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Abstract1

Two recent papers describe some intriguing empirical results (Bessembinder (2018) JFE)2

and (Farago and Hjalmarsson (2023) RAPS). Basically, the majority of stocks perform poorly3

compared to T-bills. Most of the stock market gains can be attributed to a small number4

of stocks. Even randomly selected, small portfolios (i.e. 50 stocks), equally weighted, can5

outperform the market portfolio. Simulations in a simplified theoretical market are used to6

explain some of these results. In this paper, we examine the theoretical market suggested in7

(Farago and Hjalmarsson (2023) RAPS) in more detail. We consider a model market with8

100 stocks, each following Geometric Brownian Motion (GBM). All the stocks have the same9

expected return, volatility and pairwise correlation. At time zero, an equal amount is invested10

in each stock, with no further trading. This buy and hold portfolio corresponds to the market11

portfolio in this case. After 30 years, 95% of the final portfolio value is concentrated in just12

16 stocks (out of 100 stocks). Only 20 stocks have positive Internal Rate of Return (IRR). An13

equal weight strategy partially stochastically dominates the buy and hold portfolio.14

Keywords: Skewed compound returns, stock market concentration, equal weighting, volatility15

pumping16

1 Introduction17

This white paper is motivated by several recent publications. Bessembinder (2018) notes that18

empirical analysis suggests that most individual stocks are losers during their lifetime. Over the19

period 1926-2016, Bessembinder (2018) shows that most of the wealth creation in the stock market20

can be attributed to a small number of firms. Some interesting facts from Bessembinder (2018):21

• individual stocks tend to have short lifetimes. The median time that a stock is listed on the22

Center for Security Prices (CRSP) database (1926-2016) is less than eight years;23

• over their lifetimes, less than 43% of stocks (including reinvested dividends) outperform T-24

bills;25

• the CRSP database holds 23,500 stocks (all stocks which traded during 1926-2016). Of these26

stocks, just 4% (the top lifetime performers) accounted for all the net long-term wealth creation27

in the stock market (i.e. accumulated value in excess of investing in T-bills). The remaining28

96% of stocks collectively matched T-bill returns (some stocks exceeded T-bills, many were29

wealth destroyers).30

aDavid R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1,
paforsyt@uwaterloo.ca, +1 519 888 4567 ext. 34415.
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Following along this theme, Farago and Hjalmarsson (2023) point out that since the return31

distribution of a buy and hold portfolio is highly skewed (due to the approximate log-normality of32

cumulative returns), small, equally weighted portfolios can be superior to the buy and hold portfolio33

(i.e. the capitalization weighted index) with high probability. Perhaps the most surprising result is34

the following:35

• the CRSP data for 1979-2016 is used to generate blocks of 30 year returns. A portfolio picking36

50 stocks at random, and rebalancing to equal weighting each month, beats the market (the37

capitalization weighted CRSP index) 96% of the time over 30 years.38

Farago and Hjalmarsson (2023) emphasize that this non-intuitive result is largely due to the equal39

weight rebalancing effect. They use simulations based on simple assumptions to explain this result.40

Finally, we note the results in Forsyth (2022). Here, block bootstrap simulations (Politis and41

Romano, 1994; Politis and White, 2004; Dichtl et al., 2016; Anarkulova et al., 2022) are used based42

on the CRSP data over 1926-2022,1 to generate the distribution of43

(i) a portfolio invested in 60% CRSP capitalization weighted index, and 40% T-bills, annually44

rebalanced;45

(ii) a portfolio invested in 60% equally weighted CRSP index, and 40% T-bills, annually rebalanced.46

All returns were deflated by the CPI, so represent real returns. A 30-year investment horizon was47

considered.48

Using the full 1926-2022 CRSP data, Figure 1.1(a) shows that portfolio (ii) stochastically dom-49

inates (to first order) portfolio (i). In other words, independent of any individual investor utility50

function, any investor who prefers more rather than less, will prefer portfolio (ii) to portfolio (i).251

However, if we restrict attention to CRSP data from 1980-2022, and again look at 30 year52

bootstrapped investment horizons, we obtain the results in Figure 1.1(b) which shows the stochastic53

dominance of portfolio (ii) over (i) has almost disappeared. However, using only 40 years of data54

as the basis for bootstrapping 30 year returns is a bit dubious. Nevertheless, this is consistent55

with recent market behaviour, with market capitalization becoming increasingly concentrated. For56

example, recent S&P 500 gains can be attributed entirely to the magnificent seven stocks.357

The long term superior returns generated by equal weight portfolios is discussed in DiMeguel58

et al. (2009); Tljaard and Mare (2021); Plyakha et al. (2021); Forsyth (2022). Plyakha et al. (2021)59

note that a large part of the enhanced return of the equal weight strategy is due to the rebalancing,60

not just the small-cap effect.61

1.1 Our objective in this paper62

Many of the papers described above seem to indicate that portfolios which rebalance to equal63

weights is a good idea. Bessembinder (2018) and Farago and Hjalmarsson (2023) suggest that many64

of their unexpected results can be explained by the skewness of long-term stock returns (i.e. a small65

number of hugely out-performing stocks, along with a large number of mediocre stocks). Farago66

1More specifically, results presented here were calculated based on data from Historical Indexes, ©2022 Center for
Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data
Services (WRDS) was used in preparing this article. This service and the data available thereon constitute valuable
intellectual property and trade secrets of WRDS and/or its third-party suppliers.

2This is a good example of the non-usefulness of Sharpe ratios for compound long-term returns. Portfolio (ii)
dominates portfolio (i), but portfolio (i) has a larger Sharpe ratio compared to portfolio (ii).

3At pixel time, Apple, Amazon, Alphabet, Meta, Microsoft, Tesla, and Nvida make up about 30% of the S&P 500
by market capitalization.
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(a) CRSP data: 1926:1-2022:1
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(b) CRSP data: 1980:1-2022:1

Figure 1.1: Cumulative distribution functions (CDFs) for cap weighted and equal weighted indexes,
as a function of final real wealth W at T = 30 years. Initial stake W0 = 1000, no cash injections
or withdrawals. Block bootstrap resampling, expected blocksize 2.0 years. 60% stocks, 40% bonds,
rebalanced annually. Bond index: 30 day US T-bills. Stock index: CRSP capitalization weighted or
CRSP equal weighted index. Data range shown. All indexes are deflated by the CPI. 106 resamples.
Range of CRSP data shown.

and Hjalmarsson (2023) attempt to explain this using an example of a portfolio of stocks following67

geometric Brownian motion (GBM).468

Based on the maxim “ All models are wrong, some are useful,” we will examine this model in69

some detail in this paper.70

2 A simplified theoretical market71

Suppose we have a market with N assets Si; i = 1,..,N which follow72

dSi = µiSi dt+ σSi dZi

dZi · dZj = ρij dt , (2.1)

where73

Si = price of asset i
σi = volatility of asset i
µi = arithmetic return of asset i
dZi = increment of a Wiener process
ρij = correlation between assets i,j . (2.2)

We assume that no stocks enter or exit this market, no dividends are paid, and there are no cash74

injections/withdrawals after investing the initial capital.75

4Note that the results in Bessembinder (2018) and Farago and Hjalmarsson (2023) are backed up by empirical
tests.
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2.1 Buy and hold76

At t = 0, we purchase ni units of each asset i, and simply buy and hold these assets. We will77

evaluate our total wealth at time T . Our initial wealth will be78

W (0) =

n∑
i=1

niSi(0) . (2.3)

At time zero, we assume79

Si(0) = 1.0 ; i = 1, . . . ,N

ni = 1/N ; i = 1, . . . , N , (2.4)

which implies that80

W (0) = 1.0 . (2.5)

So, initially, we allocate cash to all assets equally. Of course, our allocation to each asset will change81

over time, as the assets evolve according to equation (2.1) and will no longer be equal weighted at82

t = T . This buy and hold strategy in this case corresponds to holding the capitalization weighted83

market index.84

At time T we have (using equation (2.4) )85

W (T ) =
1

N

N∑
i=1

Si(T ) . (2.6)

For each asset Si, it follows from equation (2.1) that the final asset values Si(T ) are log-normally86

distributed (noting equation (2.4))87

Si(T ) = Si(0) exp

(
(µi − σ2i /2)T + σi(Zi(T )− Zi(0))

)
= exp

(
(µi − σ2i /2)T + σi(Zi(T )− Zi(0))

)
, (2.7)

where E[·] is the expectation operator, and88

Zi(T )− Zi(0) ' N (0,T ) . (2.8)

N (0,T ) is a draw from a normal distribution with mean zero and variance T .89

It is straightforward to show that90

E[Si(T )] = exp(µiT )

Median[Si(T )] = exp

(
(µi − σ2i /2)T

)
std[Si(T )] = exp(µiT )

√
(eσ

2
i T − 1) , (2.9)

and therefore that91

E[WT ] =
1

N
E[
∑
i

Si(T )]

=
1

N

N∑
i=1

exp(µiT ) , (2.10)
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and where we have used equation (2.6).92

Note that the sum of log-normals is not log-normal (in general), so we cannot determine any93

other properties of WT in closed form. We will have to resort to simulation in order obtain other94

statistics.95

2.2 Rebalance to equal weight96

Now, we consider the case where we rebalance our investment portfolio back to the original equal97

capitalization weight, at each instant in time.5 Suppose our investment strategy at time t is to98

invest n̂i(t) in each asset, where now n̂i(t,W (t), Si(t)) is a function of (t,W, S) in general. Let99

W (t) =
∑
i

n̂i(t)Si(t) (2.11)

be the value of our portfolio at t. Let G = log(W (t)). Using Ito’s Lemma and equation (2.1), gives100

dG =

[∑
k

n̂kµkSk
W

− 1

2

∑
k,m

n̂kn̂mSkSmσkσmρkm

W 2

]
dt+

∑
k

n̂kSkσk
W

dZk . (2.12)

Now, suppose we choose a constant proportions strategy, i.e we rebalance at every instant in time101

so that we have a constant weight wi in each asset,102

wi =
n̂iSi
W (t)∑
i

wi = 1 . (2.13)

Note that wi is independent of t, since we rebalance at every opportunity. We can then write103

equation (2.12) as (using equation (2.13))104

dG =

[∑
k

wkµk −
1

2

∑
k,m

wkwmσkσmρkm

]
dt+

∑
k

wkσk dZk . (2.14)

Equation (2.14) has the exact solution105

G(t) = G(0) +[∑
k

wkµk −
1

2

∑
k,m

wkwmσkσmρkm

]
t+
∑
k

wkσk(Zk(t)− Zk(0)) . (2.15)

We now assume that we use an equal weight strategy, i.e. we rebalance so that we always allocate106

the same amount of wealth to each asset107

wi =
1

N
; i = 1, . . . ,N . (2.16)

Initially, we allocate equal amounts of cash to each asset (the same assumption as used for the buy108

and hold case),109

Si(0) = 1.0

n̂i(0) = 1
N

W (0) = 1.0 . (2.17)
5Continuous rebalancing is assumed for mathematical convenience. However, Farago and Hjalmarsson (2023) show

that changing their rebalancing period from one month to one year, for a 30 year investment horizon, does not change
the simulation results appreciably.
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Using equation (2.16) in equation (2.15), and noting that W = eG, W (0) = 1.0, gives110

W (T ) = exp

([
1

N

∑
k

µk −
1

2

1

N2

∑
k,m

σkσmρkm

]
T +

1

N

∑
k

σk(Zk(T )− Zk(0))

)
(2.18)

Let111

σ2e =
1

N2

∑
k,m

σkσmρkm

µe =
1

N

∑
k

µk . (2.19)

We can then write equation (2.18) in the simpler form112

W (T ) = exp

(
(µe −

σ2e
2

)T +
1

N

∑
k

σk(Zk(t)− Zk(0))

)
. (2.20)

If we are only interested in the distribution of the rebalanced portfolio, and not pathwise comparison113

to the buy and hold portfolio (which is the market capitalization weighted index), then we can further114

simplify equation (2.20). Since the sum of normals is also normal, define a new Brownian process115

Ẑ(t) with the property that116

(Ẑ(t)− Ẑ(0)) ' N (0, t) . (2.21)

Now, we can rewrite equation 2.20117

W (T ) = exp

(
(µe −

σ2e
2

)T + σe(Ẑ(T )− Ẑ(0))

)
. (2.22)

The exact CDF for equation (2.22) is118

rebalance︷ ︸︸ ︷
CDF (W ) = Φ

(
log(W )− µ′

σ′

)
µ′ = (µe −

σ2e
2

)T

σ′ = σe
√
T

Φ(·) standard normal CDF , (2.23)

with the properties119

rebalance︷ ︸︸ ︷
E[W (T )] = exp(µeT )

rebalance︷ ︸︸ ︷
Median[WT ] = exp

(
(µe −

σ2e
2

)T

)
rebalance︷ ︸︸ ︷
V ar[Wt] = exp(2µeT )(eσ

2
eT − 1) . (2.24)
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3 A special case: assets with identical properties120

Now, let’s look at what happens for the special case121

µi = µ ; ∀i
σi = σ ; ∀i

ρij =

{
ρ ≥ 0 ; i 6= j

1 ; i = j
. (3.1)

Note that even though all the assets have the same statistical parameters, this does not mean that122

all assets have the same value at t = T . These assets will follow different paths, since Zi 6= Zj .123

3.1 Buy and hold124

Assuming equation (3.1), then equations (2.6-2.7) and (2.10) become125

buy and hold︷ ︸︸ ︷
W (T ) =

1

N

∑
i

exp

(
(µ− σ2/2)T + σ(Zi(T )− Zi(0))

)
,

buy and hold︷ ︸︸ ︷
E[WT ] = exp(µT ) . (3.2)

3.2 Rebalance to equal weight126

From equations (2.19) and equation (3.1), we obtain127

σ2e = σ2ρ

(
1− 1

N

)
+
σ2

N
(3.3)

µe = µ , (3.4)

which gives us128

rebalance︷ ︸︸ ︷
W (T ) = exp

(
(µ− σ2e

2
)T +

1

N

∑
k

σ(Zk(T )− Zk(0))

)
(3.5)

rebalance︷ ︸︸ ︷
E[W (T )] = exp(µT ) (3.6)

rebalance︷ ︸︸ ︷
Median[WT ] = exp

(
(µ− σ2e

2
)T

)
(3.7)

rebalance︷ ︸︸ ︷
std[Wt] = exp(µeT )

√
(eσ2

eT − 1) . (3.8)

Again, if we are not concerned with pathwise comparison with buy and hold, we can simplify the129

expression for WT130

rebalance︷ ︸︸ ︷
W (T ) = exp

(
(µ− σ2e

2
)T + σe(Ẑ(T )− Ẑ(0))

)
. (3.9)
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3.3 Discussion: closed form results for model market131

From Sections 3.1 and 3.2, we learn that132

(i) The expected final wealth is the same for both buy and hold and rebalance to constant weight133

portfolios, i.e.134

E[WT ] = eµT .

(ii) For large N , then the effective volatility for the rebalance strategy becomes135

σe ' σ
√
ρ ; N →∞ ; ρ ≥ 0 . (3.10)

Compare equation (3.10) above to the properties of a single asset in our theoretical market (recall136

that all assets have the same drift µ and volatility σ values), in equation (2.9). If ρ < 1, then137

σe < σ.138

This means that, compared to a single asset, the rebalanced portfolio has:139

• the same expected final wealth;140

• a larger median value for the final wealth;141

• a smaller standard deviation.142

Recall that the sum of log-normals is not, in general, log-normal, so we don’t have any closed143

form results for the buy and hold strategy, except for the expected final wealth. However, since144

the buy-and-hold is simply a collection of single assets, which are never rebalanced, intuitively,145

we expect that we will not observe as large an improved median effect as we observe with the146

rebalancing strategy. We can say more about the buy and hold strategy after carrying out some147

simulations.148

4 Numerical example149

4.1 Data150

Farago and Hjalmarsson (2023) use the CRSP dataset for 1973-2019 to determine the average stock151

return and volatility, and average pairwise correlation. The (rounded) values in Farago and Hjal-152

marsson (2023) are reported in Table 4.1. Other parameters for our theoretical market simulation153

also given in this table. The average stock volatility at 0.6235 is large compared to the historical154

average CRSP capitalization weighted index volatility of ' .15− .20 (over 1926-2022).155

The average pairwise correlation of 0.15 (see Table 4.1) is surprisingly (at least to me) low.156

4.2 Single Stock Properties157

Looking at the single stock assumptions from Table 4.1, and assuming each stock follows equation158

(2.1), we can determine some statistics for (Si(T )/Si(0)) (which are the same for all i). After T = 30159

years, we have160

Mean[Si(T )/Si(0)] = 36.598

Median[Si(T )/Si(0)] = 0.107

Prob[Si(T )/Si(0) < 1] = 0.743 (4.1)
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µ .12
σ .6235
ρ .15
Initial wealth 1.0
Initial wealth in asset i 1/100
Number assets 100
Time T 30 years
Rebalance weight 1/100

Table 4.1: Data for example. ρ is the average pairwise correlation, µ is the average arithmetic
return, and σ is the average individual stock volatility, based on the Center for Research in Security
Pricing (CRSP) stocks. Numbers are rounded, see Farago and Hjalmarsson (2023) for details. Time
units are years.

Note that the mean value of (Si(T )/Si(0)) after 30 years is 36.6, which is certainly impressive.161

However, the probability that (Si(T )/Si(0)) < 1 (i.e. the stock is a loser) is 74%. Yet the mean162

outcome is very large. This is an example of the volatility drag effect. Most of the outcomes are163

poor. The large mean value is due to some extreme, large, low-probability, high returns. These164

stocks certainly do not seem to be good individual investments.165

Recall that the data in Table 4.1 are average values over all stocks in the CRSP database (Farago166

and Hjalmarsson, 2023).167

4.3 Simulations168

Since no closed form results are available for the buy and hold portfolio, or any pathwise comparison169

of buy and hold and rebalance, we use Monte Carlo methods to generate solutions to equation170

(2.1), for both strategies. Table 4.2 shows some summary statistics for the buy and hold, and the171

rebalanced portfolio. Note the rather large number of simulations, 80 × 106. This is based on172

examining the difference between the exact E[W (T )] and the estimates from the simulations.173

We can observe that both methods (to within MC error) have the same value for E[WT ] as174

expected. However, the Median level of the final wealth for the rebalance strategy is more than175

twice the median of the buy and hold portfolio.176

This is essentially due the fact the volatility drag is smaller for the rebalanced portfolio. An177

intuitive explanation is that rebalancing is a “buy low, sell high” contrarian strategy. This is also178

known more popularly as volatility pumping.179

E[WT ] std[WT ] Median[WT ]

Buy and hold
Simulation 36.405 (0.15) 677.45 6.649
Exact 36.598 N/A N/A

Rebalance
Simulation 36.610 (0.02) 84.512 14.516
Exact 36.598 84.666 14.521

Table 4.2: Summary statistics, 80 × 106 simulations. Data in Table 4.1 Standard MC errors, 95%
confidence, shown in brackets. Initial investment W (0) = 1.0.
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Figure 4.1: 80× 106 simulations, data in Table 4.1. Buy and hold case. Along each path, the assets
are sorted in increasing order of final wealth. For example, asset 100 always refers to the asset which
generated the most wealth (on any given path) followed by asset 99, and so on. From Figure 4.1(b)
we can deduce that 95% of the final wealth is concentrated in just 16 (out of 100) assets. The best
performing asset is expected to generate about 45% of the final wealth.

More interesting results are shown in Figure 4.1. Along each stochastic path, the terminal wealth180

for each asset i ∈ 1,...,100 is obtained. Then these wealth values are sorted in increasing wealth181

order. Finally, all these sorted paths are averaged. In other words, asset i = 100 does not refer to182

the same asset, but, along each path, is the best performing asset. Asset i = 99 always refers to the183

second best performing asset, and so on. Figure 4.1(a) shows184

E[Si(T )] . (4.2)

Recall that the mean value of the portfolio is about 36.6 and the mean value of the best performing185

asset along each path is about 25. This is quite impressive, since the initial allocation to each asset186

is 1/100.187

Figure 4.1(b) shows the expected value of188

E

[
Si(T )/W (T )

]
, (4.3)

which is the fraction of the total wealth in the i’th best performing asset, along each path. Figure189

4.1(b) shows that the expected fraction of the total wealth which is held in the best performing190

asset, is about 45%. 95% of the final wealth is concentrated (on average) in just 16 (out of the191

original 100) assets.192

Similarly, Figure 4.1(c) shows the internal rate of return for each asset (following the same193

sorting procedure as used previously). More precisely194

E[IRRi] = E

[
log
(
Si(T )/Si(0)

)
T

]
. (4.4)

We can see that, along any path, we can expect 80 (out of 100 ) assets to have negative IRRs. The195

best performing asset has an expected IRR of 20% per year.196

Figure 4.2 shows the pathwise CDF for the ratio197

R =
Wrebal(T )

Wbuy+hold(T )
(4.5)
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Figure 4.2: CDF of R = Wrebal/Wbuy+hold. 80 × 106 simulations, data in Table 4.1. Probability
that rebalancing to equal weight outperforms buy and hold is 0.82.

where R > 1 indicates that the rebalanced portfolio outperformed the buy and hold portfolio, which198

occurs with 82% probability.199

Figure 4.3(a) appears to show that the rebalanced portfolio stochastically dominates the buy200

and hold portfolio. However, this is not rigorously true, since the curves cross at (WT , P rob) =201

(216,0.98), hence we have only partial stochastic dominance (van Staden et al., 2021). However,202

for practical purposes, we can say that the rebalanced portfolio is to preferred to the buy and hold203

portfolio, except possibly for the extreme right tail.204

The density of the buy and hold strategy (see Figure 4.3(b)) is not precisely log normal, but we205

can fit the distribution to log-normal to get an intuitive feel for the distribution.206

Let WT be the terminal wealth for the buy and hold strategy. Then, we can estimate the207

arithmetic mean return from208

µ̂ = log(E[WT /W0])/T ; (4.6)

Of course, in the limit as the number of simulations becomes large, µ̂→ µ.209

We can fit the effective volatility σ̂ in two ways210

σ̂ = std(log(WT /W0))/T (4.7)

σ̂ =

√
2

(
µ̂T −Median[log(WT /W0)]

)
/T . (4.8)

Of course, these two estimates should give the same result if the distribution was log-normal, but211

this will not be true in our case, since the distribution of WT (buy and hold) is not exactly log-212

normal. Table 4.3 shows the two estimates for σ̂. The buy and hold σ̂ is larger than the rebalance213

effective volatility σe but much smaller than the single stock volatility σ.214

Table 4.4 shows the fitted volatility for the buy and hold portfolio as a function of investment215

horizon T . At T = 10 years, the buy and hold fitted volatility is only slightly larger than the216

rebalance σe. This is reflected in the Median[WT ] for both strategies. For larger T , σ̂ increases217

(while σe remains constant). This shows up as a larger difference in Median[WT ] for the two218
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Figure 4.3: CDF of R = Wrebal/Wbuy+hold. 80×106 simulations, data in Table 4.1. Comparison of
CDFs, rebalance to constant weight and buy and hold. Rebalancing partially stochastically dominates
buy and hold, with the curves crossing at WT = 216. Rebalancing dominates buy and hold with for
probabilities < 0.98.

Effective Volatility
Buy and hold

σ̂ std [log(WT )] (4.7) .3001
σ̂ median [log(WT )] (4.8) .3367

Rebalance
σe (2.19) .24824

Single Stock
σ .6235

Table 4.3: Exact effective volatility, rebalance. Approximate fitted volatilities, buy and hold. Single
stock volatility also shown. Data in Table 4.1

.

strategies. The effect of different time horizons is also shown in Figure 4.4. For short time horizons219

(e.g. T = 10 years), the probability of pathwise outperformance for rebalance versus buy and hold220

is only 0.64, while for T = 60 years, the rebalancing strategy outperforms buy and hold with 94%221

probability.222

T Buy and hold σ̂ Buy and Hold: Median[WT ] Rebalance Median[WT ]
10 .274 2.28 2.44
30 .337 6.65 14.52
60 .392 13.3 210.9

Table 4.4: Fitted effective volatilities σ̂, buy and hold, using equation (4.8). σe = .248 rebalance.
Data in Table 4.1

.
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(a) T = 10 years. Prob[Wrebal > Wbuy+hold] =
0.64.
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(b) T = 60 years. Prob[Wrebal > Wbuy+hold] =
0.94.

Figure 4.4: CDF of R = Wrebal/Wbuy+hold. 80 × 106 simulations, data in Table 4.1. Effect of
changing the base case investment horizon T = 30. Compare with Figure 4.2.

Finally, Table 4.5 shows the effect of varying ρ and σ. Figure 4.5(b) shows the result obtained by223

increasing ρ to ρ = 0.5 and decreasing the single stock volatility to σ = 0.40. In this case, the CDF224

curves for the two strategies essentially overlap, indicating that there is no particular advantage to225

rebalancing.226

σ ρ Prob[Wrebalance > Wbuy+hold]

Base Case .6235 .15 0.82
σ ↓ .40 .15 0.67
ρ ↑ .6235 .50 0.72
σ ↓, ρ ↑ .40 .50 0.61

Table 4.5: 80× 106 simulations. Data in Table 4.1. Effect of varying σ, ρ.
.

5 Summary227

Using the single stock properties in Table 4.1 we observe that, for T = 30 years228

• there is a significant concentration effect for the buy and hold portfolio (which is the capital-229

ization weighted index in this market). Only a few stocks which have large gains account for230

most of the expected terminal wealth;231

• for the base case, the rebalancing strategy partially stochastically dominates the buy and hold232

strategy, hence would be preferred by most investors;233

• these results are very sensitive to the parameters in our tests. The superiority of the rebalance234

policy essentially disappears for (i) short time horizons (ten years) (ii) larger pairwise stock235

correlation and smaller single stock volatilities.236
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Figure 4.5: T = 30 years. 80× 106 simulations, data in Table 4.1, with the exception that ρ = 0.5,
σ = 0.40.

6 Conclusion237

The main empirical results in Bessembinder (2018) and Farago and Hjalmarsson (2023) are that238

• most stocks are not competitive with T-bills, over their lifetime;239

• a small, equal-weighted portfolio has a high probability of outperforming a broad cap-weighted240

index.241

Farago and Hjalmarsson (2023) put forward the properties of a stylized portfolio of stocks with242

identical properties, to provide an explanation for these empirical results.243

It is indeed intriguing to see that a simple model, which assumes that stocks follow geometric244

Brownian motion (GBM), results in a very concentrated market over time. This means that the245

rebalancing to equal weight strategy partially stochastically dominates the buy and hold portfolio.246

However, if we change the parameters in this stylized market, this partial dominance can become247

insignificant.248

What do these results mean for an investor? The empirical fact that equal-weighted portfolios249

tend to dominate capitalization weighted indexes seems to be a robust empirical fact. However, this250

is only true over the long term. This is especially evident in the recent performance of the S&P 500,251

which has been dominated by the performance of the magnificent seven stocks. The fact that the252

dominance of the rebalanced portfolio appears only in the long term, is consistent with our stylized253

model.254

It is also clear that the long term volatility of the S&P 500 index is in the range of .15 − .20,255

which is much smaller than the fitted estimates from our model market. This is probably due to256

a number of effects. As stocks age, with larger capitalization weight in the index, volatilities seem257

to decrease (Farago and Hjalmarsson, 2023). We can also imagine that the pairwise correlations258

between these high performing, large capitalization stocks also tends to increase.259

There is also an effective rebalancing which occurs in an index. This is due to poorly performing260

stocks being dropped from the index, and replaced with new stocks.6 In addition, all stocks do261

6For example, over the period 1970-2021, there were 1194 stock deletions in the S&P 500 index (Arnott and
Brightman, 2023).
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not pay the same proportional dividends. Investors may choose to invest/spend the dividends, or262

reinvest the dividends in the total index, which will cause departures from pure buy and hold.263

Note as well that, in the event that our basket of stocks has different drift rates (arithmetic264

expected return), the buy and hold strategy will eventually consist primarily of the stocks which265

have the largest expected returns. Of course, this will eventually dominate a rebalanced portfolio.266

However, this may take a very long time. This is perhaps not so relevant in practice, since a given267

stock will almost certainly not consistently outperform all the other stocks for long time periods.268

It is simplistic to dismiss the performance of equal-weight indexes as simply due to the small269

capitalization effect. Rebalancing seems to be a significant factor in the observed performance.270

However, the rebalancing effect does not fully explain what is going on here. The rebalancing effect271

produced in the model market is too large to explain the observed capitalization weighted index272

behaviour.273

The bottom line274

• investors should probably have some allocation to equal weight indexes. It is, of course,275

important to minimize the tax consequences of rebalancing. US ETFs can often avoid taxes276

on rebalancing7. Other countries permit holding ETFs in non-taxable accounts;277

• the model market, which magnifies the rebalancing effect, shows that the equal weight out-278

performance is only significant for long term investors (i.e. > 10 years), and if the constituent279

stocks have low pairwise correlations and high volatilities.280

Recall that at one point Nokia comprised 70% of the Finnish stock market, and Nortel was281

35% of the TSE 300 composite index. The model market suggests that these sorts of extreme282

concentrations are not unlikely. However, this does not end well.283

7https://www.bloomberg.com/graphics/2019-etf-tax-dodge-lets-investors-save-big/
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