetic,
from Condition 4.1.
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tolerance = 10−6 Scaled Direct Control Penalty Method
Type Bound Π or 1/ε Value Itns/step Value Itns/step

10−11ω0/∆τ N/A N/A
10−10ω0/∆τ 115.88596 2.69

I 0.67× 10−9ω0/∆τ 10−9ω0/∆τ 115.88596 2.69
10−8ω0/∆τ 115.88596 2.69
10−7ω0/∆τ 115.88596 2.69

II 0.33× 10−6ω0/∆τ 10−6ω0/∆τ 115.88596 2.69
. . . . . . . . . . . .

10−1ω0/∆τ 115.88596 2.84 115.85508 2.85
100ω0/∆τ 115.88596 2.85 115.88281 2.84
101ω0/∆τ 115.88596 2.85 115.88565 2.85
102ω0/∆τ 115.88596 2.85 115.88593 2.85
103ω0/∆τ 115.88596 2.85 115.88596 2.85
104ω0/∆τ 115.88596 2.85 115.88596 2.85
105ω0/∆τ 115.88596 2.85 115.88596 2.85

I 0.35× 106ω0/∆τ 106ω0/∆τ 115.88596 2.87 115.88596 2.86
107ω0/∆τ N/A N/A N/A N/A

Table 7.6: The effect of Type I upper and lower bounds on the scale factor Π and penalty parameter
1/ε on pricing the GMWB guarantee at refinement level 5. No jump diffusion presented. σ =
0.3,W = A = 100 and t = 0. No insurance fee (i.e. η = 0) is imposed. Fully implicit method
is used. Contract parameters are given in Table 7.1. Itns/step refers to the average number of
iterations per timestep for the lines 2 − 4 in Algorithm 2. Type I bounds refer to bounds based on
floating point considerations. Type II bounds refer to sufficient conditions for convergence in exact
arithmetic. In this case the Type II bound is not required since the jump term is absent.
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(a) Scaled direct control method t = 0 (b) Penalty method, t = 0

(c) Scaled direct control method, t = 3 (d) Scaled direct control method, t = 6

(e) Scaled direct control method, t = 9 (f) Scaled direct control method, t = 10 −
∆τ

Figure 7.1: Contour plot of the optimal withdrawal strategy for the GMWB guarantee at different
times in the (W,A) -plane. σ = 0.2. A fair insurance fee of η = 0.032296686 is imposed. Contract
parameters are given in Table 7.1 and jump diffusion parameters are given in Table 7.2. The
penalty parameter (Appendix A) is set to 1/ε = 104ω0/∆τ and the scaling factor is set to Π = 1.
The iteration convergence tolerance is set to 10−6.
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8 Conclusions

In this paper, we have carried out a systematic study of a scaled direct control iterative method for
solution of the GMWB pricing problem formulated as a singular control problem. The underlying
asset is assumed to follow a jump diffusion process.

We represent the discretized equations for the direct control technique using the general form
of controlled HJB equations as in [14]. Sufficient conditions for convergence for a fixed point policy
iteration are determined. A scaling factor is introduced in the direct control method.

The equations resulting from the singular control formation have a special structure that can
significantly improve the efficiency of solving the resulting nonlinear system. A block matrix fixed
point policy iteration scheme is given and the conditions required for convergence are determined.
Numerical results show that this method is an order of magnitude better in terms of number of
iterations compared to a full matrix formulation.

In order to compare the method to the penalty method of [14] we also present a block version
of the penalty method and give conditions on when this method converges. Numerical experiments
were then done to compare both methods (both in block and non-block forms). The experiments
show that the block methods are considerably more efficient in both cases.

Both the direct control and the penalty method technique requires specification of a parameter.
This parameter affects both convergence and accuracy. We have estimated bounds for these param-
eters for both methods, so that convergence in floating point arithmetic can be expected. To the
best of our knowledge, such analysis has not been carried out previously. Numerical experiments
indicate that these estimates are reasonably accurate.

From a practical perspective, it is safe to choose the dimensionless penalty parameter and the
dimensionless direct control scaling factor two orders of magnitude away from the estimated upper
bounds.

It would appear that the order of magnitude useful range of the scaling parameter for the direct
control method is much larger than the useful range for the penalty parameter in the penalty
method. The accuracy and convergence rate for both methods is similar for parameters within the
useful range. Consequently, it would appear that the scaled direct control method is superior to
the penalty method in this regard.

Appendix

A The Penalty Method for solving the GMWB Problem

A penalty method for solving the singular GMWB problem under a jump diffusion process has
been given in [14]. The penalized form is formulated as

V ε
τ = LV ε + λJ V ε + max

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
ϕGFV ε + ψ

(
(FV ε − κ)

ε
+ κG

)]
. (A.1)

or equivalently

V ε
τ − λJ V ε + min

ϕ∈{0,1},ψ∈{0,1}
ϕψ=0

[
−LV ε − ϕGFV ε − ψ

(
(FV ε − κ)

ε
+ κG

)]
= 0. (A.2)
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The basic idea of the penalty method is to discretize equation (A.1), and let the penalty parameter
ε→ 0 as the mesh and timesteps tend to zero.

In [14] the penalty method was discretized with a fully implicit method and a fixed point policy
iteration method was given to solve the resulting nonlinear algebraic equations. The key in this
case was to show that the discretization satisfied Condition 4.1.

We wish to compare the direct control method with the penalty method. In order to do this
we require a block form of the penalty form and an analysis of the floating point behaviour of the
block form algorithm.

A.1 Block Form for the Singular Control GMWB Penalty Method

As discussed in [13, 14], with ε = C∆τ and C a constant, the final discretized form of (A.1) for
the penalty method becomes

1

∆τ
V n+1
i,j − LhV n+1

i,j + ϕ∗i,jG(DhAV n+1
i,j +DhWV n+1

i,j ) +
ψ∗i,j
ε

(DhAV n+1
i,j +DhWV n+1

i,j )

= λ[J hV n+1]i,j + ϕ∗i,jG+ ψ∗i,j(
1− κ
ε

+ κG) +
1

∆τ
V n
i,j (A.3)

where

{ϕ∗i,j , ψ∗i,j} ∈ arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

{
ϕ G(1−Dh

AV
n+1
i,j −DhWV n+1

i,j )

+ ψ
(1−DhAV

n+1
i,j −Dh

WV
n+1
i,j − κ

ε
+ κG

)}
. (A.4)

Equation (A.3) can also be rewritten in an equivalent form (replacing DhA by a backward difference)

1

∆τ
V n+1
i,j − LhV n+1

i,j + ϕ∗i,jG(
V n+1
i,j

∆A−j
+DhWV n+1

i,j ) +
ψ∗i,j
ε

(
V n+1
i,j

∆A−j
+DhWV n+1

i,j )

= λ[J hV n+1]i,j + ϕ∗i,jG+ ψ∗i,j(
1− κ
ε

+ κG) +
1

∆τ
V n
i,j

+(ϕ∗i,jG+
ψ∗i,j
ε

)
1

∆A−j
V n+1
i,j−1 (A.5)

The boundary conditions are similar to the direct control case.
In this subsection we describe a block form for (A.5) and (3.5). Let u = ((u∗,1)′, (u∗,2)′, . . . , (u∗,jmax)′)′

be an N length vector. The imax × imax square matrices Aj,Bj and the vector c∗,j of size imax are
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given in this case by[
Aj(ϕ

k
∗,j , ψ

k
∗,j)u∗,j

]
i

= [Aj
ku∗,j ]i =

1

∆τ
ui,j − Lhui,j + ϕki,jG[

1

∆A−j
ui,j +DhWui,j ]

+
ψki,j
ε

[
1

∆A−j
ui,j +DhWui,j ][

Bj(ϕ
k
∗,j , ψ

k
∗,j)u∗,j

]
i

= [Bj
ku∗,j ]i = λ[J hj u∗,j ]i[

c∗,j(ϕ
k
∗,j , ψ

k
∗,j , V

n, u∗,j−1)
]
i

=
[
ck∗,j

]
i

= ϕki,jG+ ψki,j
[(1− κ)

ε
+ κG

]
+

1

∆τ
V n
i,j

+

(
ϕki,jG+

ψki,j
ε

)
1

∆A−j
ui,j−1 (A.6)

with controls

qki,j =
(
ϕki,j , ψ

k
i,j

)
∈ arg max
ϕ∈{0,1},ψ∈{0,1}

ϕψ=0

[
−Aj(ϕ∗,jψ∗,j)u∗,j

+Bj(ϕ∗,j , ψ∗,j)u∗,j + c∗,j(ϕ∗j , ψ∗,j , u∗,j−1, V
n)

]
i

, (A.7)

where J hj is the subblock of J h which operates on u∗,j , with u∗,−1 = 0. The discretized equations
(A.3) then become

−Aju∗,j + Bju∗,j + c∗,j = 0 , j = 1

sup
qi,j∈Q

[
−Aj(q∗,j)u∗,j + Bj(q∗,j)u∗,j + c∗,j(q∗,j , u∗,j−1)

]
= 0 , j = 2, 3, . . . , jmax (A.8)

Remark A.1. We have written the matrix Bj = Bj
k although there is no explicit dependence on

(ϕk∗,j , ψ
k
∗,j) in this case in order to use the general form of the earlier sections.

In order to ensure convergence to the viscosity solution of equation (2.5), the discretization
must be monotone, consistent and l∞ stable [2]. A positive coefficient discretization guarantees
monotonicity [11]. The positive coefficient condition and the discretization of the jump term as in
[10] give the following result.

Proposition A.1. Suppose a positive coefficient discretization [11] is used and the jump operator
J hj is discretized using the method in [10], with linear behaviour assumed for i ≥ î [10, 24]. Then

(a) Bj(q
k
∗,j) ≥ 0,

(b) The ith row sums for Aj(q
k
∗,j) and Bj(q

k
∗,j) are

Row Sum i ( Aj(q
k
∗,j) ) =


1

∆τ + (r + λ) + (ϕki,jG+
ψk
i,j

ε ) 1
∆A−j

1 < i < î

1
∆τ + r + (ϕki,jG+

ψk
i,j

ε ) 1
∆A−j

i = 1; i = î, ..., imax − 1

1
∆τ + η i = imax

Row Sum i ( Bj(q
k
∗,j) ) ≤

{
λ 1 < i < î

0 i = 1; i = î, ..., imax

(A.9)

26



(c) The matrices Aj(q∗,j)−Bj(q∗,j) and Aj(q∗,j) in equation (A.8) are strictly diagonally domi-
nant M matrices.

Proof. (a) and the second part of (b) follow in similar fashion as in the proof of Proposition 4.1.
In order to prove the remaining part of (b) we note that the row sum is the same as [Aj(q

k
∗,j)e]i

with e = (1, ..., 1)′. Noting properties (4.10), we see that [Aj(q
k
∗,j)e]i = 1

∆τ + (r + λ) + (ϕki,jG +
ψk
i,j

ε ) 1
∆A−j

for i < î. A similar argument shows that [Aj(q
k
∗,j)e]i = 1

∆τ + r + (ϕki,jG +
ψk
i,j

ε ) 1
∆A−j

for

î ≤ i < imax or i = 1. When i = imax then from the boundary assignment of equation (3.5), its row
sum is just (1/∆τ + η).

To prove (c), note that Aj and (Aj − Bj) have non-positive off-diagonals (since a positive
coefficient discretization is used [11]). From (b), the row sums of (Aj−Bj), Aj are strictly positive.
Hence Aj and (Aj −Bj) are M matrices [23].

The convergence result for the block matrix method, using the penalty formulation, is then:

Lemma A.1. Assume that the discretization for the GMWB penalty method satisfies the conditions
required for Proposition A.1. Then the matrices Aj,Bj satisfy Condition 4.1, and hence from
Theorem 4.1, Algorithm 2 converges.

Proof. Because Bj(q
k
∗,j) is independent of qk∗,j , we only need to show that

‖Aj
−1(qk∗,j)Bj(q

k
∗,j)‖∞ ≤ C1 (A.10)

for some constant C1 < 1. From Lemma 4.1 and Proposition A.1, it follows that

‖Aj
−1(qk∗,j )Bj(q

k
∗,j )‖∞ ≤ max

i,j

[
λ

1
∆τ + (r + λ) + (ϕki,jG+

ψk
i,j

ε ) 1
∆A−j

]
< 1. (A.11)

By setting Bj = I, we obtain immediately that Aj
−1(qk∗,j ) is bounded independent of q.

A.2 Floating Point Considerations: Block Penalty Method

For the penalty method, the floating point error of each iteration is dominated by computation of
the following term in equation (6.1)

1

ε

(
1− κ− (DhW vki,j +DhW vki,j)

)
. (A.12)

As done in Subsection 6.2, we can then estimate

4δ∆τ

ε
(

1

∆Wmin
+

1

∆Amin
) < tolerance . (A.13)

In order to ensure that the penalty method is consistent with the original HJB variational
inequality, we require that the penalty parameter ε = C∆τ for any constant C > 0 [13]. Intuitively,
1/ε is the maximum withdrawal rate, so that it has dimensions of currency/time.

Define a dimensionless constant C∗ such that

1

ε
= C∗

ω0

∆τ
. (A.14)
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Substituting equation (A.14) into equation (A.13)

C∗ <
1

4

(
tolerance

δ

)(
∆Wmin

ω0

)(
1

1 + ∆Wmin
∆Amin

)
. (A.15)

See [13] for the financial intuition for selecting this form for C∗.

B Finite Difference Approximation

B.1 First and second derivatives approximation

In this Appendix, we use a standard finite difference method to approximate the first and second
partial derivatives in the PDE. The discretized differential operators DhA, DhW and DhWW are given
by

DhAV n
i,j =

V n
i,j − V n

i,j−1

∆A−j
, backward differencing,

DhWV n
i,j =


V n
i,j−V n

i−1,j

∆W−i
backward differencing,

V n
i+1,j−Vi,j

∆W+
i

forward differencing,
V n
i+1,j−V n

i−1,j

∆W±i
central differencing,

DhWWV
n
i,j =

V n
i−1,j−V n

i,j

∆W−i
+

V n
i+1,j−V n

i,j

∆W+
i

∆W±i
2

=
DhWV n

i+1,j −DhWV n
i,j

∆W±i
2

(DhW is backward differenced). (B.1)

where ∆A−j = Aj −Aj−1, ∆W−i = Wi−Wi−1, ∆W+
i = Wi+1−Wi, and ∆W±i = Wi+1−Wi−1.

B.2 The discretized Lh and Fh operators

Define the following sets of point s (W,A, τ) ∈ Ω

Ωτ0 = [0,Wmax]× [0, ω0]× {0} ,
ΩW0 = {0} × (0, ω0]× (0, T ]

ΩWmax = {Wmax} × (0, ω0]× (0, T ]

ΩA0 = [0,Wmax]× {0} × (0, T ]

Ωin = Ω\Ωτ0\ΩW0\ΩWmax\ΩA0 . (B.2)

Together with the boundary condition (2.11), the discretized Lh and Fh [13] operators are

LhV n
i,j =

{
σ2

2 W
2
i DhWWV

n
i,j + (r − η)WiDhWV n

i,j − rV n
i,j , (Wi, Aj , τ

n) ∈ Ωin ∪ ΩA0

−rV n
i,j , (Wi, Aj , τ

n) ∈ ΩW0

, (B.3)

FhV n
i,j =


1−DhWV n

i,j −DhAV n
i,j , (Wi, Aj , τ

n) ∈ Ωin

1−DhAV n
i,j , (Wi, Aj , τ

n) ∈ ΩW0

0, (Wi, Aj , τ
n) ∈ ΩA0

. (B.4)
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C Floating Point Arithmetic Error Analysis

C.1 Roundoff Error Propagation

Let x = (x1, x2, . . . , xn)′ to compute a function y = φ(x) by using floating point arithmetic, an
error ∆y of yδ0 has to be expected, where |δ0| < δ, the machine epsilon [21]. Further more, there
exists an input error ∆x = (∆x1,∆x2, . . . ,∆xn)′ due to the floating point representation of real
numbers or previous calculation of x (we do not consider the measurement input error because it
is beyond the control of numerical computation method). The two sources of error are unavoidable
no matter how we arrange the floating point operations. The third source of error comes from the
intermediate roundoff errors and it depends how we arrange the floating point operations. Based
on differential error analysis, the total floating point arithmetic error of computing y denoted by
∆y, to the first order approximation, is given by

∆y = Dφ(x)∆x+ yδ0 +
r∑
i=1

∆(i)y (C.1)

with Dφ(x) being the Jacobian matrix of φ(x) and ∆(i)y being the intermediate roundoff error
generated at step i. We assume there are r intermediate steps and each step performs elementary
operations such as +,−,×,÷ and

√
[21].

C.2 Derivative Roundoff Error by Finite Difference

Using the standard finite difference method to compute the first derivative involves floating point
arithmetic of computing the function with form

y = φ1(x) =
x1 − x2

x3
. (C.2)

Let the input relative error be denoted by δx = (δx1 , δx2 , δx3)′ = (∆x1/x1,∆x2/x2,∆x3/x3)′,
If we compute y1 = x1 − x2 first, then proceed to divide the intermediate result y1 by x3, from
equation (C.1), we have

∆y = δx1
x1

x3
− δx2

x2

x3
− δx3y + δ0y + δ1y

where |δi| < δ(i = 1, 2) and δ1y is the intermediate roundoff error. Further assuming |δx3 | ≤ δ and
|x3| ≤ ∆hmin, we obtain the bound of ∆y as follows

|∆y| ≤ |δx1 |
|x1|

∆hmin
+ |δx2 |

|x2|
∆hmin

+ 3δ|y| (C.3)

Let

x2 = (1 + a1)x1, x1 = (1 + a2)x2, |x3| ≤ ∆hmin . (C.4)

The bound of y is given by

|y| ≤ |ai|
|xi|

∆hmin
, i = 1, 2 . (C.5)
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Suppose input error ∆x is due to representing the real number in floating point system or previous
calculation whose error is within machine epsilon δ, so we have ‖δx‖∞ ≤ δ and consequently

|∆y| ≤ δ(2 + 4|ai|)
|xi|

∆hmin
i = 1, 2 . (C.6)

Apply the result to discretized DhWV
n+1
i,j and DhAV

n+1
i,j in equation (B.1), we obtain the absolute

roundoff error of computing first derivatives by using backward difference as follows

|∆DhAV n+1
i,j | ≤ δ(2 + 4|a3|)

|V n+1
i,j |

∆A−j
, V n+1

i,j−1 = (1 + a3)V n+1
i,j

|∆DhWV n+1
i,j | ≤ δ(2 + 4|a4|)

|V n+1
i,j |

∆W−i
, V n+1

i−1,j = (1 + a4)V n+1
i,j

|∆DhWV n+1
i+1,j | ≤ δ(2 + 4|a5|)

|V n+1
i,j |

∆W−i
, V n+1

i+1,j = (1 + a5)V n+1
i,j (C.7)

Apply the result in equation (C.5) to DhAVi,j , DhWVi,j and DhWV
n+1
i+1,j , we have

|DhAV n+1
i,j | ≤ |a3|

|V n+1
i,j |

∆A−j
, |DhWV n+1

i,j | ≤ |a4|
|V n+1
i,j |

(∆Wmin)i
, |DhWV n+1

i+1,j | ≤ |a5|
|V n+1
i,j |

(∆Wmin)i
,(C.8)

where (∆Wmin)i = min(Wi+1−Wi,Wi−Wi−1). Together with the standard 3 point finite difference
method to compute the second derivative as in equation (B.1) , we obtain

|DhWWV
n+1
i,j | ≤ (|DhWV n+1

i+1,j |+ |D
h
WV

n+1
i,j |)

1

(∆Wmin)i

≤ (|a4|+ |a5|)
|V n+1
i,j |

(∆Wmin)2
i

. (C.9)

To bound the roundoff error of DhWWV
n+1
i,j , set

x = (DhWV n+1
i+1,j ,D

h
WV

n+1
i,j ,

∆W±i
2

)′ , δx = (
∆DhWV

n+1
i+1,j

DhWV
n+1
i+1,j

,
∆DhWV

n+1
i,j

DhWV
n+1
i,j

, δx3)′ . (C.10)

Assuming |δx3 | < δ, by equations (B.1), (C.3), (C.8) and (C.9) and the fact that ∆W±i /2 ≥
∆(Wmin)i, we obtain the following bound

|∆DhWWV
n+1
i,j | ≤

|∆DhWV
n+1
i,j |+ |∆DhWV

n+1
i+1,j |

(∆Wmin)i
+ 3|DhWWV

n+1
i,j |

≤ δ(4 + 5|a4|+ 5|a5|)
|V n+1
i,j |

(∆Wmin)2
i

(C.11)

C.3 Roundoff Error Estimation of Local Optimization Problem

During each iteration, we solve local optimization problem and the objective function involves
calculating the following two terms

f1(Wi, Aj , τ
n+1) = κ− 1 +DhWV n+1

i,j +DhAV n+1
i,j (C.12)

f2(Wi, Aj , τ
n+1) =

σ2W 2
i

2
DhWWV

n+1
i,j +O(Wi) . (C.13)
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Computing f1 involves calculating a function of the form g(x) = (x1 + x2) + (x3 + x4). From
equation (C.1), we obtain

|∆g| ≤
4∑
i=1

|∆xi|+ δ|g|+ δ|x1 + x2|+ δ|x3 + x4| (C.14)

≤
4∑
i=1

|∆xi|+ 2δ|x1 + x2|+ 2δ(|x3|+ |x4|) . (C.15)

Set x1 = κ, x2 = −1, x3 = DhWV
n+1
i,j , x4 = DhAV

n+1
i,j and apply equations (C.7) and (C.8) with the

fact that 0 < κ < 1, we obtain the bound of absolute roundoff error of f1 as follows

|∆f1| ≤ δ(2 + 6|a3|)
|V n+1
i,j |

∆A−j
+ δ(2 + 6|a4|)

|V n+1
i,j |

(∆Wmin)i
+ 3(1− κ)δ

/ 2δ(
1 + 3|a3|
∆Amin

+
1 + 3|a4|
∆Wmin

)|V n+1
i,j | , (C.16)

where we discard the smaller error term of 3δ(1 − κ), and ∆Amin = minj(Aj − Aj−1, ∆Wmin =
mini(Wi −Wi−1).

To analyze the roundoff error of f2, we notice that only multiplication and division operations
are involved given DhWWV

n+1
i,j as one of the operands. From equation (C.1), it can be easily seen

that the roundoff error of

g2(x) = x1 × x2 |∆g2| ≤ (|δx1 |+ |δx2 |+ |δ0|)|g2| (C.17)

g3(x) = x1 ÷ x2 |∆g2| ≤ (|δx1 |+ |δx2 |+ |δ0|)|g3| (C.18)

So computing of ci = σ2W 2
i /2 will accumulate 9δ|ci| roundoff errors assuming the input error of

σ and Wi is smaller than δ, the machine epsilon. The final roundoff error of f2 = ciDhWWV
n+1
i,j is

then given by

|∆f2| ≤ (10|δ|+
|∆DhWWV

n+1
i,j |

|DhWWV
n+1
i,j |

)|ci||DhWWV
n+1
i,j |

≤ δ(4 + 15|a4|+ 15|a5|)
σ2W 2

i

2(∆Wmin)2
i

|V n+1
i,j | (C.19)

In the area where the grids are fine, we have Vi,j ≈ Vi±1,j ≈ Vi,j−1. So normally |ai| � 1 for
i = 3, 4, 5. It may be safe to estimate that |ai| ≤ 0.1, i = 3, 4, 5. Finally the following estimation of
roundoff errors of computing f1 and f2 are obtained.

|∆(κ− 1−DhWV n+1
i,j +DhAV n+1

i,j )| ≤ 4δ(
1

∆Amin
+

1

∆Wmin
)|V n+1

i,j |

≤ 4δ(
1

∆Amin
+

1

∆Wmin
) max(|V n+1

i,j |, scale) , (C.20)

|∆(
σ2W 2

i

2
DhWWV

n+1
i,j )| ≤ 4δ

σ2W 2
i

(∆Wmin)2
i

|V n+1
i,j |

≤ 4δ
σ2W 2

i

(∆Wmin)2
i

max(|V n+1
i,j |, scale) . (C.21)
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Tolerance
10−6 10−8 10−10

Level C∗ upper bound C∗max C∗ upper bound C∗max C∗ upper bound C∗max

0 0.11× 108 108 0.11× 106 107 0.11× 104 106

1 0.56× 107 107 0.56× 105 106 0.56× 103 105

2 0.28× 107 107 0.28× 105 105 0.28× 103 105

3 0.14× 107 107 0.14× 105 105 0.14× 103 104

4 0.70× 106 106 0.70× 104 104 0.70× 102 103

5 0.35× 106 106 0.35× 104 104 0.35× 102 102

Level C∗ lower bound C∗min C∗ lower bound C∗min C∗ lower bound C∗min

0 0.33× 10−3 10−4 0.33× 10−3 10−4 0.33× 10−3 10−4

1 0.83× 10−4 10−4 0.83× 10−4 10−5 0.83× 10−4 10−5

2 0.21× 10−4 10−5 0.21× 10−4 10−6 0.21× 10−4 10−5

3 0.52× 10−5 10−5 0.52× 10−5 10−7 0.67× 10−5 10−5

4 0.13× 10−5 10−5 0.13× 10−5 10−6 0.67× 10−5 10−5

5 0.33× 10−6 10−6 0.33× 10−6 10−7 0.67× 10−5 10−5

Table D.1: Experimental C∗ upper (C∗
max )and lower (C∗

min ) bounds as a function of iteration
convergence tolerance. The theoretical bounds C∗ upper bound and C∗ lower bound are also shown.
Both penalty and scaled direct control method with block matrix implementation as in Algorithm 2
and produce the same results of C∗

max. Scaled direct control method is used for computing C∗
min.

Contract parameters are in Table 7.1 and Jump diffusion parameters are in Table 7.2. σ = 0.3, η =
0.045452043. Finest grids are around node (W,A) = (100, 100), which are used to compute the
bounds.

D Confirmation of the Upper and Lower Bound Estimates for the
Scaling Factor

In this appendix, we report some further experiments which confirm that our estimates for [C∗min, C
∗
max]

are of the correct order. We determined the order of magnitude of [C∗min, C
∗
max], as a function of

convergence tolerance, such that ∀C∗ ∈ [C∗min, C
∗
max] the computed GMWB values agree to (n+ 1)th

digit, where tolerance = 10−n. Table D.1 compares the computed order of magnitude of C∗max and
C∗min with the estimated C∗ upper and lower bounds from equation (6.18).

A similar experiment was also conducted to seek the order of magnitude of the range [Πmin,Πmax],
as a function of iteration tolerance, such that ∀ Π ∈ [Πmin,Πmax] the computed GMWB values agree
to (n+ 1)th digit, where tolerance = 10−n. Table D.2 compares the computed order of magnitude
of Πmax and Πmin with the estimated Π upper and lower bounds from equations (6.11) and (6.16).
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