
Hedging with a Correlated Asset:
Solution of a Nonlinear Pricing PDE∗

H. Windcliff†, J. Wang‡, P.A. Forsyth§, K.R. Vetzal¶

June 14, 2005

Abstract

Hedging a contingent claim with an asset which is not perfectly correlated with the underlying as-
set results in unhedgeable residual risk. Even if the residual risk is considered diversifiable, the option
writer is faced with the problem of uncertainty in the estimation of the drift rates of the underlying and
the hedging instrument. If the residual risk is not considered diversifible, then this risk can be priced
using an actuarial standard deviation principle in infinitesmal time. In both cases, these models result in
the same nonlinear partial differential equation (PDE). A fully implicit, monotone discretization method
is developed for solution of this pricing PDE. This method is shown to converge to the viscosity solution.
Certain grid conditions are required to guarantee monotonicity. An algorithm is derived which, given
an initial grid, inserts a finite number of nodes in the grid to ensure that the monotonicity condition is
satisfied. At each timestep, the nonlinear discretized algebraic equations are solved using an iterative al-
gorithm, which is shown to be globally convergent. Monte Carlo hedging examples are given to illustrate
the standard deviation of the profit and loss distribution at the expiry of the option.
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1 Introduction

In this paper we consider the problem of hedging a contingent claim in a case where the underlying asset
cannot be traded. As a specific example, consider the following situation. Segregated funds are contracts
offered by Canadian insurers which provide guarantees on mutual funds held in pension plan investment
accounts [38]. In many cases, due to both legal and practical considerations, the insurance company hedges
these guarantees using index futures in place of the actual mutual fund. The index, of course, will not be
perfectly correlated with the underlying mutual fund, giving rise to basis risk.

In this situation, it is well known that it is possible to construct a best local hedge, in the sense that the
residual risk is orthogonal to the risk which is hedged [20]. If an index is used to construct the hedge, and the
residual risk is not correlated with the market index, it can be argued that this residual risk is firm specific
and so can be diversified away. However, the pricing equation contains an effective drift rate which is a
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function of the actual drift rates of both the underlying mutual fund and the index. Drift rates are difficult
to estimate. It is therefore natural to consider a worst case pricing approach, assuming only that the drift
parameter lies between known bounds, but is otherwise uncertain. This approach gives rise to a nonlinear
PDE [37].

However, the assumption of diversifible residual risk is questionable, especially since insurers are man-
dated to have sufficient reserves to guarantee solvency. As a result, the usual approach in the industry is to
build up a reserve to provide for unhedgeable risk. In this paper, we will follow along the lines suggested in
[25, 36], where the expected return of the hedging portfolio is adjusted to reflect a risk premium due to the
unhedgeable risk. This approach is based on a common actuarial valuation principle [25, 36]. Essentially,
insurers charge premia larger than the expected payoff of the hedging portfolio (in incomplete markets) so
that sufficient reserves are built up to ensure solvency. This is known assafety loading. In [36], this valua-
tion principle is translated into a measure of preferences. This measure can then be used in an indifference
argument to generate a financial premium principle. A similiar pricing method was also suggested in [10].

More precisely, we use local risk minimization [34, 35, 9] to determine the best local hedge. We then
use themodified standard deviation principle[26] in infinitesimal time to account for the residual risk. The
standard deviation principle is used (as opposed to the variance principle) since it gives a value which is
linear in terms of the number of units traded [26]. Applying this principle in infinitesmal time results in a
method which is easily extended to American style contracts with complex path-dependent features, such
as typically found in pension portfolio guarantees offered by insurers. This method gives rise to a nonlinear
pricing PDE.

It is interesting to observe that the nonlinear PDE which results from worst case pricing with an uncertain
drift term and the PDE which prices a contingent claim using the actuarial safety loading principle are
identical in form. Hence, both the risk premium for bearing unhedgeable risk and the risk associated with
uncertain parameter estimation may be taken into account using the same pricing PDE.

The nonlinear PDE gives a different value depending on whether the hedger is long or short the contin-
gent claim. This is similar to the situation which arises in other nonlinear PDEs in finance, such as uncertain
volatility and transaction cost models [4, 37, 30].

Since the pricing PDE is nonlinear, questions of convergence to the financially relevant solution arise.
We develop a monotone, implicit scheme for discretization of the nonlinear pricing PDE. The results in
[5, 15] can then be used to guarantee that the discrete solution converges to the viscosity solution. In order
to ensure that the scheme is monotone, the grid must satisfy certain conditions. Given an initial grid, a
node insertion algorithm is developed which ensures that the monotonicity conditions hold. We show that
the insertion algorithm inserts a finite number of nodes, and that the grid aspect ratio of the grid after node
insertion is only slightly increased compared to the grid aspect ratio of the original grid.

At each timestep, the implicit discretization leads to a nonlinear set of algebraic equations. An iter-
ative algorithm is described for solution of the algebraic equations. The iterative method is designed so
that existing PDE pricing software can be easily modified to solve the nonlinear algebraic equations. We
prove that this algorithm is globally convergent. Moreover, convergence is quadratic in a sufficiently small
neighborhood of the solution. We also prove that the discrete scheme satisfies certain arbitrage inequalities.

Finally, we include some numerical examples demonstrating that convergence of the nonlinear iteration
at each timestep is rapid. We also include some Monte Carlo hedging simulations, where the optimal hedge
parameters are given from the solution of the pricing PDE. The hedging simulation computations can then
be used to determine the standard deviation, mean and value-at-risk (VaR) of the profit and loss distribution
of the hedging portfolio at the expiry time of the contingent claim.

Although we focus specifically on the nonlinear PDE which arises in the context of uncertain drift rates
and/or pricing of unhedgeable risk using an actuarial principle, this PDE has many of the charactersitics
which arise in other nonlinear models in finance, including uncertain volatility [4], passport options [3],

2



utility-based pricing models [27], transaction cost models [23], and large investor effects [2]. As a result, we
expect that many of the numerical methods developed here can be extended to these other nonlinear PDEs
in finance.

2 Formulation

Let V(S, t) be the value of a contingent claim written on assetSwhich follows the stochastic process

dS= µS dt+ σS dZ, (2.1)

whereµ is the drift rate,σ is volatility, anddZ is the increment of a Wiener process.
Suppose that we cannot trade in the underlyingS, but only in a correlated assetH with price process

dH = µ
′H dt + σ

′H dW, (2.2)

wheredW is the increment of a Wiener process. In the following we will use the usual Wiener process
propertiesdW2 = dt,dZ2 = dt,dZ dW= ρ dt, whereρ is the correlation betweendW anddZ. Consider a
case where we wish to hedge a short position in the claim with valueV = V(S, t). Construct the portfolio

Π =−V +xH +B, (2.3)

wherex is the number of units ofH held in the portfolio, andB is a risk free bond. We assume that
B = V− xH at timet, so thatΠ(t) = 0. The change in the portfolio value is given by (note thatx is held
constant in[t, t +dt])

dΠ =−
[
Vt + µSVS+

σ
2S2

2
VSS

]
dt−σSVSdZ+ r(V−xH)dt +x(µ

′H dt + σ
′H dW)

=−
[
Vt + µSVS+

σ
2S2

2
VSS+(xH−V)r−xµ

′H

]
dt−σSVSdZ+xσ

′H dW. (2.4)

The variance ofdΠ is given by

EP[(xσ
′H dW−σSVSdZ)2]=

[
x2(σ

′)2H2 + σ
2S2V2

S −2σSVSxσ
′Hρ

]
dt (2.5)

whereEP is the expectation operator under the objective orP measure. Choosingx to minimize equa-
tion (2.5) gives

x =
(

σSρ

σ
′H

)
VS. (2.6)

Substituting equation (2.6) into equation (2.4) gives

dΠ =−
[
Vt + µSVS+

σ
2S2

2
VSS− rV +

(
rσSρ

σ
′

)
VS−

(
σSρµ

′

σ
′

)
VS

]
dt−σSVSdZ+ σSVSρ dW. (2.7)

Defining

r ′ = µ− (µ
′− r)

σρ

σ
′ (2.8)

in equation (2.7) gives

dΠ =−
[
Vt + r ′SVS− rV +

σ
2S2

2
VSS

]
dt + σSVS(ρ dW−dZ). (2.9)
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Note that to avoid arbitrage, we must haver ′ → r as |ρ| → 1 [16]. Substituting equation (2.6) into equa-
tion (2.5) results in

var[dΠ] = (1−ρ
2)σ

2V2
SS2 dt. (2.10)

Noting that cov[ρ dW−dZ,dW] = 0, we obtain cov[dΠ,dW] = 0, so that the residual risk is orthogonal (in
this sense) to the hedging instrument.

Define a new Brownian increment

dX =
1√

1−ρ
2

[ρdW−dZ] (2.11)

with the propertydX2 = dt. This allows us to write equation (2.9) as

dΠ =−
[
Vt + r ′SVS− rV +

σ
2S2

2
VSS

]
dt +SVS

√
1−ρ

2
σ dX. (2.12)

Based on equation (2.12), one possible pricing approach is to require that the portfolio be mean self-
financing

EP[dΠ] = 0. (2.13)

This results in the linear PDE

Vt + r ′SVS− rV +
σ

2S2

2
VSS= 0. (2.14)

2.1 Uncertain Drift Rate

Unfortunately, equation (2.14) contains the termr ′ which is a function of the drift ratesµ,µ ′. In the usual
complete market setting, the drift rate of the underlying asset disappears from the final PDE. However, in
the cross hedging case, we are required to estimateµ,µ ′, which are notoriously difficult to determine. It
might therefore be prudent to assume only that we can estimate a range of possible values forr ′,

r ′ ∈ [r ′min, r
′
max]. (2.15)

This is similar to the uncertain drift rate/dividend model described in [37]. The worst case price for an short
position in the claim is given by [37]

Vt + max
r ′∈[r ′max,r ′min]

(
r ′SVS− rV +

σ
2S2

2
VSS

)
= 0, (2.16)

with the optimal choice forr ′ being

r ′ =

{
r ′max if VS> 0,

r ′min if VS≤ 0.
(2.17)

Letting

r∗ =
r ′max+ r ′min

2

λ
∗ =

r ′max− r ′min

2
, (2.18)

we can write equations (2.16) and (2.17) as

Vt +
[
r∗+sgn(VS)λ

∗]SVS+
σ

2S2

2
VSS− rV = 0. (2.19)
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A similar argument for a worst case long position gives

Vt +
[
r∗−sgn(VS)λ

∗]SVS+
σ

2S2

2
VSS− rV = 0. (2.20)

For future reference, note that the two cases are

Short Position: Vt +
[
r∗+ λ

∗ sgn(VS)
]
SVS+

σ
2S2

2
VSS− rV = 0

Long Position: Vt +
[
r∗−λ

∗ sgn(VS)
]
SVS+

σ
2S2

2
VSS− rV = 0. (2.21)

2.2 Risk Loading

An insurance company which charged premia based only on equation (2.13) could soon have solvency
problems [19]. As discussed in [25], insurance companies typically charge a premium for unhedgeable risk.
If the residual risk is not diversifiable, then the option writer should be compensated for this risk. In this
incomplete market situation, there are many possible approaches to the pricing problem. We will use the
actuarial standard deviation principle in infinitesmal time. In our notation, this becomes

EP[dΠ] = λ

√
var[dΠ]

dt
dt (2.22)

whereλ is the risk loading parameter, which has units of(time)−1/2 (the same units as a market price
of risk). Note that we have specified that the expectation is under theP measure in equation (2.22). In
order words, during each interval[t, t + dt], the portfolio should earn a premium at a rate proportional to
its instantaneous standard deviation. Note that the premium is based on the instantaneous properties of the
portfolio, which means that this approach is trivially generalized to the path-dependent case. A similar idea
was used in [1], in the context of a hedging strategy in the presence of transaction costs. In [1], the hedging
strategy was constrained so that in each small time interval the expected gains from the hedging portfolio
were proportional to the standard deviation of the gain.

From equation (2.10) we have that√
var[dΠ]

dt
= σS|VS|

√
1−ρ

2. (2.23)

Combining equations (2.12,2.22,2.23) gives

Vt + r ′SVS+S|VS|λσ

√
1−ρ

2 +
σ

2S2

2
VSS− rV = 0, (2.24)

or equivalently

Vt +
[
r ′+ λσ

√
1−ρ

2 sgn(VS)
]

SVS+
σ

2S2

2
VSS− rV = 0. (2.25)

Note that the definition ofΠ in equation (2.3) assumes that the hedger is short the contingent claimV.
Consequently, equation (2.25) is valid for a short position inV. Repeating the above arguments for a long
position gives

Vt +
[
r ′−λσ

√
1−ρ

2 sgn(VS)
]

SVS+
σ

2S2

2
VSS− rV = 0. (2.26)
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For future reference, note that the two cases are

Short Position: Vt +
[
r ′+ λσ

√
1−ρ

2 sgn(VS)
]

SVS+
σ

2S2

2
VSS− rV = 0

Long Position: Vt +
[
r ′−λσ

√
1−ρ

2 sgn(VS)
]

SVS+
σ

2S2

2
VSS− rV = 0. (2.27)

From equations (2.12) and (2.27) we have

Short Position: dΠ = λσ

√
1−ρ

2 S|VS|dt +SVS

√
1−ρ

2
σ dX

Long Position: dΠ = λσ

√
1−ρ

2 S|VS|dt−SVS

√
1−ρ

2
σ dX. (2.28)

Note that equations (2.27) have the same form as equations (2.21), if we make the identification

λσ

√
1−ρ

2→ λ
∗

r ′→ r∗. (2.29)

In fact, we can combine both models (uncertain drift rate and actuarial risk-loading for unhedgeable
risk) by defining

r∗c =
r ′max+ r ′min

2

λ
∗
c = λσ

√
1−ρ

2 +
r ′max− r ′min

2
. (2.30)

As a result, the combined model which takes both effects into account becomes (for worst case prices)

Short Position: Vt +
[
r∗c + λ

∗
c sgn(VS)

]
SVS+

σ
2S2

2
VSS− rV = 0

Long Position: Vt +
[
r∗c−λ

∗
c sgn(VS)

]
SVS+

σ
2S2

2
VSS− rV = 0. (2.31)

2.3 The Nonlinear Pricing PDE

For expositional simplicity in the following, we will consider the nonlinear PDE (2.28) which results only
from the risk loading model. Of course, as outlined above, these nonlinear PDEs can as well be viewed as
models of uncertain drift rates with suitable redefinition of the parameters.

Assumingλ ≥ 0, then equations (2.27) are equivalent to

Short Position: Vτ = max
q∈{−1,+1}

[(
r ′+qλσ

√
1−ρ

2
)

SVS+
σ

2S2

2
VSS− rV

]
Long Position: Vτ = min

q∈{−1,+1}

[(
r ′+qλσ

√
1−ρ

2)
)

SVS+
σ

2S2

2
VSS− rV

]
, (2.32)

whereτ = T− t, with T being the expiry time of the contingent claim. Note that the optimal choice forq in
equation (2.32) is

q =

{
+sgn(VS) if short,

−sgn(VS) if long.
(2.33)

If we write (for a short position)

LV ≡Vτ − max
q∈{−1,+1}

[(
r ′+qλσ

√
1−ρ

2
)

SVS+
σ

2S2

2
VSS− rV

]
(2.34)
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with the payoff denoted byV = V∗, then the price of a short contingent claim with an American early
exercise feature would be given by min(LV,V−V∗) = 0. We will focus on European options in this paper,
but much of the analysis can be extended to the American case as well.

2.4 Boundary Conditions

At τ = 0, we setV(S,0) to the payoff. AsS→ 0, equation (2.27) reduces to

Vτ =−rV. (2.35)

In fact, in order to ensure certain properties of the discrete equations, we will impose condition (2.35)
at some finite valueSmin > 0, and letSmin tend to zero as the mesh is refined. We will demonstrate the
effectiveness of this approximation through numerical tests.

As S→ ∞, we make the common assumption thatVSS' 0, meaning that

V ' A(τ)S+B(τ); S→ ∞. (2.36)

Assuming equation (2.36) holds, then substituting equation (2.36) into equation (2.27) gives ordinary dif-
ferential equations forA(τ),B(τ) with solution

V = A(0)Sexp
[(

r ′− r +qλσ

√
1−ρ

2
)

τ

]
+B(0)exp[−rτ] , (2.37)

whereq is given from equation (2.33) atτ = 0. The initial conditions forA(0),B(0) are given from the
option payoffs.

2.5 Overview of Previous Work

We can relate equation (2.4) to the work in [34] by noting that forλ = 0, dΠ is the incremental profit of
hedging. (In [34], the incremental cost is defined as−dΠ.) In a complete marketdΠ = 0. In general,
in incomplete markets, it is not possible to construct self-financing portfolios which perfectly replicate a
contingent claim.

Consider the case whereλ = 0. LetΠ(t +dt−) = Π(t)+dΠ(t). In general,Π(t +dt−) will not be zero,
given thatΠ(t) = 0. In order to reset the portfolio value back to zero, cash is added to or subtracted from
the portfolio so that

Π(t +dt+) = Π(t +dt−)−dΠ(t) = 0, (2.38)

hence this portfolio is not self-financing.
If λ = 0, then the approach used above is based on local risk minimization [34], i.e. we choose the

trading strategy to minimize the variance of the incremental hedging profit/loss at each hedging time. Note
that if λ = 0, then from equation (2.28) we haveEP[dΠ] = 0, so this strategy is mean self-financing.

Given that the payoff of the option is used as an initial condition for equations (2.32) att = T, cash must
be infused into the portfolio during the hedging strategy in order to ensure that the payoff is met (the trading
gains do not exactly balance the change in the option value during each infinitesimal step). As noted in [12],
using the hedging parameters (2.6) given from the solution to equation (2.27), we can define a self-financing
portfolio related to the locally risk minimizing portfolio, which in general will suffer from a shortfall at
expiry. We will use this approach in our hedging simulations reported in Section 9.

The local risk minimization approach can be contrasted with the mean variance hedging or total risk
minimization approach [35, 22]. In this strategy, a self-financing portfolio is constructed which minimizes
the expected value of the square of the difference between the hedging portfolio and the payoff at the expiry
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date. As discussed in [12], total risk minimization is a dynamic stochastic programming problem which is
difficult, in general, to solve. In this paper, we will consider local risk minimization only, since this strategy
attempts to control the riskiness of the hedging strategy at all times during the life of the contingent claim.
This local risk minimization also appears natural in a context where the nature of the short contingent claim
may change frequently, due to American style features [38]. Note that a similar combination of local risk
minimization and a risk premium proportional to the standard deviation of the hedging portfolio was applied
to real estate derivatives in [28].

In addition to the actuarial approaches mentioned above for optimal hedging with basis risk, another
possible pricing method is based on maximizing exponential utility [16, 27]. It is interesting to note that if
we had specified an actuarial variance principle

EP[dΠ] = λ
V
[

var[dΠ]
dt

]
dt, (2.39)

then we would obtain a nonlinear PDE identical to the PDE derived in [27]. (Note that the PDE in [27] is
written for the caser = 0.)

3 Discretization

For discretization purposes, PDEs (2.32) can be written as

Vτ =
[
r ′+qλσ

√
1−ρ

2
]

SVS+
σ

2S2

2
VSS− rV, (3.1)

where the nonlinear termq is given from equation (2.33). Define a grid{S0,S1, . . . ,Sp}, and letVn
i =

V(Si ,τ
n). Equation (3.1) can be discretized using forward, backward or central differencing in theSdirec-

tion, coupled with a fully implicit timestepping to give

Vn+1
i −Vn

i = α
n+1
i Vn+1

i−1 + β
n+1
i Vn+1

i+1 − (α
n+1
i + β

n+1
i + r∆τ)Vn+1

i , (3.2)

whereαi ,βi are defined in Appendix A. We can also write the discrete equations in a manner consistent
with the local max/min control problem (2.32). Let

α
n
i = α

′
i −qn

i,centγ
′
i,cent−qn

i,backγ
′
i,back

β
n
i = β

′
i +qn

i,centγ
′
i,cent+qn

i, f orγ
′
i, f or, (3.3)

whereα
′,β ′,γ ′,qn

i are defined in Appendix A. Note thatqn
i =±1 (see Appendix A).

In the following analysis, it will also be convenient to express discretization (3.2) in the form

Vn+1
i −Vn

i = α
′
iV

n+1
i−1 + β

′
i V

n+1
i+1 − (α

′
i + β

′
i + r∆τ)Vn+1

i

+ κ γ
′
i,back|Vn+1

i −Vn+1
i−1 |+ κ γ

′
i, f or|Vn+1

i+1 −Vn+1
i |+ κ γ

′
i,cent|Vn+1

i+1 −Vn+1
i−1 |, (3.4)

where

κ =

{
+1 if short,

−1 if long.
(3.5)

We approximate the infinite computational domainS∈ [0,∞) by the finite domainS∈ [Smin,Smax]. De-
note the node corresponding toSi = SmaxasSi = Simax. Let the discrete Dirichlet condition (2.37) atS= Simax
be given by

Dn+1
imax = A(0)Simax exp

[(
r ′− r +qλσ

√
1−ρ

2
)

τ
n+1
]

+B(0)exp
[
−rτ

n+1] . (3.6)
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For further notational convenience, we can write equation (3.2) in matrix form. Let

Vn+1 = [Vn+1
0 ,Vn+1

1 , . . . ,Vn+1
imax]

′

Vn = [Vn
0 ,V

n
1 , . . . ,V

n
imax]

′ (3.7)

and [
M̂nVn]

i =
[
(α

n
i + β

n
i + r∆τ)Vn

i −α
n
i Vn

i−1−β
n
i Vn

i+1

]
; i < imax. (3.8)

The first and last rows ofM̂ are modified as needed to handle the boundary conditions. The boundary
condition atS= Smin (equation (2.35)) is enforced by settingαi = βi = 0 ati = 0. LetDn+1 = [0, . . . ,Dn+1

imax]
′,

and letI∗ be the matrix which is identically zero, except for a one in the diagonal of the last row. The
boundary condition ati = imax is enforced by setting the last row of̂M to be identically zero. With a
slight abuse of notation, we denote this last row as(M̂)imax≡ 0. In the following, it will be understood that
equations of type (3.8) hold only fori < imax, with (M̂)imax≡ 0.

The discrete equations (3.2) can then be written as[
I +(1−θ)M̂n+1]Vn+1 =

[
I −θM̂n]Vn + I∗(Dn+1−Vn), (3.9)

where the termI∗(Dn+1−Vn) enforces the boundary condition atS= Simax, and we have generalized the
discretization (3.2) to the Crank Nicolson (θ = 1/2) or fully implicit (θ = 0) cases. Note that the discrete
equations (3.9) are nonlinear sinceM̂n+1 = M̂(Vn+1).

4 Convergence to the Viscosity Solution

In [30], examples were given in which seemingly reasonable discretizations of nonlinear option pricing
PDEs were unstable or converged to the incorrect solution. It is important to ensure that we can generate
discretizations which are guaranteed to converge to the viscosity solution [5, 15]. Equation (2.32) satisfies
the strong comparison property [6, 7, 11]. Hence from [8, 5], a numerical scheme converges to the viscosity
solution if the method is consistent, stable (in thel∞ norm) and monotone. For the convenience of the reader,
we include a brief intuitive explanation of viscosity solutions in Appendix B.

4.1 Stability

We can ensure stability by requiring that discretization (3.2) be a positive coefficient method,α
n
i ,β

n
i ≥ 0.

This can be enforced by selecting a grid, and choosing forward, backward or central differencing so that the
following condition is satisfied:

Condition 4.1 (Positive Coefficient Condition).

β
′
i − γ

′
i,cent− γ

′
i, f or ≥ 0; i = 0, . . . , imax−1

α
′
i − γ

′
i,cent− γ

′
i,back≥ 0; i = 0, . . . , imax−1 (4.1)

Note from the definitions ofγ ′i in equations (A.17-A.19) that at each node only one ofγ
′
i,cent,γ

′
i, f or,γ

′
i,back is

nonzero, and thatγ ′i ≥ 0. Condition (4.1) is based on the worst case choice of qn
i in equation (3.3), hence

this condition is independent of the solution. In other words, a grid is constructed, and central, forward or
backward differencing is selected so that condition (4.1) is always satisfied. We emphasize that the choice
of difference scheme is fixed, and does not depend on the solution. This is an important property [29] which
will be used below. We will also give an algorithm in Section 7 which, given an arbitrary grid, can satisfy
condition (4.1) by inserting a finite number of nodes.
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Given condition (4.1), we have the following stability result

Lemma 4.1 (Stability of Discretization (3.2)). Provided that

• r ≥ 0,

• condition (4.1) is satisfied, and

• Dirichlet boundary conditions (2.35) and (2.36) are imposed,

then the fully implicit discretization (3.2) is unconditionally stable in the sense that

‖Vn+1‖∞ ≤max
(
‖Vn‖∞,D

n+1
imax

)
(4.2)

independent of the timestep size.

Proof. If conditions (4.1) are satisfied andr ≥ 0, then it follows from equation (3.3) thatα
n
i ,β

n
i in dis-

cretization (3.2) are nonnegative, independent of the solution. The result then follows from a straightforward
maximum analysis.

4.2 Monotonicity

As discussed above, another important property of a discretization is monotonicity [5]. We write equa-
tions (3.2-3.4) as

gi

(
Vn+1

i ,Vn+1
i−1 ,V

n+1
i+1 ,V

n
i

)
=−

(
Vn+1

i −Vn
i

)
+ α

n+1
i Vn+1

i−1 + β
n+1
i Vn+1

i+1 −
(
α

n+1
i + β

n+1
i + r∆τ

)
Vn+1

i

=−
(
Vn+1

i −Vn
i

)
+ α

′
iV

n+1
i−1 + β

′
i V

n+1
i+1 −

(
α
′
i + β

′
i + r∆τ

)
Vn+1

i

+ κ γ
′
i,back

∣∣Vn+1
i −Vn+1

i−1

∣∣+ κ γ
′
i, f or

∣∣Vn+1
i+1 −Vn+1

i

∣∣+ κ γ
′
i,cent

∣∣Vn+1
i+1 −Vn+1

i−1

∣∣
= 0, i = 0, . . . , imax−1, (4.3)

whereκ is defined in equation (3.5).

Definition 4.1 (Monotonicity). A discretization of the form (4.3) is monotone if the following conditions
hold

gi

(
Vn+1

i ,Vn+1
i−1 + ε1,V

n+1
i+1 + ε2,V

n
i + ε3

)
≥ gi

(
Vn+1

i ,Vn+1
i−1 ,V

n+1
i+1 ,V

n
i

)
; ∀εi ≥ 0, (4.4)

gi

(
Vn+1

i + ε4,V
n+1
i−1 ,V

n+1
i+1 ,V

n
i

)
< gi

(
Vn+1

i ,Vn+1
i−1 ,V

n+1
i+1 ,V

n
i

)
; ∀ε4≥ 0. (4.5)

Observe that definition (4.1) includes condition (4.5), whereas only condition (4.4) is usually specified in
the viscosity solution literature [5]. Condition (4.5) leads to a more intuitively appealing interpretation, and
is a consequence of condition (4.4) and consistency [18].

Lemma 4.2 (Monotonicity). If condition (4.1) is satisfied, then discretization (4.3) is monotone.

Proof. The result holds trivially ati = imax sincegimax = −
(
Vn+1

imax−Dn+1
imax

)
. For i < imax, from equa-

tion (4.3) we have (forε ≥ 0, and noting thatγ ′i ≥ 0; see Appendix A)

gi

(
Vn+1

i ,Vn+1
i−1 ,V

n+1
i+1 + ε,Vn

i

)
−gi

(
Vn+1

i ,Vn+1
i−1 ,V

n+1
i+1 ,V

n
i

)
= β

′
i ε

+ κγ
′
i,cent

[∣∣Vn+1
i+1 + ε−Vn+1

i−1

∣∣− ∣∣Vn+1
i+1 −Vn+1

i−1

∣∣]
+ κγ

′
i, f or

[∣∣Vn+1
i+1 + ε−Vn+1

i

∣∣− ∣∣Vn+1
i+1 −Vn+1

i

∣∣]
≥ β

′
i ε− γ

′
i,centε− γ

′
i, f orε

= ε

(
β
′
i − γ

′
i,cent− γ

′
i, f or

)
≥ 0 (4.6)

10



which follows from condition (4.1). Similarly,

gi

(
Vn+1

i ,Vn+1
i−1 + ε,Vn+1

i+1 ,V
n
i

)
−gi

(
Vn+1

i ,Vn+1
i−1 ,V

n+1
i+1 ,V

n
i

)
≥ ε(α

′
i − γ

′
i,cent− γ

′
i,back)≥ 0 (4.7)

and

gi

(
Vn+1

i + ε,Vn+1
i−1 ,V

n+1
i+1 ,V

n
i

)
−gi

(
Vn+1

i ,Vn+1
i−1 ,V

n+1
i+1 ,V

n
i

)
≤−ε− ε(α

′
i + β

′
i + r∆τ)+ εγ

′
i,back+ εγ

′
i, f or

=−ε(1+ r∆τ)− ε(α
′
i − γ

′
i,back)− ε(β

′
i − γ

′
i, f or)

≤ 0. (4.8)

Finally, it is obvious from equation (4.3) that

gi

(
Vn+1

i ,Vn+1
i−1 ,V

n+1
i+1 ,V

n
i + ε

)
−gi

(
Vn+1

i ,Vn+1
i−1 ,V

n+1
i+1 ,V

n
i

)
> 0. (4.9)

4.3 Consistency

The discrete scheme (3.9) is locally consistent with PDE (3.1) if the discrete operator applied to anyC∞

function converges to the equation (3.1) as the mesh size and timestep vanishes.

Lemma 4.3 (Consistency).The discrete scheme (3.9) is locally consistent.

Proof. From the definitions of the discrete coefficientsαi ,βi in equation (3.2) and Appendix A, a simple
Taylor series verifies consistency.

4.4 Convergence

Letting ∆τ = maxn
(
τ

n+1− τ
n
)
, ∆S= maxi

(
Si+1−Si

)
, we can now state our convergence result.

Theorem 4.1 (Convergence of the Fully Implicit Discretization).Provided that

• r ≥ 0,

• the Dirichlet boundary conditions (2.35-2.36) are imposed, and condition (2.35) is imposed at Smin,
Smin→ 0 as∆S→ 0, and

• the positive coefficient condition (4.1) holds,

the fully implicit discretization (3.2) converges unconditionally to the viscosity solution of the nonlinear
PDE (3.1) as∆S,∆τ → 0.

Proof. Since PDE (3.1) satisfies the strong comparison principle, a consistent, stable, and monotone dis-
cretization converges to the viscosity solution of PDE (3.1) [5]. Hence Theorem 4.1 follows directly from
the results in [5] and Lemmas 4.1, 4.2 and 4.3.
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5 Solution of the Nonlinear Algebraic Equations

Although we have shown that the discretization converges to the viscosity solution, it is not clear that
scheme (3.2) is practical since we must solve a set of nonlinear, nonsmooth algebraic equations at each
timestep. The following iterative method is used to solve the nonlinear discretized algebraic equations (3.9):

Iterative Solution of the Discrete Equations

Let (Vn+1)0 = Vn

Let V̂k = (Vn+1)k

For k = 0,1,2, . . . until convergence

Solve[
I +(1−θ)M̂(V̂k)

]
V̂k+1 =

[
I −θM̂(Vn)

]
Vn + I∗(Dn+1−Vn)

If (k> 0) and

(
max

i

∣∣V̂k+1
i −V̂k

i

∣∣
max

(
scale,

∣∣V̂k+1
i

∣∣) < tolerance

)
then quit

EndFor

(5.1)

The scale factor in algorithm (5.1) is selected so that small option values are not determined with impractical
precision. For example, if the option is valued in dollars, thenscale= 1 would be a reasonable value for this
parameter.

Some manipulation of algorithm (5.1) results in[
I +(1−θ)M̂k

](
V̂k+1−V̂k

)
= (1−θ)

[
M̂k−1− M̂k

]
V̂k, (5.2)

whereM̂k = M̂(V̂k). A key property which can be used to establish convergence of algorithm (5.1) concerns
the sign of the right hand side of equation (5.2). We utilize a result obtained in [29]:

Lemma 5.1 (Single Signed Update).If M̂nVn is given by equation (3.8), with nonlinear coefficients deter-
mined by a local control problem of form (3.3), and the choice of forward, backward, or central differencing
is independent of the solution (i.e. preselected at each node independent of solution values), then

Short Position:
[
M̂k−1− M̂k

]
V̂k ≥ 0 (5.3)

Long Position:
[
M̂k−1− M̂k

]
V̂k ≤ 0. (5.4)

Proof. For convenience, we summarize the proof in [29]. The result holds trivially ati = imax, since
(M̂k−1− M̂k)imax≡ 0. Writing out

[
M̂k−1− M̂k

]
V̂k in component form gives (i < imax)[[

M̂k−1− M̂k
]
V̂k
]

i
=
(

α
k
i V̂k

i−1 + β
k
i V̂k

i+1− (α
k
i + β

k
i + r∆τ)V̂k

i

)
−
(

α
k−1
i V̂k

i−1 + β
k−1
i V̂k

i+1− (α
k−1
i + β

k−1
i + r∆τ)V̂k

i

)
. (5.5)

Consider a short position so that in terms of the local control problem (2.32),α
k
i ,β

k
i are selected so that

α
k
i V̂k

i−1 + β
k
i V̂k

i+1− (α
k
i + β

k
i + r∆τ)V̂k

i (5.6)
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is maximized. Any other choice of coefficients, for exampleα
k−1
i ,β k−1

i , cannot exceed the maximum
produced by expression (5.6). Thus(

α
k
i V̂k

i−1 + β
k
i V̂k

i+1− (α
k
i + β

k
i + r∆τ)V̂k

i

)
−
(

α
k−1
i V̂k

i−1 + β
k−1
i V̂k

i+1− (α
k−1
i + β

k−1
i + r∆τ)V̂k

i

)
≥ 0, (5.7)

so that for a short position
[
M̂k−1− M̂k

]
V̂k ≥ 0. A similar argument for a long position verifies (5.4).

It is also useful to note the following property of the matrix
[
I +(1−θ)M̂n+1

]
.

Lemma 5.2 (M-matrix). If the positive coefficient condition (4.1) is satisfied, r≥ 0, and boundary condi-
tions (2.35,2.36) are imposed at S= Smin,Smax, then

[
I +(1−θ)M̂n+1

]
is an M-matrix.

Proof. As in the proof of Lemma 4.1, condition (4.1) implies thatα
n
i ,β

n
i in equation (3.8) are non-negative.

Hence
[
I +(1−θ)M̂n+1

]
has positive diagonals, non-positive offdiagonals, and is diagonally dominant, so

it is an M-matrix.

Remark 5.1 (Properties of M-Matrices). An M-matrix Q has the important properties that Q−1 ≥ 0 and
diag(Q−1)> 0.

We can now state our main result concerning the convergence of iteration (5.1).

Theorem 5.1 (Convergence of Iteration (5.1)).Provided that the conditions required for Lemmas 5.1
and 5.2 are satisfied, then the nonlinear iteration (5.1) converges to the unique solution of equation (3.9)
for any initial iterateV̂0. Moreover, the iterates converge monotonically, and forV̂k sufficiently close to the
solution, convergence is quadratic.

Proof. Given Lemmas 5.1 and 5.2, the proof of this result is similar to the proof of convergence given in [30].
We give a brief outline of the steps in this proof, and refer readers to [30] for details. A straightforward max-
imum analysis of scheme (5.1) can be used to bound‖V̂k‖∞ independent of iterationk. From Lemma 5.1, we
have that the right hand side of equation (5.2) is non-decreasing (non-increasing) for short (long) positions.
Noting that

[
I +(1−θ)M̂k

]
is an M-matrix (from Lemma 5.2) and hence

[
I +(1−θ)M̂k

]−1≥ 0, it is easily
seen that the iterates form a bounded non-decreasing (short) or non-increasing (long) sequence. In addition,
if V̂k+1 = V̂k the residual is zero. Hence the iteration converges to a solution. It follows from the M-matrix
property of

[
I +(1−θ)M̂k

]
that the solution is unique. The iteration (5.1) can be regarded as a non-smooth

Newton iteration. Since the non-smooth algebraic nonlinear equations (3.9) are strongly semi-smooth [32],
convergence is quadratic in a sufficiently small neighborhood of the solution [31].

6 Arbitrage Inequalities

It is interesting to verify that the discrete equations satisfy discrete arbitrage inequalities [13, 14], inde-
pendent of the choice of grid or timestep size. In other words, inequalities in option payoffs translate to
inequalities in option values. More precisely, ifVn,Wn are two solutions of the fully implicit equations (4.3)
and ifV0 >W0 andVk

imax>Wk
imax,(k = 0, . . . ,n), thenVn >Wn.

LetingDn+1
V = [0, . . . ,Vn+1

imax]
′, Dn+1

W = [0, . . . ,Wn+1
imax]

′, we have the following result:

Theorem 6.1 (Discrete Comparison Principle).The fully implicit discretization (3.9) satisfies a discrete
comparison principle, i.e. if Vn>Wn,Dn+1

V >Dn+1
W and Vn+1,Wn+1 satisfy equation (3.9) and the conditions

for Lemmas 5.1 and 5.2 are satisfied, then Vn+1 >Wn+1.
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Proof. V,W satisfy [
I + M̂(Vn+1)

]
Vn+1 = Vn + I∗(Dn+1

V −Vn)[
I + M̂(Wn+1)

]
Wn+1 = Wn + I∗(Dn+1

W −Wn). (6.1)

Some manipulation of equation (6.1) gives[
I + M̂(Wn+1)

]
(Vn+1−Wn+1) = (I − I∗)(Vn−Wn)+

[
M̂(Wn+1)− M̂(Vn+1)

]
Vn+1

+ I∗(Dn+1
V −Dn+1

W ) (6.2)[
I + M̂(Vn+1)

]
(Vn+1−Wn+1) = (I − I∗)(Vn−Wn)−

[
M̂(Vn+1)− M̂(Wn+1)

]
Wn+1

+ I∗(Dn+1
V −Dn+1

W ). (6.3)

Consider a short position. From Lemma 5.1 (after relabelingV̂k−1 = Wn+1,V̂k = Vn+1) we have that[
M̂(Wn+1)− M̂(Vn+1)

]
Vn+1≥ 0. If Vn >Wn andDn+1

V > Dn+1
W , then from Lemma 5.2 and equation (6.2)[

I + M̂(Wn+1)
]−1[

(I − I∗)(Vn−Wn)+ I∗(Dn+1
V −Dn+1

W )+
(
M̂(Wn+1)− M̂(Vn+1)

)
Vn+1]> 0, (6.4)

soVn+1>Wn+1. For a long position, a similar argument using Lemmas 5.1 and 5.2 and equation (6.3) gives
the same result.

Remark 6.1 (Use of Lemma 5.1).Note that a key property in the above proof is Lemma 5.1. This Lemma
holds if we ensure that we solve a discrete version of the control problem (2.32), i.e. we maximize or minimize
the discrete equations for a finite mesh and timesteps, not just in the limit of vanishing grid and timestep
size. This illustrates the importance of maximizing or minimizing the discrete equations directly.

7 Positive Coefficient Grid Condition

In this section, we develop an algorithm to ensure that grid condition (4.1) can be satisfied by insertion of
a finite number of nodes in any initial grid. Some algebra shows that condition (4.1) is satisfied by at least
one of forward or backward differencing at nodei if

σ
2Si +(Si+1−Si−1)

(
|r ′|−λσ

√
1−ρ

2
)
≥ 0. (7.1)

Equation (7.1) is always satisfied if
(
|r ′|−λσ

√
1−ρ

2
)
≥ 0. Consequently, we will examine the case when(

|r ′|−λσ

√
1−ρ

2
)
< 0. SupposeSi+1−Si = ∆S,∀i, and soSi = i∆S. Then condition (7.1) reduces to

σ
2i +2

(
|r ′|−λσ

√
1−ρ

2
)
≥ 0. (7.2)

Clearly, for sufficiently largeSi condition (7.2) can be satisfied ifσ
2 > 0. Equation (7.2) simplifies ati = 1

to
σ

2 +2
(
|r ′|−λσ

√
1−ρ

2
)
≥ 0. (7.3)

Consequently, asSi → 0, condition (7.2) may not be satisfied, no matter how small∆S is chosen. From
equation (7.3), we can see that the problem arises sinceS0 = 0. Instead, suppose we chooseSi = S0 +
i∆S,S0 > 0. In this case condition (7.2) becomes

σ
2S0 + ∆S

(
σ

2i +2|r ′|
)
−2∆Sλσ

√
1−ρ

2≥ 0, (7.4)
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which can always be satisfied if∆S is sufficiently small andS0 > 0. More generally, suppose

h = max
i

(
Si+1−Si

)
. (7.5)

Condition (7.1) is always satisfied if

h≤
σ

2S2
0

2
∣∣∣|r ′|−λσ

√
1−ρ

2
∣∣∣ . (7.6)

Note that a grid constructed by enforcing condition (7.6) is not required in practice (as we shall see be-
low). Condition (7.6) simply ensures that givenS0 > 0, a grid with a finite number of nodes can always be
constructed which ensures that the positive coefficient condition (4.1) is satisfied.

In the following, we will develop an algorithm which, given an initial grid withS0> 0, will insert a finite
number of nodes to ensure that condition (4.1) is satisfied. For a given grid withS0 > 0, we will apply the
boundary condition (2.35) atS= S0. In order to carry out a convergence study, finer grids can be constructed
by inserting nodes between each two coarse grid nodes, and reducingS0 by half. In this way, the effect of
applying boundary condition (2.35) atS0 is reduced at each grid refinement. In fact, for practical values of
σ , r ′ we expect that the effect of this approximation atS= S0 is very small. This will be verified in some
numerical examples.

The node insertion algorithm is given below:

Node Insertion Algorithm

If
(

(|r ′|−λσ

√
1−ρ

2)≥ 0
)

Then

Return //Original grid satisfies condition

Endif

If
(

[S0 = 0] and[σ2S1 +min(S2,2S1)
(
|r ′|−λσ

√
1−ρ

2
)
< 0]

)
Then

Exit // Algorithm fails, need S0 > 0

Endif

i = 1

While (Si is not the largest node)

If
(

σ
2Si +(Si+1−Si−1)

(
|r ′|−λσ

√
1−ρ

2
)
< 0
)

Then

If
(

σ
2Si +2(Si−Si−1)

(
|r ′|−λσ

√
1−ρ

2
)
< 0
)

Then

Insert node at(Si−1 +Si)/2

//New node labeled i

Else

Insert node at(Si +Si+1)/2

//New node labeled i+1

Endif

Else

Incrementi

Endif

Endwhile

(7.7)
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If S0 6= 0, then algorithm (7.7) is guaranteed to produce a fine grid such that condition (7.1) holds for all
nodes. From equation (7.6), the total number of nodes inserted must be finite.

If S0 = 0 andσ
2S1 + min(S2,2S1)

(
|r ′|−λσ

√
1−ρ

2
)
< 0, then a new grid satisfying condition (7.1)

does not exist. Consequently, in the case thatσ
2 +
(
|r ′|−λσ

√
1−ρ

2
)
< 0, we must haveS0 > 0 in

order for algorithm (7.7) to succeed. In this case, we can setS0 to be a small number, and apply boundary
condition (2.35) atS0. We will verify that this does not cause any significant error at asset values of interest
through some numerical experiments to be reported in subsequent sections. Algorithm (7.7) has the desirable
property that the grid aspect ratio does not become too large after the node insertion is completed. More
precisely, if the original grid has the property that

p0≤
Si+1−Si

Si−Si−1
≤ q0; i = 1, . . . ,n−1

q0≥ p0 > 0, (7.8)

we prove the following result in Appendix C.

Theorem 7.1 (Grid Aspect Ratio after Application of Algorithm (7.7)). Given an initial grid with n
nodes and p0,q0 given by equation (7.8), after application of algorithm (7.7) with S0> 0, the new grid (with
m nodes, m≥ n+1) satisfies

p≤
Si+1−Si

Si−Si−1
≤ q 1≤ i ≤m−1, (7.9)

where p= min(1/3, p0) and q= max(5,2q0).

Proof. See Appendix C.

Note that algorithm (7.7) is based on testing only forward and backward differencing. However, in
practice, we carry out the following steps

• Given an initial grid, construct a new grid from algorithm (7.7).

• Each nodei of the new grid is processed, and the discretization coefficientsαi ,βi are constructed
(equation (3.2)). First, central differencing is tested. If the positive coefficient condition (4.1) is
satisfied, then we use central differencing at this node. If central differencing does not result in a
positive coefficient discretization, then one of forward or backward differencing must satisfy this
condition (from algorithm 7.7). Forward or backward differencing is then used at this node.

Different nodes may use different discretization methods. In this way, central differencing is used as much as
possible. In practice, for normal market parameters, only a few nodes with forward or backward differencing
are required. Usually these nodes are nearS= 0, so that accuracy in regions of interest is unaffected by low
order discretization methods.

8 Convergence Tests

This section presents a number of numerical examples which illustrate the performance and convergence
of our iteration scheme. We also examine both fully implicit and Crank-Nicolson methods, and experiment
with the minimum value in the asset grid (S0), when algorithm (7.7) is applied. We show that the solution is
insensitive to small positiveS0.
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Constant timesteps are usually quite inefficient, so variable timesteps are desired. A simple and very
effective timestep selector is discussed in [21]. Given an initial timestep∆τ

n+1, a new timestep∆τ
n+2 is

selected so that

∆τ
n+2 =

min
i

 dnorm
|V(Si ,τ

n+∆τ
n+1)−V(Si ,τ

n)|
max(D,|V(V(Si ,τ

n+∆τ
n+1)|,|V(Si ,τ

n)|)

∆τ
n+1, (8.1)

wherednormis a target relative change (during the timestep) specified by the user. The scaleD is selected
so that the timestep selector does not take an excessive number of timesteps in regions where the value is
small (for options valued in dollars,D = 1 is often used).

Recall from equation (2.8) that the drift term in our PDE is

r ′ = µ− (µ
′− r)

σρ

σ
′ , (8.2)

which implies
µ− r ′

σ

=
ρ(µ

′− r)
σ
′ . (8.3)

When |ρ| = 1, the drift termr ′ must equal the risk free interest rater [16]. Therefore,r, ρ, µ, σ , µ
′

and σ
′ cannot be determined independently. We arbitrarily chooseµ

′ as the dependent variable. From
equation (8.3) we see that ifρ = 1 andr ′ = r, we obtain

µ
′ = r +(µ− r)

σ
′

σ

, (8.4)

while if ρ =−1 (r ′ = r), we have

µ
′ = r− (µ− r)

σ
′

σ

. (8.5)

This suggests that we could interpolateµ
′ as

µ
′ = r + f (ρ)(µ− r)

σ
′

σ

, (8.6)

where, to avoid arbitrage,f (−1) =−1, f (1) = 1. In our numerical examples we simply choose

f (ρ) = ρ, (8.7)

although any other interpolant could be used which satisfiesf (−1) = −1, f (1) = 1. In the following nu-
merical examples, we assume

µ
′ = r +(µ− r)

σ
′
ρ

σ

. (8.8)

Substituting equation (8.6) into equation (8.2) gives

r ′ = (1−ρ f (ρ))µ + rρ f (ρ). (8.9)

Assuming equation (8.7) holds, we obtain

r ′ = (1−ρ
2)µ + ρ

2r. (8.10)
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r 0.05
ρ 0.9
σ 0.2
µ 0.07
σ
′ 0.3

µ
′ = r +(µ− r)σ

′
ρ

σ
0.077

λ 0.2
r ′ = µ− (µ

′− r)σρ

σ
′ 0.0538

Strike priceK 100
Payoff straddle

Time to expiryT 1 year

TABLE 1: Parameters used in the straddle option examples. These parameters give|r ′| −λσ

√
1−ρ

2 =
0.03636> 0, so no new node is inserted into the asset grid when algorithm (7.7) is applied.

8.1 Fully Implicit and Crank-Nicolson Comparison

In this section, we will examine the convergence as the grid and timesteps are refined for fully implicit
and Crank-Nicolson timestepping. The parameters are given in Table 1. In this example we will assume a
European straddle with payoff

V(S,τ = 0) = max(K−S,0)+max(S−K,0). (8.11)

whereK is the strike price. The derivative (VS) of the payoff changes sign, so the PDE is truly nonlinear. Note
that |r ′|−λσ

√
1−ρ

2 = 0.03636> 0, so no new node is inserted into the asset grid when algorithm (7.7)
is applied. The tolerance in algorithm (5.1) is set to 10−6.

Table 2 shows the convergence results for fully implicit and Crank-Nicolson timestepping (using the
modification suggested in [33]). We use variable timestepping as given in equation (8.1). As expected,
fully implicit timestepping displays first order convergence and Crank-Nicolson method exhibits quadratic
convergence. Recall from Theorem 4.1 that convergence to the viscosity solution is guaranteed only for fully
implicit timestepping. In this case, Crank-Nicolson timestepping also converges to the viscosity solution.
From algorithm (5.1), we can see the minimum number of iterations per timestep is two. In Table 2, we see
that the average number of nonlinear iterations per timestep is only slightly larger than two, indicating that
the nonlinear algebraic equations are very easily solved.

8.2 PositiveS0 Tests

In Section 7, it was shown that whenσ2 + (|r ′| − λσ

√
1−ρ

2) < 0, we need the minimum value for the
asset gridS0 > 0 in order for algorithm (7.7) to succeed. Table 3 shows parameters which requireS0 > 0 to
ensure that algorithm (7.7) completes successfully.

Table 4 shows the option prices, deltas (VS) and gammas (VSS) under differentS0 values for various asset
price values. We see that as asset price gets smaller, the effect of positiveS0 becomes more pronounced
(recall that the strike of this option is $100). However, forS= 30, the effect of changingS0 from 2 to 0.1 is
very small. The data in Table 3 was used for this test. Observe that this data requiresS0 > 0 for algorithm
(7.7) to succeed.

Table 5 presents a convergence study using parameters from Table 3. As the asset grid size doubles and
S0 goes to zero, we obtain quadratic convergence as before. In order to haveσ

2 + (|r ′|−λσ

√
1−ρ

2)< 0,
we have assigned large values toσ ,λ . This makes hedging with an imperfectly correlated asset very risky,
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Nodes dnorm Timesteps Nonlinear iterations Option value Change Ratio
Fully Implicit

51 0.1 37 81 17.02070
101 0.05 72 151 17.05760 0.03689
201 0.025 147 294 17.08743 0.02985 1.2365
401 0.0125 301 602 17.10857 0.02113 1.4120
801 0.00625 602 1204 17.11964 0.01108 1.9078
1601 0.003125 1169 2338 17.12508 0.00544 2.0349

Crank-Nicolson
51 0.1 37 80 17.10144
101 0.05 72 147 17.12367 0.02224
201 0.025 147 294 17.12899 0.00532 4.1826
401 0.0125 301 602 17.13021 0.00122 4.3654
801 0.00625 602 1204 17.13050 0.00030 4.1054
1601 0.003125 1169 2338 17.13058 0.00007 3.9906

TABLE 2: Convergence for fully implicit and Crank-Nicolson timestepping using variable timesteps (equa-
tion (8.1)). Crank-Nicolson incorporates the modification suggested in [33]. Input parameters are given in
Table 1. No new nodes are inserted into the asset grid. Straddle payoff (8.11), short position, option values
reported at S= 100.

and the hedger is very risk averse (i.e. seeks high compensation for bearing the unhedgeable risk). These
parameter values make the option prices extremely high as shown in Tables 4 and 5. From the data in
Tables 4 and 5, we can conclude that small positiveS0 has little effect on the solution.

9 Hedging Simulations

In this section we use a Monte Carlo method to simulate the hedging process. We illustrate the results by
showing histograms of the hedging portfolio at the expiry time, i.e. the profit and loss (P&L) distribution.

9.1 Algorithm Description

We make a slight change from the description of the hedging portfolio in equation (2.3). In the numerical
examples, we will assume that the portfolio has initial value of zero, but no cash is injected into the portfolio
as time progresses.

As in Section 2, consider the case where we wish to hedge a short position in a claim with valueV =
V(S, t). Then, a portfolioP i at timeti = i∆t has three components:

• a short claim position worthV i ;

• a long position ofxi shares of assetH (wherexi is the number of units ofH held in the portfolio); and

• an amountBi in a risk free account.

Hence,
P i =−V i +xiH i +Bi . (9.1)

In contrast to the hedging portfolioΠ in Section 2, we do not inject any cash into this portfolioP to ensure
thatP = 0 after the initial time. In the caseλ = 0, this portfolio is then self-financing (on[0,T), where
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r 0.03
ρ 0.5
σ 0.7
µ 0.04
σ
′ 0.25

µ
′ = r +(µ− r)σ

′
ρ

σ
0.0317857

λ 0.9
r ′ = µ− (µ

′− r)σρ

σ
′ 0.0375

Strike priceK 100
Payoff straddle

Time to expiryT 1 year

TABLE 3: Parameters used for positive S0 tests. These parameters giveσ
2 + (|r ′| − λσ

√
1−ρ

2) =
−0.0181< 0. In this case S0 must be positive in order for algorithm (7.7) to succeed. When algorithm (7.7)
is applied, new nodes may be inserted into the asset grid.

Asset Price S0 Option Price Delta (VS) Gamma (VSS)
0.1 91.2063 -0.583641 0.000119

10 2 91.1604 -0.570818 -0.004019
5 90.4519 -0.449766 -0.028363

0.1 85.3930 -0.576180 0.001791
20 2 85.3879 -0.575238 0.001591

5 85.2286 -0.553956 -0.001682
0.1 79.7849 -0.537174 0.006621

30 2 79.7839 -0.537029 0.006598
5 79.7360 -0.531765 0.005933

TABLE 4: The effect of positive S0 on the solution at low asset values. Crank-Nicolson method used with
variable timesteps and the modification suggested in [33]. Input parameters are given in Table 3. Straddle
payoff (8.11), short position. There are 401 nodes in the original grid. Seven new nodes are inserted for
S0 = 0.1, and no new node is inserted for S0 = 2 or S0 = 5.

S0 Nodes dnorm Option Value Change Ratio
5 58 0.1 102.69536

2.5 106 0.05 102.83341 0.1381
1.25 206 0.025 102.86821 0.0348 3.9678
0.625 409 0.0125 102.87715 0.0089 3.8902
0.3125 817 0.00625 102.87939 0.0022 3.9922
0.15625 1633 0.003125 102.87996 0.0006 3.9541
0.078125 3265 0.0015625 102.88010 0.0001 4.0071

TABLE 5: Convergence in a case where S0 has to be positive in order for the node insertion algorithm (7.7)
to succeed. Crank-Nicolson timestepping is used with variable timesteps and the modification suggested in
[33]. Input parameters are given in Table 3. These parameters imply thatσ

2 +(|r ′|−λσ

√
1−ρ

2)< 0, so
that S0 has to be positive. Extreme values ofλ ,σ are required to force the necessity of making S0 > 0. The
option price is very large with these extreme parameters. When algorithm (7.7) is applied, new nodes may
be inserted into the asset grid. The sizes of the original asset grids are 51, 102, 204, 408, 816, 1632, and
3264 respectively. Straddle payoff (8.11), short position, option values reported at S= 100.
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T is the expiry time), but in general it will not meet the exact obligations of the contingent claim at expiry.
Note that PDE (2.27) does not containB (the risk free account), so that use ofxi given by equation (2.6)
minimizes the local risk, regardless ofB. We have denoted the risk free account in the portfolioP by B to
distinguish it from the account in equation (2.3). In this case,P will not necessarily be zero after the initial
time, since we will not inject cash into this portfolio.

As discussed in [24] for the caseλ = 0, this strategy is self-financing on[0,T), with a single payment
at timeT. It is also observed in [24] that a disadvantage of this approach is that at any timet < T, the
value of the portfolio will not equal the conditional expected value of the payoff. However, in our case with
λ > 0, the value of the portfolio is increased by systematic gains to compensate for the risk of the hedge,
and therefore this simple strategy may in fact be quite practical. In any case, we present the results of this
strategy since it is easy to interpret the resulting P&L diagrams. These diagrams show the distribution of the
future value of the incremental profit/loss of the hedge portfolio.

Given the option value att = 0, which comes from the solution of the PDEs (2.27), the initial portfolio
is given by

P0 =−V0 +x0H0 +B0. (9.2)

We chooseB0 = V0−x0H0. Let

V i
S =

∂V
∂S

(Si , ti). (9.3)

According to equation (2.6), to minimize the local variance we choosexi at timeti to be

xi =
(

σSi
ρ

σ
′H i

)
V i

S. (9.4)

Let φ
i
H ,φ

i
S be random draws from a normal distribution with zero mean and unit variance. The values of the

underlying asset and the correlated hedging asset at timeti+1 are given by

Si+1 = Si exp
[
(µ−σ

2/2) ∆t + σφ
i
S

√
∆t)
]

H i+1 = H i exp
[
(µ
′− (σ

′)2/2) ∆t + σ
′
φ

i
H

√
∆t)
]
,

where

EP(φS φH) = ρ. (9.5)

Initially, we solve equation (2.32) numerically backward in time fromt = T to t = 0. At each timestep, the
option values and deltas are stored in data tables. Then asset paths are generated by Monte Carlo simulation.
The hedging information is recovered from the stored tables. The hedging algorithm for one Monte Carlo
simulation is given in algorithm (9.6).
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Hedging Algorithm

P0 = 0

InterpolateV0 andV0
S from the stored tables

x0 =
(

σS0
ρ

σ
′H0

)
V0

S

B0 = V0−x0H0

For each hedging time 0< ti ≤ T, ti = i∆t

Calculate current asset priceSi andH i from equation (9.5)

InterpolateV i
S from the stored tables

xi =
(

σSi
ρ

σ
′H i

)
V i

S

Update the portfolio by buyingxi−xi−1 shares

Bi = er∆tBi−1−H i(xi−xi−1)
Endfor

P(T) =−V(T)+x(T)H(T)+B(T)

(9.6)

Recall that

Short Position: dΠ = λσ

√
1−ρ

2S|VS|dt +SVS

√
1−ρ

2
σ dX

Long Position: dΠ = λσ

√
1−ρ

2S|VS|dt−SVS

√
1−ρ

2
σ dX. (9.7)

Considering only the short position, we have

dΠ = λσ

√
1−ρ

2S|VS|dt +SVS

√
1−ρ

2
σ dX. (9.8)

We will show histograms ofP(T), i.e. the future P&L distribution. Since the cash shortfall is only
realized at the expiry time in the portfolioP, the final value ofP can be determined in terms of the
solutionV by considering the future value ofdΠ at each instant, i.e.

P(T) = λ

∫ T

0
er(T−t)

σ

√
1−ρ

2S|VS|dt +
∫ T

0
er(T−t)SVS

√
1−ρ

2
σ dX. (9.9)

This means that

EP[P(T)] = EP
[

λ

∫ T

0
er(T−t)

σ

√
1−ρ

2|VS|dt

]
(9.10)

in the limit as the rebalancing interval tends to zero.

9.2 Hedging Simulations

Hedging experiments are carried out using 1,000,000 Monte Carlo parameters with a fixed hedging interval
of 2 days. There are many parameters which affect the hedging results, but we are primarily interested in
the risk loading factorλ and the correlationρ. We will show the results of the hedging simulations in terms
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λ ρ Mean VaR (95%) CVaR (95%) Std. Dev. V(S= 100, t = 0)
0.0 0.5 -0.0034 -23.9135 -34.7796 12.524 16.4795
0.0 0.7 0.0085 -19.1239 -27.6244 10.284 16.3238
0.0 0.9 -0.001 -11.0917 -15.7675 6.293 16.1306

TABLE 6: Hedging simulation results withλ = 0.0 and ρ varying. Other input parameters are given in
Table 1. Straddle payoff (8.11), short position, hedging interval of 2 days, 1,000,000 simulation runs.

λ ρ Mean VaR (95%) CVaR (95%) Std. Dev. V(S= 100, t = 0)
0.1 0.9 0.5081 -10.5158 -15.1710 6.3014 16.6233
0.3 0.9 1.6175 -9.1778 -13.6682 6.3155 17.6516
0.5 0.9 2.7685 -7.9180 -12.3103 6.3809 18.7388

TABLE 7: Hedging simulation results withλ varying andρ = 0.9. Other input parameters are given in
Table 1. Straddle payoff (8.11), short position, hedging interval of 2 days, 1,000,000 simulation runs.

of mean, standard deviation, VaR and CVaR of the P&L. If the probability density of the P&Lx is denoted
by p(x), then theξ% VaR and CVaR are defined as∫ ∞

VaR
p(x)dx=

ξ

100

CVaR=
∫ VaR
−∞ xp(x)dx∫ VaR
−∞ p(x)dx

. (9.11)

Whenλ = 0, EP[P(T)] = 0 from equation (9.10). According to equation (2.22), increasingλ implies a
greater reward for bearing the unhedgeable risk, hence the mean P&L (i.e.EP[P(T)]) should also increase
(when|ρ| 6= 1). Table 6 shows the case in whichλ is fixed at zero andρ increases. Sinceλ = 0, the mean of
the P&L stays at zero (it is not exactly zero because of finite rebalancing and Monte Carlo sampling error).
As ρ increases, standard deviation decreases, which causes VaR and CVaR to increase. Table 7 shows the
case whereλ increases and the other parameters are held constant. Asλ increases (i.e. we require greater
reward for bearing unhedgeable risk), the mean, VaR, and CVaR of P&L increase, while standard deviation
is nearly constant. These results are also depicted in panels (a), (c), and (d) of Figure 1.

When |ρ| = 1, assetH provides a perfect hedge and equation (2.27) reverts back to the usual Black-
Scholes equation. In this case, the hedging simulation should be the same as standard discrete delta hedging,
and thus the mean and standard deviation of the P&L should be zero. Some results for the case|ρ|= 1 are
given in Table 8. Note that the standard deviation is not identically zero in this case due to the finite (two
day) rebalancing interval.

Table 9 shows the results obtained whenρ increases from 0.7 to 0.9 andλ 6= 0. When|ρ| increases, the
hedging results become closer to that given by standard delta hedging. The mean shifts closer to zero (the

λ ρ Mean VaR (95%) CVaR (95%) Std. Dev. V(S= 100, t = 0)
0.5 1.0 -0.001 -1.9365 -2.7062 1.1752 16.0237
0.5 -1.0 -0.001 -2.2683 -3.0510 1.3583 16.0237

TABLE 8: Hedging simulation results with|ρ|= 1 andλ = 0.5. Other input parameters are given in Table 1.
Straddle payoff (8.11), short position, hedging interval of 2 days, 1,000,000 simulation runs. Note that the
standard deviation of the P&L is nonzero due to the finite rebalancing interval.
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λ ρ Mean VaR (95%) CVaR (95%) Std. Dev. V(S= 100, t = 0)
0.2 0.7 1.8032 -17.0839 -25.4860 10.2861 18.0288
0.2 0.8 1.4828 -14.0163 -20.7803 8.6506 17.6383
0.2 0.9 1.0646 -9.8292 -14.3816 5.9792 17.1302

TABLE 9: Hedging simulations withλ = 0.2 andρ varying. Other input parameters are given in Table 1.
Straddle payoff (8.11), short position, hedging interval of 2 days, 1,000,000 simulation runs.

Hedging interval Mean VaR (95%) CVaR (95%) Std. Dev.
8 1.0626 -10.2150 -14.7470 6.5583
4 1.0523 -9.9895 -14.5614 6.3981
2 1.0646 -9.8292 -14.3816 6.3049
1 1.0662 -9.8029 -14.3994 6.2815

TABLE 10: Convergence of the standard deviation as the hedging interval (measured in days) is decreased.
Input parameters are given in Table 1. Straddle payoff (8.11), short position, 1,000,000 simulation runs.

mean decreases, since we take less risk), and the standard deviation of the P&L decreases. These results are
also illustrated in panels (b), (e), and (f) of Figure 1.

9.3 The Convergence of the Standard Deviation

If |ρ| < 1, there is unavoidable residual risk. As the hedging interval goes to zero and the number of
simulations goes to infinity, the standard deviation of the portfolio at timeT converges to a finite value.
Table 10 provides a numerical example of this convergence.

9.4 An American Example

The price of an American claim is given by equation (2.34). We can generalize the numerical methods
described in this work to the American case using the penalty method described in [21, 17]. The proofs
of convergence to the viscosity solution are easily extended to handle this case. As a numerical example,
consider an American contingent claim, using the parameters in Table 1. Table 11 shows the values for long
and short American/European straddle positions.

From equation (2.27), it is clear that the value of a short position should always be higher than that of a
corresponding long position. Table 11 clearly shows this fact at a particular value ofS.

Option Type V(S= 100, t = 0)
European Short 17.13
European Long 15.19
American Short 17.39
American Long 15.70

TABLE 11: Values for long and short positions of a straddle payoff (8.11). Input parameters are given in
Table 1. Results are correct to the number of digits shown.
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(a) λ = 0.0, ρ = 0.9
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(b) λ = 0.5, ρ = 1.0
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(c) λ = 0.1, ρ = 0.9
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(d) λ = 0.5, ρ = 0.9
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(e) λ = 0.2, ρ = 0.7
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(f) λ = 0.2, ρ = 0.9

FIGURE 1: P& L distributions from Monte Carlo hedging simulations for various values ofλ andρ. Other
input parameters are given in Table 1. Straddle payoff (8.11), short position, hedging interval of 2 days,
1,000,000 simulation runs. Note that the vertical scale for panel (b) differs from that in the other panels.
The vertical line in each panel represents the 95% VaR of the P&L distribution.
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Option Type V(S= 100, t = 0)
European Short Call 11.86
European Short Put 6.08

European Short Straddle 17.13

TABLE 12: Call, put, and straddle values. Input parameters are given in Table 1. Results are correct to the
number of digits shown. Note that the payoff of the straddle (8.11) is the sum of the call and put payoffs.

9.5 Nonlinearity and Reinsurance

Suppose there are two firms,A andB, and a reinsurerC. Further assume that all of these firms value short
positions using the parameters in Table 1. In particular,A, B, andC all have the same estimates for drift
rates and the risk loading factor.

SupposeA needs to hedge a short call, andB needs to hedge a short put.A andB can hedge these
positions, or purchase reinsurance fromC. C would then have a short straddle position. The values from
individually hedging a call, a put, and a straddle are given in Table 12 (calculated using PDE (2.27)). IfA and
B individually hedge their positions, their total charge to an end customer would be 11.86+ 6.08= 17.94.
On the other hand, the total charge toA andB if C hedges a straddle is 17.13. In this case,C can charge a
lower fee for this insurance thanA andB can do by themselves. This result is due to the fact that the pricing
PDE is nonlinear.

10 Conclusions

In this paper, we have considered the situation where a financial institution selling a contingent claim cannot
hedge directly with the asset underlying the claim. At each infinitesmal time interval, the best local hedge
is constructed. Even if the residual risk is diversifiable, the option writer may be exposed to uncertainty in
parameter estimation. Assuming that the parameters are uncertain but lie within upper and lower bounds, a
worst case pricing approach can be used. This results in a nonlinear PDE.

However, since the hedge is not perfect, the writer may not be able to diversify the unhedgeable risk. In
this case, this risk can be priced using an actuarial standard deviation principle in infinitesmal time. The risk
preferences of the issuing firm enter into the valuation through a risk loading parameter. For non-zero risk-
loading, the PDE is nonlinear, producing different values for long or short positions. Note that in contrast to
many other approaches, the values are linear in terms of the number of units bought/sold.

In both cases (uncertain parameters and actuarial standard deviation principle), the nonlinear PDE has
the same form. We have developed a discretization scheme for this nonlinear PDE which is monotone,
consistent and stable; hence convergence to the viscosity solution is guaranteed. In order to ensure the
discretization is monotone, a node insertion algorithm is derived which guarantees monotonicity by insertion
of a finite number of nodes in a given initial grid. An iterative method for solution of the nonlinear discrete
algebraic equations at each timestep is developed. We have proven that this iteration is globally convergent.
Existing PDE option pricing software can be modified in a straightforward fashion to value options using
this model, simply by adding an updating step to the American pricing iteration.

If we interpret the PDE as accounting for the unhedgeable risk, then the solution of the PDE gives a
trading strategy for the best possible local hedge, as well as providing systematic gains to compensate for
the residual risk. Monte Carlo hedging experiments are given which demonstrate the use of this hedging
strategy. These examples clearly show that the unhedgeable risk is compensated by a reserve which is built
up over time.
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Finally, we note that many of the numerical methods discussed here can be extended to other nonlinear
pricing PDEs in financial applications.

A Discrete Equation Coefficients

The detailed form of the discrete equation coefficients used in equation (3.3) are given here. In the case of a
central discretization

α
n
i,cent = α

′
i,cent− γi,centq

n
i,cent

β
n
i,cent = β

′
i,cent+ γi,centq

n
i,cent, (A.1)

where

qn
i,cent =

{
sgn(VS)n

i,cent if short

−sgn(VS)n
i,cent if long

, (A.2)

γi,cent =

(
Siλσ

√
1−ρ

2

Si+1−Si−1

)
∆τ

(VS)n
i,cent =

Vn
i+1−Vn

i−1

Si+1−Si−1
, (A.3)

and

α
′
i,cent =

[
σ

2S2
i

(Si−Si−1)(Si+1−Si−1)
−

r ′Si

Si+1−Si−1

]
∆τ

β
′
i,cent =

[
σ

2S2
i

(Si+1−Si)(Si+1−Si−1)
+

r ′Si

Si+1−Si−1

]
∆τ. (A.4)

Note that the above definitions ensure that we are solving a discrete version of the local control prob-
lem (2.33).

In the case of forward differencing, we obtain

α
n
i, f or = α

′
i, f or

β
n
i, f or = β

′
i, f or + γi, f or qn

i, f or, (A.5)

where

qn
i, f or =

{
sgn(VS)n

i, f or if short

−sgn(VS)n
i, f or if long

, (A.6)

γi, f or =

(
Siλσ

√
1−ρ

2

Si+1−Si

)
∆τ

(VS)n
i, f or =

Vn
i+1−Vn

i

Si+1−Si
, (A.7)

and

α
′
i, f or =

(
σ

2S2
i

(Si−Si−1)(Si+1−Si−1)

)
∆τ

β
′
i, f or =

[
σ

2S2
i

(Si+1−Si)(Si+1−Si−1)
+

r ′Si

Si+1−Si

]
∆τ. (A.8)
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Again, note that we have used definition (A.6), so that we solve a discrete version of the local control
problem (2.33).

In the case of backward differencing we have

α
n
i,back= α

′
i,back− γi,backqn

i,back

β
n
i,back= β

′
i,back, (A.9)

where

qn
i,back=

{
sgn(VS)n

i,back if short

−sgn(VS)n
i,back if long

, (A.10)

γi,back=

(
Siλσ

√
1−ρ

2

Si−Si−1

)
∆τ

(VS)n
i,back=

Vn
i −Vn

i−1

Si−Si−1
, (A.11)

and

α
′
i,back=

[
σ

2S2
i

(Si−Si−1)(Si+1−Si−1)
−

r ′Si

Si−Si−1

]
∆τ

β
′
i,back=

[
σ

2S2
i

(Si+1−Si)(Si+1−Si−1)

]
∆τ. (A.12)

For future reference, it is convenient to definegenericcoefficients

α
n
i =


α

n
i,cent if central differencing

α
n
i, f or if forward differencing

α
n
i,back if backward differencing

, (A.13)

β
n
i =


β

n
i,cent if central differencing

β
n
i, f or if forward differencing

β
n
i,back if backward differencing

, (A.14)

α
′
i =


α
′
i,cent if central differencing

α
′
i, f or if forward differencing

α
′
i,back if backward differencing

, (A.15)

β
′
i =


β
′
i,cent if central differencing

β
′
i, f or if forward differencing

β
′
i,back if backward differencing

. (A.16)

We also define

γ
′
i,cent =

{
γi,cent if central differencing

0 otherwise
, (A.17)

γ
′
i, f or =

{
γi, f or if forward differencing

0 otherwise
, (A.18)
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γ
′
i,back=

{
γi,back if backward differencing

0 otherwise
. (A.19)

Recalling equation (3.2)

Vn+1
i −Vn

i = α
n+1
i Vn+1

i−1 + β
n+1
i Vn+1

i+1 − (α
n+1
i + β

n+1
i + r∆τ)Vn+1

i , (A.20)

we can write the generic coefficientsα
n
i ,β

n
i as

α
n
i = α

′
i − γ

′
i,centq

n
i,cent− γ

′
i,backqn

i,back

β
n
i = β

′
i + γ

′
i,centq

n
i,cent+ γ

′
i, f or qn

i, f or. (A.21)

B Viscosity Solution

In this appendix, we give a brief intuitive explanation of the ideas behind the definition of a viscosity solu-
tion. For more details, we refer the reader to [15].

Consider a short position, so that we can write equation (2.32) as

g(V,VS,VSS,Vτ) =−Vτ + max
q∈{−1,+1}

[(
r ′+qλσ

√
1−ρ

2
)

SVS+
σ

2S2

2
VSS− rV

]
= 0. (B.1)

We assume thatg(x,y,z,w) (x = V,y = VS,z= VSS,w = Vτ ) satisfies the ellipticity condition

g(x,y,z+ ε,w)≥ g(x,y,z,w) ∀ε ≥ 0, (B.2)

which is our case simply means thatσ
2≥ 0. Suppose for the moment that smooth solutions to equation (B.1)

exist, i.e.V ∈C2,1, whereC2,1 refers to a continuous functionV =V(S,τ) having continuous first and second
derivatives inS, and continuous first derivatives inτ. Letφ be a set ofC2,1 test functions. Supposeφ−V ≥ 0
andφ(S0,τ0) = V(S0,τ0) at the single point(S0,τ0). Then the single point(S0,τ0) is a global minimum of
(φ −V)

φ −V ≥ 0

min(φ −V) = φ(S0,τ0)−V(S0,τ0) = 0. (B.3)

Consequently, at(S0,τ0)

φτ = Vτ

φS = VS

φSS≥VSS. (B.4)

Hence, from equations (B.2,B.4) we have

g(V(S0,τ0),φS(S0,τ0),φSS(S0,τ0),φτ(S0,τ0)) = g(V(S0,τ0),VS(S0,τ0),φSS(S0,τ0),Vτ(S0,τ0))
≥ g(V(S0,τ0),VS(S0,τ0),VSS(S0,τ0),Vτ(S0,τ0))
= 0, (B.5)

or, to summarize,

g(V(S0,τ0),φS(S0,τ0),φSS(S0,τ0),φτ(S0,τ0))≥ 0

φ −V ≥ 0

min(φ −V) = φ(S0,τ0)−V(S0,τ0) = 0. (B.6)
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Now, suppose thatχ is aC2,1 test function withV − χ ≥ 0, andV(S0,τ0) = χ(S0,τ0) at the single point
(S0,τ0). Then(S0,τ0) is the global minimum ofV−χ,

V−χ ≥ 0

min(V−χ) = V(S0,τ0)−χ(S0,τ0)
= 0. (B.7)

Repeating the above arguments we have

g(V(S0,τ0),χS(S0,τ0),χSS(S0,τ0),χτ(S0,τ0))≤ 0

V−χ ≥ 0

min(V−χ) = V(S0,τ0)−χ(S0,τ0) = 0. (B.8)

Now suppose thatV is continuous but not smooth. This means that we cannot defineV as the solution to
g(V,VS,VSS,Vτ) = 0. However, we can still use conditions (B.6) and (B.8) to define a viscosity solution to
equation (B.1) since all derivatives are applied to smooth test functions. Informally, a viscosity solutionV
to equation (B.1) is defined such that

• For anyC2,1 test functionφ , such that

φ −V ≥ 0 φ(S0,τ0) = V(S0,τ0), (B.9)

(φ touchesV at the single point(S0,τ0)), then

g(V(S0,τ0),φS(S0,τ0),φSS(S0,τ0),φτ(S0,τ0))≥ 0. (B.10)

• As well, for anyC2,1 test functionχ such that

V−χ ≥ 0 V(S0,τ0) = χ(S0,τ0), (B.11)

(χ touchesV at the single point(S0,τ0)) then

g(V(S0,τ0),χS(S0,τ0),χSS(S0,τ0),χτ(S0,τ0))≤ 0. (B.12)

This definition is illustrated in Figure 2.

C Grid Aspect Ratio Proof

In this appendix we will prove Theorem (7.1). For convenience, we call nodes in the original grid old nodes
and we call nodes added by algorithm (7.7) new nodes. We assume there aren nodes in the original grid and
m (m≥ n) nodes in the new grid. Fori ≥ 0, letSi be the(i +1)th node in a grid. If(

|r ′|−λσ

√
1−ρ

2
)
≥ 0, (C.1)

the new grid will be the same as the original one. Hence, the non-trivial case is when(
|r ′|−λσ

√
1−ρ

2
)
< 0. (C.2)
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g ≤ 0
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Viscosity
Solution

FIGURE 2: Illustration of viscosity solution definition. The upper and lower curves represent smooth test
functions. The differential operator (B.1) can be applied to these test functions with the results given
by equation (B.10) (upper curve) and equation (B.12) (lower curve). When a smooth test functionχ

touches the viscosity solution from below at(S0,τ0), then g(V(S0,τ0),χS(S0,τ0),χSS(S0,τ0),χτ(S0,τ0))≤ 0.
Similarly, when a smooth test functionφ touches the viscosity solution from above at(S0,τ0), then
g(V(S0,τ0),φS(S0,τ0),φSS(S0,τ0),φτ(S0,τ0))≥ 0. Note that there may be some points where a smooth test
function can touch the viscosity solution only from above or below, but not both. The kink at S= 1 is an
example of such a point.

Let

K =− σ
2(

|r ′|−λσ

√
1−ρ

2
) > 0. (C.3)

Then in the new grid for 1≤ i ≤m−1, we have (from equation (7.1))

Si+1−Si−1≤K Si . (C.4)

Now, we prove Theorem (7.1).

Proof. Suppose Theorem (7.1) is not true. Then in the new grid∃i,1≤ i ≤m−1 such that

Si+1−Si

Si−Si−1
= t, wheret > q = max(5,2q0) or t < p = min(1/3, p0). (C.5)

Let
ai = Si+1−Si , (C.6)

so
ai

ai−1
= t. (C.7)

Now suppose
ai

ai−1
= t > q = max(5,2q0). (C.8)

We prove the following observations first.
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aiai-1

Si-1 Si Si+1

FIGURE 3: Condition (7.9) failed in a new grid.

aiai-1

Si-1 Si Si+1Sj

ai-1

FIGURE 4: Si−1 is inserted at
Sj +Si

2 .

Observation 1. Si−1 has to be a new node.

Proof. See Figure 3. SupposeSi−1 is an old node. Then ifSi is also an old node, we have

ai

ai−1
≤ q0, (C.9)

while if Si is a new node, we have
ai

ai−1
≤ 1. (C.10)

Both cases contradict equation (C.8). Observation 1 follows.

Observation 2. When Si−1 is added into the grid, Si has already been in the grid.

Proof. See Figure 3. Otherwise we will have equation (C.10).

By Observations 1 and 2,Si−1 must be inserted in the middle ofSi and a nodeSj , wherei > j, as depicted
in Figure 4.

Observation 3. Sj has to be a new node.

Proof. See Figure 4. SupposeSj is an old node. Then ifSi is also an old node, we have

ai

ai−1
≤ 2q0, (C.11)

while if Si is a new node, we have
ai

ai−1
≤ 2. (C.12)

Both cases contradict with equation (C.8). Observation 3 follows.

Observation 4. When Sj is added, Si has already been in the grid.

Proof. See Figure 3. Otherwise we will have equation (C.12).
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aiai-1

Si-1 Si Si+1Sj

ai-1

Sh

2ai-1

FIGURE 5: Sj is inserted at
Sh+Si

2 .

By Observations 3 and 4,Sj must be inserted in the middle ofSi and a nodeSh, whereh< j < i, as shown
in Figure 5.

Observation 5. 2Sj ≥ Si

Proof. See Figure 5. Note that
Sj −Sh = Si−Sj = 2ai−1 (C.13)

and
Sh≥ 0. (C.14)

This implies
Sj

Si
=

Sh +2ai−1

Sh +4ai−1
≥

2ai−1

4ai−1
=

1
2
, (C.15)

hence,
2Sj ≥ Si . (C.16)

Observation 6. 6ai−1 <K Si

Proof. See Figure 3. SinceSi−1, Si , andSi+1 are three consecutive nodes in the new grid andt > 5, we have

6ai−1 < (t +1)ai−1 = Si+1−Si−1≤K Si . (C.17)

We now show thatai
ai−1

> q is false. Suppose it is true. By Observation 1, we knowSi−1 is a new node.

Case 1:Si−1 is added because

Sf −Sj >K Si

Si−Sj ≥
K Si

2
, (C.18)

whereSf is the right neighbour ofSi whenSi−1 is added. This is shown in Figure 6. Note thatSf ≥ Si+1.
Then

2ai−1 = Si−Sj ≥
K Si

2
, (C.19)

so
4ai−1≥K Si , (C.20)

which is a contradiction with Observation 6.
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aiai-1

Si-1 Si Si+1Sj

ai-1

Sh Sf

2ai-1

FIGURE 6: Si−1 is added because condition (C.18) is true.

aiai-1

Si-1 Si Si+1Sj

ai-1

Sh

2ai-1

Se Sf

FIGURE 7: Si−1 is added because condition (C.21) is true.

Case 2:Si−1 is added because

Si−Se>K Sj

Sj −Se<
K Sj

2
, (C.21)

whereSe is the left neighbour ofSj whenSi−1 is added. This is illustrated in Figure 7.
Note that

Se≥ Sh +ai−1. (C.22)

If this does not hold, we have
Se = Sh, (C.23)

since there can be no node betweenSh andSj whenSi−1 is added. This gives

2ai−1 = Sj −Sh = Sj −Se<
K Sj

2
, (C.24)

so that

ai−1 <
K Sj

4
. (C.25)

But
4ai−1 = Si−Sh >K Sj , (C.26)

so

ai−1 >
K Sj

4
(C.27)

which is a contradiction. Hence, equation (C.22) is true. Then we have

3ai−1≥ Si−Se>K Sj , (C.28)

so that

ai−1 >
K Sj

3
. (C.29)

By Observation 6 and equation (C.29), we have

6ai−1≤K Si , (C.30)
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ai-1

Si+1Si SjSi-1

ai ai

Sh

FIGURE 8: Si+1 is added because condition (C.35) is true.

implying
6K Sj

3
<K Si , (C.31)

so that
2Sj < Si , (C.32)

contradicting Observation 5.

Hence, we get contradictions in both cases. Therefore,

ai

ai−1
≤ q = max(5,2q0). (C.33)

Now suppose
ai

ai−1
= t < p = min(1/3, p0). (C.34)

As before,Si+1 is a new node, and when it is inserted,Si has already been in the grid. SupposeSi+1 is in the
middle ofSi andSj , as shown in Figure 8.
Since nowai−1 > ai , the only reason to addSi+1 is

Sh−Si >K Sj

Sj −Si ≥
K Sj

2
, (C.35)

whereSh is the right neighbour ofSj whenSi+1 is added. Hence,

2ai = Sj −Si ≥
K Sj

2
(C.36)

so that

ai ≥
K Sj

4
, (C.37)

and

K Sj =
3+1

4
K Sj <

(1
t +1)K Sj

4
≤
(

1
t

+1

)
ai = Si+1−Si−1 <K Si . (C.38)

This means
Sj < Si , (C.39)

which is certainly false. Hence,
t ≥ p = min(1/3, p0). (C.40)

The result follows.
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