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Abstract5

A data driven Neural Network (NN) optimization framework is proposed to determine optimal as-6
set allocation during the accumulation phase of a defined contribution pension scheme. In contrast to7
parametric model based solutions computed by a partial differential equation approach, the proposed8
computational framework can scale to high dimensional multi-asset problems. More importantly, the9
proposed approach can determine the optimal NN control directly from market returns, without assum-10
ing a particular parametric model for the return process. We validate the proposed NN learning solution11
by comparing the NN control to the optimal control determined by solution of the Hamilton-Jacobi-12
Bellman (HJB) equation. The HJB equation solution is based on a double exponential jump model13
calibrated to the historical market data. The NN control achieves nearly optimal performance. An al-14
ternative data driven approach (without the need of a parametric model) is based on using the historic15
bootstrap resampling data sets. Robustness is checked by training with a blocksize different from the16
test data. In both two and three asset cases, we compare performance of the NN controls directly learned17
from the market return sample paths and demonstrate that they always significantly outperform constant18
proportion strategies.19
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1 Introduction22

Throughout the Western world, it is clear that there is a major paradigm shift away from defined benefit23

(DB) pension plans to defined contribution (DC) plans. Both the public and private sectors are no longer24

willing to take on the risk of DB plans.25

In a typical employee sponsored DC plan, employee and employer contribute to a (usually) tax advan-26

taged account. Often, the employee is presented with a list of possible investment funds, and then required to27

select an asset allocation from this list. If one considers that the DC fund will be managed by the employee28

for 30+ years of employment, it is clear that asset allocation will be of crucial importance in order to have a29

reasonable level of salary replacement during the retirement (decumulation) phase.30

In this article, we formulate the multi-period asset allocation strategy during the accumulation phase of31

a DC pension fund as an optimal stochastic control problem. We use the target based objective function32

advocated in (Menoncin and Vigna, 2017).33
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It is well known (Zhou and Li, 2000; Li and Ng, 2000) that target based objective functions are equiv-34

alent to pre-commitment mean variance criteria. Previous work on pre-commitment mean variance asset35

allocation in the DC pension plan context has been based on (i) postulating a parametric stochastic process36

for the portfolio components, and (ii) solution of the optimal control problem via a Hamilton Jacobi Bellman37

(HJB) Partial Differential Equation (PDE) (Vigna, 2014; He and Liang, 2013; Yao et al., 2013; Guan and38

Liang, 2015).39

We should also mention that there is a strand of literature which focuses on time-consistent mean-40

variance formulations (see Wu et al. (2015) for example). However, target based objective functions (since41

they can be solved using dynamic programming) are clearly time consistent for a fixed target value. Hence,42

since we are focusing on target based objective functions, the fact that the equivalent mean-variance problem43

is time inconsistent is not particularly relevant.44

We should also point out that previous work on determining optimal controls for DC plan asset allocation45

has been mostly restricted to developing closed form solutions of the HJB equation (Vigna, 2014; He and46

Liang, 2013; Yao et al., 2013; Guan and Liang, 2015; Wu et al., 2015). However, this often requires making47

unrealistic assumptions, e.g. continuous rebalancing, infinite leverage, trading continues even if insolvent.48

In fact, one might question previous economic conclusions based on closed-form solutions. For example49

in (Lioui, 2013), the authors favour time-consistent mean variance strategies compared to pre-commitment50

policies, since the latter uses large leverage ratios. This problem can, of course, be eliminated by imposing51

realistic leverage ratio constraints.52

In order to allow for practical considerations for DC pension plan asset allocation, such as no-shorting53

and no-leverage, and discrete rebalancing, numerical methods for solution of the associated HJB PDE have54

been developed in (Dang and Forsyth, 2014; Forsyth and Labahn, 2018).55

In contrast to these previous approaches, we propose to use a data-driven method in this work. In other56

words, we operate directly on the observed historical data, and by-pass the error prone step of calibrating a57

parametric model to historical data.58

In this paper, we propose a data driven machine learning approach for multi-period optimal asset al-59

location strategy during the accumulation phase of a DC pension fund. We remark that machine learning60

approaches have recently been suggested for a variety of insurance related problems (Gan and Lin, 2015;61

Gan, 2013; Hejazi and Jackson, 2016). In (Gan and Lin, 2015; Gan, 2013), clustering and a functional62

data approach have been considered for efficient valuation of portfolios of variable annuities. In (Hejazi63

and Jackson, 2016), Neural Network approaches are also used for fast computation of portfolios of vari-64

able annuities. In our proposed method, we represent the control function of the multi-period allocations65

as a Neural Network (NN) based on a feedback function of feature variables. Our formulation can handle66

constraints (i.e. discrete rebalancing, no-shorting, no-leverage) in a straightforward manner. Note that the67

numerical approaches for solving the HJB PDE in (Dang and Forsyth, 2014; Forsyth and Labahn, 2018) can68

also handle these types of constraints, but numerical PDE methods are restricted to a small (≤ 3) number of69

factors. Our NN formulation, in principle, can be applied to problems having a larger number of factors.70

We validate our approach by considering a synthetic market where the assets follow a known parametric71

stochastic process. In this case, we can compute the provably optimal asset allocation strategy by solving72

a Hamilton Jacobi Bellman (HJB) equation. Our data driven solution takes as input only samples from the73

parametric process. Remarkably, our data driven parsimonious NN approach produces results very close to74

the HJB solution.75

We then test the data driven NN solution of the control problem on bootstrap resampling of the historical76

data, and compare with constant weight strategies. The data driven NN controls are superior in all cases to77

the constant weight strategies.78

2



2 Technical Objectives79

The objective of this paper is to propose a computational framework, which produces the optimal control80

for asset allocation in a long term DC pension plan portfolio. The advantages of our approach are (i) based81

solely on sampling price paths (no parametric model required), (ii) allows realistic constraints on the asset82

allocation policy (e.g. no leverage, no shorting, discrete rebalancing) and (iii) can potentially be extended to83

high dimensional cases (many assets, taxation effects, transaction costs).84

More precisely, we make the following contributions:85

• We take a machine learning approach and determine the control ~p(·, t), where ~p(·, t)k represents the86

fraction of the total investor wealth invested in the kth asset at time t. The control is in feedback form,87

i.e., a function of current state and time. The proposed control model is a Neural Network (NN) with88

an input layer, a hidden layer, and an output layer. The control model is learned by solving a global89

optimization model defined by a set of sample paths.90

• Using simulated samples from a parametric model estimated from monthly market data, we validate91

the proposed approach by comparing the performance of the optimal NN control with that of the92

optimal control determined from the solution of the HJB equation, in two examples with different93

asset pairs. The HJB solution represents ground truth in this situation.94

We demonstrate that, using an NN of a single hidden layer with only 3 hidden nodes, the training95

performance of the NN control is on par with that from the HJB equation. In addition, the test results96

from bootstrap resampling data sets demonstrate that the NN optimal controls significantly outperform97

a typical constant proportion strategy, yielding a higher median wealth, and a significantly smaller98

risk, as measured by probability of shortfall and standard deviation, but achieving approximately the99

same expected wealth.100

• Using bootstrap resampling market data sets with varying expected blocksizes, in the two-asset case,101

we learn the NN optimal controls directly from the market return samples. Performance is tested in102

out-of-sample mode using returns simulated with the parametric model. The NN control similarly has103

a higher median wealth, with a lower risk, compared to a constant proportion strategy.104

• We also consider 3-asset examples and learn the optimal NN strategy directly from a bootstrap resam-105

pling market return data set. Performance is tested in out-of-sample mode using resampling return106

data sets with blocksizes different from the training set blocksize. We observe similar superior train-107

ing and testing performance from the NN control, compared to a constant proportion strategy. The108

NN control produces a higher median terminal wealth with lower risk.109

3 Embedded Formulation for Dynamically Optimal Long Term Investment110

Consider an investment problem in M risky and riskless assets whose prices ~St follow a Markov process.111

Let the initial time t0 = 0 and consider a set T of rebalancing times112

T ≡ {t0 = 0< t1 < .. . < tN = T}. (1)

The fraction of total wealth allocated to each asset is adjusted at times tn, n = 0, . . . ,N −1, with the investment113

horizon tN = T .114

Assume that, at time t, a fund holds wealth of amount Wm(t) in asset m, m = 1, . . . ,M. The total value of115

the portfolio at t is then116

W (t) =
M∑

m=1

Wm(t) . (2)
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Let t+
n = tn + ε, t−

n = tn − ε, ε→ 0+. Assume that W (t−
0 ) = 0, i.e., the initial value of the portfolio is zero,117

and let {q(tn)} represent an a priori specified cash injection schedule.118

Given an allocation control sequence ~ρ0, . . . , ~ρN−1, the dependence of the terminal wealth W (T ) on the119

control is as follows,120

for n = 0,1, . . . ,N − 1
W (t+

n ) = W (t−
n ) + q(tn)

W (t−
n+1) = ~ρT

n
~R(tn)W (t+

n )

=
(
~ρT

n
~R(tn)

)
(W (t−

n ) + q(tn)),

end

(3)

where ~R(tn) is the vector of returns on assets in (t+
n , t

−
n+1).121

Using the target based objective function advocated in (Menoncin and Vigna, 2017), a standard for-122

mulation for the multi-period allocation problem is the following constrained quadratic optimization, with123

controls ~ρ0(·), . . . ,~ρN−1(·), where ~ρn(·) depends only on the wealth W (tn),124

min
{~ρ0(·),...,~ρN−1(·)}

E
[

(W (T ) −W ∗)2
]

subject to 0≤ ~ρn(·)≤ 1, n = 0,1, . . . ,N − 1 ,

1T ~ρn(·) = 1 ,n = 0,1, . . . ,N − 1 , (4)

where W ∗ is a given target parameter.125

The following Proposition, proven in Zhou and Li (2000), establishes an additional appealing property126

of the quadratic target formulation (4).127

Proposition 1 (Dynamic mean variance efficiency). Problem (4) is multi-period mean variance optimal, in128

the pre-commitment sense.129

Instead of the quadratic objective in Problem (4), in this paper, we consider130

min
{~ρ0(·),...,~ρN−1(·)}

g(W (T ))≡ E
[

(min(W (T ) −W ∗,0))2
]

subject to 0≤ ~ρn(·)≤ 1, n = 0,1, . . . ,N − 1 ,

1T ~ρn(·) = 1 ,n = 0,1, . . . ,N − 1 . (5)

Remark 1 (Relation of Problem (4) and Problem (5)). In Dang and Forsyth (2016), it is shown that a131

solution of Problem (5) is a solution of Problem (4) when the set of admissible controls is enlarged to132

include withdrawing cash. Since the control set for Problem (5) is larger than the control set for Problem133

(4), then the optimal value of the objective function in Problem (5) can never be larger than the optimal134

objective function of Problem (4).135

Here we give an intuitive interpretation of the objective function in Problem (5). In the context of an136

investor saving for retirement, we can imagine that W ∗ is a target value of (real) wealth at the retirement137

date t = T . This objective function penalizes the expected quadratic shortfall with respect to the target W ∗.138

Note that we do not penalize final wealth which exceeds W ∗. In other words, we measure risk only in terms139

of undershooting the target wealth W ∗. This is similar in spirit to the use of an upside wealth constraint140

suggested in (Donnelly et al., 2015). For a discussion concerning target based strategies for DC pension141

plans, we refer the reader to (Vigna, 2014; Menoncin and Vigna, 2017).142
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Remark 2 (Time consistency). There is considerable confusion in the literature about pre-commitment143

mean-variance strategies. These strategies are commonly criticized for being time inconsistent (Basak and144

Chabakauri, 2010; Bjork et al., 2014). However, the pre-commitment optimal policy can be found by solving145

problem (5), which can be determined by dynamic programming, and hence is time consistent when viewed146

as minimizing expected quadratic shortfall with respect to a fixed target W ∗. Consequently, when deter-147

mining the time consistent optimal strategy for problem (5), we obtain, as a by-product, the optimal mean148

variance pre-commitment solution. Further insight has been provided in (Vigna, 2017) and (Vigna, 2014;149

Menoncin and Vigna, 2017). As noted in (Cong and Oosterlee, 2016), the pre-commitment strategy can be150

seen as a strategy consistent with a fixed investment target, but not with a risk aversion attitude. Conversely,151

a time-consistent strategy has a consistent risk aversion attitude, but is not consistent with respect to an152

investment target. We contend that consistency with a target is more natural for DC pension investment153

strategies.154

We note that Problem (5) does not uniquely specify the optimal controls. Suppose that one of the assets155

is a risk free bond with interest rate r. Let156

Q(t`) =
j=N−1∑
j=`+1

e−r(t j−t`)q(t j) (6)

be the discounted future contributions as of time t`. If157

(W (t−
n + q(tn))>W ∗e−r(T −tn)

− Q(tn), (7)

then an optimal strategy is to (i) invest
(
W ∗e−r(T −tn) −Q(tn)

)
in the risk-free asset; and (ii) invest the remainder158 (

W ∗e−r(T −ti) − Q(ti)
)

in any long positions in the stock and bond. This strategy remains optimal since, when159

equation (7) holds at time t−
i , then E[(min(W (T ) −W ∗,0))2] = 0 (Dang and Forsyth, 2016). As is common160

in the literature, we refer to the amount W (t−
n ) + q(tn) −

(
W ∗e−r(T −tn) − Q(tn)

)
as free or surplus cash (Bauerle161

and Grether, 2015). In the following sections, we describe a tie-breaking strategy which ensures that, if a162

risk-free asset is available, we invest the surplus in the risk-free asset.163

4 A Data Driven Approach Solving a Single Optimization Problem164

Problem (5) is an N stage stochastic optimization problem, which suffers from the curse of dimensionality.165

When the number of assets M ≤ 3, the optimal control can be determined by solving a Hamilton-Jacobi-166

Bellman (HJB) equation (Dang and Forsyth, 2014; Forsyth and Labahn, 2018). Unfortunately, for a larger167

M, a sample based approximation is necessary and some approximate dynamic programming algorithm168

needs to be used.169

Assume that the price ~S(tn) follows a Markov process and the objective function g(W (T )) is regarded as170

a cost/reward function for the control policy. The asset allocation problem (5) can be solved approximately171

by reinforcement learning (RL)/backward dynamic programming (DP) methods, for which samples from172

the Markov process are specified (Bertsekas and Tsitsiklis, 1996). This gives rise to a finite horizon and173

continuous space optimization problem, which can be solved with an approximate DP/RL approach, via174

either forward or backward iterations, using a policy iteration or value iteration method. Bellman’s principle175

is the crucial foundation for both types of methods since it converts the optimal selection of a sequence176

of decisions to a sequence of selections of decisions. In particular, value iteration algorithms search for177

optimal value functions, which are then used to compute optimal policies. Policy iteration methods, on the178

other hand, iteratively improve controls and the value function of the current control is determined and used179

to compute new policies.180
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Instead of following the typical approach to solve (5) sequentially using Bellman’s equation, we propose181

to solve this multi-stage optimization problem directly from sample paths by seeking a global function182

~p(F(tn)) ∈ <M of the state F(tn), for n = 0,1 . . . ,N − 1, where F(tn) is a feature vector, representing the183

information needed to determine the control at tn, including minimally the current wealth at time tn and184

time to go T − tn. The objective is to minimize a performance measure g(W (T )) based on the terminal185

wealth at T . In other words, instead of selecting N control functions in (5), which are multiple functions186

of current wealths, e.g., in (4) and (5), we seek a single function ~p(·) of the feature vector F(tn), with time187

explicitly included as a feature variable of time-to-go T − tn. By using a global model ~p(·) to represent188

controls at different time tn through a time-to-go feature variable, we leverage continuity of the control with189

respect to time, which enhances learning efficiency. In addition, solving a global control model in a single190

optimization, instead of using the Bellman’s equation, avoids error propagation, which is unavoidable in the191

iterative time stepping process. Indeed our computational results, based on both synthetic and real data, will192

validate the proposed approach.193

Let ~p(F(t)) be the vector of controls at time t, which depends on the feature vector F(t). At each194

rebalancing time tn, the control function ~p(F(tn)) ∈ <M yields fractions of the total wealth to be allocated to195

M assets. In other words, we let ~ρn(W (tn)) = ~p(F(tn)) and the amount invested in asset m is196

Wm(t+
n ) = ~p(F(tn))mW (t+

n ) , (8)

so that the the vector of asset wealths at t+
n , is197

~p(F(tn))W (t+
n ) = ~p(F(tn))(W (t−

n ) + q(tn)) . (9)

Hence the wealth amount vector, after rebalancing at tn, is ~p(F(tn))W (t+
n ).198

Given a control sequence ~p(F(t0)), . . . , ~p(F(tN−1)), the dependence of the terminal wealth W (T ) on the199

control ~p(F(t0)), . . . , ~p(F(tN−1)) now becomes,200

for n = 0,1, . . . ,N − 1
W (t+

n ) = W (t−
n ) + q(tn)

W (t−
n+1) = ~p(F(tn))T ~R(tn)W (t+

n )

=
(
~p(F(tn))T ~R(tn)

)
(W (t−

n ) + q(tn))

end

(10)

where ~R(tn) is the (stochastic) vector return on assets in (t+
n , t

−
n+1). The final wealth W (T ) = W (t−

N). For201

t ∈ (t+
n , t

−
n+1), W (t) follows a stochastic process determined by ~St and hence the feature vector F(t) is also202

stochastic.203

Corresponding to (5), we have the following optimal investment problem seeking a global control func-204

tion,205

min
~p(·)

g(W (T ))

subject to 0≤ ~p(F(tn))≤ 1, n = 0,1, . . . ,N − 1, (11)

1T ~p(F(tn)) = 1 ,

where the bound constraints specify no shorting and no leverage respectively, which would be common in206

practice.207

Solving the multi-dimensional stochastic dynamic programming problem (11) remains computationally208

challenging when the number of asset M is large, particularly when we are interested in solving a long209
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horizon investment problem, e.g., N = 30 years. Note that the feature vector F(t) takes on continuous210

values, and that the control ~p(F(t)) depends on the feature F(t). Hence, in order to use stochastic dynamic211

programming, we need to sample from the continuous state space F(t). Of course, practical problems also212

necessitate honouring the constraints in Problem (11). In the learning context, F(t) could be any features,213

representing relevant information available at t, which are used to train the model.214

When solving the multi-asset problem (11) with M> 3, a sample based approach is likely the only viable215

computationally feasible approach. The idea is then to learn the optimal control function ~p(·) based on the216

available sample paths, which come from either simulations of a parametric model or more interestingly,217

return samples observed directly from the market. In the latter case, we are then learning the optimal control218

directly from the market, bypassing an intermediate parametric modeling step, which has been the common219

practice in financial modeling.220

Specifically, assume that a set of L return sample paths {~R( j)(tn),n = 1, · · · ,N, j = 1, · · · ,L} are given. Let221

~p( j)(F(tn)) denote the allocation at time tn along the jth path. This yields the sample optimization problem222

below, arising from equation (11) based on samples,223

min
{~p(F ( j)(t0)),~p(F ( j)(t1)),...,~p(F ( j)(tN−1))}

1
2

ḡ(W (1)(T ), . . . ,W (L)(T )) (12)

subject to 0≤ ~p(F ( j)(tn))≤ 1, n = 0,1, . . . ,N − 1, j = 1, . . . ,L,

1T ~p(F ( j)(tn)) = 1, n = 0,1, . . . ,N − 1, j = 1, . . . ,L ,

where W ( j)(T ) depends on the control as shown in (10). Here the objective function ḡ(·) is the objective
function in (5) augmented with a small regularization,

ḡ(W (1)(T ), . . . ,W (L)(T )) =
1
L

L∑
j=1

(
min(W ( j)(T ) −W ∗,0))

)2
+
λ

L

L∑
j=1

W ( j)(T )

with λ > 0 a small constant, e.g., λ = 10−6. The regularization is introduced to resolve the ambiguity of the224

objective function by forcing investment of surplus cash into the risk-free asset.225

Unfortunately, the stochastic optimization problem (12) solves for the controls at the rebalancing time226

along each path. It has O(MNL) variables, along with O(MNL) equality and inequality constraints, which227

becomes computationally challenging to solve in practice since L is typically very large. Furthermore, the228

solution only provides the control values ~p(F ( j)(t0)), . . . ,~p(F ( j)(tN−1)) along each path. It does not immedi-229

ately supply controls at different paths.230

Given a finite set of sample paths, approximations are necessary to computationally solve this multi-231

stage optimization problems. Finding a good approximation model for the control, suitable for effective232

learning, is the key for computing a solution efficiently and accurately. In the RL or DP approaches, a233

recursive procedure is followed based on dynamic programming principle to simplify the computation of234

the optimal control. We propose to directly solve a global scenario optimization Problem (12) by deploying235

a novel approximation model ~p(F(t)), using a neural network to represent controls at any time t, 0≤ t ≤ T ,236

and any feature state F(t).237

In the proposed approximate model structure, the control is a function of the feature vector which has238

time to go T −t as a variate. Specifically, let F(tn)∈<d denote values of feature variables at tn. In the simplest239

case, the feature vector variables can be the wealth at tn and time to go, i.e., F(tn) = {W (tn),T − tn}. More240

generally, the feature variables can include additional market information, e.g., market implied volatility241

or historical realized volatilities. Additionally features can include individual investor’s information, e.g.,242

taxes, which personalizes the allocation solution. We note that neural networks have been used to represent243

policies and/or value functions in RL/DP, see, e.g., (Vinyals et al., 2017).244
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FIGURE 1: A 2-layer NN representing control functions

Specifically, we represent the control ~p(F(t)), for any t, as the output of an NN and feature F(t) as245

inputs. At the rebalance time tn, the state variable F(tn) includes minimally the current wealth W (tn) and246

time-to-target-horizon T − tn. Thus, in the training, the single NN model outputs the control ~p(F(tn)) at tn,247

n = 0, · · · ,N −1, for any feature state F(tn). In particular, we consider a parsimonious two layer NN, depicted248

in Figure 1, to represent the control function. We remark that shallow learning is also found to outperform249

deep learning for asset pricing in (Gu et al., 2018). We also note that good results are obtained in (Hejazi250

and Jackson, 2016) with an NN containing only one hidden layer (shallow learning). Suppose that input251

features F(t) ∈ <d and there are a total of M assets. Assume that there are l nodes in the hidden layer of252

NN. This NN is represented by the weights for the input layer and the weights for the output layer.253

Assume that h ∈ <l is the output of the hidden layer. Let the matrix z ∈ <dl be the weights from the
inputs F(tn) ∈ <d to the hidden nodes h ∈ <l . Using the sigmoid activation function,

σ(u) =
1

1 + eu

we have254

h j(F(tn)) = σ(Fi(tn) zi j), (13)

where here (and in the following) we use the summation convention, i.e. summation over repeated indices255

is implied. For example256

Fi zi j ≡
i=d∑
i=1

Fizi j , j = 1, . . . , l,

where Fi is the ith component of the feature vector F .257

At the output layer, we use the logistic sigmoid. Let the matrix x ∈ <lM be the weights for the output258

layer. For the mth asset, 1≤ m≤M, the holding is given by the mth component of the output ~p, i.e.,259

~pm(F(tn)) =
ex`mh`(F(tn))∑

i ex`ih`(F(tn)) , 1≤ m≤M. (14)

Using this representation, the controls automatically satisfy

0≤ ~p(F(tn))≤ 1, ~p(F(tn))T 1 = 1 .

If there are more stringent upper bounds on the assets, they can be similarly incorporated into the represen-260

tation through appropriate scalings.261
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Let F ( j)(tn) be the state variables at t = tn along sample path j, j ∈ {1, . . . ,L}. The approximation to the262

optimal learning problem (12) becomes263

min
z∈<dl ,x∈<lM

1
2

ḡ(W (1)(T ), . . . ,W (L)(T ))

subject to ~pm(F ( j)(tn)) =
ex`mh`(F ( j)(tn))∑

i ex`ih`(F ( j)(tn))
, m = 1, . . . ,M, j = 1, . . . ,L, n = 0, . . . ,N − 1 (15)

h`(F ( j)(tn)) = σ(F ( j)
i (tn) zi`), ` = 1, . . . ,l, j = 1, . . . ,L, n = 0, . . . ,N − 1,

where we remind the reader that again we use the summation convention. We note that, in the proposed ap-264

proximation model, the constraints in (15) are explicitly satisfied, further simplifying (5) to an unconstrained265

problem (15).266

In contrast to the large and constrained problem (12), with a dimension of O(MNL) and O(MNL) con-267

straints, we note that (15) is an unconstrained optimization problem with l(d +M) variables, the entries of the268

weight matrices z and x. Consequently the dimension of the unconstrained learning optimization problem269

no longer depends on the number of scenarios L or the number of time steps N. Rather it depends only on270

the NN model structure.271

Let W̄ (T ) be the column scenario wealth vector below

W̄ (T ) = [W (1)(T ), . . . ,W (L)(T )]′ .

Using unconstrained smooth optimization methods to solve (15) requires evaluation of the objective272

function and its derivative with respect to z and x. Following (10), each objective function evaluation costs273

O(l(d + M)NL), or O(L) assuming a fixed NN model structure and fixed rebalancing schedule.274

For the gradient evaluation, we note that

∇x,zḡ =
(
∇W̄ ḡ

)(
∇x,zW̄ (T )

)
where here the gradient∇x,z is with respect to the weight x and z.275

Following (10), we have the iterative computation below for the Jacobian matrices∇x,zW̄ (T ),276

∇x,zW̄ (t−
n+1) = ∇x,z

(∑
m

Rm(tn)~pm(F(tn)) ¯(W (t−
n ) + q(tn))

)

=

(∑
m

~Rm(tn)∇x,z~pm(F(tn))

)
(W̄ (t−

n ) + q(tn)) +

(∑
m

~Rm(tn)~pm(F(tn))

)
∇x,zW (t−

n )

and

∇x,zW̄ (t−
0 ) =

(∑
m

Rm(t0)∇x,z~pm(F(t0))

)
(W̄ (t−

0 ) + q(t0))

Further simplifying notations by dropping dependence on the feature F(tn), the gradient of the control ~p277

is given below, for 1≤ q≤ l, 1≤ m≤M,278

∇xqm ~pm =

no sum︷ ︸︸ ︷
(1 − ~pm)~pmhq

∇xq j ~pm = −~pm
ex` jh`∑
k ex`kh`

hq = −~pm~p jhq, j 6= m .

Using the definition of the sigmoid function, we also have that, for 1≤ j ≤ l, 1≤ q≤ d,279
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∇zq j ~pm =
ex`mh`∑
k ex`kh`

(
x jm −

∑M
k=1 ex`kh`x jk∑M

k=1 ex`kh`

) no sum︷ ︸︸ ︷
∇zq j h j

= −~pm

(
x jm −

∑M
k=1 ex`kh`x jk∑

k ex`kh`

)
eF̀ z` j

(1 + eF̀ z` j )2 Fq .

The gradient evaluation costs O(l(d +M)NL), and the Hessian computation costs O(l2(d +M)2LN), using280

a finite difference of the gradient. Given the function/gradient/Hessian, solving the trust region subproblem281

requires O((l(d + M))3). Since the dimension of the optimization problem l(d + M) is small for the problem282

considered in this paper, e.g., l(d + M) = 15 for three assets, function/gradient/Hessian evaluations become283

the dominant cost and the usage of a trust region subproblem is a reasonable computational choice.284

5 Ground truth: a low dimensional parametric return model285

Given a parametric model of the underlying stochastic process, for a small number of random factors, we286

can solve (15) by computing the solution of the associated Hamilton Jacobi Bellman (HJB) equation (Dang287

and Forsyth, 2014).288

We first validate the proposed data driven NN approach (15) for determining the optimal controls for289

Problem (5) by comparing the solution to that from solving the HJB equation under a parametric model,290

assuming a portfolio with two assets. Let S(t) and B(t) respectively denote the amounts invested in the risky291

and risk-free assets at time t, t ∈ [0,T ]. In practice, we will suppose that S(t) represents the amount invested292

in a broad stock market index, while B(t) is the amount invested in short term default-free government bonds.293

In general, the amounts S(t) and B(t) will depend on the investor’s strategy over time, including contri-294

butions, withdrawals, and portfolio rebalances, as well as changes in the unit prices of the assets. Suppose295

for the moment that the investor does not take any action with respect to the controllable factors. We refer296

to this as the absence of control. This situation applies in between the rebalancing times. In this case, we297

assume that S(t) follows a jump diffusion process. Recall that t− = t − ε,ε→ 0+, i.e. t− is the instant of time298

before t, and let ξ be a random number representing a jump multiplier. When a jump occurs, S(t) = ξS(t−).299

Allowing discontinuous jumps lets us explore the effects of severe market crashes on the risky asset holding.300

We assume that ξ follows a double exponential distribution (Kou, 2002; Kou and Wang, 2004). If a jump301

occurs, pup is the probability of an upward jump, while 1 − pup is the chance of a downward jump. The302

density function for y = logξ is303

f (y) = pupη1e−η1y1y≥0 + (1 − pup)η2eη2y1y<0. (16)

For future reference, note that304

E[y = logξ] =
pup

η1
−

(1 − pup)
η2

, E[ξ] =
pupη1

η1 − 1
+

(1 − pup)η2

η2 + 1
. (17)

In the absence of control, S(t) evolves according to305

dS(t)
S(t−)

= (µ−λE[ξ − 1]) dt +σdZ + d

(
πt∑
i=1

(ξi − 1)

)
, (18)

where µ is the (uncompensated) drift rate, σ is the volatility, dZ is the increment of a Wiener process, πt306

is a Poisson process with positive intensity parameter λ, and ξi are i.i.d. positive random variables having307

distribution (16). Moreover, ξi, πt , and Z are assumed to all be mutually independent.308
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µ σ λ pup η1 η2

Real CRSP Cap-Weighted Index

.08889 .14771 .32222 0.27586 4.4273 5.2613

Real CRSP Equal-Weighted Index

.11833 .16633 .40000 .33334 3.6912 4.5409

TABLE 1: Estimated annualized parameters for double exponential jump diffusion model. Cap-weighted and
equal-weighted CRSP indexes, deflated by the CPI. Sample period 1926:1 to 2015:12.

In the absence of control, we assume that the dynamics of the amount Bt invested in the risk-free asset309

are310

dB(t) = rB(t) dt, (19)

where r is the (constant) risk-free rate. This is obviously a simplification of the real bond market. We remind311

the reader that, ultimately, our NN method is entirely data driven, and will be based on bootstrapped stock312

and bond indexes.313

With this parametric model of stock prices, we can determine the optimal solution to Problem (5) using314

dynamic programming. This in turn results in a nonlinear Hamilton-Jacobi-Bellman PDE. We use the meth-315

ods described in (Dang and Forsyth, 2014; Forsyth and Labahn, 2018) to determine the provably optimal316

solution (to within a tolerance). At each rebalancing date tn, at each value of W (t−
n ), we check to see if317

equation (7) holds, which indicates that surplus cash is available. In this case we withdraw the surplus cash318

from the portfolio, and invest the remainder in the risk-free asset. We also invest the surplus cash in the319

risk-free asset. This is an optimal strategy, as described in Dang and Forsyth (2016).320

6 Data321

Our data is from the Center for Research in Security Prices (CRSP) on a monthly basis over the 1926:1-322

2015:12 period.1 Our base case tests use the CRSP 3-month Treasury bill (T-bill) index for the risk-free asset323

and the CRSP cap-weighted total return index for the risky asset. This latter index includes all distributions324

for all domestic stocks trading on major U.S. exchanges. As an alternative case for additional illustrations,325

we replace the above two indexes by a 10-year Treasury index and the CRSP equal-weighted total return326

index.2 All of these various indexes are in nominal terms, so we adjust them for inflation by using the327

U.S. CPI index, also supplied by CRSP. We use real indexes since investors saving for retirement should be328

focused on real (not nominal) wealth goals.329

In the case of the parametric model, i.e., processes (18) and (19), we use the methods in Dang and330

Forsyth (2016) to calibrate the process parameters. We use a threshold technique (Cont and Mancini, 2011)331

to identify jump frequency and distribution, and the methods in (Dang and Forsyth, 2016) to determine332

the remaining parameters. Annualized estimated parameters for both the cap-weighted and equal-weighted333

indexes are provided in Table 1.334

1More specifically, results presented here were calculated based on data from Historical Indexes, c©2015 Center for Research
in Security Prices (CRSP), The University of Chicago Booth School of Business. Wharton Research Data Services was used in
preparing this article. This service and the data available thereon constitute valuable intellectual property and trade secrets of
WRDS and/or its third-party suppliers.

2The 10-year Treasury index was constructed from monthly returns from CRSP back to 1941. The data for 1926-1941 were
interpolated from annual returns in Homer and Sylla (2005).
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Real 3-month T-bill Index Real 10-year Treasury Index

Mean return .00827 .02160

Volatility .019 .065

TABLE 2: Mean annualized real rates of return for bond indexes (log[B(T )/B(0)]/T ). Volatilities (annualized)
computed using log returns. We show the volatilities for information only, the parametric model uses a constant
average real interest rate. Sample period 1926:1 to 2015:12.

Table 2 shows the average real interest rates for the 3-month T-bill and 10-year U.S. Treasury indexes335

over the entire sample period from 1926 to 2015.336

7 Bootstrap resampling337

In order to use the proposed data driven NN approach, we will sample directly from the historical data.338

A single bootstrap resampled path is constructed as follows. Suppose the investment horizon is T years.339

We divide this total time into k blocks of size b years, so that T = kb. We then select k blocks at random340

(with replacement) from the historical data (from both the deflated stock and bond indexes). Each block341

starts at a random month. We then form a single path by concatenating these blocks. Since we sample342

with replacement, the blocks can overlap. To avoid end effects, the historical data is wrapped around, as343

in the circular block bootstrap (Politis and White, 2004; Patton et al., 2009). We repeat this procedure for344

many paths. The sampling is done in blocks in order to account for possible serial dependence effects in the345

historical time series. The choice of blocksize is crucial and can have a large impact on the results (Cogneau346

and Zakalmouline, 2013). We simultaneously sample the real stock and bond returns from the historical347

data. This introduces random real interest rates in our samples, in contrast to the constant interest rates348

assumed in the synthetic market tests and in the determination of the optimal controls.349

To reduce the impact of a fixed blocksize and to mitigate the edge effects at each block end, we use the350

stationary block bootstrap (Politis and White, 2004; Patton et al., 2009). The blocksize is randomly sampled351

from a geometric distribution with an expected blocksize b̂. The optimal choice for b̂ is determined using352

the algorithm described in Patton et al. (2009). This approach has also been used in other tests of portfolio353

allocation problems recently (e.g. Dichtl et al., 2016). Calculated optimal values for b̂ for the various indexes354

are given in Table 3.355

When we use our resampling method in the proposed data driven NN approach, we will simultaneously356

sample the same block from all data sets (i.e. equity indices and bond indices). Clearly, Table 3 shows that357

the optimal blocksize varies amongst the time series in question. It is, therefore, not clear which is the best358

choice of blocksize for use in our simultaneous resampling method. As a result, we will carry out tests with359

a variety of blocksizes, in the ranges suggested by Table 3.360

8 Numerical Results: Parametric Model361

In this section, we give results based on the parametric model described in Section 5. Optimal controls will362

be computed using both the HJB equation method and the data driven NN technique (15). All examples will363

assume the scenario given in Table 4.364
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Data series Optimal expected
block size b̂ (months)

Real 3-month T-bill index 50.1
Real 10-year Treasury index 4.7
Real CRSP cap-weighted index 1.8
Real CRSP equal-weighted index 10.4

TABLE 3: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric distribution Pr(b = k) =
(1 − v)k−1v. The algorithm in Patton et al. (2009) is used to determine b̂.

Base Case Alternative Case

Investment horizon (years) 30 30
Equity market index Cap-weighted Equal-weighted
Risk-free asset index 3-month T-bill 10-year Treasury
Initial investment W0 ($) 0.0 0.0
Real investment each year ($) 10.0 10.0
Rebalancing interval (years) 1 1

TABLE 4: Input data for examples. Cash is invested at t = 0,1, . . . ,29 years. Market parameters are provided
in Tables 1 and 2

.

8.1 Optimal control: HJB equation365

The optimal control is computed by solving an HJB equation as described in Dang and Forsyth (2014);366

Forsyth and Labahn (2018).367

8.1.1 HJB equation, base case: CRSP value weighted index and 3-month T-bill368

As a first example, we consider the base case input data summarized in Table 4. An investor with a horizon of369

30 years makes real contributions each year of $10, allocated between the CRSP cap-weighted and 3-month370

T-bill indexes and rebalanced annually.371

We first use a constant proportion strategy, where we rebalance to a fixed weight in stocks at each372

rebalancing date (p = 0.5), and determine the expected value of the terminal real wealth for this strategy. We373

then use this expected value as a constraint and determine the optimal strategy which solves problem (5). In374

other words, the value of W ∗ in the objective function of (5) is determined by setting E(WT ) to be the same375

as for the constant weight strategy. We compute and store the optimal strategy (from the HJB solution).376

We evaluate the performance of the various strategies using Monte Carlo simulation, where we simulate377

the market using the SDEs in equations (18-19). We use the constant weight strategy and the optimal378

strategy determined from the HJB solution. Table 5 compares the results for these strategies. Due to the379

highly skewed distribution function for the final wealth WT , the most relevant statistics are the median and380

the probability of shortfall. Both of these statistics are highly favourable for the optimal strategy.381

8.1.2 HJB equation: alternative case, CRSP equal-weighted index and 10-year Treasury index382

To provide a second example for the parametric model, we use alternative assets. In particular, as indicated383

in Table 4, we replace the CRSP cap-weighted index with its equal-weighted counterpart, and we substitute384
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Probability of Shortfall

Strategy E[WT ] Median[WT ] std[WT ] WT < 500 WT < 600

Constant proportion (p = 0.5) 705 630 350 .28 .45
Optimal 705 775 153 .12 .17

TABLE 5: Parametric model results from 160,000 Monte Carlo simulation runs for base case input data given
in Table 4 and corresponding parameters from Tables 1 (threshold) and 2. The expected surplus cash flow for
the optimal adaptive strategy is 16.7, assumed to be invested in the risk-free asset.

Probability of Shortfall

Strategy E[WT ] Median[WT ] std[WT ] WT < 700 WT < 900

Constant proportion (p = 0.5) 1082 875 852 .33 .52
Optimal 1082 1238 338 .17 .23

TABLE 6: Parametric model results from 160,000 Monte Carlo simulation runs for alternative case input data
given in Table 4 and corresponding parameters from Tables 1 (threshold) and 2. The expected surplus cash
flow for the optimal adaptive strategy is 51, assumed to be invested in the risk-free asset.

the 10-year Treasury bond index for the 3-month Treasury bill index. See Tables 1 and 2 for relevant corre-385

sponding parameter estimates. We retain the same assumptions regarding investment horizon, rebalancing386

frequency, and real cash contributions as for the base case Table 4.387

Table 6 presents the results for the constant proportion, and optimal adaptive strategies. The results are388

very similar in qualitative terms to those seen earlier for the base case in Table 4, though investing in these389

two assets leads to a terminal wealth distribution with a higher mean and standard deviation relative to using390

the cap-weighted index and 3-month T-bills. Note that the median of WT is higher than the mean for the391

optimal strategy, and the probabilities of shortfall are much reduced compared with the constant proportion392

strategy.393

8.2 Optimal NN controls394

We compute the approximate optimal control by solving the proposed NN approximation (15) to the original395

problem (5), as described in Section 4. Specifically, we have found that a parsimonious NN model with one396

hidden layer of three nodes is sufficient to produce nearly optimal performance. In this investigation, the397

feature vector consists of simply the current wealth and time-to-go. We explicitly compute the objective398

function and its first order derivatives but approximate the Hessian matrix using a finite difference approxi-399

mation. The NN approximation problem (15) is solved using a trust region method (Coleman and Li, 1996).400

For the NN learning, it is known that standardizing features is important for efficient learning. For (15),401

however, the feature state, wealth W (tn), changes with the control iterate during the optimization process.402

Hence we cannot standardize features based on standard deviations of wealth values of the current iteration.403

Instead, at each rebalance time tn, n = 1, . . . ,N − 1, we use standard deviations associated with the constant404

proportion strategy to scale the wealth feature variable.405

8.3 Base case NN controls: CRSP cap-weighted index and 3-month T-bill406

We generate L = 160,000 i.i.d. random return paths for the parametric jump model calibrated from the his-407

toric market data, as described in §5, using equations (18) and (19). We solve the NN learning optimization408
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Training Error on Synthetic Data : Market Cap Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 500 Pr(WT < 600)
constant proportion (p = .5) 705 350 630 0.28 0.45
NN adaptive 705 159 782 0.13 0.18
Optimal 705 153 782 0.12 0.17

TABLE 7: Training comparison base case data, Table 4. Value weighted CRSP and 3 month T-bill. Training
carried out using 160,000 sampled paths. Compare with Table 5.
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FIGURE 2: Percentiles of the control (fraction in equity index), NN and HJB equation solution, base case
example, Table 4 (cap-weighted CRSP index and 3-month T-bill).

problem (15).409

Table 7 presents training performance comparisons of the optimal controls obtained for the cap-weighted410

index and 3-month T-bill two asset base case. Comparing to the performance of the optimal controls com-411

puted by solving HJB equation in Tables 5, we observe that the proposed NN approach (15) achieves excel-412

lent performance using a parsimonious NN model with d = 2, l = 3, M = 2 for the 2-asset case, totaling only413

12 parameters for z and x. Considering that there is always error due to sampling, the slight suboptimality414

arising from the NN approximation seems to be quite acceptable.415

Corresponding to the base case, Table 4, Figure 2 compares the percentiles of the NN controls with416

those computed using the HJB equation. We observe that the curves from the NN and HJB controls are417

qualitatively similar, indicating similar investment strategies are obtained.418

8.4 Alternative case NN controls: CRSP equal-weighted index and 10-year Treasury index419

We also compare the NN controls for the alternative case, CRSP equal-weighted index and 10-year treasury420

index, in Table 8. Again, it is remarkable that our parsimonious NN model, trained on sampled data, is able421

to get very close to the optimal results.422
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Training Error on Synthetic Data: Equal Weighted
Strategy E(WT ) std(WT ) median(WT )) Pr(WT ) < 700 Pr(WT < 900)
constant proportion (p = .5) 1082 852 875 0.33 0.52
NN adaptive 1082 349 1250 0.18 0.24
Optimal 1082 338 1238 0.17 0.23

TABLE 8: Training comparison alternative case data, Table 4. Equal weighted CRSP and 10 year treasury.
Training carried out using 160000 sampled paths. Compare with Table 6.
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FIGURE 3: Comparison of the cumulative distribution functions for the control computed using HJB equation
and Neural Network (NN). 160,000 MC samples used. The constant weight strategy (p = 0.5) also shown.
Base case (Figure 3(a)) and alternative case (Figure 3(b)) data sets, as in Table 4. W ∗ = 806 (base case) and
W ∗ = 1355 (alternative case). Surplus cash is not included in the distribution functions for the HJB and NN
controls.

8.5 Comparison of Cumulative Distribution Functions: Parametric Market Model423

Figure 3 shows the cumulative distribution functions, computed using 160,000 Monte Carlo simulations,424

for both the base case assets and the alternative case. The controls were computed by (i) solving the HJB425

equation (which gives the optimal strategy), (ii) using the NN approximation and (iii) using the constant426

weight strategy p = 0.5, i.e., rebalance to a fraction of 0.5 in equities at each rebalancing date.427

Figure 3 shows that the control computed using a very parsimonious NN model can reproduce very428

closely the entire distribution function of the terminal wealth generated using the optimal HJB equation429

control.430

8.6 Test performance of the NN control in the historic market scenarios431

We compute and store the NN strategy, based on sampled data, which is generated using the parametric432

model described by equations (18) and (19). We then test this learned control on the bootstrapped historical433

market data.434

Tables 9 and 10 report test performance of the strategies computed using the simulated returns and435

present their performance on on the bootstrapped resampled historical data. We show the results obtained436
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Test Error: Market Cap Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 500 Pr(WT < 600)

Expected Blocksize b̂ = 0.5 years
constant proportion (p = .5) 680 278 627 0.28 0.46
NN adaptive 699 154 766 0.12 0.19

Expected Blocksize b̂ = 1 years
constant proportion (p = .5) 680 277 626 0.28 0.45
NN adaptive 698 154 765 0.13 0.19

Expected Blocksize b̂ = 2 years
constant proportion (p = .5) 677 264 628 0.27 0.46
NN adaptive 704 144 764 0.11 0.18

Expected Blocksize b̂ = 5 years
constant proportion (p = .5) 675 250 635 0.27 0.44
NN adaptive 713 136 776 0.10 0.16

Expected Blocksize b̂ = 8 years
constant proportion (p = .5) 666 231 631 0.26 0.44
NN adaptive 718 127 777 0.08 0.15

Expected Blocksize b̂ = 10 years
constant proportion (p = .5) 667 223 634 0.25 0.44
NN adaptive 721 123 779 0.08 0.14

TABLE 9: NN control computed and stored based on sampling the parametric market model. Tests carried
out using 10000 bootstrap resamples of historical data. Cap-weighted CRSP index and 3-month T-bill market
data. Compare to the training performance in Table 7.

by rebalancing to a constant equity weight p = 0.5. Since the optimal choice of blocksize is not clear (being437

quite different for the stock index and the bond index) we show results for a range of reasonable blocksizes.438

Comparing the result in Tables 9 and 10 to the results in Tables 7 & 8 respectively, we observe that the439

test performance comparisons with the constant proportion strategies are similar to the training performance440

comparisons, suggesting robustness of the NN control. In particular, in all cases, the NN control (trained441

using the parametric model) has a higher Median(WT ) and smaller probabilities of shortfall, compared to442

the constant weight strategy.443

8.7 Performance of the optimal controls directly learned from historic market data444

We now abandon the parametric market model, and operate directly on the historical market data. Since we445

have no optimal solution for this case, we contrast performance from the NN control with the performance446

from the constant weight strategy, rebalancing to a constant weight p = 0.5 in equities at each rebalancing447

date.448

We emphasize that a key advantage of the proposed optimal NN control framework is that it allows449

direct learning of the controls from the market data, bypassing the parametric modeling all together. In §8.3,450

we have seen that the performance of the optimal NN controls, trained from samples determined from the451

parametric market model, is comparable to that from the optimal HJB controls.452

Furthermore, in §8.6, the performance of the NN control (trained from parametric model samples) using453

the bootstrapped historical market data is shown to be robust. Here we report the training performance of454

the optimal NN controls directly from the market data. As an additional robustness check, we compute and455

store the NN controls trained on resampled historical market data, and then test the performance of these456

learned controls on samples from the parametric market model.457

Table 11 presents training performance comparisons of the NN controls directly learned from the histor-458

ical cap-weighted index and 3-month T-bill market data. A range of blocksizes for the bootstrap resampling459

is reported. For each blocksize, we determine W ∗ such that E[WT ] for the NN control is the same as E[WT ]460

for the constant proportion strategy. The NN controls for each blocksize are stored, and then used as controls461
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Test Error: Market Equal Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 700 Pr(WT < 900)

Expected Blocksize b̂ = 0.5 years
constant proportion (p = .5) 1005 586 868 0.33 0.53
NN adaptive 1057 331 1177 0.18 0.26

Expected Blocksize b̂ = 1 years
constant proportion (p = .5) 1005 586 868 0.33 0.53
NN adaptive 1057 331 1177 0.18 0.26

Expected Blocksize b̂ = 2 years
constant proportion (p = .5) 961 465 865 0.31 0.54
NN adaptive 1082 293 1167 0.13 0.22

Expected Blocksize b̂ = 5 years
constant proportion (p = .5) 936 382 869 0.29 0.54
NN adaptive 1111 261 1182 0.10 0.18

Expected Blocksize b̂ = 8 years
constant proportion (p = .5) 921 346 867 0.28 0.54
NN adaptive 1124 243 1185 0.08 0.16

Expected Blocksize b̂ = 10 years
constant proportion (p = .5) 919 336 870 0.27 0.54
NN adaptive 1132 233 1190 0.07 0.16

TABLE 10: NN control computed and stored based on sampling the parametric market model. Tests carried
out using 10000 bootstrap resamples of historical data. Equal-weighted CRSP index and 10 year treasury
market data. Compare to the training performance in Table 7.

for Monte Carlo simulations based on the parametric market model. Table 12 reports the results of these462

tests. Comparing these tables to Table 7 and 9 respectively, we note a striking similarity of training and test463

performance comparisons. There is some degradation in performance as the blocksize increases, when we464

test on the parametric model, but median(WT ) is always larger for the NN control, compared to the constant465

weight strategy. However, this is a good test of robustness of the controls. Small blocksizes simulate an466

i.i.d. process, which is the underlying assumption of the parametric market model. Increasing the blocksize467

causes a deviation from the i.i.d. assumption, and hence is stress test for the control learned with a large468

blocksize.469

We carry out a similar sequence of tests using the alternative market data, based on an equal-weight470

index, and 10 year treasuries. Table 13 presents training performance comparisons of the NN controls471

directly learned from the historical equal-weighted index and 10-year treasury market data. Table 14 reports472

the test performance of these NN controls, learned from the market data, on the simulated data from the473

corresponding parametric market model.474

Comparing Tables 13 and 14 to Tables 8 and 10 respectively, we note that the same similarity in training475

and test performance comparisons. In Table 14, we note that there is some degradation in performance, in476

terms of E(WT ) as the blocksize is increased, but, as discussed previously, this can be traced to the fact that477

use of large blocksizes causes departures from the i.i.d. process assumed in the parametric model. In any478

case, the important statistic here is median(WT ), which is always larger for the NN control compared to the479

constant weight strategy. However, once again, the NN control is quite robust. Of course, this suggests480

that if we believe that the true market process is better modeled as i.i.d., then use of smaller blocksizes will481

obviously yield superior results.482

8.8 Three assets483

In addition to the clear advantage of learning the strategy directly from market data, and avoiding the need484

to specify and calibrate a parametric market mode, we can, with trivial modification, use the NN approach485

to solve high dimensional asset allocation problems. Recall that the overall complexity of the proposed NN486
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Training Error: Market Cap Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 500 Pr(WT < 600)

Expected Blocksize b̂ = 0.5 years
constant proportion (p = .5) 680 278 627 0.28 0.46
NN adaptive 680 142 764 0.13 0.20

Expected Blocksize b̂ = 1 years
constant proportion (p = .5) 680 277 626 0.28 0.45
NN adaptive 680 142 762 0.13 0.20

Expected Blocksize b̂ = 2 years
constant proportion (p = .5) 677 264 628 0.27 0.46
NN adaptive 677 127 748 0.12 0.19

Expected Blocksize b̂ = 5 years
constant proportion (p = .5) 675 250 635 0.27 0.44
NN adaptive 675 112 731 0.10 0.16

Expected Blocksize b̂ = 8 years
constant proportion (p = .5) 666 231 631 0.26 0.44
NN adaptive 666 97 711 0.08 0.15

Expected Blocksize b̂ = 10 years
constant proportion (p = .5) 667 223 634 0.25 0.44
NN adaptive 667 92 707 0.08 0.14

TABLE 11: Training performance comparisons on the market data: The NN controls are learned directly
from the cap-weighted index and 3-month T-bill market data. The expected blocksize is used in the bootstrap
resampling algorithm, 10,000 samples used. Bootstrap resampling also used for the p = 0.5 control.

Test Error: Market Cap Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 500 Pr(WT < 600) b̂ years
constant proportion (p = .5) 705 350 630 0.28 0.45 NA
NN adaptive 682 146 765 0.13 0.20 0.5
NN adaptive 679 147 763 0.14 0.21 1.0
NN adaptive 671 141 747 0.13 0.20 2.0
NN adaptive 658 149 740 0.16 0.23 5.0
NN adaptive 643 140 716 0.16 0.22 8.0
NN adaptive 640 138 711 0.16 0.22 10.0

TABLE 12: The NN controls are learned directly from the cap-weighted index and 3-month T-bill market data,
using bootstrap resampling, with the expected blocksize b̂ indicated. These controls are then used in Monte
Carlo simulations based on the parametric market model.
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Training Error: Market Equal Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 700 Pr(WT < 900)

Expected Blocksize b̂ = 0.5 years
constant proportion (p = .5) 1005 586 868 0.33 0.53
NN adaptive 1005 289 1205 0.18 0.27

Expected Blocksize b̂ = 1 years
constant proportion (p = .5) 1005 586 868 0.33 0.53
NN adaptive 1005 289 1205 0.18 0.27

Expected Blocksize b̂ = 2 years
constant proportion (p = .5) 961 465 865 0.31 0.54
NN adaptive 961 207 1081 0.13 0.24

Expected Blocksize b̂ = 5 years
constant proportion (p = .5) 936 382 869 0.29 0.54
NN adaptive 936 151 1007 0.09 0.20

Expected Blocksize b̂ = 8 years
constant proportion (p = .5) 921 346 867 0.28 0.54
NN adaptive 921 124 972 0.07 0.18

Expected Blocksize b̂ = 10 years
constant proportion (p = .5) 919 336 870 0.27 0.54
NN adaptive 919 114 964 0.07 0.17

TABLE 13: Training performance comparisons on the market data: The NN controls are learned directly
from the equal-weighted CRSP index and 10 year treasury market data. The expected blocksize is used in the
bootstrap resampling algorithm, 10,000 samples used. Bootstrap resampling also used for the p = 0.5 control.

Test Error: Market Equal Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 700 Pr(WT < 900) b̂ years
constant proportion (p = .5) 1082 852 875 0.33 0.52 NA
NN adaptive 1011 303 1205 0.18 0.26 0.5
NN adaptive 1011 303 1205 0.18 0.26 1.0
NN adaptive 939 254 1081 0.18 0.25 2.0
NN adaptive 889 226 1007 0.17 0.25 5.0
NN adaptive 865 214 972 0.17 0.24 8.0
NN adaptive 860 212 964 0.17 0.24 10.0

TABLE 14: The NN controls are learned directly from the equal-weighted CRSP index and 10 year treasury
market data, using bootstrap resampling, with the expected blocksize b̂ indicated. These controls are then used
in Monte Carlo simulations based on the parametric market model.
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Training with Expected Blocksize b̂ = 0.5 years: Market Cap Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 500 Pr(WT < 600)

Expected Blocksize b̂ = 0.5 years
constant proportion (p = (0.6,0.1,0.3)) 860 450 758 0.18 0.31
NN adaptive 860 264 986 0.15 0.20

Expected Blocksize b̂ = 1 years
constant proportion (p = (0.6,0.1,0.3)) 857 429 761 0.18 0.30
NN adaptive 865 264 994 0.15 0.20

Expected Blocksize b̂ = 2 years
constant proportion (p = (0.6,0.1,0.3)) 849 414 758 0.18 0.30
NN adaptive 867 254 986 0.13 0.19

Expected Blocksize b̂ = 5 years
constant proportion (p = (0.6,0.1,0.3)) 841 383 769 0.17 0.29
NN adaptive 878 246 994 0.12 0.18

Expected Blocksize b̂ = 8 years
constant proportion (p = (0.6,0.1,0.3)) 827 350 769 0.16 0.28
NN adaptive 886 236 996 0.11 0.16

Expected Blocksize b̂ = 10 years
constant proportion (p = (0.6,0.1,0.3)) 826 337 772 0.16 0.27
NN adaptive 893 230 1002 0.10 0.15

TABLE 15: Performance comparisons using the cap-weighted index, 3-month T-bill and 10-year treasury: the
first data set with the expected blocksize b̂ = 0.5 years is the training set. Test performance comparisons are
reported on the remaining data sets.

control approach is O(max((l(d + M))3, (l2(d + M)2LN)) where d is the number of features, l is the number487

of nodes, M is the number of assets, and N is the number of timesteps.488

In this section, we report performance on a three asset portfolio. As a point of comparison, we consider489

a base case strategy to be a constant proportion strategy, which rebalances to the weights: 60% in the equity490

index, 10% in the 3-month T-bill, and 30% in the 10-year Treasury. As before, we select W ∗ so that E[WT ]491

is the same for the NN control and for the constant weight strategy, for the training set. All tests in this492

section are based on bootstrap historical market simulations.493

Table 15 presents performance comparisons using the cap-weighted index, 3-month T-bill and 10-year494

treasury. The data set with the expected blocksize b̂ = 0.5 years is used to train the NN control model and its495

test performance is reported on the other five data sets with different expected blocksizes. Table 16 reports496

the same comparisons except that the data set with the expected blocksize b̂ = 10 years is used to train the497

NN control model.498

We observe that, in the three-asset case, the training and testing performances of the NN controls con-499

tinue to dominate that of the constant proportion strategy, achieving a performance enhancement level sim-500

ilar to the two-asset case. In addition, performance comparison is robust. In all cases, median(WT ) for the501

NN control is larger than for the constant weight strategy, with reduced probability of shortfall.502

Finally, we replace the the cap-weighted index by the CRSP equal-weighted index, but continue with503

the 3-month T-bill and 10 year treasury for the fixed income components of the portfolio. As before, we504

compare to a constant proportion strategy with weights 60 : 10 : 30 in the equity index, 3-month T-bill and505

10-year treasury. We consider this alternative three-asset case and learn the NN controls from the market506

data directly. Table 17 presents performance comparisons using these portfolio components. The data set507

with the expected blocksize b̂ = 0.5 years is used to train the NN control model and its test performance is508

reported on the other five data sets with different expected blocksizes. Table 16 reports the same comparisons509

except that the data set with the expected blocksize b̂ = 10 years is used to train the NN control model. We510

observe similar performance comparisons as for the cap-weighted index case.511

In Figure 4, we compare cumulative distributions of the NN control on the training data (b̂ = .5) and512

testing data (b̂ = 10) and compare them to that from the constant weights strategy (b̂ = 10). We observe513
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Training with Expected Blocksize b̂ = 10 years: Market Cap Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 500 Pr(WT < 600)

Expected Blocksize b̂ = 0.5 years
constant proportion (p = (0.6,0.1,0.3)) 860 450 758 0.18 0.31
NN adaptive 794 216 934 0.14 0.20

Expected Blocksize b̂ = 1 years
constant proportion (p = (0.6,0.1,0.3)) 857 429 761 0.18 0.30
NN adaptive 798 215 941 0.14 0.19

Expected Blocksize b̂ = 2 years
constant proportion (p = (0.6,0.1,0.3)) 849 414 758 0.18 0.30
NN adaptive 801 205 935 0.13 0.18

Expected Blocksize b̂ = 5 years
constant proportion (p = (0.6,0.1,0.3)) 841 383 769 0.17 0.29
NN adaptive 812 195 941 0.11 0.17

Expected Blocksize b̂ = 8 years
constant proportion (p = (0.6,0.1,0.3)) 827 350 769 0.16 0.28
NN adaptive 821 185 941 0.10 0.15

Expected Blocksize b̂ = 10 years
constant proportion (p = (0.6,0.1,0.3)) 826 337 772 0.16 0.27
NN adaptive 826 180 941 0.09 0.14

TABLE 16: Performance comparisons using the cap-weighted index, 3-month T-bill and i 10-year treasury:
the last data set with the expected blocksize b̂ = 10 years is the training set. Test performance comparisons are
reported on the remaining data sets.

Training with Expected Blocksize b̂ = 0.5 years: Equal Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 700 Pr(WT < 900)

Expected Blocksize b̂ = 0.5 years
constant proportion (p = (0.6,0.1,0.3)) 1152 792 950 0.30 0.46
NN adaptive 1152 398 1351 0.19 0.26

Expected Blocksize b̂ = 1 years
constant proportion (p = (0.6,0.1,0.3)) 1152 789 950 0.29 0.46
NN adaptive 1153 398 1352 0.19 0.26

Expected Blocksize b̂ = 2 years
constant proportion (p = (0.6,0.1,0.3)) 1079 594 945 0.27 0.46
NN adaptive 1174 358 1327 0.15 0.23

Expected Blocksize b̂ = 5 years
constant proportion (p = (0.6,0.1,0.3)) 1034 456 952 0.23 0.45
NN adaptive 1203 321 1327 0.11 0.19

Expected Blocksize b̂ = 8 years
constant proportion (p = (0.6,0.1,0.3)) 1012 398 954 0.21 0.44
NN adaptive 1215 301 1327 0.09 0.17

Expected Blocksize b̂ = 10 years
constant proportion (p = (0.6,0.1,0.3)) 1007 376 961 0.21 0.43
NN adaptive 1227 288 1334 0.08 0.16

TABLE 17: Performance comparisons using the equal-weighted index, 3-month T-bill and 10-year treasury:
the first data set with the expected blocksize b̂ = 0.5 years is the training set. Test performance comparisons
are reported on the remaining data sets.
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Training with Expected Blocksize b̂ = 10 years: Equal Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT ) < 700 Pr(WT < 900)

Expected Blocksize b̂ = 0.5 years
constant proportion (p = (0.6,0.1,0.3)) 1152 792 950 0.30 0.46
NN adaptive 929 245 1075 0.18 0.27

Expected Blocksize b̂ = 1 years
constant proportion (p = (0.6,0.1,0.3)) 1152 789 950 0.29 0.46
NN adaptive 931 245 1075 0.18 0.26

Expected Blocksize b̂ = 2 years
constant proportion (p = (0.6,0.1,0.3)) 1079 594 945 0.27 0.46
NN adaptive 959 209 1075 0.13 0.22

Expected Blocksize b̂ = 5 years
constant proportion (p = (0.6,0.1,0.3)) 1034 456 952 0.23 0.45
NN adaptive 987 176 1075 0.09 0.18

Expected Blocksize b̂ = 8 years
constant proportion (p = (0.6,0.1,0.3)) 1012 398 954 0.21 0.44
NN adaptive 1001 157 1075 0.07 0.15

Expected Blocksize b̂ = 10 years
constant proportion (p = (0.6,0.1,0.3)) 1007 376 961 0.21 0.43
NN adaptive 1007 146 1075 0.06 0.14

TABLE 18: Performance comparisons using the equal-weighted index, 3-month T-bill and 10-year treasury:
the last data set with the expected blocksize b̂ = 10 years is the training set. Test performance comparisons are
reported on the remaining data sets.

that, from these distributions, the performance of the NN control dominates that of the constant strategy in514

three-asset cases. We also note that here the test performance, which corresponds to a larger blocksize, has515

a better performance than the training data set, likely due to serial correlations.516

9 Conclusions517

If realistic constraints are applied to a DC pension plan asset allocation policy (e.g. no leverage, no shorting,518

discrete rebalancing), then in order to determine the optimal control, the HJB equation must be solved519

numerically. Solving a multistage stochastic optimal investment problem is challenging when the number of520

state variables becomes large, since the curse of dimensionality comes into play when using the HJB PDE.521

In addition, a PDE method requires a parametric stochastic model to be specified and calibrated to market522

data. This is the dominant approach used computational finance for the last few decades.523

In this paper, we consider solving the multi-stage optimal decision problem arising from a finite number524

of scenarios. When the set of scenarios are i.i.d. samples of a parametric stochastic model, the scenario525

optimization problem is an approximation to the parametric model based optimization problem. If the526

scenarios are market price observations (or generated from a resampling approach), solving the scenario527

optimization directly for the controls leads to a market data driven optimal investment strategy. The resulting528

scenario optimization problem is large since the number of unknowns is O(NLM), where N is the number529

of periods, M is the number of assets and L is the number of scenario paths.530

Instead of following a backward timestepping process using Bellman’s principle to tackle the multi-stage531

stochastic optimization problem, we propose to solve the large scale scenario optimization problem directly.532

To overcome the challenge of a large dimensional optimization problem, we propose using a parsimonious533

NN model to represent the control at all different rebalancing times, using the features of current wealth and534

time-to-go as the inputs to the NN model. The resulting optimization problem has a dimension O(l(d + M)),535

where l is the number of hidden nodes, d is the number of features, and M is the number of assets.536

We first validate the proposed NN optimization approach by comparing the training performance with537

the benchmark strategy computed by solving an HJB PDE equation, assuming a parametric market model.538
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FIGURE 4: Comparison of the cumulative distribution functions for the control computed using Neural Net-
work (NN) and constant strategy. The constant weight strategy is p = (0.6,0.1,0.3). Surplus cash is not
included in the distribution functions for the NN controls.

The HJB solution generates the provably optimal strategy in this case. Our computational results (using the539

parametric model) demonstrate that, using a parsimonious 2-layer NN with three hidden nodes, we obtain540

performance on par with that from the optimal HJB control. This validation is conducted for a 2-asset base541

case, with two portfolio composition scenarios: a cap-weighted real CRSP index and real 3-month T-bill,542

and an alternative case with an equal-weighted real CRSP index and real 10-year treasury.543

In addition, we report test performance of the NN control on the bootstrap resampling market data sets544

and observe performance comparison similar to the training based on simulated model scenarios. This545

demonstrates robustness of the learned NN controls.546

The proposed method provides a way of learning controls directly from the market data without first547

estimating a parametric model. To investigate this, we learn NN controls from bootstrap resamples of548

the historical market data, with different expected blocksizes, and examine both the training performance549

comparisons and test performance comparisons on the parametric market model data sets. We observe550

that the NN optimal controls from the market data sets generate superior training and testing performances551

compared to that of the constant proportion strategies, at a similar level to the parametric model based HJB552

method.553

In addition, we also consider 3-asset investment problems with two choices of assets: (i) a cap-weighted554

CRSP index, 3-month bill and 10-year treasury or (ii) an equal-weighted CRSP index, 3-month bill and555

10-year treasury. We observe similar levels of training and test improvement from the NN controls over556

those of the constant proportion 60:10:30 strategy.557

Overall, the performance of the NN dynamically adaptive strategy significantly dominates that of the558

constant proportion strategies, achieving higher median values of the terminal wealth, and smaller probabil-559

ities of shortfall, compared with the constant weight strategies.560

One main technical question which arises is the choice of blocksize to be used for training the NN561

control. If we believe that serial correlation is important going forward, then use of a larger blocksize562

would be recommended. On the other hand, a smaller blocksize would be appropriate if we view the563

processes as essentially i.i.d. We use a joint resampling process, where we use the same blocksize for564
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all the components of the portfolio. This preserves the historical correlations amongst the components of565

the portfolio. However, it is not clear how to select an optimal blocksize in this situation. We intend to566

investigate the choice of blocksize in the context of NN training with bootstrap resampling in the future. For567

now, we suggest the conservative approach of using a small blocksize, since this seems to be quite robust.568

We remark that the proposed NN optimization framework makes it computationally feasible to solve569

problems with a larger number of assets, and without specifying a parametric market model. Although we570

have focused on a DC pension plan example, it is straightforward to apply these techniques to other objective571

functions. For example, a problem of much current interest is optimal asset allocation for defined benefit572

(DB) plans, with the objective function being to minimize shortfall with respect to a target funding ratio.573
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