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Abstract4

We investigate the time-consistent mean-variance (MV) portfolio optimization problem, popular5

in investment-reinsurance and investment-only applications, under a realistic context that involves6

the simultaneous application of different types of investment constraints and modelling assump-7

tions, for which a closed-form solution is not known to exist. We develop an efficient numerical8

partial differential equation method for determining the optimal control for this problem. Central9

to our method is a combination of (i) an impulse control formulation of the MV investment problem,10

and (ii) a discretized version of the dynamic programming principle enforcing a time-consistency11

constraint. We impose realistic investment constraints, such as no trading if insolvent, leverage re-12

strictions and different interest rates for borrowing/lending. Our method requires solution of linear13

partial integro-differential equations between intervention times, which is numerically simple and14

computationally effective. The proposed method can handle both continuous and discrete rebalanc-15

ings. We study the substantial effect and economic implications of realistic investment constraints16

and modelling assumptions on the MV efficient frontier and the resulting investment strategies.17

This includes (i) a comprehensive comparison study of the pre-commitment and time-consistent18

optimal strategies, and (ii) an investigation on the significant impact of a wealth-dependent risk19

aversion parameter on the optimal controls.20
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1 Introduction24

Originating with Markowitz (1952), the standard criterion in modern portfolio theory has been max-25

imizing the (terminal) expected return of a portfolio, given an acceptable level of risk, where risk is26

quantified by the (terminal) variance of the portfolio returns. This is referred to as mean-variance27

(MV) portfolio optimization. Mean-variance strategies are appealing due to their intuitive nature,28

since the results can be easily interpreted in terms of the trade-off between risk (variance) and reward29

(expected return).30

Broadly speaking, there are two main approaches to perform MV portfolio optimization, namely31

(i) the pre-commitment approach, and (ii) the time-consistent (or game theoretical) approach. It is32

well-known that the pre-commitment approach typically yields time-inconsistent strategies (Basak33

and Chabakauri, 2010; Bjork and Murgoci, 2010; Dang and Forsyth, 2014; Li and Ng, 2000; Vigna,34

∗School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane 4072, Australia, email:

pieter.vanstaden@uq.edu.au
†School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane 4072, Australia, email:

duyminh.dang@uq.edu.au
‡Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada, N2L 3G1,

paforsyt@uwaterloo.ca

1



2014; Wang and Forsyth, 2011; Zhou and Li, 2000). Specifically, for 0 ≤ t < t′ < u ≤ T , where T > 035

is the fixed horizon investment, the pre-commitment MV optimal strategy for time u, computed at36

time t, may not necessarily agree with the pre-commitment MV optimal strategy for the same time37

u, but computed at a later time t′. This time-inconsistency phenomenon is due to the fact that the38

variance term in the MV-objective is not separable in the sense of dynamic programming, and hence39

the corresponding MV portfolio optimization problem fails to admit the Bellman optimality principle.40

The time-consistent approach addresses the problem of time-inconsistency of the MV optimal strat-41

egy by directly imposing a time-consistency constraint on the optimal control (Basak and Chabakauri,42

2010; Bjork and Murgoci, 2010; Cong and Oosterlee, 2016; Wang and Forsyth, 2011). Specifically, the43

MV portfolio optimization problem is now constrained to ensure that, for any 0 ≤ t < t′ < u ≤ T , the44

optimal strategy for any time u, computed at time t′, must agree with the optimal strategy for the same45

time u, but computed at an earlier time t.1 As a result, under this time-consistency constraint on the46

control, the corresponding MV portfolio optimization problem would admit the Bellman optimality47

principle, and hence, can be solved using dynamic programming. Without this time-consistency con-48

straint, MV portfolio optimization would lead to a time-inconsistent optimal strategy, as in the case of49

the pre-commitment approach.2 Throughout this paper, we refer to the time-consistency constrained50

optimization problem as the time-consistent MV problem.51

The time-consistent MV approach has received considerable attention in recent literature; see, for52

example, Alia et al. (2016); Bensoussan et al. (2014); Cui et al. (2015); Li et al. (2015c); Liang and Song53

(2015); Sun et al. (2016); Zhang and Liang (2017), among many other publications. In particular,54

as evidenced by these publications, this approach has been very popular in institutional settings -55

especially in insurance-related applications, where MV-utility insurers are typically concerned with56

investment-reinsurance or investment-only optimization problems.57

With the notable exception of Wang and Forsyth (2011) and Cong and Oosterlee (2016), virtually58

all of the available literature on time-consistent MV optimization is based on solving the resulting equa-59

tions using closed-form (analytical) techniques, which necessarily requires very restrictive, and hence60

unrealistic, modelling and investment assumptions. These assumptions include continuous rebalanc-61

ing, zero transaction costs, allowing insolvency and infinite leverage. Formulating problems without62

realistic investment constraints usually results in conclusions that are difficult to justify, and/or are63

potentially infeasible to implement in practice.64

Specifically, in the time-consistent MV literature, the effect of the commonly encountered assump-65

tion, namely trading continues even if the investor is insolvent, is rarely considered. A few exceptions66

include Zhou et al. (2016), where the bankruptcy implications from multi-period time-consistent MV67

and pre-commitment MV optimization problems are compared; however, a bankruptcy constraint is68

not explicitly enforced in this work. A conclusion in Zhou et al. (2016) is that the time-consistent69

strategy “can diversify bankruptcy risk efficiently”, since the resulting probability of insolvency over70

the investment time horizon is lower, and therefore, the time-consistent strategy might be preferred71

by a rational investor over the pre-commitment strategy. However, in practice, real portfolios have72

bankruptcy constraints. Hence, such conclusions are questionable. In the case of other time-consistent73

MV applications, such as asset-liability management, the explicit incorporation of insolvency consid-74

erations is critical to ensure that the results are of any practical use. The analytical solutions in,75

1We clearly distinguish this time-consistency constraint from investment constraints, such as leverage or solvency

constraints, which do not affect the time-consistency of the optimal control.
2As an alternative to imposing a time-consistency constraint, the dynamical optimal approach proposed recently by

Pedersen and Peskir (2017) deals with the time-inconsistency of the pre-commitment approach by recomputing the MV

optimal strategy at each time instant t and controlled wealth value. This approach can therefore obtain time-consistent

optimal controls by performing an infinite number of optimization problems. We refer the reader to Vigna (2017) for a

more detailed discussion regarding the relationship of this approach to the standard pre-commitment and time-consistent

approaches discussed here.
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for example, Wei et al. (2013) and Wei and Wang (2017), while useful, necessarily assume trading76

continues in the case of insolvency.77

Moreover, in the time-consistent MV literature, it is typical for analytical techniques to allow for a78

leverage ratio, i.e. the ratio of the investment in the risky asset to the total wealth, substantially larger79

than a ratio that brokers would typically allow retail investors or financial regulators would likely allow80

institutions to undertake in practice. More specifically, while a leverage ratio of around 1.5 times is81

typically allowed in practice (for retail investors), some of the analytical techniques illustrated in the82

available literature call for much larger leverage ratios, for example 2.4 times in Li et al. (2012), 3 times83

in Zeng et al. (2013), 2.6 times in Liang and Song (2015), 2.5 times in Li et al. (2015c), and as high as84

14 times in Li et al. (2015a), none of which are practically feasible, and which only further increases85

the probability of insolvency. In a number of publications, a leverage constraint is completely ignored,86

such as Lioui (2013), and this potentially leads to misplaced economic conclusions. For example, it87

is concluded in Lioui (2013) that the time-consistent strategy is preferred over the pre-commitment88

strategy, since the latter requires “huge and unrealistic positions in risky assets; in some cases, the pre-89

commitment strategy is more than 60 times the time consistent strategy”. However, such a conclusion90

appears unconvincing, since the pre-commitment MV strategy’s positions in the risky asset would have91

been significantly smaller, if a realistic leverage constraint had been incorporated into the problem92

formulation.93

In addition, failing to incorporate transaction costs may also lead to strategies which are not94

economically viable. For example, a numerical example provided in Li et al. (2015b), where no95

transaction costs are considered, shows the risky asset price undergoing reasonable changes over the96

course of a month, but the resulting time-consistent MV-optimal analytical solution calls for an almost97

three-fold increase in the risky asset holdings as the risky asset price declines, only to unwind the entire98

position again as the risky asset price recovers at the end of the month.99

Also, any strategy which allows leverage, even if limited, should take into account that borrowing100

rates will be larger than lending rates, which will clearly affect any conclusions drawn regarding trading101

strategies.102

Furthermore, the use of a wealth-dependent risk-aversion parameter has been popular in time-103

consistent MV literature, especially in insurance-related applications, such as Zeng and Li (2011), Wei104

et al. (2013), Li and Li (2013), as well as Liang and Song (2015)). While arguments in favour of,105

for example, a risk aversion parameter inversely proportional to wealth appear to be reasonable when106

considered in the absence of investment constraints (see for example Bjork et al. (2014) and Li and107

Li (2013)), in the presence of realistic constraints this formulation may have some unintended and108

undesirable economic consequences from both a risk and a return perspective, as will become evident109

below.110

As a result, in order to ensure that economically viable strategies can be developed and econom-111

ically reasonable conclusions can be drawn, a number of realistic investment constraints need to be112

incorporated simultaneously as part of the formulation of the MV optimization problem. Such a113

comprehensive treatment with realistic investment constraints cannot be expected to yield analytical114

solutions, and hence a fully numerical solution approach must be used in this case. This is the main115

focus of this work.116

The literature on numerical methods for time-consistent MV portfolio optimization is virtually117

limited to the case of diffusion dynamics, i.e. Geometric Brownian Motion, for the risky asset, including118

notable works of Cong and Oosterlee (2016); Wang and Forsyth (2011). However, it is well-documented119

in the finance literature that jumps are often present in the price processes of risky assets (see, for120

example, Cont and Tankov (2004); Ramezani and Zeng (2007)). Jump processes permit modelling121

of non-normal asset returns and fat tails. We focus on jump-diffusions in this work, since previous122

studies indicate that mean-reverting stochastic volatility processes have a very small effect on the123
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efficient frontier for long term (> 10 years) investors (Ma and Forsyth, 2016). Using a Monte Carlo124

approach, Cong and Oosterlee (2016) compare pre-commitment and time-consistent policies with125

leverage and bankruptcy constraints in the case of diffusion dynamics.3 In the present work, we126

go a step forward by considering both the continuous and discrete rebalancing versions of the time-127

consistent MV portfolio optimization problem with jump-diffusion dynamics for the risky asset and128

realistic investment constraints, such as transaction costs and different borrowing and lending interest129

rates. Moreover, we also provide a comprehensive comparison between the time-consistency and pre-130

commitment approaches, not only in terms of the resulting efficient frontiers, but also in terms of the131

optimal investment policies over time under the above-mentioned realistic context. Furthermore, our132

use of partial integro-differential equation (PIDE) methods for solution of the optimal control problem133

allows us to illustrate the strategies in terms of easy-to-interpret heat maps.134

Generally speaking, the impulse control approach is suitable for many complex situations in135

stochastic optimal control (Oksendal and Sulem, 2005). In particular, in the context of pre-commitment136

MV portfolio optimization under jump diffusion, it has been demonstrated in Dang and Forsyth (2014)137

that an impulse control formulation of the investment problem is very computationally advantageous.138

This is because an impulse control formulation can avoid the presence of the control in the integrand139

of the jump terms, which, in turn, facilitates the use of a fast computational method, such as the FFT,140

for the evaluation of the integral. In addition, an impulse control formulation also allows for efficient141

handling of realistic modelling assumptions, such as transaction costs.142

For time-consistent MV portfolio optimization with jump-diffusion dynamics, an impulse control143

approach can also be utilized to potentially achieve similar computational advantages. In the realistic144

context considered in this work, applying the popular method of Bjork et al. (2016); Bjork and Murgoci145

(2014), together with relevant results from Oksendal and Sulem (2005), the value function under an146

impulse control formulation can be shown to satisfy a strongly coupled, nonlinear system of equations,147

the so-called an extended Hamilton-Jacobi-Bellman (HJB) quasi-integro-variational inequality. This148

system of equations must be solved numerically, since a closed-form solution for it is not known to149

exist, except in special cases. However, it is not clear how such a very complex system of equations can150

be solved effectively numerically. As a result, in this case, the method of Bjork et al. (2016); Bjork and151

Murgoci (2014) does not appear to result in equations amenable for computational purposes. Hence,152

for numerical purposes, an alternative formulation of this problem is desirable.153

The objective of this paper is two-fold. Firstly, we develop a numerically a computationally effi-154

cient partial differential equation (PDE) method for the solution of the time-consistent MV portfolio155

optimization problem under different types of investment constraints and realistic modelling assump-156

tions. We formulate this problem in such a way as to avoid some of the numerical difficulties resulting157

from the approach of Bjork et al. (2016); Bjork and Murgoci (2014). Secondly, using actual long-term158

data, we present a comprehensive study of the impact of simultaneously imposing those investment159

constraints on the efficient frontier, as well as on the optimal investment strategies, for both the160

time-consistent and pre-commitment approaches.161

The main contributions of this paper are as follows.162

• We formulate the time-consistent MV portfolio optimization problem as a system of two-dimensional163

impulse control problems, with a time-consistency constraint enforced via a discretized version164

of the dynamic programming principle.165

This approach results in only linear partial integro-differential equations (PIDEs) to solve be-166

tween intervention times, which is not only numerically simpler than the approach of Bjork et al.167

(2016); Bjork and Murgoci (2014), but also computationally efficient.168

3The bankruptcy constraint in (Cong and Oosterlee, 2016) is not quite the same as considered in this work.
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• We study the simultaneous application of realistic investment constraints, including (i) discrete169

(infrequent) rebalancing of the portfolio, (ii) liquidation in the event of insolvency, (iii) leverage170

constraints, (iv) different interest rates for borrowing and lending, and (v) transaction costs.171

• Since the viscosity solution theory (Crandall et al. (1992)) does not apply in this case, we have172

no formal proof of convergence of our numerical PDE method. However, we (i) show that our173

method converges to analytical solutions, where available, and (ii) validate the results from our174

method using Monte Carlo simulations, where analytical solutions are unavailable.175

• Extensive numerical experiments are conducted with model parameters calibrated to real (i.e.176

inflation adjusted) long-term US market data (89 years), enabling realistic conclusions to be177

drawn from the results. Through these experiments, the (significant) impact of various modelling178

assumptions and investment constraints on the MV efficient frontiers are investigated.179

We also present a comprehensive comparison study of the time-consistent and pre-commitment180

MV optimal strategies.181

• For the popular case of a wealth-dependent risk aversion parameter in the time-consistent MV182

literature, our results show that a seemingly reasonable definition of a wealth-dependent risk-183

aversion parameter, when used in combination with investment and bankruptcy constraints,184

can result in conclusions that are not economically reasonable. Not only does this finding185

pose questions about the use of such wealth-dependent risk aversion parameters in existing186

time-consistent MV literature, but it also highlights the importance of incorporating realistic187

constraints in investment models.188

The remainder of the paper is organized as follows. Section 2 describes the underlying processes and189

the impulse control approach, and introduce the pre-commitment and time-consistent MV optimiza-190

tion approaches. A numerical algorithm for solving the time-consistency MV portfolio optimization191

problem is discussed in detail in Section 3. In Section 4, we discuss the localization and numeri-192

cal techniques, including discrete rebalancing case. Numerical results are presented and discussed in193

Section 5. Section 6 concludes the paper and outlines possible future work.194

2 Formulation195

2.1 Underlying processes196

We consider the investment-only problem4 from the perspective of a mean-variance investor/insurer197

investing in portfolios consisting of just two assets, namely a risky asset and a risk-free asset. The198

lack of allowance for investment in multiple risky assets may initially appear to be overly restrictive,199

but we argue that this is not the case, due to the following reasons. Firstly, in the applying the200

approach presented in this paper, we use a diversified index, rather than a single stock (see Section201

5). Secondly, in the available analytical solutions for multi-asset time-consistent MV problems, the202

composition of the risky asset basket remains relatively stable over time (see for example Zeng and203

Li (2011)). Finally, investment problems with long time horizons have a strong strategic component204

- the investor/insurer may be more interested in overall global portfolio shifts from stocks to bonds205

and vice versa5, rather than the more secondary questions relating to risky asset basket compositions.206

4As noted in the conclusion to this paper, we leave the investment-reinsurance problem for future work.
5It is natural for institutions, answerable to their stockholders regarding their chosen investment strategies, to be

sensitive to these global trends. As a typical example of an article discussing these trends, see “Global stock optimism

drives rotation from bonds into equities”, by Kate Allen, which appeared in the Financial Times (FT) on January 16,

2018.
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Let S (t) and B (t) respectively denote the amounts (i.e. total dollars) invested in the risky and risk-207

free asset, at time t ∈ [0, T ], where T > 0 is the fixed horizon investment. Define t− = limε↓0 (t− ε),208

t+ = limε↓0 (t+ ε), i.e. t− (resp. t+) as the instant of time before (resp. after) the (forward) time209

t. First, consider the risky asset. Let ξ be a random number representing a jump multiplier, with210

probability density function (pdf) p (ξ). When a jump occurs, S(t) = ξS(t−). As a specific example,211

we consider two jump distributions for ξ, namely the log-normal distribution (Merton, 1976) and the212

log-double-exponential distribution (Kou, 2002). Specifically, in the former case, log ξ is normally213

distributed, so that214

p (ξ) =
1

ξ
√

2πγ̃2
exp

{
−(log ξ − m̃)2

2γ̃2

}
, (2.1)215

with mean m̃ and standard deviation γ̃, and E[ξ] = exp(m̃+ γ̃2/2), where E[·] denotes the expectation216

operator. In the latter case, log ξ has an asymmetric double-exponential distribution, so that217

p (ξ) = νζ1ξ
−(ζ1+1)I[ξ≥1] + (1− ν) ζ2ξ

ζ2−1I[0≤ξ<1]. (2.2)218

Here, ν ∈ [0, 1], ζ1 > 1 and ζ2 > 0, and I[A] denotes the indicator function of the event A. Given that219

a jump occurs, ν is the probability of an upward jump, and (1− ν) is the probability of a downward220

jump. Furthermore, in this case, we have E[ξ] =
νζ1
ζ1 − 1

+
(1− ν)ζ2
ζ2 + 1

.221

In the context of pre-commitment MV analysis, the results in (Ma and Forsyth, 2016) indicate222

that the effects of mean-reverting stochastic volatility are unimportant for long-term (i.e. greater than223

10 years) investors. Hence we focus here on the effect of jump processes, as a major source of risk. In224

the absence of control, i.e. if we do not adjust the amount invested according to our control strategy,225

the amount S invested in the risky asset is assumed to follow the process226

dS (t)

S (t−)
= (µ− λκ) dt+ σdZ + d

π(t)∑
i=1

(ξi − 1)

 . (2.3)227

Here, κ = E [ξ − 1]; Z denotes a standard Brownian motion; µ and σ are the real world drift and228

volatility, respectively; π (t) a Poisson process with intensity λ ≥ 0; and ξi are i.i.d. random variables229

having the same distribution as ξ. Moreover, ξi, πt and Z are assumed to all be mutually independent.230

For later use in the paper, we also define κ2 = E
[
(ξ − 1)2

]
.231

It is assumed that the investor can earn a (continuously compounded) rate r` on cash deposits,232

and borrow at a rate of rb > 0, with r` < rb. In the absence of control, the dynamics of the amount233

B(t) invested in the risk-free asset are given by234

dB (t) = R (B (t))B (t) dt, where R (B (t)) = r` + (rb − r`) I[B(t)<0]. (2.4)235

We make the standard assumption that the real world drift rate µ of S is strictly greater than r`. Since236

there is only one risky asset, for a constant risk-aversion parameter, it is never MV-optimal to short237

stock. For the case of a risk aversion parameter inversely proportional to wealth, which we also will238

investigate in Section 5.5, we explicitly impose a short-selling restriction, as suggested in Bensoussan239

et al. (2014). Therefore, in all cases we allow only for S(t) ≥ 0, t ∈ [0, T ]. In contrast, we do allow240

short positions in the risk-free asset, i.e. it is possible that B(t) < 0, t ∈ [0, T ].241

In some of the examples considered in this paper, we assume that, in the absence of the control,242

the dynamics for S(t) follows GBM. This is implemented by suppressing any possible jumps in (2.3),243

i.e. by setting the intensity parameter λ to zero.244
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2.2 Dynamics of the controlled system245

We denote by X (t) = (S (t) , B (t)), t ∈ [0, T ], the multi-dimensinal controlled underlying process, and246

by x = (s, b) the state of the system. Furthermore, the liquidation value of the (controlled) wealth,247

denoted by W (t). We note that W (t) may include liquidation costs (see (2.8)).248

Let (Ft)t≥0 be the natural filtration associated with the wealth process {W (t) : t ∈ [0, T ]}. We use249

Ct(·) to denote the control, representing a strategy as a function of the underlying state, computed250

at time t ∈ [0, T ], i.e. Ct(·) : (X(t), t) 7→ Ct = C(X(t), t), for the time interval [t, T ]. Following Dang251

and Forsyth (2014), we make use of impulse controls, which allows for efficient handling of jumps, as252

well as other realistic modelling assumptions, such as transaction costs. A generic impulse control Ct253

is defined as a double, possibly finite, sequence (Oksendal and Sulem, 2005)254

Ct = {t1, t2, . . . , tn ; η1, η2, . . . , ηn, . . .}n≤nmax
= {{tn, ηn}}n≤nmax

, nmax ≤ ∞. (2.5)255

Here, intervention times t ≤ t1 < . . . < tnmax < T are any sequence of (Ft)-stopping times, associated256

with a corresponding sequence of random variables (ηn)n≤nmax
denoting the impulse values, with each257

ηn being Ftn-measurable, for all tn. We denote by Z the set of admissible impulse values, and by A258

the set of admissible impulse controls. For use later in the paper, we denote by C∗t = ({tn, η∗n})n≤nmax
,259

nmax ≤ ∞, the optimal impulse control.260

In our context, the intervention time tn correspond to the re-balancing times of the portfolio,261

and the impulse ηn corresponds to readjusting the amounts of the stock and bond in the investor’s262

portfolio at time tn. Recalling definition (2.5), tn can formally be any (Ft)-stopping time. However,263

in any numerical implementation, we are of course limited to a finite set of pre-specified potential264

intervention6 times (see for example equation (3.7) below). In what follows, we will consider both265

“continuous rebalancing” - see Section 5.2 (where, as maxn (tn − tn−1) → 0, we recover the ability266

to intervene as per definition (2.5)), as well as “discrete rebalancing”, where the set of potential267

intervention times remain fixed - see Section 4.4.268

The dynamics of portfolio rebalancing is as follows. Assume that the system is in state x = (s, b)269

at time t−n . We denote by (S+(tn), B+(tn)) ≡ (S+ (s, b, ηn) , B+ (s, b, ηn)) the state of the system270

immediately after application of the impulse ηn at time tn. More specifically, we assume that fixed271

and proportional transaction costs, respectively denoted by c1 > 0 and c2, where c2 ∈ [0, 1), may be272

imposed on each rebalancing of the portfolio. Applying the impulse ηn at time tn results in273

B+(tn) ≡ B+ (s, b, ηn) = ηn,274

S+(tn) ≡ S+ (s, b, ηn) = (s+ b)− ηn − c1 − c2
∣∣S+ (s, b, ηn)− s

∣∣ , (2.6)275

where the transaction costs have been taken into account.276

Between intervention times, for t ∈
[
t+n , t

−
n+1

]
, the amounts S and B evolve according to the277

dynamics specified in (2.4) and (2.3), respectively. Specifically,278

dS (t)

S (t−)
= (µ− λκ) dt+ σdZ + d

π[t+n ,t−n+1]∑
i=1

(ξi − 1)

 ,279

dB (t) = R (B (t))B (t) dt, t ∈
[
t+n , t

−
n+1

]
, n = 0, 1, 2, . . . , nmax − 1, (2.7)280

where π
[
t+n , t

−
n+1

]
denotes the number of jumps in the Poisson process π (t) in the time interval281 [

t+n , t
−
n+1

]
.282

6As is evident from Algorithm 3.1, the investor is not forced to rebalance the portfolio at a potential intervention time

tn, but can retain existing investments unchanged if it is optimal to do so, which is equivalent to “non-intervention”.
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2.3 Admissible portfolios283

To include transaction costs, the liquidation value W (t) of the portfolio is defined to be284

W (t) = W (s, b) = b+ max [(1− c2) s− c1, 0] , t ∈ [0, T ] . (2.8)285

We strictly enforce two investment constraints on the joint values of S and B, namely a solvency286

condition and a maximum leverage condition. The solvency condition takes the following form: if287

insolvent, defined to be the case when W (s, b) ≤ 0, we require that the position in the risky asset288

be liquidated, the total remaining wealth be placed in the risk-free asset, and the ceasing of all289

subsequent trading activities. More formally, we define a solvency region N and an insolvency or290

bankruptcy region B as follows:291

N = {(s, b) ∈ Ω∞ : W (s, b) > 0} , (2.9)292

B = {(s, b) ∈ Ω∞ : W (s, b) ≤ 0} , (2.10)293

where294

Ω∞ = [0,∞)× (−∞,∞) . (2.11)295

The solvency condition can then be stated as296

If (s, b) ∈ B at t−n ⇒

{
we require (S+(tn) = 0, B+(tn) = W (s, b)) ,

and remains so for ∀t ∈ [tn, T ].
(2.12)297

The investors net debt then accumulates at the borrowing rate. It is noted that due to the S-dynamics298

(2.3), the wealth can jump into the bankruptcy region (regardless of whether we trade continuously299

or not).300

We also constrain the leverage ratio, i.e. at each intervention time tn, the investor must select an301

allocation satisfying302

S+(tn)

S+(tn) +B+(tn)
< qmax (2.13)303

for some positive constant qmax, typically in the range [1.0, 2.0].304

2.4 Mean-variance (MV) optimization305

Let Ex,tCt [W (T )] and V arx,tCt [W (T )] denote the mean and variance of the liquidation value of the306

terminal wealth, respectively, given the state x = (s, b) at time t and using impulse control Ct ∈ A307

over [t, T ].308

2.4.1 Pre-commitment309

Using the standard linear scalarization method for multi-criteria optimization problems (Yu, 1971),310

we define the (time-t) pre-commitment MV (PCMV) problem by311

(PCMVt (ρ)) : supCt∈A

(
Ex,tCt [W (T )]− ρV arx,tCt [W (T )]

)
, ρ > 0. (2.14)312

Here, the scalarization parameter ρ reflects the investor’s level of risk aversion. The MV “efficient313

frontier” is defined as the following set of points in R2:314 {(√
V arx0,0C∗0

[W (T )], Ex0,0C∗0
[W (T )]

)
: ρ > 0

}
, (2.15)315
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traced out by solving (2.14) for each ρ > 0. In other words, given a fixed level of risk aversion, an316

“efficient” portfolio, i.e. any point in the set (2.15), cannot be improved upon in the MV sense, using317

any other admissible strategy in A.318

There are two important issues related to the pre-commitment MV problem (2.14). First, since319

variance does not satisfy the smoothing property of conditional expectation, dynamic programming320

cannot be applied directly to (2.14). To overcome this challenge, a technique is proposed in Li and321

Ng (2000); Zhou and Li (2000) to embed (2.14) in a new optimization problem, often referred to as322

the embedding problem, which can be solved using the dynamic programming principle. We refer the323

reader to Dang and Forsyth (2014); Dang et al. (2016); Wang and Forsyth (2010) for the numerical324

treatment of the problem as well as a discussion of technical issues.325

It is well-known that, although dynamic programming can be used to solve the embedding problem,326

the obtained optimal controls remain time-inconsistent (see Bjork et al. (2016); Bjork and Murgoci327

(2014)). To explain the time-inconsistency issue further, with a slight abuse of notation, we denote328

by C∗t,u the optimal control for problem PCMVt (ρ) computed at time t for a fixed time u ∈ [t, T ]. For329

the pre-commitment approach, the “time-inconsistency” phenomenon means that, in general,330

C∗t,u 6= C∗t′,u, t′ > t, u ∈
[
t′, T

]
. (2.16)331

Simply put, (2.16) indicates that the optimal control for the same future time u, but computed at332

different prior times t and t′, are not necessarily the same. We conclude this subsection by referring333

the reader to Vigna (2014) an interesting alternative view of the notion of time-inconsistency.334

2.4.2 Time-consistent approach335

As discussed in Basak and Chabakauri (2010); Bjork et al. (2016); Bjork and Murgoci (2014); Hu336

et al. (2012), in the time-consistent approach, a “time-consistency” constraint is imposed on (2.14),337

giving the time-consistent MV (TCMV) problem as338

(TCMVt (ρ)) : V (s, b, t) = sup
Ct∈A

(
Ex,tCt [W (T )]− ρV arx,tCt [W (T )]

)
, (2.17)339

s. t. C∗t,u = C∗t′,u, for all t′ ≥ t and u ≥ t′. (2.18)340

Here, the time-consistency constraint (2.18) ensures that that the resulting optimal strategy for MV341

portfolio optimization is, in fact, time-consistent. As a result, the MV portfolio optimization (2.17)-342

(2.18) admits the Bellman optimality principle, and hence, dynamic programming can be applied343

directly to (2.17)-(2.18) to compute optimal controls and the TCMV efficient frontier. See, for example344

Wang and Forsyth (2011), for the pure-diffusion case.345

Since the constrained optimization problem (2.17)-(2.18) always leads to MV outcomes inferior to,346

or at most, the same as, those of the unconstrained optimization problem (2.14), a natural question is:347

what makes time-consistent MV optimization potentially attractive? As discussed in the introduction,348

the pre-commitment approach may not be feasible in institutional settings, while, on the contrary,349

the time-consistent approach is typically popular in these settings. However, it should be noted that350

neither the pre-commitment nor the time-consistent approach is “better” in some objective sense - see351

Vigna (2016, 2017) for a discussion of a number of subtle issues involved.352

Remark 2.1. (Game-theoretic perspective; notion of optimality). In Bjork and Murgoci (2014), the353

terminology “equilibrium” control is used as opposed to “optimal” control, since the time-consistent354

optimal control C∗t satisfies the conditions of a subgame perfect Nash equilibrium control. We will355

follow the example of Basak and Chabakauri (2010); Cong and Oosterlee (2016); Li and Li (2013);356

Wang and Forsyth (2011) and retain the terminology “optimal” (time-consistent) control for simplicity.357
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3 Algorithm development358

For subsequent use, we write the value function V (s, b, t) of the time-consistent problem (2.17)-(2.18)359

in terms of two auxiliary functions U (s, b, t) and Q (s, b, t) as follows360

V (s, b, t) = U (s, b, t)− ρQ (s, b, t) + ρ(U (s, b, t))2, (3.1)361

where362

U (s, b, t) = Ex,tC∗t
[W (T )] , (3.2)363

Q (s, b, t) = Ex,tC∗t

[
(W (T ))2

]
, (3.3)364

where, it is implicitly understood hereafter that C∗t is the optimal control for the TCMVt (ρ) problem.365

We also define the following operators, applied to an appropriate test function f :366

Lf (s, b, t) = (µ− λκ) sfs +R (b) bfb +
1

2
σ2s2fss − λf, (3.4)367

J f (s, b, t) = λ

∫ ∞
0

f (ξs, b, t) p (ξ) dξ. (3.5)368

We now primarily focus on the continuous re-balancing case. The discrete rebalancing case is discussed369

in Subsection (4.4).370

Fix an arbitrary point in time t ∈ [0, T ), and assume we are in state x = (s, b) at time t−. We371

define the intervention operator, a fundamental object in impulse control problems (Oksendal and372

Sulem, 2005), applied to the value function V of the time-consistent problem (2.17)-(2.18) as373

MV (s, b, t) = sup
η∈Z

[
V
(
S+ (s, b, η) , B+ (s, b, η) , t

)]
, (3.6)374

where S+(·) and B+(·) are defined in (2.6).375

In analogy to the case of continuous controls, where an extended HJB system of equations is376

obtained (see Bjork et al. (2016)), as discussed in the Introduction, in our case, the techniques of377

Bjork et al. (2016); Bjork and Murgoci (2014) results in an extended HJB quasi-integrovariational378

inequality - a strongly coupled, nonlinear system of equations that needs to solve simultaneously to379

obtain the value function. Under realistic modelling assumptions and investment constraints, a closed-380

form solution for this highly complex system of equations is not known to exist, except for very special381

cases, and hence a numerical method must be used. However, it is not clear how such a highly complex382

system of equations can be solved effectively numerically for practical purposes.383

To overcome the above-mentioned hurdle, we choose to enforce the dynamic programming principle384

on the discretized time variable, i.e. the time-consistency constraint (2.18) is enforced on a set of385

discrete intervention times obtained from discretizing the time variable. The intervention operator386

M, defined in (3.6), is applied across each of these times As shown later, this approach results in only387

linear partial integro-differential equations to solve between intervention times. Furthermore, when388

combined with a semi-Lagrangian timestepping scheme, we just have a set of one-dimensional PIDE389

in the s-variable to solve between intervention times. As a result, our approach is not only numerically390

simpler than the approach of Bjork et al. (2016); Bjork and Murgoci (2014), but also computationally391

effective.392

3.1 Recursive relationships393

We consider the following uniform partition of the time interval [0, T ]394

Tnmax = {tn | tn = n∆t} , ∆t = T/nmax, ∆t = C1h, (3.7)395
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where C1 is positive and independent of the discretization parameter h > 0. In the limit as h → 0,396

we shall demonstrate via numerical experiments that, at least for some known cases, the numerical397

solution of the time-discretized formulation converges to the closed-form solution of the continuous398

time formulation.399

To avoid heavy notation, we now introduce the following notational convention: any admissible400

impulse control C ∈ A will be written as the set of impulses401

C = {ηn ∈ Z : n = 0, . . . , nmax} , (3.8)402

where the corresponding set of (discretized) intervention times is implicitly understood to be {tn}nmax
n=0 .403

Given an impulse control C as in (3.8), we also define the control Cn ≡ Ctn ⊆ C, n = 0, . . . , nmax, as404

the subset of impulses (and, implicitly, corresponding intervention times) of C applicable to the time405

interval [tn, T ]:406

Cn = {ηn, . . . , ηnmax} ⊆ C = {η0, . . . , ηnmax} . (3.9)407

Subsequently, we use408

C∗n =
{
η∗n, . . . , η

∗
nmax

}
(3.10)409

to denote the optimal impulse control to the problem (TCMV tn (ρ)) defined in (2.17)-(2.18).410

With this time discretization and notational conventions, for a given scalarization parameter ρ > 0411

and an intervention time tn, we define the scalarized time-consistent MV problem (TCMVtn (ρ)) as412

follows:413

(TCMVtn (ρ)) : V (s, b, tn) = sup
Cn∈A

(
Ex,tnCn [W (T )]− ρV arx,tnCn [W (T )]

)
(3.11)414

s.t. Cn =
{
ηn, C∗n+1

}
:=
{
ηn, η

∗
n+1, . . . , η

∗
nmax−1, η

∗
nmax

}
(3.12)415

where C∗n+1 is optimal for problem
(
TCMV tn+1 (ρ)

)
.416

We note that the definition of (3.11)-(3.12) agrees conceptually with the continuous-time definition417

given by (2.17)-(2.18), but is more convenient from a computational perspective. The particular form418

of the time-consistency constraint in (3.12) is a discretized equivalent of the constraint in (2.18), since,419

given the optimal impulse control C∗n+1 =
{
η∗n+1, . . . , η

∗
nmax

}
of problem

(
TCMV tn+1 (ρ)

)
applicable420

to the time period [tn+1, T ], any arbitrary admissible impulse control Cn ∈ A will necessarily be of the421

form422

Cn =
{
η, η∗n+1, . . . , η

∗
nmax

}
=
{
η, C∗n+1

}
(3.13)423

for some admissible impulse value η ∈ Z applied at time tn.424

We use the notation Ex,tnη [·] to indicate that the expectation is evaluated using an (arbitrary)425

impulse value η ∈ Z at time tn, with the implied application of C∗n+1 over the time interval [tn+1, T ].426

We note that, given X
(
t−n+1

)
=
(
S
(
t−n+1

)
, B
(
t−n+1

))
at time t−n+1, we have the following recursive427

relationships for U (s, b, tn) and Q (s, b, tn):428

U (s, b, tn) = Ex,tnη∗n

[
U
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)]
, (3.14)429

Q (s, b, tn) = Ex,tnη∗n

[
Q
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)]
, (3.15)430

where, as defined previously in (3.10), η∗n is the optimal impulse value for time tn. For the special case431

of tnmax = T , we have432

U (s, b, T ) = U (s, b, tnmax) = W (s, b) , (3.16)433

Q (s, b, T ) = Q (s, b, tnmax) = (W (s, b))2 . (3.17)434
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We similarly obtain a recursive relationship for the value function (3.11)435

V (s, b, tn) = sup
η∈Z

{
Ex,tnη

[
U
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)]
− ρEx,tnη

[
Q
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)]
436

+ ρ
(
Ex,tnη

[
U
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)])2}
, (3.18)437

where, for the special case of tnmax , we have V (s, b, tnmax) = V (s, b, T ) = W (s, b). This is effectively438

the discretized version of the intervention operator M, defined in (3.6).439

Assume that Ex,tnη [·] is a bounded, upper semi-continuous function of the admissible impulse value440

η. If we can determine U
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)
and Q

(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)
, then441

η∗n ∈ arg max
η∈Z

{
Ex,tnηn

[
U
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)]
− ρEx,tnηn

[
Q
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)]
442

+ ρ
(
Ex,tnηn

[
U
(
S
(
t−n+1

)
, B
(
t−n+1

)
, tn+1

)])2 }
. (3.19)443

Relations (3.14)-(3.19) form the basis for a recursive algorithm to determined the value function and444

the optimal impulse value.445

3.2 Computation of expectations446

We now introduce the change of variable τ = T − t, and let447

Ū (s, b, τ) = U (s, b, T − t) , Q̄ (s, b, τ) = Q (s, b, T − t) , V̄ (s, b, τ) = V (s, b, T − t) , (3.20)448

and hence (3.1) becomes449

V̄ (s, b, τ) = Ū (s, b, τ)− ρQ̄ (s, b, τ) + ρ
(
Ū (s, b, τ)

)2
(3.21)450

In terms of τ , time grid (3.7) now becomes451

{τn = T − tnmax−n : n = 0, 1, . . . , nmax} . (3.22)452

Next, we define the following “candidate” expectation values at the rebalancing time τn under an453

arbitrary impulse η ∈ Z :454

Ûnη (s, b) = Ex,τnη

[
Ū
(
S
(
τ+n−1

)
, B
(
τ+n−1

)
, τ+n−1

)]
, (3.23)455

Q̂nη (s, b) = Ex,τnη

[
Q̄
(
S
(
τ+n−1

)
, B
(
τ+n−1

)
, τ+n−1

)]
. (3.24)456

To handle the computation of expectations in (3.23) and (3.24), we proceed as follows. For solvent457

portfolios, i.e. (s, b) ∈ N , we first solve the following associated two PIDEs from τ+n−1 to τ−n (Oksendal458

and Sulem, 2005)459

Ψτ (s, b, τ)− LΨ (s, b, τ)− J Ψ (s, b, τ) = 0 (s, b, τ) ∈ N ×
(
τ+n−1, τ

−
n

]
(3.25)460

with initial condition Ψ
(
s, b, τ+n−1

)
= Ū (s, b, τn−1) (3.26)461

and462

Φτ (s, b, τ)− LΦ (s, b, τ)− JΦ (s, b, τ) = 0 (s, b, τ) ∈ N ×
(
τ+n−1, τ

−
n

]
(3.27)463

with initial condition Φ
(
s, b, τ+n−1

)
= Q̄ (s, b, τn−1) (3.28)464

where, for the special case of τ0 = 0, we have465

Ū(s, b, 0) = W (s, b), Q̄(s, b, 0) = (W (s, b))2. (3.29)466
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Here, the operators L and J in the PDEs (3.25) and (3.27) are defined in (3.4) and (3.5), respectively.467

Then, for a given arbitrary impulse η ∈ Z, we obtain the “candidate” expectation values Ûnη (s, b) and468

Q̂nη (s, b) by469

Ûnη (s, b) = Ψ
(
S
(
τ+n
)
, B
(
τ+n
)
, τ−n

)
, (3.30)470

Q̂nη (s, b) = Φ
(
S
(
τ+n
)
, B
(
τ+n
)
, τ−n

)
, (3.31)471

where B (τ+n ) = η and S (τ+n ) = (s+ b) − η − c1 − c2 · |S (τ+n )− s|, as per (2.6), subject to the472

leverage constraint (2.13). Finally, using (3.30)-(3.31), we can find the optimal impulse value η∗n via473

η∗n ∈ arg max
η∈Z

{
Ûnη (s, b)− ρQ̂nη (s, b) + ρ

(
Ûnη (s, b)

)2}
.474

For insolvent portfolios, i.e. (s, b) ∈ B, the solvency constraint (2.12) results in enforced liquidation.475

This is captured by a Dirichlet condition476

Ū
(
s, b, τ−n

)
= Ū

(
0,W (s, b)eR(s+b)τn , 0

)
,477

Q̄
(
s, b, τ−n

)
= Q̄

(
0,W (s, b)eR(s+b)τn , 0

)
, (s, b) ∈ B. (3.32)478

In Algorithm 3.1, we present a recursive algorithm for the time-consistent MV (TCMVn (ρ)) for a479

fixed ρ > 0.

Algorithm 3.1 Recursive algorithm to solve (TCMVn (ρ)) for a fixed ρ > 0.

1: set Ū (s, b, 0) = W (s, b) and Q̄ (s, b, 0) = (W (s, b))2;

2: for n = 1, . . . , nmax do

3: if (s, b) ∈ B then

4: enforce the solvency constraint (2.12) via (3.32) to obtain Ū (s, b, τn) and Q̄ (s, b, τn);

5: else

6: solve (3.25)-(3.26) and (3.27)-(3.28) from τ+n−1 to τ−n to obtain Ψ (s, b, τ−n ) and Φ (s, b, τ−n );

7: for each η ∈ Z do

8: set B+ = η and S+ = s + b − η − c1 − c2 · |S+ − s| as per (2.6), subject to the leverage

constraint (2.13);

9: compute Ûnη (s, b) = Ψ (S+, B+, τ−n ) and Q̂nη (s, b) = Φ (S+, B+, τ−n );

10: end for

11: find η∗n ∈ arg max
η∈Z

{
Ûnη (s, b)− ρQ̂nη (s, b) + ρ

(
Ûnη (s, b)

)2}
;

12: set Ū (s, b, τn) = Ûnη∗n (s, b) and Q̄ (s, b, τn) = Q̂nη∗n (s, b);

13: end if

14: end for

15: return V (s, b, τnmax) = Ū (s, b, τnmax)− ρQ̄ (s, b, τnmax) + ρ(Ū (s, b, τnmax))2;

480

Remark 3.1. (Convergence of numerical solution). Since the viscosity solution theory (Crandall et al.481

(1992)) does not apply in this case, we have no proof that Algorithm 3.1 converges to an appropriately482

defined (weak) solution of the corresponding extended HJB quasi-integrovariational inequality in the483

limit as ∆τ → 0. However, we can show, as in Cong and Oosterlee (2016); Wang and Forsyth (2011),484

that our numerical solution converges to known analytical solutions available in special cases. Where485

no analytical solutions are available, the numerical PDE results are validated using Monte Carlo486

simulation.487
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4 Localization488

4.1 Semi-Lagrangian timestepping scheme489

Recall the definition of the operator L, defined in (3.4). We observe that the PIDEs (3.25) and490

(3.27) for Ψ (s, b, τ) and Φ (s, b, τ), respectively, that need to be solved in Step 6 in Algorithm 3.1.491

involves partial derivatives with respect to both s and b. Direct implementation would be therefore492

computationally expensive.493

With this in mind, we introduce the semi-Lagrangian timestepping scheme proposed in Dang and494

Forsyth (2014). The intuition behind the the semi-Lagrangian timestepping scheme is that, instead of495

obtaining the PIDEs by modelling the change (via Ito’s lemma) in a test function f (S (τ) , B (τ) , τ)496

with both S and B varying, we consider the Lagrangian derivative along the trajectory where B is497

held fixed over the length of the timestep. Specifically, we model the change in f (S (τ) , B (τ) , τ) with498

(S (τ) , B (τ) = b) for τ ∈
[
τ+n−1, τ

−
n

]
, with interest paid only at the end of the timestep, i.e. at time499

τn, at which time the amount in the risk-free asset would jump to b · exp {R (b) ∆τ}, reflecting the500

settlement (payment or receipt) of interest due for the time interval [τn−1, τn]. Along this trajectory,501

the partial derivative of the test function f (s, b, τ) with respect to the b-variable is zero, resulting in502

a decoupling of the PIDE for every value of the b-variable.503

We emphasize that the above argument is an intuitive explanation of the semi-Lagrangian scheme.504

In fact, we can prove rigorously that in the limit as ∆τ → 0, this treatment converges to the case505

where interest is paid continuously.7 Moreover, this approach is also valid for discrete rebalancing,506

regardless of whether the interest is paid continuously or discretely.507

Applying this reasoning to the two PIDEs (3.25) and (3.27), we have508

Ψb (s, b, τ) = Φb (s, b, τ) = 0, (s, b, τ) ∈ N ×
(
τ+n−1, τ

−
n

]
,509

and we can replace the operator L in the PDEs (3.25) and (3.27) by the operator P defined as510

Pf (s, b, t) = (µ− λκ) sfs + 1
2σ

2s2fss − λf. (4.1)511

Therefore, instead of solving a two-dimensional PDE in space variables (s, b) for both Ψ and Φ, we512

now solve, for each discrete value of b, two one-dimensional PIDEs (in a single space variable s):513

Ψτ (s, b, τ)− PΨ (s, b, τ)− J Ψ (s, b, τ) = 0, (s, b, τ) ∈ N ×
(
τ+n−1, τ

−
n

]
514

with initial condition Ψ
(
s, b, τ+n−1

)
= Ū (s, b, τn−1) , (4.2)515

and516

Φτ (s, b, τ)− PΦ (s, b, τ)− JΦ (s, b, τ) = 0, (s, b, τ) ∈ N ×
(
τ+n−1, τ

−
n

]
517

with initial condition Φ
(
s, b, τ+n−1

)
= Q̄ (s, b, τn−1) . (4.3)518

The second consequence of semi-Lagrangian timestepping is that the calculation of the value of519

S (τ−n ), used in computing Ûnη (s, b) and Q̂nη (s, b) as per (3.30) and (3.31), has to be adjusted to reflect520

the payment of interest at time τn:521

S
(
τ+n
)

=
(
s+ beR(b)∆τ

)
− η − c1 − c2 ·

∣∣S (τ+n )− s∣∣ . (4.4)522

7See Dang and Forsyth (2014) for the consistency proof in the context of the pre-commitment mean-variance problem.
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4.2 Localization523

Each set of PIDEs (4.2) - (4.3), together with the Dirichlet conditions (3.32), are to be solved in the524

domain (s, b, τ) ∈ Ω∞ ≡ [0,∞)× (−∞,+∞)× [τ+n−1, τ
−
n ]. For computational purposes, we localize this525

domain to the set of points526

(s, b, τ) ∈ Ω× [τ+n−1, τ
−
n ] = [0, smax)× [−bmax, bmax]× [τ+n−1, τ

−
n ],527

where smax and bmax are sufficiently large positive numbers. Let s∗ < smax. Following Dang and528

Forsyth (2014), we define the following sub-computational domains529

Ωs∗ = (s∗, smax]× [−bmax, bmax] , (4.5)530

Ωs0 = {0} × [−bmax, bmax] , (4.6)531

ΩB = {(s, b) ∈ Ω \ Ωs∗ \ Ωs0 : W (s, b) ≤ 0} , (4.7)532

Ωin = Ω \ Ωs∗ \ Ωs0 \ ΩB, (4.8)533

Ωbmax = (0, s∗]×
[
−bmaxe

rmaxT ,−bmax

)
∪
(
bmax, bmaxe

rmaxT
]
, (4.9)534

where rmax = max(rb, r`). Note that Ωs0 is simply the boundary where s = 0, while ΩB is the localized535

insolvency region and Ωin is the interior of the localized solvency region. The purpose of both Ωs∗ and536

Ωbmax is to act as buffer regions for the risky asset jumps and the risk-free asset interest payments,537

respectively, so that these events do not take us outside the computational grid (see Dang and Forsyth538

(2014) and d’Halluin et al. (2005)). Some guidelines for choosing s∗, smax which minimize the effect539

of the localization error for the jump terms can be found in d’Halluin et al. (2005).540

Following the steps in Dang and Forsyth (2014), we have the following localized problem for Ψ :541

Ψτ (s, b, τ)− PΨ (s, b, τ)− J`Ψ (s, b, τ) = 0, (s, b, τ) ∈ Ωin ×
[
τ+n−1, τ

−
n

]
,542

Ψτ (s, b, τ)− µΨ (s, b, τ) = 0, (s, b, τ) ∈ Ωs∗ ×
[
τ+n−1, τ

−
n

]
,543

Ψ (s, b, τ)− Ū (0, b, τn−1) = 0, (s, b, τ) ∈ Ωs0 ×
[
τ+n−1, τ

−
n

]
,544

Ψ (s, |b| > |bmax| , τ)− |b|
bmax

Ψ (s, sgn (b) bmax, τ) = 0, (s, b, τ) ∈ Ωbmax ×
[
τ+n−1, τ

−
n

]
,545

with Ψ (s, b, τ = τn−1)− Ū (s, b, τn−1) = 0, (s, b) ∈ Ω. (4.10)546

Here,547

J`f (s, b, τ) = λ

∫ smax/s

0
f (ξs, b, τ) p (ξ) dξ. (4.11)548

We briefly discuss each equation forming part of (4.10). The PIDE in Ωin is essentially (4.2), with549

the localized jump operator J` given in (4.11). The result in Ωs∗ is obtained as follows. Based550

on the initial condition (3.29), together with the definition of W (s, b), we have the approximation551

Ψ (s→∞, b, τ = 0) ' (1− c2) s, where c2 is the proportional transaction cost. For an arbitrary τ ∈552 [
τ+n−1, τ

−
n

]
, it is therefore reasonable to use the asymptotic form Ψ (s→∞, b, τ) ' A (τ) s. Pro-553

vided that s∗ in (4.5) is chosen sufficiently large so that this asymptotic form provides a reasonable554

approximation to Ψ in Ωs∗ , we substitute Ψ (s, b, τ) ' A (τ) s into the PIDE (4.2) to obtain the555

corresponding equation for Ωs∗ in (4.10) Similar reasoning applies to the region Ωbmax , except that556

the initial condition (3.29) now gives Ψ (s, b→ ±∞, τ = 0) ' b, which leads to the asymptotic form557

Ψ (s, |b| > |bmax| , τ) ' C (s, τ) b to be used in Ωbmax . Setting b = bmax and b = −bmax (which is inside558

Ω rather than Ωbmax), the computed solution in Ω can be used to obtain the approximation for Ψ in559

Ωbmax shown above. Finally, at s = 0, the PIDE (4.2) degenerates into the result shown for Ωs0 , while560

for τ = τn−1, we have the initial condition from (4.2) applicable to all (s, b) ∈ Ω. More details on this561

approach be found in Dang and Forsyth (2014).562
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Using similar arguments, the localized problem for Φ can be obtained can be obtained as follows:563

Φτ (s, b, τ)− PΦ (s, b, τ)− J`Φ (s, b, τ) = 0, (s, b, τ) ∈ Ωin ×
[
τ+n−1, τ

−
n

]
564

Φτ (s, b, τ)−
[
2µ+ σ2 + λκ2

]
Φ (s, b, τ) = 0, (s, b, τ) ∈ Ωs∗ ×

[
τ+n−1, τ

−
n

]
,565

Φ (s, b, τ)− Q̄ (0, b, τn−1) = 0, (s, b, τ) ∈ Ωs0 ×
[
τ+n−1, τ

−
n

]
,566

Φ (s, |b| > |bmax| , τ)−
(

b

bmax

)2

Φ (s, sgn (b) bmax, τ) = 0, (s, b, τ) ∈ Ωbmax ×
[
τ+n−1, τ

−
n

]
567

with Φ (s, b, τ = τn−1)− Q̄ (s, b, τn−1) = 0, (s, b) ∈ Ω. (4.12)568

We solve the localized problems (4.10)-(4.12) using finite differences as described in Dang and Forsyth569

(2014). Specifically, in addition to the time grid in (3.22), we also introduce nodes, not necessar-570

ily equally spaced, in the s-direction {si : i = 1, . . . , imax} and b-direction {bj : j = 1, . . . , jmax}, with571

∆smax = maxi(si+1 − si) = C3h and ∆bmax = maxj(bj+1 − bj) = C4h, where C3 and C4 are positive572

and independent of h. Using the nodes in the b-direction, we define Zh = {bj : j = 1, . . . , jmax}∩Z to573

be the discretization of the admissible impulse space. We use linear interpolation onto the computa-574

tional grid if the spatial point
(
si, bje

R(bj)∆τ
)
, arising from the implementation of the semi-Lagrangian575

timestepping scheme (see Section 4.1), does not correspond to any available grid point.576

Central differencing is used as much as possible for the discrete approximation to the operator P577

in (4.1), but we require that the scheme be a positive coefficient method (Wang and Forsyth, 2008).578

The operator J` in (4.11) is handled using the method described in d’Halluin et al. (2005), which579

avoids a dense matrix solve (due to the presence of the jump term) by using a fixed-point iteration to580

solve the discrete equations arising at each b-grid node and timestep.581

4.3 Construction of efficient frontier582

We assume that the given initial wealth, denoted by W (t = 0) = Winit, is invested in the risk-free583

asset, so that the time t = 0 portfolio is given by (S (0) , B (0)) = (0,Winit). For initial wealth Winit,584

and given the positive discretization parameter h, the goal is the tracing out of the efficient frontier585

using the scalarization parameter ρ:586

Yh =
⋃
ρ≥0

(√(
V art=0

C∗0
[W (T )]

)
h
,
(
Et=0
C∗0 [W (T )]

)
h

)
ρ

, (4.13)587

where (·)h refers to a discretization approximation to the expression in the brackets.588

This can be achieved as follows. For a fixed value ρ ≥ 0 in {ρmin, . . . , ρmax} ⊂ [0,∞), executing589

Algorithm 3.1 gives us the following quantities:590

U0(Winit) '
(
E

(s=0,b=Winit),t=0
C∗0

[W (T )]
)
h
, Q0(Winit) '

(
E

(s=0,b=Winit),t=0
C∗0

[
(W (T ))2

])
h
,591

Using these, we compute the corresponding single point on the efficient frontier Yh (4.13):592 (
V art=0

C∗0 [W (T )]
)
h

= Q0(Winit)− (U0(Winit))
2 ,

(
Et=0
C∗0 [W (T )]

)
h

= U0(Winit). (4.14)593

Remark 4.1. (Complexity) For each timestep, we have to perform i) a local optimization problem to594

search for the optimal impulse η∗n at each node, and ii) a time advance step for the two PIDEs (4.10)595

and (4.12). From the perspective of a complexity analysis, this is similar to the case encountered in596

Dang and Forsyth (2014), with the exception that there are two PIDEs to be solved for each value of b,597

instead of one. As a result, the complexity analysis of Dang and Forsyth (2014) holds for the algorithm598

described here as well. Recalling the positive discretization parameter h in (3.7), we conclude that599

the total complexity of constructing an efficient frontier is O
(
1/h5

)
.600
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4.4 Discrete rebalancing601

The formulation of the problem up to this point assumes continuous rebalancing of the portfolio602

- equivalently, in the discretized setting, the portfolio is rebalanced at every timestep. While the603

continuous rebalancing treatment is crucial for numerical tests showing convergence to the known604

closed form solutions (see Section 5.2 below), it is not realistic - and in the presence of transaction605

costs, it is also not practically feasible.606

For the construction of efficient frontiers (see Section 5), we therefore assume discrete rebalancing.607

That is, the portfolio is only rebalanced at a set of pre-determined intervention times 0 = t̃0 ≤ t̃1 <608

. . . < t̃mmax < T , where t0 is the inception of the investment. With the change of variable τ = T − t,609

the set of intervention times become610

0 = τ̃0 < τ̃1 < . . . < τ̃mmax = T, mmax <∞. (4.15)611

Algorithm 3.1 can easily be modified to handle discrete rebalancing. Specifically, in Step 6, the PIDEs612

(3.25)-(3.26) and (3.27)-(3.28) are solved from from τ̃+m−1 to τ̃−m, m = 1, . . . ,mmax, possibly using613

multiple timesteps for the solution of the corresponding PIDE, to obtain Ψ (s, b, τ̃−m) and Φ (s, b, τ̃−m).614

Other steps of the algorithm remain unchanged. In this case, the complexity of the algorithm for615

constructing the entire efficient frontier is O(1/h4| log h|).616

5 Numerical results617

5.1 Empirical data and calibration618

In order to obtain the required process parameters, the same data and calibration technique is used619

as in Dang and Forsyth (2016); Forsyth and Vetzal (2017). The empirical data sources are as follows:620

• Risky asset data: Daily total return data covering the period 1926:1 - 2014:12 - which includes621

dividends and other distributions - from the Center for Research in Security Prices (CRSP),622

in the form of the VWD index has been used.8 This is a capitalization-weighted index of all623

domestic stocks on major US exchanges, with data used dating back to 1926. For calibration624

purposes, the index is adjusted for inflation prior to the calculation of returns.625

• Risk-free rate: The risk-free rate is based on 3-month US T-bill rates for the period 1934:1-626

2014:12,9 augmented by National Bureau of Economic Research (NBER) short-term government627

bond yields for 1926:1 - 1933:12 10 to incorporate the effect of the 1929 crash. More specifically,628

a T-bill index is created, inflation-adjusted, then a sample average of the monthly returns is629

calculated, and annualized to obtain the constant risk-free rate estimate r.630

• Inflation: In order to adjust the time series for inflation, the annual average CPI-U index (infla-631

tion for urban consumers) from the US Bureau of Labor Statistics has been used.11632

In order to avoid problems, such as multiple local maxima, ill-posedness, associated with the use of633

maximum likelihood estimation to calibrate the jump models, the thresholding technique of Cont and634

8More specifically, results presented here were calculated based on data from Historical Indexes, c©2015 Center for

Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data

Services was used in preparing this article. This service and the data available thereon constitute valuable intellectual

property and trade secrets of WRDS and/or its third-party suppliers.
9See http://research.stlouisfed.org/fred2/series/TB3MS.

10See http://www.nber.org/databases/macrohistory/contents/chapter13.html.
11CPI data from the U.S. Bureau of Labor Statistics.In particular, we use the annual average of the all urban consumers

(CPI-U) index. See http://www.bls.gov/cpi.

17



Mancini (2011); Mancini (2009) has been used, as applied in Dang and Forsyth (2016); Forsyth and635

Vetzal (2017), for the calibration. Specifically, if ∆X̂i denotes the ith inflation-adjusted, detrended636

log return in the historical risky asset index time series, we identify a jump in period i if637 ∣∣∣∆X̂i

∣∣∣ > ασ̂
√

∆t, (5.1)638

where σ̂ is the estimate of the diffusive volatility, ∆t is the time period over which the log return has639

been calculated, and α is the “threshold parameter” for identifying a jump. Distinguishing between640

“up” and “down” jumps for the Kou model is achieved using upward and downward jump indicators -641

see Forsyth and Vetzal (2017) for further details, including the simultaneous estimation of the diffusive642

volatility. We will use α = 3 in what follows - in other words, we would only detect a jump in the643

historical time series if the (absolute, inflation-adjusted, and detrended) log return in that period644

exceeds 3 standard deviations of the “geometric Brownian motion change”, which is a very unlikely645

event. In the case of GBM, we use standard maximum likelihood techniques. The resulting calibrated646

parameters are provided in Table 5.1.

Table 5.1: Calibrated risky and risk-free asset process parameters (α = 3 used in (5.1) for the Merton

and Kou models).

Models

Parameters GBM Merton Kou

µ (drift) 0.0816 0.0817 0.0874

σ (diffusive volatility) 0.1863 0.1453 0.1452

λ (jump intensity) n/a 0.3483 0.3483

m̃ (log jump multiplier mean) n/a -0.0700 n/a

γ̃ (log jump multiplier stdev) n/a 0.1924 n/a

ν (probability of up-jump) n/a n/a 0.2903

ζ1 (exponential parameter up-jump) n/a n/a 4.7941

ζ2 (exponential parameter down-jump) n/a n/a 5.4349

r (Risk-free rate) 0.00623 0.00623 0.00623
647

5.2 Convergence analysis648

In this subsection, we demonstrate that the numerical PDE solution converges to known analytical so-649

lutions available in special cases where such solutions are available, and rely on Monte Carlo simulation650

to verify results in the cases where analytical solutions are not available.651

5.2.1 Analytical solutions652

Analytical solutions for the time-consistent problem are available if the risky asset follows GBM (see653

Basak and Chabakauri (2010)) or any of the commonly-encountered jump models, including the Mer-654

ton and Kou models (see Bjork and Murgoci (2010) and Zeng et al. (2013)), under the following655

assumptions: (i) continuous rebalancing of the portfolio, (ii) trading continues in the event of in-656

solvency, (iii) no investment constraints or transaction costs, and (iv) same lending and borrowing657

rate (= r). Under these assumptions, the efficient frontier solution is given by658

Et=0
C∗0 [W (T )] = W (0) erT +

1

2ρ

[
(µ− r)2

σ2 + λκ2

]
T,659

Stdevt=0
C∗0 [W (T )] =

1

2ρ

(
µ− r√
σ2 + λκ2

)√
T , (5.2)660
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where we set λ = 0 to obtain the special solution in the case where the risky asset follows GBM.661

Table 5.2 provides the timestep and grid information for testing convergence to the analytical662

solution (5.2). While equal timesteps are used, the grids in the s- and b-directions are not uniform.

Table 5.2: Grid and timestep refinement levels for convergence analysis to the analytical solution (5.2)

Refinement level Timesteps s-grid nodes b-grid nodes

0 30 70 147

1 60 139 293

2 120 277 585

3 240 553 1089

663

Table 5.3 illustrates the numerical convergence analysis for an initial wealth of W (0) = 100,664

maturity T = 10 years, and scalarization parameter ρ = 0.005. For illustrative purposes, we assume665

the risky asset follows the Merton model - qualitatively similar results are obtained if the Kou or GBM666

models are assumed. The “Error” column shows the difference between the analytical solution and667

the PDE solution, while the “Ratio” column shows the ratio of successive errors for each increase in668

the refinement level. We observe first-order convergence of the numerical PDE efficient frontier values669

to the analytical values obtained from (5.2) as the mesh is refined, which is expected.

Table 5.3: Convergence to analytical solution - Merton model

Refinement

level

Expected value

(Analytical solution: 274.5)

Standard deviation

(Analytical solution: 129.7)

PDE solution Error Ratio PDE solution Error Ratio

0 250.7 23.8 - 120.2 9.5 -

1 263.1 11.4 2.08 125.2 4.6 2.08

2 269.2 5.3 2.16 127.7 2.1 2.22

3 272.0 2.5 2.13 128.7 1.0 2.01

670

5.2.2 Monte Carlo validation671

Consider now the following case where analytical solutions are not available: we assume discrete672

periodic rebalancing of the portfolio at the end of each year, with liquidation in the event of insolvency,673

and a maximum allowable leverage ratio of qmax = 1.5. Additionally, we assume the risky asset follows674

the Kou model, with initial wealth of W (0) = 100, maturity T = 20 years, and scalarization parameter675

ρ = 0.0014. For the numerical PDE solution, using 7,280 equal timesteps, and 1,121 and 2,209 s-grid676

and b-grid nodes, respectively, we obtain the following approximations to the expectation and standard677

deviation:678 (
Et=0
C∗0 [W (T )] , Stdevt=0

C∗0 [W (T )]
)

= (544.58, 400.20) . (5.3)679

At each timestep of our numerical PDE procedure, we output and store the computed optimal strategy680

for each discrete state value. We then carry out Monte Carlo simulations for the portfolio (using the681

specified parameters) from t = 0 to t = T , rebalancing the portfolio in accordance with the stored682

PDE-computed optimal strategy at each discrete rebalancing time. If necessary, we use interpolation to683

determine the optimal strategy for a given state value. We then compare the Monte Carlo computed684

means and standard deviations of the terminal wealth with the corresponding values computed by685

the numerical PDE method, given in (5.3). The results are shown in Table 5.4. Note that, for the686
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MC method, due to the possibility of insolvency, it is not possible to take finite timesteps between687

rebalancing times without incurring timestepping errors.

Table 5.4: Convergence analysis to numerical PDE solution using Monte Carlo simulation - Kou model.

Nr of

simulations

Nr of

timesteps

/ year

Expectation

(PDE solution: 544.58)

Standard deviation

(PDE solution: 400.20)

Value Relative error Value Relative error

4,000 728 537.03 -1.39% 388.69 -2.88%

16,000 1,456 540.28 -0.79% 391.48 -2.18%

64,000 2,912 540.92 -0.67% 396.80 -0.85%

256,000 5,824 542.60 -0.36% 398.38 -0.46%

1,024,000 11,648 544.33 -0.05% 399.08 -0.28%

688

We observe that, as the number of Monte Carlo simulations and timesteps increase, the Monte689

Carlo computed means and standard deviations converge to the corresponding values computed by690

the numerical PDE method, given in (5.3).691

5.3 Time-consistent MV efficient frontiers692

In this subsection, we study time-consistent MV efficient frontiers. In particular, we consider the693

impact of investment constraints and other assumptions, including transaction costs, we construct five694

experiments as outlined in Table 5.5.

Table 5.5: Details of experiments

Experiment
Lending/

borrowing rates
If insolvent

Leverage

constraint

Transaction costs

r` rb Fixed (c1) Prop. (c2)

Experiment 1 0.00623 0.00623 Continue

trading

None 0 0

Experiment 2 0.00623 0.00623 Liquidate None 0 0

Experiment 3 0.00623 0.00623 Liquidate qmax = 1.5 0 0

Experiment 4 0.00400 0.06100 Liquidate qmax = 1.5 0 0

Experiment 5 0.00400 0.06100 Liquidate qmax = 1.5 0.001 0.005

695

We highlight the following:696

• The interest rates for Experiments 4 and 5 were obtained by assuming that the approximate697

relationship between current interest rates paid on margin accounts in relation to current 3-698

month US T-bill rates12, also holds in relation to the historically observed 3-month US T-bill699

rates used to obtain the constant rate of 0.00623 (see Table 5.1).700

12The interest paid/charged currently on margin accounts at major stockbrokers can be obtained with relative ease.

For these experiments, the information was obtained as follows. On 15 March 2017, Merrill Edge (an online brokerage

service of the Bank of America Merrill Lynch) charged roughly 5.75% on negative balances in margin accounts - the

exact rate can depend on a number of factors. At that time, the short-term deposit rates of 0.03% paid by Bank of

America was used as the interest rate paid on positive balances. These figures were then inflation-adjusted and scaled

with the difference between current and historical real returns on T-bills, so that we assume in effect that the observed

spread (difference between borrowing and lending rates) remained the same historically as they were in early 2017. This

resulted in the rates of 6.10% and 0.40% shown in Table 5.5.
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• The transaction costs in the case of Experiment 5 are perhaps somewhat extreme. As in the701

case of Dang and Forsyth (2014), the costs were chosen to emphasize the effect of transaction702

costs in particular when compared to an Experiment 4 (which has the same borrowing/lending703

rates as Experiment 5, but with zero transaction costs).704

All efficient frontier results in this section are based on an initial wealth of W (0) = 100 and a705

maturity T = 20 years, along with annual (discrete) rebalancing, and approximately daily interest706

payments (364 payments per year) on the amount in the risk-free asset.707

To construct a point on the efficient frontier via the PDE scheme, for illustrative purposes, we708

use very fine temporal and spatial timestep sizes, namely 7,280 equal timesteps, and 561 and 1,105709

s-grid and b-grid nodes, respectively. With these very fine stepsizes, the calculation of the mean and710

the standard deviation of a point on the efficient frontier, i.e. corresponds to one ρ value, takes about711

two hours to obtain.13 Since different points on the efficient frontier, can be computed in parallel,712

it takes about the same amount time to trace out an entire efficient frontier. However, for practical713

purposes, much coarser stepsizes can be used, and hence significantly less computation time can be714

achieved. For example, we can obtain a mean and standard deviation with a relative error of less than715

10% of the respective results reported below in only about 10 minutes, if we use half the number of716

partition points in both the s-grid and b-grid, and assume weekly, instead of daily, interest payments.717

The algorithm, therefore, allows for the computation of the solution within a very reasonable time.718

5.3.1 Model choice719

We consider the efficient frontiers obtained for the time-consistent MV problem using the numerical720

PDE scheme as outlined above, starting with the impact of model choice, namely GBM, Merton, or721

Kou dynamics, on the efficient frontiers. In Figure 5.1, we present the time-consistent MV efficient722

frontiers for Experiments 1 and 2, with the risky asset dynamics following GBM, Merton and Kou723

models. We observe that the Kou model results in a lower efficient frontier relative to the GBM and724

Merton models, whose efficient frontiers are basically indistinguishable.725
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Figure 5.1: Time-consistent MV efficient frontiers - Effect of model choice (GBM, Merton, Kou)

Since these results are obtained using discrete (annual) rebalancing of the portfolio, no analytical726

solution exists, even in the case of the Experiment 1 frontiers seen in Figure 5.1(a). However, if we727

assume continuous rebalancing of the portfolio and no constraints, we can use the analytical solution728

13The algorithm was coded in C++ and run on a server with 12 physical cores (+12 hyper-threaded cores), namely

2 x Intel E5-2667 6-core 2.90 GHz with 256GB RAM.
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in (5.2) to guide our intuition. Note that (5.2) can be re-arranged to give the expected value in terms729

of the standard deviation,730

Et=0
C∗0 [W (T )] = W (0) erT +

(
µ− r√
σ2 + λκ2

)√
T ·
(
Stdevt=0

C∗0 [W (T )]
)
. (5.4)731

Fixing a standard deviation value on the efficient frontier, we observe that the effect of model732

choice on the associated expected value on the efficient frontier is entirely due to the multiplier733

(µ− r) /
√
σ2 + λκ2 in (5.4). With calibrated process parameters as given in Table 5.1, we have734

combinations of parameters as given in Table 5.6. In particular, we conclude that the multiplier735

(µ− r) /
√
σ2 + λκ2 is lower for the Kou model, due to the higher variance of the log-double exponential736

distribution of the jump multipliers (resulting in a higher value of κ2 = E
[
(ξ − 1)2

]
= V ar (ξ) + κ2)737

compared to the that of the lognormal distribution in the case of the Merton model. We also note738

that, as observed from Table 5.6, both the GBM and Merton models have almost the same value of739

the multiplier (µ− r) /
√
σ2 + λκ2.

Table 5.6: Combinations of parameters (α = 3 used in (5.1) for the Merton and Kou models)

Combinations of parameters GBM Merton Kou

κ = E [(ξ − 1)] 0.0000 -0.0502 -0.0338

κ2 = E
[
(ξ − 1)2

]
0.0000 0.0365 0.0844

(µ− r) /
√
σ2 + λκ2 0.4046 0.4103 0.3612

740

Returning to the results shown in Figure 5.1 where no analytical solutions are available, we conclude741

the following. With the exception of parameters affecting the jump distribution, the other model742

parameters (drift, diffusive volatility, jump intensity) of the Kou and Merton models in Table 5.1 are743

very similar. Since the jump multipliers have a higher variance in the Kou model compared to the744

Merton model (both calibrated to the same data), then for a given level of expected terminal wealth,745

the Kou model results in a larger standard deviation of the terminal wealth. Consequently, the efficient746

frontier is lower for the Kou model than for the Merton model. Furthermore, similar multiplier values747

for the GBM and Merton models (observed above) imply that the relatively higher diffusive volatility748

of the GBM model has a similar effect as the incorporation of jumps using the Merton model over this749

long investment time horizon, resulting in similar efficient frontiers for the GBM and Merton models.750

5.3.2 Investment constraints751

The effect of investment constraints on the time-consistent MV efficient frontiers are shown in Figure752

5.2 for the Kou model only, since the results for other models are qualitatively similar.753

Figure 5.2(a) illustrates the significant impact of requiring liquidation in the event of insolvency754

(Experiment 1 vs. Experiment 2). Furthermore, it is observed that, once liquidation in the event755

of insolvency is a requirement, the impact of the leverage constraint is comparatively much smaller756

(Experiment 2 vs. Experiment 3).757

If we additionally incorporate more realistic interest rates, i.e. different lending and borrowing758

rates, (Experiment 4), then Figure 5.2(b) shows a substantial reduction in the expected terminal759

wealth that can be achieved, especially for high levels of risk. (Compare Experiments 3 and 4 on760

Figure 5.2(b).) The reason for this is that, in order to achieve a high standard deviation of terminal761

wealth, a comparatively large amount needs to be invested in the risky asset, which is achieved by762

borrowing to invest. If the cost of borrowing is substantially increased (Experiment 4 vs. Experiment763

3), the achievable expected terminal wealth reduces, reflecting the increased effective cost of executing764
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such a strategy. By comparison, the effect of additionally introducing transaction costs (Experiment765

5) is relatively negligible.766
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Figure 5.2: Time-consistent MV efficient frontiers - Kou model: Effect of investment constraints

5.4 Time-consistent MV vs. Pre-commitment MV strategies767

In this section, we compare the time-consistent and the pre-commitment strategies, not only in terms768

of the resulting efficient frontiers, but also in terms of the optimal investment policies over time. We769

focus on the Kou model, since the other models yield qualitatively similar results. Process parameters770

are as in Table 5.1, investment parameters are as outlined at the beginning of Subsection 5.3, and771

details of the experiments are as in Table 5.5. The pre-commitment MV problem is formulated using772

impulse controls and solved according to the techniques outlined in Dang and Forsyth (2014). In773

order to provide a fair comparison with the standard time-consistent formulation, we do not optimally774

withdraw cash for the pre-commitment MV case (Cui et al., 2012; Dang and Forsyth, 2016). Allowing775

optimal cash withdrawals will move the efficient upward for the pre-commitment MV strategy.776

5.4.1 Combined investment constraints777

Figure 5.3 compares the efficient frontiers associated with the pre-commitment and time-consistent778

problems in Experiments 1 and 3. As expected, the pre-commitment strategy is more MV efficient779

in the sense that the associated efficient frontier lies above that of the time-consistent strategy. This780

follows since the time-consistent problem carries the additional time-consistency constraint. However,781

under both the solvency and leverage constraints (Figure 5.3(b)), the difference between the two782

efficient frontiers is substantially reduced. A similar effect has also been observed in Wang and783

Forsyth (2011) for the case of continuous trading and no jumps in the risky asset process.784

In Figures 5.3a and 5.3b, points on the efficient frontiers corresponding to a standard deviation of785

terminal wealth equal to 400 have been highlighted. The resulting MV-optimal strategies correspond-786

ing to these points will be investigated in more detail below (see Subsection 5.4.3).787

5.4.2 Leverage constraint788

Next, we focus on the impact of the leverage constraint. Figure 5.4 illustrates the effect of dif-789

ferent maximum leverage constraint qmax assumptions on the efficient frontiers associated with the790

pre-commitment and time-consistent MV problems. (In these tests, the solvency constraint is also791

imposed.) Since leverage may not be allowed for pension fund investments, we also consider the effect792
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(b) Experiment 3 - Solvency and leverage constraints

Figure 5.3: Pre-commitment MV vs. Time-consistent MV efficient frontiers - Kou model

of setting qmax = 1 (so that the fraction of total wealth invested in the risky asset may not exceed793

one) in Experiment 3.794

It is observed that the effect on the efficient frontiers of not allowing leverage is quite dramatic.795

Interestingly, especially for high standard deviation of terminal wealth, the effect of setting qmax = 1796

on the pre-commitment efficient frontier (Figure 5.4(a)) is comparatively larger than the effect on the797

time-consistent efficient frontier (Figure 5.4(b)).798

The above observation is not entirely unexpected. As shown below (subsection 5.4.3), the pre-799

commitment MV optimal strategy generally favors much higher investment in the risky asset during800

the early years of the investment period, compared to the time-consistent MV optimal strategy. (See801

Figures 5.7 and 5.6 and the relevant discussion). Not allowing any leverage, therefore, has a larger802

relative impact on the pre-commitment MV efficient frontier.803
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Figure 5.4: Pre-commitment MV vs. Time-consistent MV - Kou model: Effect of maximum leverage

constraint qmax.

804

5.4.3 Comparison of optimal controls805
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To gain further insight into the optimal control strategy of the time-consistency and pre-commitment806

approaches, we perform additional Monte Carlo simulations, using the same steps outlined in Subsec-807

tion 5.2.2, to Experiments 1 and 3 previously reported in Figure 5.3 (a)-(b).808

Specifically, we first fix the standard deviation of the terminal wealth at a value of 400, as shown809

in Figure 5.3 (a)-(b). When solving the pre-commitment and time-consistent problems corresponding810

to these points on the efficient frontiers, at each timestep of our numerical PDE procedure, we output811

and store the computed optimal strategy for each discrete state value. We then carry out Monte Carlo812

simulations for the portfolio, using the specified parameters, from t = 0 to t = T , rebalancing the813

portfolio in accordance with the stored PDE-computed optimal strategy at each discrete rebalancing814

time. We compute, for each path and for each point in time, the fraction of wealth invested in the815

risky asset.816

The results of this study are summarized in Figure 5.5 and Figure 5.6, where we show the median817

(50th percentile), as well as the 25th and 75th percentiles, of the distribution of the MV-optimal818

fraction of wealth invested in the risky asset over time.819
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Figure 5.5: MV-optimal fraction of wealth in the risky asset: Kou model, Experiment 1, standard

deviation of terminal wealth equal to 400.

Figure 5.5 compares the fraction of wealth in the risky asset for Experiment 1 (no investment820

constraints). In the case of the pre-commitment strategy (Figure 5.5(a)), the investment in the821

risky asset is initially much higher than in the case of the time-consistent strategy (Figure 5.5(b)).822

This changes as time progresses, with the fraction of wealth invested in the risky asset decreasing823

substantially for the pre-commitment strategy. While a decrease can also be observed for the time-824

consistent strategy, it is much more gradual. Furthermore, at about t = 3 (years) in this case, the825

median fraction of wealth in the risky asset for the time-consistent strategy exceeds that of the pre-826

commitment strategy.827

The above observation can be explained by recalling from Vigna (2014) that the pre-commitment828

problem can also be viewed as a target-based optimization problem, where a quadratic loss function829

is minimized. This means that once the portfolio wealth is sufficiently large, so that the (implicitly)830

targeted terminal wealth becomes more achievable, the pre-committed investor will reduce the risk831

by reducing the investment in the risky asset. In contrast, the time-consistent investor has no invest-832

ment target, and instead, acts consistently with the mean-variance risk preferences throughout the833

investment time horizon (see for example Cong and Oosterlee (2016) for a relevant discussion).834

If we impose liquidation in the event of insolvency, as well as a maximum leverage ratio of qmax =835
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1.5, i.e. Experiment 3, Figure 5.6 shows that the resulting MV-optimal fraction of wealth invested836

in the risky asset changes substantially compared to Figure 5.5. In particular, we observe that the837

fraction invested in the risky asset for the pre-commitment strategy (Figure 5.6(a)) is more strongly838

affected by the maximum leverage constraint than the fraction for the time-consistent strategy (Figure839

5.6(b)). While this only considers only one point on the efficient frontier, where the standard deviation840

of terminal wealth is equal to 400, we have observed the higher sensitivity of the pre-commitment841

strategy to the maximum leverage constraint across the efficient frontier in Figure 5.4. This is due to842

the very large pre-commitment MV-optimal investment in the risky asset required during the early843

stages of the investment time period in order to achieve the implicit wealth target. On the other hand,844

it is interesting to observe that the pre-commitment strategy at the 25th percentile shows a very rapid845

de-risking compared to the time-consistent strategy.846
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Figure 5.6: MV-optimal fraction of wealth in the risky asset: Kou model, Experiment 3, standard

deviation of terminal wealth equal to 400.

To further investigate the differences between the pre-commitment and time-consistency optimal847

strategies, in Figure 5.7, we present the heatmaps of the MV-optimal control (as the fraction of848

wealth invested in the risky asset) as a function of time and wealth, which is used in the Monte Carlo849

simulation to generate the results in Figure 5.6.850

We observe that, in the case of the pre-commitment optimal control (Figure 5.7(a)), for initial851

wealth of W (0) = 100 the optimal control requires a very large investment (very close to the maximum852

leverage of 1.5) in the risky asset. If returns are favourable - and therefore if wealth becomes sufficiently853

large over time - the optimal control specifies a reduction in the investment in the risky asset, possibly854

even to zero. If returns are unfavourable - so that wealth remains relatively small over time - the855

optimal strategy requires a very large fraction of wealth (again very close, if not equal to, the maximum856

leverage allowed) to remain invested in the risky asset. This is consistent with the interpretation of857

the pre-commitment strategy as a target-based strategy. If it becomes likely that the target will be858

achieved (past returns have been favourable), risk exposure is reduced; in contrast, if returns have859

been unfavourable in the past, risk is increased in order to make the achievement of the target more860

likely.861

In contrast, in the case of the time-consistent optimal control (Figure 5.7(b)), there are a number of862

qualitative similarities to the pre-commitment optimal control (Figure 5.7(a)), but also key differences.863

Both of the strategies are contrarian, in the sense that all else being equal, investment in the risky864

asset is increased if its returns in the past have been unfavourable. However, compared to the pre-865
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(a) Pre-commitment strategy (b) Time-consistent strategy

Figure 5.7: Optimal control as a fraction of wealth in risky asset: Kou model, Experiment 3, standard

deviation of terminal wealth equal to 400.

commitment optimal control, the time-consistent optimal control requires generally higher investment866

in the risky asset if past returns have been favourable (resulting higher wealth), and lower investment867

in the risky asset if past returns have been unfavourable (resulting in lower wealth). Even if the risky868

asset performs extremely well, the time-consistent strategy never calls for zero exposure to the risky869

asset. Figure 5.7 also shows why the pre-commitment strategy would be more heavily impacted if the870

maximum leverage ratio is reduced; the time-consistent strategy calls for generally lower leverage, and871

would therefore be less sensitive to the maximum leverage constraint.872

5.5 Effect of a wealth-dependent scalarization parameter873

Under the assumptions listed in Subsection 5.2.1 (in particular, under no investment constraints and874

where trading continues in the event of bankruptcy), the time-consistent MV-optimal control leading875

to the analytical efficient frontier solution in equation (5.2) does not depend on the investor’s wealth876

at any point in time - see Basak and Chabakauri (2010) and Zeng et al. (2013). In other words,877

an investor following the resulting investment strategy is required to invest a particular amount in878

the risky asset at each point in time, entirely independent of their available wealth, which is not an879

economically reasonable conclusion. We emphasize that this is only true for the time-consistent MV880

optimal control in the absence of any investment constraints.881

To remedy this situation, Bjork et al. (2014) proposes the use of a state-dependent scalarization (or882

risk aversion) parameter. Applied in our setting, we obtain a time-consistent MV problem otherwise883

identical to equations (2.17) - (2.18), with the difference being that the risk aversion parameter at each884

point in time is explicitly modelled by a deterministic function of the wealth W (t), i.e. ρ = ρ(W (t)).885

That is (2.17) now becomes886

sup
Ct∈A

(
Ex,tCt [W (T )]− ρ (W (t))V arx,tCt [W (T )]

)
(5.5)887

In Bjork et al. (2014), it is argued that a natural choice for the function ρ (W (t)) is of the form888

ρ (W (t)) = θ
W (t) , θ > 0 (5.6)889

where for each θ, we obtain a point on the resulting efficient frontier. The use of a wealth-dependent890

scalarization parameter has been popular in time-consistent MV literature within the non-constraint891
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setting, especially in insurance-related applications (see for example Zeng and Li (2011), Wei et al.892

(2013), Li and Li (2013), as well as Liang and Song (2015)).893

Using the choice (5.6) in a continuous setting with no jumps and no constraints, it is shown in Bjork894

et al. (2014) that it is not MV-optimal to short stock, since the optimal strategy in this case is linear895

in wealth. However, it is discussed in Bensoussan et al. (2014) that, in the discrete-time counterpart,896

the shorting of stock might be MV-optimal. As such, the resulting optimal wealth process may take897

on negative values, potentially giving rise to a negative risk-aversion parameter. This would in turn898

cause the MV objective (5.5) to become unbounded and the optimal control to exhibit economically899

irrational decision making. For these reasons, following Bensoussan et al. (2014), we also impose a no900

short-selling constraint on the risky asset in this section.901

While some modifications to (5.6) are also considered in literature (for example, allowing θ to be902

time-dependent), we explore the effect of using the definition (5.6) in our setting, specifically because903

this simple case reveals how a seemingly reasonable definition of a wealth-dependent scalarization904

parameter, when used in combination with investment constraints and liquidation in the event of905

bankruptcy, can result in conclusions that are not economically reasonable.906

Given Algorithm 3.1, implementing a wealth-dependent scalarization parameter such as (5.6) is907

straightforward, since we simply replace ρ in the algorithm with ρ (W (s, b)) = θ/W (s, b), where908

W (s, b) is given by equation (2.8), without any further changes required. Varying θ > 0 in this case909

traces out the efficient frontier.910

We consider Experiment 3 in Table 5.5 (in other words we impose both liquidation in bankruptcy911

and a leverage constraint), since - as pointed out in Wang and Forsyth (2011) - allowing for negative912

wealth in equation (5.6) would lead to inappropriate risk aversion coefficients. In Figure 5.8, the913

efficient frontier obtained with a constant scalarization parameter ρ is compared with the efficient914

frontier obtained with wealth-dependent scalarization parameter of the form (5.6). We observe a915

similar result as in Wang and Forsyth (2011), where the case of continuous controls and no jumps was916

investigated: the resulting time-consistent MV efficient frontier with a wealth-dependent scalarization917

parameter is significantly lower than that obtained using a constant scalarization parameter. In918

other words, given an acceptable level of risk as measured by variance, a strategy based on the wealth-919

dependent scalarization parameter given by (5.6) would result in much lower expected terminal wealth,920

and is therefore less efficient from a MV-optimization perspective.
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Figure 5.8: Time-consistent MV efficient frontiers - Experiment 3 (solvency and leverage constraints):

Effect of using a constant scalarization parameter vs. using a wealth-dependent scalarization parameter

of the form ρ(w) = θ/w.
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We now further compare the optimal trading strategies for the Kou model in both scenarios,921

namely a constant scalarization parameter and a wealth-dependent scalarization parameter of the922

form (5.6). In this case, we pick two points on the efficient frontiers corresponding to a standard923

deviation of terminal wealth equal to 400, as highlighted in Figure 5.8(b). In Figure 5.9, we now924

compare the resulting MV-optimal strategies corresponding to these points. Specifically, proceeding925

as in Subsection 5.4.3, using Monte Carlo simulations and rebalancing the portfolio in accordance926

with the stored PDE-computed optimal strategy at each discrete rebalancing time, we consider the927

resulting MV-optimal fraction of wealth invested in the risky asset over time.
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Figure 5.9: Effect of using a using a wealth-dependent scalarization parameter of the form ρ(w) = θ/w

on the median time-consistent MV-optimal fraction of wealth in the risky asset and on the resulting

optimal controls. Kou model - Experiment 3 (solvency and leverage constraints), standard deviation

of terminal wealth equal to 400.

928

Figure 5.9 (a) compares the median of the time-consistent MV-optimal fraction of wealth in the929

risky asset in both scenarios.14 Figure 5.9 (b) illustrates the heatmap of the time-consistent MV-930

optimal control (as the fraction of wealth invested in the risky asset) as a function of time and wealth931

in the case of a wealth-dependent scalarization parameter of the form (5.6). The heatmap for the932

time-consistent MV-optimal control in the case of a constant scalarization parameter (also for the933

Kou model, Experiment 3, and a standard deviation of terminal wealth equal to 400) is provided in934

Figure 5.7(b).935

We make the following interesting observations. While the increase in exposure to the risky asset936

over time has been observed in the case of the wealth-dependent risk aversion parameter in the setting937

of no jumps, constraints or bankruptcy (see, for example, Bjork et al. (2014)), in the case of realistic938

investment constraints this is even more dramatic. Such observed dramatic impact can be explained939

as follows. The form of the wealth-dependent risk aversion in (5.6) implies that the risk aversion is940

inversely related to wealth. As such, it is possible (and indeed observed in Figure 5.9 (a)) that the941

investment in the risky asset can be zero until wealth has grown sufficiently to make an investment942

in the risky asset MV-optimal. The level of risk aversion then steadily decreases, ensuring that the943

maximum exposure to the risky asset (only limited by the leverage constraint in this case) is reached944

as the investment maturity is approached.945

14For the constant scalarization scenario, this corresponds to the median line in Figure 5.6(b).
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We note the surprisingly undesirable discontinuity in the optimal control closer to maturity (e.g.946

tn ≥ 15 (years)) in Figure 5.9 (b). Specifically, the investment in the risky asset transitions very947

quickly from zero to the maximum investment possible, despite the continuity of risk aversion in948

wealth implied by (5.6). This contrasts with the case of a constant scalarization parameter ρ (w) = ρ,949

where a similar discontinuity is not observed (see Figure 5.7 (b)). In the appendix, we explain this950

undesirable behavior of the optimal control by showing that, as the intervention time tn → T , there is951

a very fast transition in the fraction of wealth invested in the risky asset from zero, when w = 0, to a952

nonzero value when w > 0. In addition, it is also shown in the appendix that, with the set of realistic953

parameters used in this experiment, this fast transition is very dramatic, namely a jump from zero to954

qmax = 1.5, as observed in Figure 5.9 (b). Finally, we note that for w = 0, there should always be955

a“yellow strip”, i.e. zero investment in the risky asset, for all tn, which, as noted above, should become956

infinitesimal as tn → T . Since any numerical scheme can only approximate this infinitesimal strip (as957

tn → T ) by some finite size (as in Figure 5.9 (b)), it is expected the approximated strip shrinks as the958

mesh is refined. Although not reported herein, we note that this shrinkage was indeed observed.959

While the economic merits of such a strategy depends on the particular application, it is unlikely960

to be economically reasonable in institution-related applications of MV optimization (such as in the961

case of pension funds or insurance). Specifically, relatively low investments in the risky asset during962

early years (due to high risk aversion resulting from relatively lower wealth levels) might result in963

lower terminal wealth - indeed, the expectation of terminal wealth is substantially lower with wealth-964

dependent scalarization parameter of the form (5.6) - which in turn might make it harder to fund965

liabilities, while the increase in risky asset exposure over time does not actually reduce the variance966

of terminal wealth (compared to the case of a constant ρ).967

Therefore, in contrast to, for example Li and Li (2013), we conclude that a wealth-dependent scalar-968

ization parameter defined by (5.6) does not appear well-suited for obtaining realistic time-consistent969

MV optimal strategies in the presence of investment constraints, since the resulting terminal wealth970

is less MV-efficient (as compared with the results obtained using a constant scalarization parameter),971

while the steady increase in risk exposure over time might be undesirable in many applications of972

time-consistent MV optimization.973

6 Conclusions974

In this paper, we develop a fully numerical PDE approach to solve the investment-only time-consistent975

MV portfolio optimization problem when the underlying risky asset follows a jump-diffusion process.976

The algorithm developed allows for the application of multiple simultaneous realistic investment con-977

straints, including discrete rebalancing of the portfolio, the requirement of liquidation in the event978

of insolvency, leverage constraints, different interest rates for borrowing and lending, and transaction979

costs. The semi-Lagrangian timestepping scheme of Dang and Forsyth (2014) is extended to the sys-980

tem of equations for the time-consistent problem, resulting in a set of only one-dimensional PIDEs to981

be solved at each timestep. While no formal proof of convergence is given, numerical tests, including982

a numerical convergence analysis where analytical solutions are available, as well as the validation983

of results using Monte Carlo simulation, indicate that the algorithm provides reliable and accurate984

results.985

The economic implications of investment constraints on the efficient frontiers and on the resulting986

optimal controls have been explored in detail. The numerical results illustrate that these realistic987

considerations can have a substantial impact on the efficient frontiers and associated optimal controls,988

resulting in economically plausible conclusions. In addition, the results from the time-consistent989

problem are compared to those of the pre-commitment problem, leading to the conclusion that the990

time-consistent problem is less sensitive to the maximum leverage constraint than the pre-commitment991
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problem. In addition, we explored the consequences of implementing a popular form of a wealth-992

dependent risk aversion parameter (where risk aversion is inversely related to wealth), and find that993

the resulting optimal investment strategy has both undesirable terminal wealth outcomes and an994

undesirable evolution of risk characteristics over time. Not only does this finding pose questions about995

the use of such wealth-dependent risk aversion parameters in existing time-consistent MV literature,996

but it also highlights the importance of incorporating realistic constraints in investment models.997

As a result of the popularity of the application of time-consistent MV optimization to investment-998

reinsurance problems (see for example Alia et al. (2016); Li et al. (2015c); Liang and Song (2015)),999

we leave the extension of the algorithm from the investment-only case to the investment-reinsurance1000

problem for our future work.1001

A Appendix1002

In this appendix we investigate the behavior of the control as the intervention time tn → T , for both

the choices ρ (w) = ρ (a constant) and ρ (w) = θ/w with w ≥ 0. For the purposes of this discussion,

we fix a small ∆tn > 0, let tn = T −∆tn. We set transaction costs equal to zero, and both lending

and borrowing rates equal to the risk-free rate r. At time t−n , the system is assumed to be in state

x = (s, b), implying that W (t−n ) = s+ b = w; at rebalancing time t, the investor chooses an admissible

impulse ηn that solves

sup
ηn∈Z

(
Ex,tnη [W (T )]− ρ (w) · V arx,tnηn [W (T )]

)
. (A.1)

Also recall from (2.6) that, applying the impulse ηn at time tn gives B (tn) = ηn and S (tn) = w− ηn.1003

We briefly consider admissible values of ηn. Note that w = 0 corresponds to insolvency at time t−n1004

(see definition (2.10)), in which case any existing investments in the risky asset has to be liquidated,1005

resulting in zero wealth being invested in the risky asset at time tn, so that the optimal control is1006

η∗n ≡ w, or equivalently, the fraction of wealth invested in the risky asset is zero.1007

For the rest of this appendix, we therefore restrict our attention to the case of w > 0. In this1008

setting, the leverage constraint with qmax = 1.5 and the short-selling prohibition constraint on the1009

risky asset give rise to the following range for the admissible impulse ηn1010 {
S (tn) /w = (w − ηn) /w ≤ qmax = 1.5

S (tn) = w − ηn ≥ 0

}
⇒ −1

2
w ≤ ηn ≤ w, with w > 0. (A.2)1011

For a chosen admissible impulse ηn at time tn, i.e. B (tn) = ηn and S (tn) = w−ηn, the portfolio is1012

not rebalanced again during the time interval [tn, T ]. We approximate W (T ) by W (t) + ∆W , where1013

the increment ∆W is given by1014

∆W := [(µ− λκ)S (tn) + rB (tn)] ∆tn + σS (t)
√

∆tnẐ + S (tn)

π[tn,T ]∑
i=1

(ξi − 1) (A.3)1015

with Ẑ ∼ Normal(0, 1), and π [tn, T ] denoting the number of jumps in the interval [tn, T ]. Substituting1016

B (tn) = ηn and S (tn) = w − ηn into (A.3) gives the following approximations1017

Ex,tnηn [W (T )] ' Ex,tnηn [w + ∆W ] = (1 + µ∆tn)w − (µ− r) ηn∆tn,

V arx,tnηn [W (T )] ' V arx,tnηn [w + ∆W ] = (ηn − w)2
(
σ2 + λκ2

)
∆tn.

(A.4)1018

Case 1: ρ (w) = ρ1019

For ρ (w) = ρ > 0 constant in (A.1), we see from (A.4) that the variance term −ρV arx,tnηn [W (T )] is1020

quadratic in w, while the expected value term Ex,tnηn [W (T )] is linear in w. Therefore, as w ↓ 0, the1021
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Ex,tnηn [W (T )] term dominates, so that the objective (A.1) can be approximated as sup
ηn∈Z

(
Ex,tnηn [W (T )]

)
,1022

leading an investor to invest all wealth in the risky asset for very low levels of w > 0. Conversely,1023

as w → ∞, the variance term −ρV arx,tnηn [W (T )] dominates, so that the investor’s objective (A.1)1024

effectively becomes sup
ηn∈Z

(
−ρ · V arx,tnηn [W (T )]

)
, resulting in all wealth being invested in the risk-free1025

asset for very large w > 0. This is illustrated in the heatmap of optimal controls in the case of1026

a constant scalarization parameter (see Figure 5.7 (b)) - observe the decreasing fraction of wealth1027

invested in the risky asset as wealth increases.1028

Case 2: ρ (w) = θ/w, θ > 01029

In this case the variance term in (A.4) becomes1030

− θ
w
· V arx,tnηn [W (T )] ' − θ

w
· (ηn − w)2

(
σ2 + λκ2

)
∆tn, (A.5)1031

which is no longer quadratic in w. The intuition and argument explaining the results for a constant1032

ρ therefore cannot be applied to this case in a straightforward way. Instead, using (A.4), we obtain1033

d

dηn

[
Ex,tnηn [W (T )]− θ

w
· V arx,tnηn [W (T )]

]
1034

' − (µ− r) ∆tn + 2θ
(
σ2 + λκ2

)
∆tn − 2

(
θ

w

)(
σ2 + λκ2

)
∆tn · ηn (A.6)1035

≤
[
− (µ− r) + 3θ

(
σ2 + λκ2

)]
∆tn, for − 1

2
w ≤ ηn ≤ w, w > 0, (A.7)1036

where the upper bound (A.7) on the derivative follows from the bound on ηn in (A.2). Re-arranging1037

(A.7), we see that if θ < θcrit, where1038

θcrit :=
(µ− r)

3 (σ2 + λκ2)
, (A.8)1039

then the upper bound (A.7) is strictly negative for admissible impulse ηn which satisfies (A.2). Hence,1040

the objective function is strictly decreasing in admissible impulse ηn as tn → T . As such, the optimal1041

impulse is always η∗n = −1
2w. That is, it is always optimal to invest the minimum amount η∗n in the1042

risk-free asset, or equivalently, to invest the maximum amount qmaxw in the risky asset. In summary,1043

for ρ (w) = θ/w and θ < θcrit,1044

θ < θcrit =⇒ w − η∗n
w

= qmax, for w > 0, as tn → T. (A.9)1045

For w = 0, the fraction of wealth invested in the risky asset is zero, as discussed previously.1046

Now consider the particular case of the parameters used to obtain the MV-optimal control for the1047

case of ρ (w) = θ/w, illustrated in Figure 5.9 (b). The figure is based on the θ-value of θ = 0.0821048

(chosen because the required standard deviation of terminal wealth is achieved), and assumes the Kou1049

model for the risky asset dynamics, so we use the relevant parameters in Table 5.1 and Table 5.6 to1050

calculate θcrit = 0.5359. Therefore, since θ < θcrit in this particular case, the discontinuity in the ratio1051

(A.9) explains the very fast transition of the fraction of wealth invested in the risky asset from zero,1052

when w = 0, to qmax, when w > 0, as tn → T , observed in Figure 5.9 (b).1053

The role of θ in (A.6) and the subsequent conclusion (A.9) should be highlighted. If θ ≥ θcrit, the1054

result (A.9) may not necessarily hold, since larger θ in ρ (w) = θ/w has the effect of increasing the1055

overall level of risk aversion associated with any value of w > 0. As tn → T , we still expect to see a1056

very fast transition from zero investment in the risky asset for w = 0 to some nonzero investment in1057

32



the risky asset for w > 0, but we do not expect the fraction of wealth invested in the the risky asset1058

to be necessarily equal to the maximum possible (qmax). This is illustrated in Figure A.1 below.1059

(a) θ = 0.1222 (θ < θcrit, but not as small as θ in Figure

5.9 (b))

(b) θ = 1.004 (θ ≥ θcrit)

Figure A.1: Effect of using a using different θ values in the definition of a wealth-dependent scalar-

ization parameter of the form ρ(w) = θ/w. The results are based on the same parameters used in

Section 5.5 - Kou model, Experiment 3 (solvency and leverage constraints) - and can be compared

with Figure 5.9 (b).
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