
Across-Time Risk-Aware Strategies for Outperforming a Benchmark1

Pieter M. van Staden∗ Peter A. Forsyth† Yuying Li‡2

June 13, 20233

Abstract4

We propose a novel objective function for constructing dynamic investment strategies with the goal5

of outperforming an investment benchmark at multiple points of evaluation during the investment time6

horizon. The proposed objective is intuitive, easy to parameterize, and directly targets a favorable tracking7

difference of the actively managed portfolio relative to the benchmark. Under stylized assumptions, we8

derive closed-form optimal investment strategies to guide the intuition in more realistic settings. In the9

case of discrete rebalancing with investment constraints, optimal strategies are obtained using a neural10

network-based numerical approach that does not rely on dynamic programming techniques. Compared to11

the targeting of a favorable tracking difference relative to the benchmark only at some fixed time horizon, our12

results show that the proposed objective offers a number of advantages: (i) The associated optimal strategies13

exhibit potentially more attractive asset allocation profiles, in that less extreme positions in individual14

assets are taken early in the investment time horizon, while achieving a similar terminal terminal wealth15

distribution. (ii) Across-time risk awareness leads to more robust performance and a higher probability of16

benchmark outperformance during the investment horizon in out-of-sample testing. The resulting strategies17

therefore exhibit desirable characteristics for active portfolio managers with periodic reporting requirements.18
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1 Introduction22

Active portfolio managers typically pursue investment strategies with the stated goal of outperforming a pre-23

specified investment benchmark (Alekseev and Sokolov (2016); Kashyap et al. (2021); Korn and Lindberg (2014);24

Lehalle and Simon (2021); Zhao (2007)). In the case of pension funds, the benchmark or reference portfolios25

typically consist of publicly-traded assets held in specified proportions. For example, the Canadian Pension26

Plan (CPP) makes use of a base reference portfolio of 15% Canadian government bonds and 85% global equity27

(Canadian Pension Plan (2022)), while the Norwegian government pension plan (“Government Pension Fund28

Global”, or GPFG) uses a benchmark of 70% equities and 30% bonds (Government Pension Fund Global29

(2022)). With the CPP1 and GPFG having CAD 540 billion and USD 1.35 trillion in assets under management,30

respectively, and while performance results (risk and return) are reported relative to the benchmark strategy,31

the goal of outperforming the benchmark is clearly of immediate practical relevance.32

There exists a large literature on the construction of investment strategies for benchmark outperformance,33

where the objective function often includes utility functions whether implicit or explicit (see for example Al-34

Aradi and Jaimungal (2018, 2021); Basak et al. (2006); Bernard and Vanduffel (2014); Davis and Lleo (2008);35

Gerrard et al. (2019, 2022); Lim and Wong (2010); Lu et al. (2016); Nicolosi et al. (2018); Oderda (2015);36

Tepla (2001)) or aims to penalize underperformance while encouraging outperformance (see Basak et al. (2006);37

Browne (1999a, 2000); Gaivoronski et al. (2005)). Van Staden et al. (2023) analyzed the optimal dynamic38

strategies associated with two popular investment objectives, namely maximizing the information ratio, and39

obtaining a favorable tracking difference relative to the benchmark.40
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1It is interesting to note that the CPP 2021 annual report(Canadian Pension Plan, 2021) lists personnel costs as CAD 938

million, for 1,936 employees, giving an average cost of CAD 500,000 per employee-year.
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The tracking difference simply measures the difference between the cumulative returns of the active portfolio41

and the benchmark over a specific time period (Charteris and McCullough (2020)). This is not to be confused42

with the tracking error, which refers to the volatility of relative returns (Wander (2000)) and is typically to43

be minimized if the portfolio manager simply wishes to track the benchmark as closely as possible. For long-44

term investors, however, the tracking difference is recognized as a critical and intuitive metric for performance45

assessment (Boyde (2021); ETF.com (2021); Hougan (2015); Pastant (2018); Vanguard (2014)), in addition to46

being recognized by regulators such as European Securities and Markets Authority, who requires its disclosure47

by certain regulated funds (ESMA (2014)).48

An intuitive objective function targeting a favorable tracking difference, which is based on the quadratic49

deviation (QD) from an elevated benchmark, has been proposed in the literature - see discussion in Van Staden50

et al. (2023). For illustrative purposes (to be made rigorous below), let P denote the active investment strategy51

(or control) taking values in some admissible set A which encodes the portfolio manager’s constraints, and let52

W (t) and Ŵ (t) denote the wealth (portfolio value) of the active and benchmark portfolios, respectively, at53

time t ∈ [t0 = 0, T ]. For performance comparison purposes, set W (t0) = Ŵ (t0) = w0. Investment strategies54

targeting a favorable tracking difference over [t0, T ] can then be obtained by using the following objective,55

(QD (β)) : inf
P∈A

Et0,w0

P

[(
W (T )− eβT Ŵ (T )

)2]
, β > 0, (1.1)56

which is parameterized by a continuously compounded (targeted) outperformance rate of β per year. As β57

increases, the portfolio manager would be required to take on more risk in order to increase the expected58

outperformance, while in the limit as β ↓ 0, the optimal strategy is simply to invest the benchmark. Some59

modifications of (1.1) have also been proposed in the literature (Ni et al. (2022)), where underperformance and60

outperformance are distinguished. While (1.1) is symmetric in the sense that it penalizes both the shortfall61

(W (T ) < eβT Ŵ (T )) as well as the excess (W (T ) > eβT Ŵ (T )) relative to the targeted outperformance, similar62

results are obtained in the case where only the shortfall (W (T ) < eβT Ŵ (T )) is penalized (Van Staden et al.63

(2023)).64

However, a possible criticism of the QD objective (1.1) is that it only targets a favourable tracking difference65

at maturity T of the investment time horizon [t0, T ]. In practice, due to reporting or regulatory requirements66

(ESMA (2014)), portfolio managers may wish to target a favorable tracking difference also at some intermediate67

times during [t0, T ].68

In this paper we propose an objective function that not only retains the intuitive and transparent structure69

QD objective, but extends this to the targeting of favourable tracking differences of the active portfolio relative70

to the benchmark at specified intermediate times during the investment time horizon. Due to its additive71

structure, we refer to the proposed objective function as the cumulative tracking difference (abbreviated as72

“CD” for convenience), and in its simplest form it can be formulated as73

(CD (δ)) : inf
P∈A

Et0,w0

P

[∫ T

t0

(
W (t)− eδtŴ (t)

)2
dt

]
, δ > 0. (1.2)74

The main contribution of this paper is the analyze the implications of objectives of the form (1.2) for the75

associated dynamic investment strategies. In more detail, the contributions of this paper are as follows:76

(i) The CD problem is solved in closed form using standard assumptions in order to gain intuition regarding77

the behavior of CD-optimal investment strategies. We also present analytical comparison results for the78

relative performance of the QD- and CD-optimal investment strategies.79

(ii) Using a neural network (NN) approach that does not rely on dynamic programming techniques, the80

CD problem is solved numerically in the case of discrete portfolio rebalancing and multiple investment81

constraints, where closed-form solutions cannot be obtained.82

(iii) Using empirical market data from 1963 until the end of 2020, with a 10-year investment horizon, we83

demonstrate the resulting in-sample and out-of-sample investment results associated with the proposed84

CD objective as well as the QD objective. Data sets are generated using both (i) stochastic differential85

equations calibrated to historical data and (ii) block bootstrap resampling of historical data (Anarkulova86

et al., 2022; Cogneau and Zakalmouline, 2013; Politis and Romano, 1994).87

(iv) Based on simulations of a parametric model and resampling of market data respectively, our numerical88

results demonstrate that the CD-optimal strategies require less extreme positions in individual assets89
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early in the investment time horizon compared with the corresponding QD-optimal positions. In addition,90

distributions of the terminal wealth of CD-optimal and QD-optimal strategies are, somewhat surprisingly,91

largely indistinguishable in both training and out-of-sample testing results.92

The observation that the CD-optimal strategy has a nearly identical terminal wealth distribution to that of93

the QD-optimal strategy, while the positions of the CD-optimal strategy in the underlying assets exhibit signif-94

icantly less variation across time, has important implications. It demonstrates that it is potentially insufficient95

to evaluate the risk in a dynamic strategy based on the statistics (or even the entire distribution) of the terminal96

wealth alone. Specifically, we further illustrate that while the QD-optimal strategy achieves a higher probability97

of benchmark outperformance in training, the CD-optimal strategy significantly outperforms the QD-optimal98

strategy in out-of-sample testing data due to its advantageous risk profile over the investment horizon.99

In summary, we demonstrate both theoretically and empirically that targeting a favorable tracking difference100

directly using objectives of the form (1.2) can be advantageous for the active portfolio manager aiming to101

outperform a benchmark while being subjected to investment constraints.102

The remainder of the paper is organized as follows. Section 2 formulates the problems in general terms, while103

Section 3 and Section 4 discuss the analytical and numerical solutions of the problems, respectively. Section104

5 presents a numerical illustration of the investment results, while Section 6 concludes the paper and outlines105

possible future work.106

2 Formulation107

In this section, we formulate the benchmark outperformance problem more rigorously. Let [t0 = 0, T ] denote108

the investment horizon of the active portfolio manager, for simplicity referred to as the “investor”. As above, let109

W (t) and Ŵ (t) denote wealth of the investor and benchmark portfolios, respectively, at time t ∈ [t0 = 0, T ]. For110

performance measurement purposes, we assume w0 := W (t0) = Ŵ (t0) >0. We assume the investor considers111

investment in Na candidate assets, while the benchmark is formulated in terms of N̂a underlying assets. In112

general, the sets of underlying assets are not required to be identical.113

The vector p̂
(
t, X̂ (t)

)
=
(
p̂i

(
t, X̂ (t)

)
: i = 1, .., N̂a

)
∈ RN̂a denotes the asset allocation of the benchmark114

at time t ∈ [t0, T ], where p̂i
(
t, X̂ (t)

)
denotes the proportion of the benchmark wealth Ŵ (t) invested in asset115

i ∈
{

1, .., N̂a

}
, and X̂ (t) denotes the state of the system (or informally, the information) taken into account116

by the benchmark strategy.117

Similarly, the vector p (t,X (t)) = (pi (t,X (t)) : i = 1, .., Na) ∈ RNa denotes the asset allocation of the118

investor at time t ∈ [t0, T ], where pi (t,X (t)) denotes the proportion of the investor’s wealth W (t) invested in119

asset i ∈ {1, .., Na} and X (t) denotes the information taken into account by the investor in making the asset120

allocation decision. In the simplest cases, such as in Section 3, we could simply have X (t) =
(
W (t) , Ŵ (t)

)
,121

but additional information can also be incorporated in X (t) in more general scenarios addressed in Section 4.122

Let T ⊆ [t0, T ] denote the set of portfolio rebalancing events. In the case of continuous rebalancing,123

T = [t0, T ], while discrete balancing limits the events to the discrete subset T ⊂ [t0, T ]. The investor and124

benchmark investment strategies, respectively, are defined by the sets125

P = {p (t,X (t)) , t ∈ T } , and P̂ =
{
p̂
(
t, X̂ (t)

)
, t ∈ T

}
. (2.1)126

The investor’s investment constraints are encoded by A denoting the set of admissible controls, and Z denote127

the admissible control space (i.e. the values obtained by the admissible controls). In other words, an admissible128

investor strategy satisfies P ∈ A if and only if P = {p (t,X (t)) ∈ Z : t ∈ T } .129

Finally, let Et0,w0

P [·] denote the expectation of some random variable taken with respect to a given initial130

wealth w0 = W (t0) = Ŵ (t0) at time t0 = 0, and using control P ∈ A over [t0, T ]. The benchmark strategy P̂131

that the investor wishes to outperform remains implicit in this notation.132

2.1 Directly targeting a favourable tracking difference133

As discussed in the Introduction, the following objective function based on minimizing the quadratic deviation134

(QD) of the investor’s terminal wealth from the terminal wealth of an elevated benchmark has been proposed135
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in the literature (see Van Staden et al. (2023)),136

(QD (β)) : inf
P∈A

Et0,w0

P

[(
W (T )− eβT Ŵ (T )

)2]
, β > 0. (2.2)137

The QD objective directly and intuitively targets the cumulative outperformance of the investor portfolio relative138

to the benchmark over [t0, T ], i.e. the tracking difference, while parameter β can be interpreted as the annual139

(continuously compounded) outperformance spread targeted by the investor. It has been demonstrated (Van140

Staden et al. (2023)) that robust out-of-sample benchmark outperformance can be obtained using the strategies141

associated with (2.2).142

Since active portfolio managers may also wish to target a favourable tracking difference at intermediate143

times t ∈ [t0, T ], instead of only considering the tracking difference at the maturity T as in the case of (2.2), we144

propose the following investment objective in this paper:145

(CD (δ)) :


inf
P∈A

Et0,w0

P

[∫ T

t0

(
W (t)− eδtŴ (t)

)2
dt

]
, δ > 0, if T = [t0, T ] ,

inf
P∈A

Et0,w0

P

[ ∑
t∈T ∪T

(
W (t)− eδtŴ (t)

)2]
, δ > 0, if T ⊆ [t0, T ] , T discrete.

(2.3)

(2.4)

We subsequently refer to (2.3)-(2.4) simply as the CD problem, or as problem CD (δ) if the value of the146

parameter δ is to be emphasized. We make the following observations:147

(i) Definition (2.3) is subsequently used where, in order to gain the necessary intuition regarding the theo-148

retical properties of the associated optimal investment strategies, the CD problem is analyzed under the149

assumptions of continuous rebalancing with no investment constraints (Section 3). In contrast, Defini-150

tion (2.4) is used in more practical settings when there are discrete rebalancing and multiple investment151

constraints (Section 4). Note that in (2.4), the terminal time T is explicitly included in the objective152

function, since it is typical for T not to be a rebalancing time (T /∈ T ) in discrete rebalancing settings.153

For convenience, we assumed that the tracking difference assessment times in (2.4) correspond to the set154

of portfolio rebalancing times, although this assumption can be relaxed without difficulty.155

(ii) The definition of the CD problem retains the intuitive aspects of the QD problem, with the tracking156

difference being the quantity of interest that is directly and transparently targeted.157

(iii) We intuitively expect a close connection between the QD and CD problems, since as t0 → T , the results158

associated with the CD (δ) problem are expected to resemble the corresponding results of the QD (β)159

problem, provided that β = δ. The closed-form solutions of Section 3 confirm this intuition.160

(iv) The formulation (2.3)-(2.4) can be extended to allow for different levels of relevance/importance to be161

attached to the tracking differences at different times in the investment time horizon. For example, consid-162

ering just the case of continuous rebalancing for the moment, we could define a non-negative deterministic163

function of time t→ $ (t) ≥ 0,∀t ∈ [t0, T ] giving the “weight” assigned to the tracking difference at time164

t, and replace the integral in (2.3) with165 ∫ T

t0

$ (t) ·
(
W (t)− eδtŴ (t)

)2
dt, (2.5)166

along with the corresponding modifications in the case of discrete rebalancing (2.4). The generalization167

(2.5) might be valuable in certain settings, for example if the investor places more value on the tracking168

differences closer to maturity T , in which case a function $ (t) that is strictly increasing might be used.169

However, for purposes of concreteness and simplicity, we continue with the proposed definition (2.3), with170

the numerical results of Section 5 confirming that it yields promising investment results. As a result, we171

leave further generalizations such as (2.5) for future work.172

The remaining sections are devoted to exploring both the analytical properties and practical implications of173

using the CD problem formulation (2.3)-(2.4) to obtain investment strategies for benchmark outperformance,174

and comparing the results associated with the QD and CD problems.175

176

Remark 2.1 (Relation between QD and CD). Note that if $ (t) = D(t − T ) in equation (2.5), where D(t) is177

the Dirac function, then we recover the QD objective function from equation (2.5).178
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179

3 Closed-form solutions180

To gain insight into CD-optimal investment strategies, in this section we present the closed-form solution to the181

CD problem (2.3)-(2.4), as well as comparison results for the QD and CD problems, under idealized assumptions.182

Note that these assumptions are relaxed in Section 4, where a data-driven neural network (numerical) solution183

approach is presented. However, as subsequently observed (Section 5), the closed-form solutions of this section184

remain extremely valuable for gaining intuition regarding the behavior of optimal strategies when the stylized185

assumptions are relaxed. In this section, we specify parametric dynamics for the underlying assets, and in186

particular we allow for jumps in the risky asset processes and cash contributions to the portfolio, aspects which187

are not frequently considered in the current benchmark outperformance literature (Bo et al. (2021); Nicolosi188

et al. (2018),Al-Aradi and Jaimungal (2018); Basak et al. (2006); Browne (1999a,b, 2000); Davis and Lleo (2008);189

Lim and Wong (2010); Oderda (2015); Tepla (2001); Yao et al. (2006); Zhang and Gao (2017); Zhao (2007)).190

We start by summarizing the main assumptions for obtaining closed-form results in this section. These191

assumptions are typically required in order to obtain closed form solutions for multi-period portfolio optimization192

(Zhou and Li, 2000). We emphasize that these assumptions, as well as the assumption of parametric dynamics193

for the underlying assets, are not required in the case of the numerical solution approach in Section 4.194

Assumption 3.1. (Underlying assets, continuous rebalancing, no market frictions) The investor and bench-195

mark invest in the same set of Na underlying assets, consisting of one risk-free asset and Nr
a risky assets196

(Na = Nr
a + 1). The investor and benchmark portfolios are rebalanced continuously, so that the set of rebalanc-197

ing times is T = [t0, T ]. We assume that trading continues in the event of insolvency (i.e. trading continues if198

W (t) < 0 for some t ∈ [t0, T ]). No transaction costs are applicable, no investment constraints (such as leverage199

or short-selling restrictions) are in effect, and cash is contributed at a constant rate of q ≥ 0 per year to the200

investor and benchmark portfolios.201

Remark 3.1. (Trading if insolvent) It is, of course, unrealistic to suppose that an investor can continue to202

trade and borrow if insolvent. However, this assumption is typically required to obtain closed form solutions,203

see Zhou and Li (2000) for the case of multi-period mean-variance asset allocation.204

Identical cash contributions to the investor and benchmark portfolios as per Assumption 3.1 ensure that the205

performance of the two portfolios remains meaningfully comparable.206

Given the underlying assets as described in Assumption 3.1, we define the proportional allocations to the risky207

assets at time t ∈ [t0, T ] for the investor and benchmark strategies, respectively, as the vectors % (t,X (t)) =208 (
%1 (t,X (t)) , ..., %Nra (t,X (t))

)
∈ RNra and %̂

(
t, X̂ (t)

)
=
(
%̂1

(
t, X̂ (t)

)
, ..., %̂Nra

(
t, X̂ (t)

))
∈ RNra . Specifi-209

cally, %i (t,X (t)) denotes the proportion of the investor’s wealth W (t) invested in risky asset i ∈ {1, ..., Nr
a} at210

time t given information X (t), while %̂i
(
t, X̂ (t)

)
denotes the proportion of benchmark wealth Ŵ (t) invested211

in the same asset i at time t given information X̂ (t).212

We introduce the following assumption regarding the benchmark strategy for the purposes of deriving the213

closed-form results of this section.214

Assumption 3.2. (Closed-form solutions: Information known about the benchmark strategy) For the closed-215

form solutions of this section, we assume that the benchmark’s risky asset allocation strategy is an adapted216

feedback control of the form %̂
(
t, X̂ (t)

)
= %̂

(
t, Ŵ (t)

)
, t ∈ [t0, T ], and that the investor is limited to invest-217

ing in the same set of underlying assets as the benchmark. We also assume that the investor can instanta-218

neously observe the vector %̂
(
t, Ŵ (t)

)
at each t ∈ [t0, T ], so that the investor wishes to derive % (t,X (t)) =219

%
(
t,W (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
, t ∈ [t0, T ], the adapted feedback control representing the fraction of the in-220

vestor’s wealth W (t) invested in each risky asset at time t according to the investor’s strategy.221

Recalling from the Introduction that constant proportion (i.e. deterministic) benchmark strategies are222

commonly used in practice by pension funds, it is clear that Assumption 3.2 is sufficiently general, since it223

allows for any adapted feedback control to serve as the benchmark strategy.224

Combining definition (2.1) with Assumption 3.2, for the purposes of this section we therefore consider225
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investor and benchmark strategies, respectively, of the following form,226

P =

p (t,X (t)) =

1−
Nra∑
i=1

%i (t,X (t)) , %1 (t,X (t)) , ..., %Nra (t,X (t))

 : t ∈ [t0, T ]

 ,227

P̂ =

p̂(t, Ŵ (t)
)

=

1−
Nra∑
i=1

%̂i

(
t, Ŵ (t)

)
, %̂1

(
t, Ŵ (t)

)
, ..., %̂Nra

(
t, Ŵ (t)

) : t ∈ [t0, T ]

 , (3.1)228

whereX (t) =
(
W (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
. In this section, the risky asset allocations % (t,X (t)) and %̂

(
t, Ŵ (t)

)
229

will informally be referred to as the investor and benchmark strategies, respectively, due to the form of (3.1).230

However, in more general settings (e.g. the numerical results of Section 4), the formal definition (2.1) will be231

used.232

Given Assumption 3.1 and Assumption 3.2, the investor’s set of admissible controls is given in terms of the233

risky asset allocation % as234

A0 =
{
% (t, w, ŵ, %̂ (t, w))|% : [t0, T ]× RN

r
a+2 → RN

r
a

}
, (3.2)235

so that the investment problems analyzed in this section are given by236

(QD (β)) : inf
%∈A0

Et0,w0
%

[(
W (T )− eβT Ŵ (T )

)2]
, β > 0, (3.3)237

(CD (δ)) : inf
%∈A0

Et0,w0
%

[∫ T

t0

(
W (t)− eδtŴ (t)

)2
dt

]
, δ > 0. (3.4)238

Note that we use definition (2.3) of the CD problem since T = [t0, T ] by Assumption 3.1.239

3.1 Wealth dynamics for closed-form solutions240

The closed-form solutions of (3.3)-(3.4) require the specification of underlying dynamics. The risk-free asset is241

assumed to have unit value S0 (t) with dynamics in terms of the risk-free rate r > 0 given by242

dS0 (t) = rS0 (t) dt. (3.5)243

In the case of the risky assets, the vector S (t) = (Si (t) : i = 1, ..., Nr
a )
> has ith component Si (t) which244

denotes the unit value of the risky asset i at time t ∈ [t0, T ]. The superscript “>” denotes the transpose. For245

the dynamics of Si (t), in this section we allow for any of the popular finite-activity jump-diffusion models in246

finance (see for example Kou (2002); Merton (1976)).247

Let ξ = (ξi : i = 1, ..., Nr
a )
>, where ξi denotes the random variable with corresponding probability density248

function (pdf) fξi (ξi) representing the jump multiplier associated with the ith risky asset. Let249

κ
(1)
i = E [ξi − 1] , κ

(2)
i = E

[
(ξi − 1)

2
]
, i = 1, ..., Nr

a , (3.6)250

and define κ(1) =
(
κ
(1)
i : i = 1, ..., Nr

a

)>
and κ(2) =

(
κ
(2)
i : i = 1, ..., Nr

a

)>
. If a jump occurs in the dynamics of251

risky asset i at time t, its value jumps from Si (t−) to Si (t) = ξi · Si (t−), where, given any functional ψ (t) , t ∈252

[t0, T ], we use the notation ψ (t−) and ψ (t+) as shorthand for the one-sided limits ψ (t−) = limε↓0 ψ (t− ε) and253

ψ (t+) = limε↓0 ψ (t+ ε), respectively. For ease of exposition, we assume that ξ has independent components,254

i.e. the jump components of the different risky asset processes are independent, while dependence will be255

introduced via the diffusion components. Note that the assumption of independent jumps can be relaxed256

without any technical difficulty (Kou (2007)) at the cost of significantly increasing the notational complexity.257

LetZ (t) = (Zi (t) : i = 1, ..., Nr
a )
> denote a standardNr

a -dimensional Brownian motion, while µ = (µi : i = 1, ..., Nr
a )
>

258

denote the drift coefficients of the risky assets under the objective (or real-world) probability measure and259

σ = (σi,j)i,j=1,...,Nra
∈ RNra×Nra denotes the volatility matrix. Let π (t) = (πi (t) : i = 1, ..., Nr

a )
> denote260

a vector of Nr
a independent Poisson processes, with each πi (t) having the corresponding intensity λi ≥ 0,261

and define λ = (λi : i = 1, ..., Nr
a )
>. We assume that ξi, πj (t) and Zk (t) are mutually independent for all262
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i, j, k ∈ {1, ..., Nr
a}. Define the matrices263

Σ = σσ>, Λ = diag
(
λiκ

(2)
i : i = 1, ..., Nr

a

)
. (3.7)264

We make the standard assumptions that µi > r, for all i, and assume that the covariance matrix Σ = σσ> is265

positive definite (see for example Bjork (2009); Zhou and Li (2000)). We also define the following combinations266

of parameters from the underlying asset dynamics,267

α =
(
µi − r − λiκ(1)i : i = 1, ..., Nr

a

)>
, µ̃ = (µi − r : i = 1, ..., Nr

a )
>
, (3.8)268

269

η = µ̃> · (Σ + Λ)
−1 · µ̃. (3.9)270

The dynamics of Si (t) is therefore assumed to be of the form271

dSi (t)

Si (t−)
=

(
µi − λiκ(1)i

)
· dt+

Nra∑
j=1

σij · dZj (t) + d

πi(t)∑
k=1

(
ξ
(k)
i − 1

) , i = 1, ..., Nr
a , (3.10)272

where ξ(k)i are i.i.d. random variables with the same distribution as ξi. To simplify notation, define the vector273

dN (t) =
(∫∞

0
(ξi − 1)Ni (dt, dξi) : i = 1, ..., Nr

a

)>, where Ni is the Poisson random measure (Oksendal and274

Sulem (2019)) corresponding to the dynamics of Si (t) in (3.10).275

Recalling that q ≥ 0 denotes the constant rate (per year) at which cash is contributed to each portfolio276

(Assumption 3.1), the investor and benchmark wealth processes for the purposes of obtaining closed-form277

solutions are as follows,278

dW (t) =
{
W
(
t−
)
·
[
r +α>%

(
t,X

(
t−
))]

+ q
}
· dt+W

(
t−
) (
%
(
t,X

(
t−
)))>

σ · dZ (t)279

+W
(
t−
) (
%
(
t,X

(
t−
)))> · dN (t) , (3.11)280

dŴ (t) =
{
Ŵ
(
t−
)
·
[
r +α>%̂

(
t, Ŵ

(
t−
))]

+ q
}
· dt+ Ŵ

(
t−
) (
%̂
(
t, Ŵ

(
t−
)))>

σ · dZ (t)281

+Ŵ
(
t−
) (
%̂
(
t, Ŵ

(
t−
)))>

· dN (t) , (3.12)282

for t ∈ (t0, T ], where W (t) = Ŵ (t) = w0 and X (t) =
(
W (t) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
.283

3.2 Closed-form solution: QD (β) problem284

For subsequent reference, the following proposition recalls the closed-form solution for the QD-optimal control285

available in the literature.286

Proposition 3.3. (QD-optimal control) Suppose that Assumption 3.1, Assumption 3.2 and wealth dynamics287

(3.11)-(3.12) are applicable. Then the optimal fraction of the investor’s wealth to be invested in risky asset288

i ∈ {1, ..., Nr
a} for problem QD (β) in (3.3) is given by the ith component of the vector %∗qd

(
t,X∗qd (t−;β) ;β

)
,289

where290

W ∗qd
(
t−;β

)
· %∗qd

(
t,X∗qd

(
t−;β

)
;β
)

=
[
hqd (t;β, q)−

(
W ∗qd

(
t−;β

)
− eβT Ŵ

(
t−
))]
· (Σ + Λ)

−1
µ̃291

+eβT Ŵ
(
t−
)
· %̂
(
t, Ŵ

(
t−
))
, (3.13)292

withW ∗qd (t;β) denoting the investor’s wealth process (3.11) under the QD(β)-optimal control %∗qd, andX
∗
qd (t;β) =293 (

W ∗qd (t;β) , Ŵ (t) , %̂
(
t, Ŵ (t)

))
. Here, hqd is the following deterministic function,294

hqd (t;β, q) := q
(
eβT − 1

)
·
∫ T

t

e−r(u−t)du =
q

r

(
eβT − 1

) (
1− e−r(T−t)

)
, t ∈ [t0, T ] . (3.14)295

Proof. See Van Staden et al. (2023).296

As shown in Van Staden et al. (2023), implementing (3.13) can be viewed as pursuing (at time t) a targeted297
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level of wealth given by eβT Ŵ (t). In other words the wealth target is a multiple (eβT ) of the benchmark298

wealth Ŵ (t), and for subsequent reference we observe that the multiplier eβT remains constant throughout299

the time horizon [t0, T ]. Previous work showed that the QD-optimal strategy delivers excellent performance300

out-of-sample relative to maximizing the information ratio (IR), which is another popular objective in practice301

(Goetzmann et al. (2002, 2007); Van Staden et al. (2023)).302

3.3 Closed-form solution: CD (δ) problem303

We now derive the closed-form solution of the CD problem (3.4), starting with the HJB partial integro-differential304

equation (PIDE) satisfied by its value function.305

Theorem 3.4. (CD problem: Verification theorem) Fix δ > 0. Suppose that for all (t, w, ŵ, %̂) ∈ [t0, T ]×RNra+2,306

there exist functions Vcd (t, w, ŵ, %̂) : [t0, T ] × RNra+2 → R and %∗cd (t, w, ŵ, %̂; δ) : [t0, T ] × RNra+2 → RNra with307

the following two properties. (i) Vcd and %∗cd are sufficiently smooth and solve the HJB PIDE (3.15)-(3.16), and308

(ii) the function %∗cd (t, w, ŵ, p̂; δ) attains the pointwise supremum in (3.15).309

∂Vcd
∂t

+
(
w − eδtŵ

)2
+ inf
%∈RNra

{
H (%; t, w, ŵ, %̂)

}
= 0, (3.15)310

Vcd (T,w, ŵ, %̂) = 0, (3.16)311

where312

H (%; t, w, ŵ, %̂) =
(
w ·
[
r +α>%

]
+ q
)
· ∂Vcd
∂w

+
(
ŵ ·
[
r +α>%̂

]
+ q
)
· ∂Vcd
∂ŵ

−

Nra∑
i=1

λi

 · Vcd313

+
1

2
w2 ·

(
%>Σ%

)
· ∂

2Vcd
∂w2

+
1

2
ŵ2 ·

(
%̂>Σ%̂

)
· ∂

2Vcd
∂ŵ2

+ wŵ ·
(
%>Σ%̂

)
· ∂

2Vcd
∂w∂ŵ

314

+

Nra∑
i=1

λi

∫ ∞
0

Vcd (w + %iw (ξi − 1) , ŵ + %̂iŵ (ξi − 1) , t) fξi (ξi) dξi. (3.17)315

Then under Assumption 3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12), Vcd is the value function316

and %∗cd is the optimal control for the CD (δ) problem (3.4).317

Proof. See Appendix A.1.318

We proceed to solve the HJB PIDE (3.15)-(3.16), with Proposition 3.5 presenting the CD-optimal control.319

Proposition 3.5. (CD-optimal control) Suppose that Assumption 3.1, Assumption 3.2 and wealth dynamics320

(3.11)-(3.12) are applicable. Then the optimal fraction of the investor’s wealth to be invested in risky asset321

i ∈ {1, ..., Nr
a} for problem CD (δ) with continuous rebalancing (3.4) is given by the ith component of the vector322

%∗cd (t,X∗cd (t−; δ) ; δ), where323

W ∗cd
(
t−; δ

)
· %∗cd

(
t,X∗cd

(
t−; δ

)
; δ
)

=
[
hcd (t; δ, q)−

(
W ∗cd

(
t−; δ

)
− gcd (t; δ) Ŵ

(
t−
))]
· (Σ + Λ)

−1
µ̃324

+gcd (t; δ) Ŵ
(
t−
)
· %̂
(
t, Ŵ

(
t−
))
, (3.18)325

withW ∗cd (t; δ) denoting the investor’s wealth process (3.11) under the CD(δ)-optimal control %∗cd, andX
∗
cd (t; δ) =326 (

W ∗cd (t; δ) , Ŵ (t) , %̂
(
t, Ŵ (t)

))
. Here, hcd and gcd are the following deterministic functions of time,327

hcd (t; δ, q) = −F (t; δ, q)

2A (t)
, gcd (t; δ) = −D (t; δ)

2A (t)
, (3.19)328

where A,D and F are respectively given by the following functions,329

A (t) =
e(2r−η)(T−t) − 1

(2r − η)
, D (t; δ) =

2eδT

(2r − η + δ)

[
e−δ(T−t) − e(2r−η)(T−t)

]
, (3.20)330
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and331

F (t; δ, q) =
2q

2r − η

[
e(2r−η)(T−t) − e(r−η)(T−t)

r
− e(r−η)(T−t) − 1

r − η

]
332

+
2qeδT

2r − η + δ

[
e(r−η)(T−t) − e−δ(T−t)

r − η + δ
−
(
e(2r−η)(T−t) − e(r−η)(T−t)

)
r

]
. (3.21)333

Proof. See Appendix A.2.334

We therefore observe that the CD-optimal control (3.18) has a similar functional form to the QD-optimal335

control (3.13). Specifically, (3.18) involves a multiple gcd (t; δ) of the benchmark wealth Ŵ (t), which is now336

time-dependent (and therefore non-constant), while the role of the contributions remains limited to the term337

hcd (t; δ, q). Analyzing the properties of the functions gcd (t; δ) and hcd (t; δ, q) in (3.19) is therefore not only338

helpful for the purposes of gaining intuition regarding the behavior of the CD-optimal control (3.18), but also339

for rigorously proving the subsequent comparison results. For convenience, we summarize some of the key340

properties of gcd (t; δ) and hcd (t; δ, q) to aid the intuition, with further details provided in Appendix A.3 and341

Appendix A.4:342

(i) Summary of the properties of gcd (t; δ): For any t ∈ [t0 = 0, T ], δ → gcd (t; δ) is strictly increasing on343

δ ∈ (0,∞), while for any fixed δ > 0, t → gcd (t; δ) is strictly increasing on t ∈ [t0, T ] to a maximum of344

gcd (T ; δ) = eδT . In fact, we have the bounds345

eδt < gcd (t; δ) < eδT , ∀t ∈ [t0, T ) . (3.22)346

See Appendix A.3 for a proof of these properties.347

(ii) Summary of the properties of hcd (t; δ, q): If q = 0, it is clear that hcd (t; δ, q) ≡ 0, while we always have348

hcd (T ; δ, q) = 0. For any t ∈ [t0 = 0, T ] and δ > 0, q → hcd (t; δ, q) is strictly increasing on q ∈ [0,∞),349

with δ → hcd (t; δ, q) being strictly increasing on δ ∈ (0,∞). In addition, hcd satisfies the bounds350

0 ≤ hcd (t; δ, q) ≤ hqd (t;β = δ, q) , ∀t ∈ [t0 = 0, T ] , (3.23)351

where hqd (t;β, q) is given by (3.14). See Appendix A.4 for a proof of these properties.352

For the purposes of interpreting the subsequent results, the key intuition is that the CD investor implementing353

(3.18) can be viewed as pursuing (at time t) a targeted level of W ∗cd (t; δ) given by gcd (t; δ) · Ŵ (t), qualitatively354

similar to the case of the QD investor pursuing a targeted level of eβT · Ŵ (t). However, unlike the QD investor355

implementing a constant multiplier, the CD investor uses a multiplier gcd (t; δ) that increases over time up to356

a maximum of eδT , always remaining within the bounds (3.22). Therefore, if we were to compare the CD (δ)357

and QD (β = δ) optimal controls, (3.22) shows that the CD investor has a smaller implicit benchmark outper-358

formance target throughout the investment time horizon, with the difference likely to be especially pronounced359

early in the investment time horizon (t close to t0 = 0).360

With this intuition in mind, we now present some closed-form comparison results for the QD (β)- and361

CD (δ)-optimal investment strategies.362

3.4 Comparison of investment strategies363

To lighten notation for the analysis of this subsection, we suppress the dependence of the optimal controls on364

X∗k, k ∈ {cd, qd}, and denote the optimal allocation to the risky assets simply by365

%∗qd
(
t,X∗qd (t;β) ;β

)
:= %∗qd (t;β) =

(
%∗qd,k (t;β) : k = 1, ..., Nr

a

)
, (3.24)366

%∗cd (t,X∗cd (t; δ) ; δ) := %∗cd (t; δ) =
(
%∗cd,k (t; δ) : k = 1, ..., Nr

a

)
. (3.25)367

Similarly, for the benchmark, we suppress dependence on Ŵ (t) and use the notation %̂
(
t, Ŵ (t)

)
= (%̂k (t) : k = 1, ..., Nr

a ).368

We emphasize that this is just for convenience, as the benchmark strategy is not required to be deterministic369

(see Assumption 3.2).370
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For the subsequent analysis, it is helpful to define the total allocation by each strategy to the risky asset371

basket as372

R∗qd (t;β) =

Nra∑
k=1

%∗qd,k (t;β) , R∗cd (t; δ) =

Nra∑
k=1

%∗cd,k (t; δ) , R̂ (t) =

Nra∑
k=1

%̂k (t) . (3.26)373

In the case of continuous-time mean-variance optimization (i.e. without a benchmark present), it can be374

shown that the optimal risky basket composition does not depend on the state of the system (Zhou and Li375

(2000)), whereas the QD-optimal risky asset basket composition is only weakly dependent on the state in that376

particular ratios involving the risky asset allocations remain constant (Van Staden et al. (2023)). The following377

corollary can be interpreted as showing that in the case of the CD-optimal investment strategy, the risky asset378

basket composition is also only weakly dependent on the state of the system.379

Corollary 3.6. (Risky asset basket ratios) Let Assumption 3.1, Assumption 3.2 and wealth dynamics (3.11)-380

(3.12) hold. Note that W ∗cd (t; δ) ,W ∗qd (t;β) and R̂ (t) represent information known to the investor at time t. For381

any values of β, δ > 0, the total optimal risky asset basket allocations R∗cd (t; δ) and R∗qd (t;β) can be obtained382

from the following constant ratios,383

W ∗cd (t; δ) · R∗cd (t; δ)− gcd (t; δ) Ŵ (t) · R̂ (t)[
gcd (t; δ) Ŵ (t) + hcd (t; δ, q)

]
−W ∗cd (t; δ)

=
W ∗qd (t;β) · R∗qd (t;β)− eβT Ŵ (t) · R̂ (t)[
eβT Ŵ (t) + hqd (t;β, q)

]
−W ∗qd (t;β)

384

=

Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k
. (3.27)385

For any values of β, δ > 0, the allocation within each risky asset basket to asset i ∈ {1, ..., Nr
a} can be determined

from the following constant ratios,

W ∗cd (t; δ) · %∗cd,i (t; δ)− gcd (t; δ) Ŵ (t) %̂i (t)

W ∗cd (t; δ) · R∗cd (t; δ)− gcd (t; δ) Ŵ (t) · R̂ (t)
=
W ∗qd (t;β) · %∗qd,i (t;β)− eβT Ŵ (t) · %̂i (t)

W ∗qd (t;β) · R∗qd (t;β)− eβT Ŵ (t) · R̂ (t)

=

[
(Σ + Λ)

−1
µ̃
]
i∑Nra

k=1

[
(Σ + Λ)

−1
µ̃
]
k

. (3.28)

Proof. In (3.27)-(3.28), [v]k denotes the kth component of the vector v. The results follow from combining the386

results of Proposition 3.3, Proposition 3.5 and (3.26).387

Proposition 3.27 shows that as a result of the constant ratios (3.27)-(3.28), it is sufficient to consider a single388

well-diversified stock index (i.e. a single “risky asset”) when illustrating the analytical solutions in Subsection389

5.2, as this would give the necessary intuition regarding the behavior of these closed-form optimal strategies.390

This intuition is helpful for understanding the behavior of the strategies when the conditions of Proposition 3.27391

no longer hold, such as when applying multiple investment constraints in the results of Subsection 5.3, where392

multiple risky assets are considered.393

While the results of Corollary 3.6 are general in that, subject to the stated assumptions, (3.27)-(3.28) hold394

for any values of β, δ > 0, properties such as (3.22) and (3.23) suggest that the QD- and CD-optimal investment395

strategies exhibit a number of differences over time. To analyze the strategies in more detail, a reasonable396

basis for the comparison is required (i.e. specific choices of the values of β and δ), and two possibilities are397

immediately available:398

(i) Comparing investment strategies on the basis of equal expectation of terminal wealth: the parameters δE399

and βE are selected for the CD
(
δ = δE

)
and QD

(
β = βE

)
problems, respectively, such that400

Et0,w0

%∗
cd

[
W ∗cd

(
T ; δ = δE

)]
≡ Et0,w0

%∗
qd

[
W ∗qd

(
T ;β = βE

)]
≡ E . (3.29)401

While (3.29) provides a very intuitive basis for comparing strategies and wealth distributions (see for402

example Van Staden et al. (2021)), we show in Appendix B.1 (Proposition B.2) that (3.29) also implies403

that404

δE > βE . (3.30)405
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However, in general we have to solve numerically for the parameter values δE and βE satisfying (3.29).406

Hence obtaining analytically tractable comparison results on the basis of (3.29) is very challenging.407

(ii) Comparing investment strategies on the basis of equal parameters δ = β: while comparing the results408

of the CD (δ) and QD (β = δ) problems are also intuitive due to the role of these parameters in their409

respective objective functions, we show in Appendix B.1 (Proposition B.1) that setting δ = β implies that410

Et0,w0

%∗
cd

[W ∗cd (t; δ)] < Et0,w0

%∗
qd

[
W ∗qd (t;β = δ)

]
, ∀t ∈ (t0, T ] . (3.31)411

As a result, (3.31) implies that for example the comparison of terminal wealth distributions will be412

significantly less intuitive if we simply set δ = β .413

Since these are clearly distinct but reasonable possibilities for comparing strategies, we proceed as follows: since414

the assumption of equal parameters (δ = β) makes the comparison of investment strategies amenable to analysis,415

we set δ = β in the derivation of analytical comparison results in the remainder of this section. However, we416

use δE > βE to compare results on the basis of (3.29) in the numerical results of Section 5 below. Finally, in417

Appendix B, we combine both possibilities by comparing the results of the CD
(
δE
)
, CD

(
δ = βE

)
and QD

(
βE
)

418

problems, concluding that the difference
(
δE − βE

)
> 0 in (3.30) is typically sufficiently small such that the419

conclusions from the analytical results (obtained by setting δ = β) still remain qualitatively accurate regardless420

of the basis of comparison.421

Proposition 3.7 compares the CD (δ)-optimal and QD (β = δ)-optimal risky asset basket allocations at the422

two endpoints of the investment time horizon (t = t0 ≡ 0 and t = T ). As will be discussed in Section 5,423

Proposition 3.7 is particularly helpful in explaining the respective asset allocation profiles over time, as well as424

the resulting out-of-sample investment results.425

Proposition 3.7. (Comparison - allocation to risky asset basket: CD (δ) and QD (β = δ)) Suppose that As-426

sumption 3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12) are applicable. Recall the investment time427

horizon is given by t ∈ [t0 = 0, T ].428

At time t = t0, if the total benchmark risky asset basket allocation satisfies R̂ (t0) =
∑Nra
k=1 %̂k (t0, w0) ≥ 0,429

we have430

R∗qd (t0;β = δ) > R∗cd (t0; δ) . (3.32)431

At time t = T , we have432

Et0,w0

%∗
qd

[
W ∗qd (T ;β = δ) · R∗qd (T ;β = δ)

]
< Et0,w0

%∗
cd

[W ∗cd (T ; δ) · R∗cd (T ; δ)] . (3.33)433

Proof. See Appendix B.2.434

Note that Proposition 3.7 does not require any information regarding the functional form of the benchmark435

strategy %̂
(
t, Ŵ (t)

)
, while (3.32) specifies only a very weak condition, namely that R̂ (t0) > 0.436

Proposition 3.7 therefore shows that compared to the QD(β = δ)-optimal strategy, the CD(δ)-optimal strat-437

egy allocates less wealth to the risky asset basket early in the investment time horizon (t = t0), but is expected438

to allocate more wealth to the risky asset basket at maturity (t = T ). Comparing the QD- and CD-optimal439

allocations to individual risky assets, we have the following corollary to Proposition 3.7.440

Corollary 3.8. (Comparison - allocation to risky asset i ∈ {1, ..., Nr
a}: CD (δ) and QD (β = δ)) Suppose441

that Assumption 3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12) are applicable. For any risky asset442

i ∈ {1, ..., Nr
a}, the following comparison results hold.443

At time t = t0, if the benchmark allocation to risky asset i ∈ {1, ..., Nr
a} satisfies %̂i (t0, w0) ≥ 0, we have444

%∗qd,i (t0;β = δ) > %∗cd,i (t0; δ) . (3.34)445

At time t = T , we have446

Et0,w0

%∗
qd

[
W ∗qd (T ;β = δ) · %∗qd,i (T ;β = δ)

]
< Et0,w0

%∗
cd

[
W ∗cd (T ; δ) · %∗cd,i (T ; δ)

]
. (3.35)447

Proof. See Appendix B.3.448
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In the numerical results of Section 5, we demonstrate that even when the assumptions of this section (e.g.449

Assumption 3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12)) no longer hold, the conclusions regard-450

ing the relative risky asset allocation profiles given in Proposition 3.7 and Corollary 3.8 remain qualitatively451

applicable, with important implications for the out-of-sample benchmark outperformance of the strategies.452

453

3.5 The limits of benchmark outperformance454

As discussed in the Introduction, the benchmark strategies %̂ chosen in practice by large pension funds are455

typically simple constant proportion investment strategies. However, it is worth investigating the feasibility of456

outperforming a benchmark strategy that is already “better” in some sense than a constant proportion strategy.457

This would naturally require the specification of the preferred alternative benchmark strategy, as well as the458

sense in which it can be considered “better” than a standard constant proportion benchmark strategy.459

For purposes of concreteness, in this section we consider the QD- and CD-optimal investment strategies460

themselves as benchmark strategies to be outperformed. While outperforming a constant proportion benchmark461

using the QD- and CD-optimal strategies is not too challenging (see Section 5), the subsequent results show that462

outperforming benchmark strategies of increasing sophistication could require taking on more risk. Specifically,463

as shown in the numerical results of Section 5, taking on more risk in the sense of increasing the allocation to464

the risky asset basket unsurprisingly also increases the likelihood of ultimately underperforming the benchmark.465

To gain the necessary intuition, we continue working under the stylized assumptions of this section (we466

emphasize that these assumptions are relaxed in Section 4 and Section 5), and introduce the following definition.467

Definition 3.1. (m-compounded optimal investment strategies) Suppose that a benchmark strategy %̂ satisfying468

Assumption 3.2 is given. Fix values of β > 0 and δ > 0. Under Assumption 3.1 and wealth dynamics (3.11)-469

(3.12), the QD (β)-optimal strategy %∗qd and CD (δ)-optimal strategy %∗cd are therefore available as a result of470

Propositions 3.3 and 3.5, respectively. Let %[0]∗qd := %∗qd and %[0]∗cd := %∗cd for m ≡ 0. For general m ∈ N, define471

the m-compounded QD (β)-optimal strategy %[m]∗
qd as the QD-optimal strategy as per Proposition 3.3 using the472

(m− 1)-compounded QD (β)-optimal strategy %[m−1]∗qd as its benchmark strategy to be outperformed. Similarly,473

we define the m-compounded CD (δ)-optimal strategy %[m]∗
cd as the CD-optimal strategy as per Proposition 3.5474

using the (m− 1)-compounded CD (δ)-optimal strategy %[m−1]∗cd as its benchmark strategy to be outperformed.475

In other words, Definition 3.1 posits the following stylized situation: from a given benchmark strategy476

%̂ (which may be a constant proportion strategy, but this is not a requirement), the corresponding QD- and477

CD-optimal investment strategies are constructed, giving %[m=0]∗
qd = %∗qd and %

[m=0]∗
cd = %∗cd. These QD- and CD-478

optimal strategies are then in turn used as the “benchmark strategies” to be substituted into the expressions for479

the QD- and CD-optimal controls ((3.13) and (3.18), respectively), which gives the (m = 1)-compounded optimal480

investment strategies %[m=1]∗
qd and %[m=1]∗

cd . Under the stylized assumptions of this section, nothing prevents the481

indefinite continuation of this recursive substitution, so that we therefore arrive at the m-compounded optimal482

investment strategies %[m]∗
qd and %[m]∗

cd for arbitrary m ∈ N as per Definition 3.1. The following proposition483

provides the closed-form expressions for the m-compounded investment strategies.484

Proposition 3.9. (m-compounded QD- and CD-optimal strategies) We assume that Assumption 3.1, Assump-485

tion 3.2 and wealth dynamics (3.11)-(3.12) are applicable. The optimal fraction of the investor’s wealth to be486

invested in risky asset i ∈ {1, ..., Nr
a} according to the m-compounded QD-optimal investment strategy for any487

m ∈ N is given by the ith component of the vector %[m]∗
qd , where488

W
[m]∗
qd

(
t−;β

)
· %[m]∗

qd

(
t,X

[m]∗
qd

(
t−;β

)
;β
)

489

=

[(
e(m+1)βT − 1

eβT − 1

)
· hqd (t;β, q)−

(
W

[m]∗
qd

(
t−;β

)
− e(m+1)βT Ŵ

(
t−
))]
· (Σ + Λ)

−1
µ̃490

+e(m+1)βT Ŵ
(
t−
)
· %̂
(
t, Ŵ

(
t−
))
. (3.36)491

The optimal fraction of the investor’s wealth to be invested in risky asset i ∈ {1, ..., Nr
a} according to the492

m-compounded CD-optimal investment strategy for any m ∈ N is given by the ith component of the vector %[m]∗
cd ,493

where494
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W
[m]∗
cd

(
t−; δ

)
· %[m]∗

cd

(
t,X

[m]∗
cd

(
t−; δ

)
; δ
)

495

=

[(
(gcd (t; δ))

m+1 − 1

gcd (t; δ)− 1

)
· hcd (t; δ, q)−

(
W

[m]∗
cd

(
t−; δ

)
− (gcd (t; δ))

m+1
Ŵ
(
t−
))]
· (Σ + Λ)

−1
µ̃496

+ (gcd (t; δ))
m+1

Ŵ
(
t−
)
· %̂
(
t, Ŵ

(
t−
))
. (3.37)497

In (3.36) and (3.37), W [m]∗
qd (t;β) andW [m]∗

cd (t; δ) and denote the investor’s wealth processes (3.11) under the m-498

compounded QD- and CD-optimal controls, respectively, while X [m]∗
qd (t; δ) =

(
W

[m]∗
qd (t; δ) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
499

and X [m]∗
cd (t; δ) =

(
W

[m]∗
cd (t; δ) , Ŵ (t) , %̂

(
t, Ŵ (t)

))
.500

Proof. See Appendix B.4.501

Recall from Proposition 3.3 that the QD-optimal strategy (i.e. %[m=0]∗
qd = %∗qd) can be interpreted as pursuing502

the implicit wealth target eβT Ŵ (t) at time t, while the CD-optimal strategy (%[m=0]∗
cd = %∗cd) can be interpreted503

as setting an implicit wealth target of gcd (t; δ) Ŵ (t) at time t. Therefore, setting contributions to zero for504

simplicity, Proposition 3.9 shows that the m-compounded QD-optimal strategy %[m]∗
qd and m-compounded CD-505

optimal investment strategy %[m]∗
cd could be interpreted as simply pursuing significantly more aggressive implicit506

wealth targets at time t, namely
(
eβT

)m+1
Ŵ (t) and (gcd (t; δ))

m+1
Ŵ (t), respectively. This implies that we507

can obtain the necessary intuition regarding performance of QD- and CD-optimal strategies against increasingly508

sophisticated benchmark strategies by simply making the outperformance target more aggressive against for509

example a constant proportion benchmark strategy %̂.510

The forms of the m-compounded QD-optimal and CD-optimal strategies as per Proposition 3.3 imply511

that results analogous to Corollary 3.6, Proposition 3.7 and Corollary 3.8 can be derived for comparing the512

m-compounded strategies. However, it is potentially far more informative to compare the m-compounded513

QD-optimal and original QD-optimal strategy, and the m-compounded CD-optimal and original CD-optimal514

strategy, respectively, since this would clarify how the strategies behave when faced with more sophisticated515

benchmark strategies. To this end, similar to the risky asset basket definitions for the original strategies in516

(3.26), we define the total risky asset basket allocation for the m-compounded optimal strategies as517

R[m]∗
qd (t;β) =

Nra∑
k=1

%
[m]∗
qd,k (t;β) , and R[m]∗

cd (t; δ) =

Nra∑
k=1

%
[m]∗
cd,k (t; δ) . (3.38)518

The following proposition (Proposition 3.10) compares selected aspects of the m-compounded and original519

optimal strategies that are amenable to closed-form analysis. Note that the comparisons of Proposition 3.10520

require that the (original) benchmark strategy %̂ is at least economically plausible, in the sense that a limit is521

placed on the total expected amount of short-selling of risky assets by the benchmark (see condition (B.1) in522

Appendix B.5 for an additional details and discussion).523

Proposition 3.10. (Optimal and m-compounded optimal strategies) Suppose that Assumption 3.1, Assumption524

3.2 and wealth dynamics (3.11)-(3.12) are applicable. In addition, assume that the given benchmark strategy P̂525

in (3.1) satisfies condition (B.1). Then the QD- and CD-optimal strategies as per Propositions 3.3 and 3.5 are526

outperformed in expectation by the corresponding m-compounded strategies as per Definition 3.1, in the sense527

that for any m ∈ N and t ∈ (t0, T ],528

Et0,w0

%
[m]∗
qd

[
W

[m]∗
qd (t;β)

]
> Et0,w0

%∗
qd

[
W ∗qd (t;β)

]
, and Et0,w0

%
[m]∗
cd

[
W

[m]∗
cd (t; δ)

]
> Et0,w0

%∗
cd

[W ∗cd (t;β)] . (3.39)529

Furthermore, at time t = t0, if the total benchmark risky asset basket allocation satisfies R̂ (t0) =
∑Nra
k=1 %̂k (t0, w0) ≥530

0, the QD- and CD-optimal strategies allocate proportionally less wealth to the total risky asset basket than their531

corresponding m-compounded QD- and CD-optimal strategies. Specifically, for any m ∈ N, we have532

R[m]∗
qd (t0;β) > R∗qd (t0;β) , and R[m]∗

cd (t0; δ) > R∗cd (t0; δ) . (3.40)533

Proof. See Appendix B.5.534
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An informal interpretation of Proposition 3.10 is that the m-compounded optimal strategies, while perform-535

ing well in expectation (see (3.39)), does so by taking on more risk in the sense of increasing the allocation to536

the risky asset basket (see (3.40)). Note that while (3.40) is only proven at time t = t0 in these closed-form537

results, numerical experiments (see Section 5) show that this is typical behavior for more aggressive benchmark538

outperformance targets also at times t ∈ (t0, T ].539

To conclude this section, we recall that Proposition 3.9 suggested that the outperformance against more540

sophisticated benchmark strategies can be assessed by considering more aggressive outperformance targets,541

while Proposition 3.10 shows that these more aggressive outperformance targets are achieved by taking on more542

risk. Within the framework of this section, taking on more risk is always feasible, since trading is allowed to543

continue in the event of insolvency and unlimited leverage is allowed. This is clearly not possible in more realistic544

circumstances, such as when leverage is restricted and trading in insolvency is ruled out. As a result, not only545

does this show the limitations and real trade-offs involved in benchmark outperformance in certain settings,546

but it also clearly illustrates the need to consider the numerical solutions of the outperformance problems when547

multiple investment constraints are considered, which we now discuss.548

4 Numerical solutions549

While the analytical results of Section 3 provide valuable intuition in more realistic investment settings when550

discrete rebalancing and multiple investment constraints are applicable (as confirmed by the results of Section551

5), in such settings the solution techniques of Section 3 are typically no longer applicable, and therefore a552

numerical solution technique would be required.553

In this section, we start by formulating a more realistic investment setting, then proceed to summarize the554

preferred neural network-based numerical solution approach to solve the QD and CD problems, which does not555

require assumptions regarding the parametric dynamics of the underlying assets, is entirely data-driven, and556

can handle discrete rebalancing and multiple investment constraints.557

4.1 Discrete rebalancing with investment constraints558

Instead of continuously rebalancing the portfolio in during the investment time horizon [t0 = 0, T ], we assume559

a given set T of Nrb discrete rebalancing times,560

T = { tn = n∆t|n = 0, ..., Nrb − 1} , ∆t = T/Nrb, (4.1)561

where the assumption of equal spacing is used for notational convenience. At each rebalancing time tn ∈ T , a562

given amount of cash q (tn) is contributed to the portfolio. Note that the investor and benchmark strategies563

remain of the form (2.1), where T is now given by (4.1).564

In this solution approach presented below, there is no requirement that the parametric dynamics of the Na565

underlying assets (such as (3.5) and (3.10)) should be specified. Instead, the approach simply requires that at566

each time tn+1 ∈ T ∪T , the return on each asset i ∈ {1, .., Na} over the time interval [tn, tn+1], which is denoted567

by Ri (tn), is observabler, and a set of independent return sample paths over the investment horizon is given.568

As discussed below, for training and testing purposes (i.e. the solution of the problem and the out-of-sample569

testing of the resulting strategy), the returns Ri (tn) can be obtained by for example stationary block bootstrap570

resampling, which allows for the consideration of both serial correlation and cross-correlation of asset returns.571

Using the general formulation of Section 2, the investor and benchmark wealth dynamics are respectively given572

by573

W
(
t−n+1

)
=

[
W
(
t−n
)

+ q (tn)
]
·
Na∑
i=1

pi
(
tn,X

(
t−n
))
· [1 +Ri (tn)] , (4.2)574

Ŵ
(
t−n+1

)
=

[
Ŵ
(
t−n
)

+ q (tn)
]
·
Na∑
i=1

p̂i

(
tn, X̂

(
t−n
))
· [1 +Ri (tn)] , (4.3)575

where n = 0, ..., Nrb−1 andW
(
t−0
)

= Ŵ
(
t−0
)

:= w0 > 0. The minimal form of the information incorporated by576

the investor’s strategy is X (tn) =
(
W (tn) , Ŵ (tn)

)
, although this can be augmented with additional market577

information without difficulty (Van Staden et al. (2023)).578
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As is typical in the case of many active funds, we assume the investor has investment constraints of no short579

selling and no leverage allowed, resulting in sets of admissibility for the investor strategy P given by580

A = {P = {p (tn,X (tn)) : tn ∈ T }|p (tn,X (tn)) ∈ Z, ∀tn ∈ T } , (4.4)581

where Z =

{
(y1, ..., yNa) ∈ RNa :

Na∑
i=1

yi = 1 and yi ≥ 0 for all i = 1, ..., Na

}
. (4.5)582

The investor’s wealth remains non-negative given (4.2), (4.4)-(4.5) and w0 > 0.583

Solving investment problems (2.2) and (2.4) (note that we now focus on the discrete-time formulation of the584

QD problem) subject to these constraints requires a numerical solution technique, which we now discuss.585

4.2 Neural network solution approach586

To solve problems of the form (2.2) and (2.4) numerically, we use an existing neural network-based approach587

that does not rely on dynamic programming (Ni et al. (2022); Van Staden et al. (2023)). This approach, which588

is briefly summarized in this section, offers some clear advantages over competing approaches to solve similar589

problems, such as the class of Reinforcement Learning (RL) algorithms (see for example Dixon et al. (2020);590

Gao et al. (2020); Lucarelli and Borrotti (2020); Park et al. (2020)):591

(i) The investment strategy is approximated directly using a neural network (NN), and we do not require dy-592

namic programming (DP) based techniques such as RL to solve the benchmark outperformance problems.593

In particular, the problem of error amplification of the high-dimensional conditional expectation functions594

over value iterations associated with DP-based techniques (see for example Li et al. (2020); Tsang and595

Wong (2020); Wang and Foster (2020)) is avoided entirely. In addition, it can be shown under some con-596

ditions that problems of the form (2.2) and (2.4) have optimal controls that are relatively low dimensional597

relative to the objective functional (Van Staden et al. (2023)). Therefore, the direct approximation of the598

control can be considered a more efficient numerical solution approach. In somewhat different settings,599

the approach of solving for the control directly without the use of DP techniques has also been suggested600

in Buehler et al. (2019); Han and Weinan (2016); Reppen et al. (2022).601

(ii) As discussed below, the rebalancing time tn serves as an input (or feature) for the NN, which ensures that602

the number of parameters of the NN does not scale with the number of rebalancing events. In addition,603

use of tn as a feature guarantees the smooth behavior of the control with respect to time in the limit as604

∆t→ 0, which is a practical requirement of a reasonable investment policy (see Van Staden et al. (2023)).605

These benefits place our approach in contrast to the approaches of for example Buehler et al. (2019); Han606

and Weinan (2016); Huré et al. (2021); Tsang and Wong (2020).607

A detailed description of the NN-based numerical solution approach can be found in the literature (Van Staden608

et al. (2023)), while some algorithm implementation details specifically for the QD and CD problems are given609

in Appendix E. We therefore only briefly highlight some key aspects of the approach in this section.610

The numerical solution of problems (2.2) and (2.4) requires the solution of the feedback control (tn,X (tn))→611

P (tn,X (tn)) := p (tn,X (tn)) ∈ Z,∀tn ∈ T . We approximate the control function p(t,X) by a NN F (t,X(t);θ) ≡612

F (·,θ), where θ ∈ Rηθ is the set of NN parameters (i.e. the NN weights and biases), in other words613

p(t,X(t)) ' F (t,X(t);θ) ≡ F (·,θ). (4.6)614

In terms of the structure of the NN F , we use a fully-connected feed-forward NN with at least 3 inputs615

(or features), namely (tn,X (tn)) =
(
tn,W (tn) , Ŵ (tn)

)
, while additional trading signals can be incorporated616

as additional features if required. The number of output nodes correspond to the number of assets, while a617

softmax activation function in the output layer guarantees outputs in the set Z ⊂ RNa . Given any particular618

input (tn,X (tn)), the NN therefore automatically generates the asset allocation p (tn,X (tn)) ∈ Z as per (4.6),619

so that problems (2.2) and (2.4) now can be solved respectively as the unconstrained optimization problems620

inf
θ∈Rηθ

Et0,w0

F (·;θ)

[(
W (T ;θ)− eβT Ŵ (T )

)2]
, inf

θ∈Rηθ
Et0,w0

F (·;θ)

[
Nrb∑
n=0

(
W
(
t−n ;θ

)
− eδtnŴ

(
t−n
))2]

. (4.7)621

The expectations in (4.7) are approximated by using a finite set of samples from the set Y =
{
Y (j) : j = 1, ..., Nd

}
,622

where each Y (j) represents a time series of joint asset return observations Ri, i ∈ {1, .., Na}, observed at each623
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tn ∈ T . Conventionally, Y is referred to as the “training” data set for the NN (Goodfellow et al. (2016)), and624

we discuss its construction in more detail below. For a given NN parameter vector θ ∈ Rηθ and returns path625

Y (j) ∈ Y , dynamics (4.2)-(4.3), control (4.6) gives the corresponding wealth outcomesW (j) (tn;θ) and Ŵ (j) (tn)626

for tn ∈ T , the following approximations to (4.7) are solved627

min
θ∈Rηθ

 1

Nd

Nd∑
j=1

(
W (j) (T ;θ)− eβT Ŵ (j) (T )

)2 , min
θ∈Rηθ

 1

Nd

Nd∑
j=1

Nrb∑
n=0

(
W (j)

(
t−n ;θ

)
− eδtnŴ (j)

(
t−n
))2 .

(4.8)628

Solving (4.8) using stochastic gradient descent, we obtain the optimal parameter vectors θ∗k, k ∈ {qd, cd}.629

For further details regarding hyperparameters and ground truth solutions, please refer to Appendix E.630

Using θ∗k, k ∈ {qd, cd}, the resulting optimal strategies p∗k(·,X(·)) ' F (·,θ∗k), k ∈ {qd, cd} are implemented631

on a testing data set Y test (which is similar in structure to Y but typically contains different data or data-632

generating assumptions) to assess the out-of-sample performance of the respective strategies.633

As for the construction of the training and testing data sets (Y and Y test), while the NN solution methodology634

as outlined above is agnostic as to the construction technique underlying these data sets, it is clearly of great635

practical significance for solving and assessing the performance of the strategies. For purposes of confirming636

whether the numerical approach has been implemented correctly, it is possible to assume parametric dynamics for637

the underlying assets and generate Y by sampling Ri (tn) using Monte Carlo simulation, so that the resulting638

numerical solutions under certain conditions can be compared to the corresponding analytical solutions (see639

Appendix E). However, in more practical applications as well as in the results of Section 5.3, practitioners may640

prefer to use historical data directly without imposing any parametric assumptions, so that some augmentation641

technique is necessarily required due to the sparsity of historical financial data for long-term investments.642

In this paper, for illustrative purposes we use stationary block bootstrap resampling (Politis and Romano643

(1994)) to generate Y and Y test from different historical time periods. We emphasize that the use of block boot-644

strap resampling is popular with practitioners (Cavaglia et al. (2022); Cogneau and Zakalmouline (2013); Dichtl645

et al. (2016); Scott and Cavaglia (2017); Simonian and Martirosyan (2022)), as well as academics (Anarkulova646

et al., 2022), and is designed for weakly stationary time series with serial dependence. While bootstrap sampling647

methods have been proposed for resampling non-stationary time series (Politis (2003), Politis et al. (1999)), this648

is not explored further in the results of Section 5.649

5 Illustrative investment results650

In this section, the results associated with the QD- and CD-optimal investment strategies are illustrated first651

using closed-form solutions (Section 3) under stylized assumptions, and then using numerical solutions (Section652

4) associated with the more realistic setting of Subsection 4.1.653

To ensure that the examples remain relevant in practice, we assume that the investor constructs portfolios to654

outperform standard constant proportion benchmarks based on a broad stock market index and Treasury bills655

and bonds, similar to the benchmarks used by active portfolio managers for government pension plans (Canadian656

Pension Plan (2022); Government Pension Fund Global (2022)). In constructing strategies to outperform these657

benchmarks, we consider cases of modest as well as more aggressive benchmark outperformance targets compared658

to what is typically seen in practice, since more aggressive outperformance targets could be used as a proxy for659

assessing the optimal strategy behavior against benchmarks of increasing sophistication (see Subsection 3.5).660

We make the assumption that the investor may not necessarily be limited to investing in the same underlying661

assets as the benchmark, but is also able to invest in some widely-recognized equity factors (Ang (2014)).662

5.1 Investment scenarios663

The key investment scenario assumptions used for illustrative purposes are summarized in Table 5.1. For closed-664

form solutions, continuous rebalancing is approximated using 3600 time steps during the time horizon of 10665

years. The time horizon is chosen to reflect the concerns of an investor with medium to long-term benchmark666

outperformance requirements.667

668

Table 5.2 provides a summary of the underlying assets and the constant proportion benchmarks considered,669

while more detailed definitions of the assets and associated data sources can be found in Appendix C. Note that670

investor portfolio P0 will be constructed to outperform benchmark BM0 in order to illustrate the closed-form671
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Table 5.1: Key investment scenario assumptions.

Parameter Closed-form solutions
(no constraints)

Numerical solutions
(realistic constraints)

Investment constraints None No short-selling, no leverage allowed
T 10 years 10 years
w0 120 120

Rebalancing frequency Continuous Annual Quarterly
Nrb (# rebalancing events) 3600 10 40

Contributions q = 12 (rate per year) q (tn) = 12, ∀n
(annual contribution)

q (tn) = 3,∀n
(quarterly contribution)

solutions of Section 3. In this case, the broad equity market index (“Market”) plays the role of the single “risky672

asset basket” in the terminology of Subsection 3.4. In contrast, investor portfolio P1 will be constructed to673

outperform benchmark BM1 to illustrate the numerical solutions subject to no short-selling and no leverage674

investment constraints, as outlined in Section 4 .675

Table 5.2: Portfolios “Px”, x ∈ {0, 1} constructed by the investor using assets indicated by “X”, to outperform bench-
marks “BMx”, x ∈ {0, 1} with asset holdings as a percentage of wealth p̂i as indicated. Definitions and data sources of
historical time series are provided in Appendix C.

Assets Investor portfolios Benchmarks
Label Asset description P0 P1 BM0 BM1

T30 30-day Treasury bill X X 30% 15%
B10 10-year Treasury bond X 15%

Market Market portfolio (broad equity market index) X X 70% 70%
Size Portfolio of small stocks X

Value Portfolio of value stocks X

Number of candidate assets (Na): 2 5 2 3

676

As discussed in Subsection 3.4, we will compare investment results on the basis of equal expectations of677

terminal wealth. In particular, the parameters δE and βE are selected for the CD
(
δ = δE

)
and QD

(
β = βE

)
678

problems, respectively, such that679

Et0,w0

P∗
cd

[
W ∗cd

(
T ; δ = δE

)]
≡ Et0,w0

P∗
qd

[
W ∗qd

(
T ;β = βE

)]
≡ E . (5.1)680

The rationale for comparing the results on the basis of equal expectation is discussed in Subsection 3.4, while the681

additional numerical comparison results on the basis of equal parameters (i.e. setting δ = β for both problems682

resulting in different expectations of terminal wealth) reported in Appendix B.6 demonstrate that the main683

qualitative conclusions of this section are not affected by changing the basis of comparison.684

Table 5.3 summarizes the data sets used for the illustration of results, as well as the target value of the685

expectation (5.1) chosen for illustrative purposes. As shown, the historical data periods for data sets DS0,686

DS0b, DS1, DS1b and DS3 are chosen specifically to incorporate periods of high inflation such as 1963-1985,687

since this data might be more relevant to current market conditions than more recent data (e.g. data of the688

last 30 years) associated with atypically low and declining real interest rates. Note that sets DS0b and DS1b689

use the same assumptions as data sets DS0 and DS1, respectively, except that the benchmark outperformance690

targets implied by the chosen values of E for DS0b and DS1b are significantly more aggressive. In particular,691

the target E is in (5.1) is chosen to be some multiple ekT of the benchmark expected value Et0,w0

P̂

[
Ŵ (T )

]
,692

where k is between 1% and 2% to reflect typical practitioner benchmark outperformance targets, whereas DS0b693

and DS1b use values of k ' 2.4%. We also include data sets DS2 and DS2b, not only for illustrating the effect694

the rebalancing frequency on the results, but also to demonstrate the robustness of conclusions when using only695

the most recent data following the popularization of equity factors Size and Value by Fama and French (1992).696

As for data set construction, note that DS0 and DS0b are simulated using specified dynamics for the697

underlying assets of investor portfolio P0 (Table 5.2): the Kou (2002) model is used for the “risky asset”698

(Market), while the “risk free” asset (T30) evolves according to (3.5). The model calibrations and resulting699

parameters are discussed in Appendix C. For all other data sets, we make no parametric model assumptions700

17



regarding the distribution or dynamics of underlying asset returns, and instead use the historical data directly by701

implementing stationary block bootstrap resampling for the construction of data sets (see Politis and Romano702

(1994) and the discussion in Section 4). Note that for all data sets, including in the case of estimation of model703

parameters for DS0, the historical returns time series was inflation-adjusted prior to the construction of the704

data sets (see Appendix C).705

Table 5.3: Data sets, abbreviated as “DSx”, x ∈ {0, 1, 2, 2b, 3} used for the illustration of results. “SBBR” refers to
stationary block bootstrap resampling with expected blocksize (“Exp. blksize”) in months as indicated. The training and
testing data sets consists of Nd = 106 and N test

d = 5× 105 joint paths of asset price returns, respectively.

Data set label DS0 DS0b DS1 DS1b DS2 DS2b DS3
Rebal. frequency Continuous Continuous Annual Annual Annual Quarterly Annual

Data set construction
Model

simulation
Model

simulation
SBBR SBBR SBBR SBBR SBBR

Benchmark BM0 BM0 BM1 BM1 BM1 BM1 BM1
Investor portfolio P0 P0 P1 P1 P1 P1 P1

Training
data set Y

Data period
1963:07 -
2020:12

1963:07 -
2020:12

1963:07 -
2009:12

1963:07 -
2009:12

1995:01 -
2009:12

1995:01 -
2009:12

1963:07 -
1995:12

Exp. blksize
(months)

N/a N/a 6 6 3 3 6

Et0,w0

P̂

[
Ŵ (T )

]
367 367 362 362 384 379 367

E =

Et0,w0
P∗
k

[
W ∗k (T )

] 405 465 400 460 420 420 405

Testing
data set
Y test

Data period N/a N/a
2010:01 -
2020:12

2010:01 -
2020:12

2010:01 -
2020:12

2010:01 -
2020:12

1996:01 -
2020:12

Exp. blksize
(months)

N/a N/a 3 3 3 3 3

706

5.2 Illustration of closed-form solutions707

The closed-form solutions of Section 3 are illustrated using 2 assets, since a risky asset basket (here simply708

referred to as the “risky asset” given by “Market” in Table 5.2) and a risk-free asset (T30 in Table 5.2) are709

sufficient to illustrate the key aspects of the strategies - see Subsection 3.4. As a result, portfolio P0 is constructed710

to outperform benchmark BM0 (Table 5.2), with parameters based on the Kou (2002) model and data set DS0711

- see Table 5.3 and Appendix C.712

Figure 5.1 compares the 95th and 50th percentiles of the proportion of wealth invested in the risky asset713

according to the closed-form CD- and QD-optimal strategies, which illustrate the results of Proposition 3.7 and714

Corollary 3.8. In particular, we observe that the CD strategy does not take similarly extreme positions as the715

QD strategy early in the investment time horizon.716
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(a) Proportion of wealth in risky asset: 95th percentiles
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(b) Proportion of wealth in risky asset: 50th percentiles

Figure 5.1: Closed-form solutions, no constraints, investor portfolio P0, benchmark BM0, data set DS0: Selected
percentiles of the optimal proportion of wealth in the risky asset according to each strategy.

717
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Figure 5.2(a) shows that despite the fundamental differences in investment strategies illustrated in Figure718

5.1, the terminal wealth distributions associated with the closed-form investment strategies are nearly identical.719

While surprising, it is not uncommon for significantly different strategies to nevertheless yield very similar720

final wealth distributions - see for example Dang and Forsyth (2016) where such strategies are described as721

“non-unique” strategies.722

However, Figure 5.2(b) illustrates that the probability that the investor would report outperforming the723

benchmark during the investment time horizon is slightly higher for the QD strategy than for the CD strategy,724

although the overall levels of outperformance in Figure 5.2(b) are unrealistically high due to the stylized assump-725

tions used in deriving the closed-form solutions. Note that there is no contradiction in obtaining nearly identi-726

cal wealth distributions (Figure 5.2(a)) together with differences in benchmark outperformance (Figure 5.2(b)),727

since the latter offers pathwise comparisons relative to the benchmark while the former presents terminal wealth728

distributions only. Mathematically similar marginal (wealth) distributions may be associated with different joint729

distributions, and Figure 5.2(b) illustrates one key aspect of the joint distribution ofW ∗j (t) , Ŵ (t) , j ∈ {cd, qd}.730

For assessing the implications of setting a significantly more aggressive benchmark outperformance target,
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Figure 5.2: Closed-form solutions, no constraints, investor portfolio P0, benchmark BM0, data set DS0: (a) Simulated
CDFs of the benchmark terminal wealth Ŵ (T ) , and investor’s terminal wealth W ∗j (T ),j ∈ {cd, qd}, where W ∗j (T )
has expected value E = 405, regardless of strategy. (b) Probability of benchmark outperformance over time, t →
P t0,w0
P∗
qd

[
W ∗j (t) > Ŵ (t)

]
, j ∈ {cd, qd}.

731

Figure 5.3 compares, for data sets DS0 and DS0b, the 95th percentiles of the proportion of wealth in the risky732

asset basket as well as the probability of trading in insolvency over time. While the relative behavior of the QD-733

and CD-optimal strategies in terms of the risky asset basket allocation in the case of DS0b remains qualitatively734

similar to the case of DS0 (Figure 5.3(a)), it is clear that the more aggressive target for DS0b results in the735

completely unrealistic behavior of the closed-form investment strategies, where for example the QD-optimal736

strategy borrows to invest more than four times the total wealth in the risky asset basket around years 1 and 2.737

This is clearly only plausible if unrestricted leverage and trading in insolvency is possible (which is allowed under738

the stylized assumptions of Section 3), with Figure 5.3(b) confirming that the QD strategy relies (under these739

stylized assumptions) more on trading in insolvency than the CD-optimal strategy for most of the investment740

time horizon. As a result, Figure 5.3 clearly illustrates the importance of assessing the behavior of the optimal741

strategies under more realistic investment constraints (Subsection 5.3 below).742

743

However, valuable intuition is gained from the closed-form solutions. In particular, we observe that while744

the terminal wealth distributions are nearly identical (Figure 5.2(a)), the risky asset basket allocation of the745

CD-optimal strategy has less variation across time (Figure 5.1), with more aggressive outperformance targets746

resulting in larger allocations to the risky asset basket (Figure 5.3(a)). While these observations remain ap-747

plicable in the case of numerical solutions under more realistic assumptions, we will see that the benchmark748

outperformance results (Figure 5.2(b)) no longer hold qualitatively out-of-sample when investment constraints749

are applied, with the CD-optimal strategy gaining the advantage.750

5.3 Illustration of numerical solutions751

We now illustrate the investment results using the optimal strategies obtained numerically in the case of discrete752

rebalancing, multiple assets, and investment constraints. These results are obtained using the numerical solution753

approach discussed in Section 4. We emphasize that we make no parametric model assumptions regarding the754
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Figure 5.3: Closed-form solutions, no constraints, investor portfolio P0, benchmark BM0, data sets DS0 and DS0b:
Selected percentiles of the optimal proportion of wealth in the risky asset according to each strategy.

distribution or dynamics of underlying asset returns. The results are only illustrated for data set DS1 in Table755

5.3, with key out-of-sample results associated with the other data sets in Table 5.3 provided in Appendix D.756

Note that we continue comparing investment strategies on the basis of equal expectations, (5.3), where the757

same expected value of terminal wealth is obtained on the training data set of the neural network. Additional758

results provided in Appendix B.6 show that comparing results on the basis of equal parameters (δ = β) results759

in qualitatively similar conclusions.760

Figure 5.4 illustrates that in the case of discrete rebalancing and investment constraints, the qualitative761

conclusions from the closed-form solutions still hold (see Figure (5.1)). In particular, since Value and T30762

represents the assets with the highest and lowest standard deviation of returns of the assets in Table 5.2,763

the CD-optimal strategy takes less extreme positions in these assets at key points during the investment time764

horizon.765
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Figure 5.4: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS1: 95th percentiles
of the proportion of wealth invested in Value and T30 over time. Note that the final rebalancing event is at t = T−∆t = 9
years. Other assets are shown in Figure B.3.

766

Figure 5.5 shows that in the case of discrete rebalancing and investment constraints, the terminal wealth767

distributions remain almost identical, both in-sample (training data) and out-of-sample (testing data), despite768

the fact that the underlying investment strategies exhibit the differences illustrated in Figure 5.4 (see Figure769

B.3 for other assets). As in the case of the closed-form solutions (see Figure 5.1), we can view the resulting CD-770

and QD-optimal investment strategies as “non-unique” (Dang and Forsyth (2016)) since they generate nearly771

identical terminal wealth distributions.772

While Figure 5.5 only shows results associated with DS1, the results for other data sets in Table 5.3 are773

similar and illustrated in Appendix D.774

775

Considering the probability of benchmark outperformance over time, Figure 5.6(a) shows that the in-sample776

(training data set) results for the CD- and QD-optimal investment strategies are very similar. However, Figure777

5.6(b) shows that out-of-sample (i.e. for the testing data set), the CD-optimal strategy consistently achieves778

a higher probability of benchmark outperformance during the investment time horizon than the QD-optimal779

strategy, with some “convergence” closer to maturity. While the results in Figure 5.6 are only shown for data780
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Figure 5.5: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS1: CDFs of
terminal benchmark wealth Ŵ (T ) and terminal investor wealth W ∗k (T ), k ∈ {qd, cd}, where the investor terminal
wealth has the same expected value E = 400 on the training data set.

set DS1, the results in Appendix D indicate that the CD-optimal strategy also delivers qualitatively similar781

out-of-sample results to those of Figure 5.6(b) in the case of the other data sets in Table 5.3.
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Figure 5.6: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS1: Probability
of benchmark outperformance over time, t→ P t0,w0

P∗
qd

[
W ∗j (t) > Ŵ (t)

]
, j ∈ {cd, qd}.

782

Figure 5.7 illustrates the implications of using a more aggressive benchmark outperformance target for the783

allocation to Value as well as for the probability of outperformance, with Figure D.4 in Appendix D showing784

the effect on the wealth distributions of more aggressive outperformance targets. In contrast to Figure 5.3(a),
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Figure 5.7: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data sets DS1 and DS1b: 95th
percentile of the proportion of wealth invested in Value over time, as well as the probability of benchmark outperformance
on the testing data sets. Note that the final rebalancing event is at t = T −∆t = 9 years.

785

the allocation to any asset now cannot exceed 100% of the total wealth since no short selling or leverage is786

allowed. Figure 5.7(a) shows that the allocation to Value (the asset index with the highest empirical return787

but also highest standard deviation of returns) is exactly 100% for the QD-optimal strategy and around 90%788

for the CD-optimal strategy when using a significant proportion of the investment time horizon a significantly789

more aggressive benchmark outperformance target in the case of DS1b. This lack of diversification significantly790

reduces the probability of benchmark outperformance, as the comparative results for DS1 and DS1b in Figure791
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5.7(b) show, while increasing both the upside and downside wealth outcomes relative to the benchmark (Figure792

D.4).793

However, it is important to maintain a broader perspective with regards to practical applicability when794

considering the aggressive outperformance target of DS1b, which has been provided for illustrative purposes795

only. Considering instead the case of the fairly modest outperformance target used for DS1, we observe that796

in the case of the out-of-sample results illustrated in Figure 5.6(b), the CD strategy has a ∼85% probability of797

outperforming the benchmark. The median Internal Rate of Return (IRR) for the CD strategy in this case is798

9.39% while the median IRR for the benchmark is 8.22%, which gives a median outperformance of 116 bps in799

the out-of-sample testing data. As a point of reference, the CPP outperformance for the last 5 years was about800

80bps (see CPP 2021 annual report(Canadian Pension Plan, 2021)). This illustrates that the proposed optimal801

strategies do not require overly aggressive outperformance targets in order to yield excellent outperformance802

results.803

In addition, for the portfolio manager with frequent reporting requirements, the CD-optimal strategy of-804

fers some clear advantages compared to the QD-optimal strategy. In particular, the CD-optimal strategy is805

associated with less extreme positions in the riskiest asset early in the investment time horizon (Figure 5.4(a))806

while delivering a higher probability of benchmark outperformance during the investment time horizon in out-807

of-sample testing (Figure 5.6(b)). At the same time, this is achieved without adversely impacting the terminal808

wealth distribution of the CD-optimal strategy relative to that of the QD-optimal strategy (Figure 5.5).809

6 Conclusion810

In this paper, we proposed a novel objective function (the CD objective) for constructing dynamic optimal811

investment strategies that directly target a favorable tracking difference relative to the benchmark at multiple812

points in time during the investment time horizon.813

After presenting closed-form results (derived under stylized assumptions) to gain intuition regarding the814

behavior of the CD-optimal investment strategies, we discussed the numerical solutions of portfolio optimization815

problems in the case of discrete rebalancing and multiple investment constraints.816

Our results demonstrate that in comparison to targeting a favorable tracking difference only at maturity817

via the QD objective, the CD-optimal strategies: (i) deliver very similar terminal wealth distributions both818

in-sample and out-of-sample as the QD strategies, while (ii) requiring less extreme positions in the riskiest819

assets early in the investment time horizon.820

The fact that CD-optimal strategy has a nearly identical terminal wealth distribution as the QD-optimal821

strategy, while its positions in underlying assets imply an improved risk profile across time, illustrates that it is822

insufficient to evaluate risk in a dynamic strategy based on the statistics (or even the entire distribution) of the823

terminal wealth alone. Risk assessment in the strategy itself is relevant, since our numerical results show that824

while the QD-optimal strategy achieves slightly better results in the probability of benchmark outperformance825

in training data, the CD-optimal strategy outperforms the QD-optimal strategy in testing data.826

Our theoretical analysis and empirical investigations illustrate that the proposed CD objective function827

may be attractive for active portfolio managers expected to deliver a favorable tracking difference relative to a828

benchmark while having frequent reporting requirements to stakeholders.829

We leave a comparison of the CD-optimal investment strategies to other benchmark outperformance strate-830

gies in the literature (for example, strategies maximizing the Information Ratio relative to the benchmark) for831

future work.832
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Appendix A: Proofs of key results974

In this appendix, proofs of the key results of Section 3 are presented.975

A.1: Proof of Theorem 3.4976

Fix (t, w, ŵ) ∈ [t0, T ] × R2, δ > 0 as well as the investor strategy % (t) = % (t,X (t)) and benchmark strategy977

%̂ (t) = %̂
(
t, Ŵ (t)

)
, where we omit dependence of the controls on X (t) and Ŵ (t) for notational simplicity.978

Proceeding informally, suppose that the objective functional of problem (3.4),979

J (t, w, ŵ;%) = Et,w,ŵ%

[∫ T

t

(
W (s)− eδsŴ (s)

)2
ds

]
, (A.1)980

is sufficiently smooth. For t ∈ [0, T ) and h > 0 such that t+ h ≤ T , the tower property gives981

Et,w,ŵ%

[∫ t+h

t

dJ
(
s,W (s) , Ŵ (s) ;%

)]
= −Et,w,ŵ%

[∫ t+h

t

(
W (s)− eδsŴ (s)

)2
ds

]
. (A.2)982

Applying Itô’s lemma for jump processes (see for example Oksendal and Sulem (2019)), and taking expec-983

tations, we also have984

Et,w,ŵ%

[∫ t+h

t

dJ
(
s,W (s) , Ŵ (s) ;%

)]
985

= Et,w,ŵ%

[∫ t+h

t

(
∂J

∂t
+
∂J

∂w
·
{
W (s) ·

[
r +α>% (s)

]
+ q
}

+
∂J

∂ŵ
·
{
Ŵ (s) ·

[
r +α>%̂ (s)

]
+ q
})
· ds

]
986

+Et,w,ŵ%

[∫ t+h

t

1

2

(
∂2J

∂ŵ2
· Ŵ 2 (s) (%̂ (s))

>
Σ%̂ (s) +

∂2J

∂w2
·W 2 (s) (% (s))

>
Σ% (s)

)
· ds

]
987

+Et,w,ŵ%

[∫ t+h

t

∂2J

∂w∂ŵ
·W (s) Ŵ (s) (% (s))

>
Σ%̂ (s) · ds

]
988

+Et,w,ŵ%

Nra∑
i=1

λi

∫ t+h

t

[∫ ∞
0

φ
(
s,W

(
s−
)
, Ŵ

(
s−
)
, ξi

)
fξi (ξi) dξi − J

(
W
(
s−
)
, Ŵ

(
s−
)
, s
)]
ds

 ,(A.3)989
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where990

φ
(
s,W

(
s−
)
, Ŵ

(
s−
)
, ξi

)
= J

(
s,W

(
s−
)

+ %i
(
s−
)
W
(
s−
)

(ξi − 1) , Ŵ
(
s−
)

+ %̂i
(
s−
)
Ŵ
(
s−
)

(ξi − 1)
)
.

(A.4)991

Setting (A.2) and (A.3) equal, we proceed informally by dividing by h, taking limits as h ↓ 0, interchanging992

the limit and expectation, and using the dynamic programming principle to establish (3.15).993

Using the preceding results merely as a guide to the intuition as to the form of (3.15), the formal proof of994

(3.15) proceeds by using a suitably smooth test function instead of the objective functional - see for example995

Applebaum (2004); Oksendal and Sulem (2019).996

A.2: Proof of Proposition 3.5997

In the definitions of the functionsD and F in (3.20) and (3.21), respectively, we have emphasized the dependence998

on the parameters δ and q for the purposes of the subsequent analysis. However, for the purposes of this proof,999

we will simply use the notation D (t) := D (t; δ) and F (t) := F (t; δ, q). As a result of Assumption 3.2, we take1000

%̂ as given, so that the quadratic source term
(
w − eδtŵ

)2 in (3.15) suggests an ansatz for the value function1001

Vcd in Theorem 3.4 of the form1002

Vcd (t, w, ŵ, %̂) = A (t)w2 + Â (t) ŵ2 +D (t)wŵ + F (t)w + F̂ (t) ŵ + C (t) , (A.5)1003

where A, Â,D, F, F̂ and C are unknown functions of time. If (A.5) is correct, then the pointwise supremum in1004

(3.15) is attained by %∗cd satisfying the relationship1005 [
w · ∂

2Vcd
∂w2

]
· %∗cd = −

[
∂Vcd
∂w

· (Σ + Λ)
−1
µ̃+ ŵ · ∂

2Vcd
∂w∂ŵ

· %̂
]
. (A.6)1006

Since (A.5) implies that the relevant partial derivatives are of the form1007

∂Vcd
∂w

= 2A (t)w + F (t) +D (t) ŵ,
∂2Vcd
∂w2

= 2A (t) , and
∂2Vcd
∂w∂ŵ

= D (t) , (A.7)1008

respectively, substitution into (A.6) results in the optimal control %∗cd of the form (3.18), where hcd and gcd are1009

given by (3.19). It now only remains to determine the functions A,D and F . Substituting (A.5) and (A.6) into1010

the PIDE (3.15)-(3.16), we obtain the following set of ordinary differential equations (ODEs) for the functions1011

A,D and F on t ∈ [t0, T ],1012

d

dt
A (t) = −1− (2r − η)A (t) , A (T ) = 0, (A.8)1013

d

dt
D (t) = − (2r − η)D (t) + 2eδt, D (T ) = 0, (A.9)1014

d

dt
F (t) = − (r − η)F (t)− 2qA (t)− qD (t) , F (T ) = 0, (A.10)1015

where η is given by (3.9). Solving the ODEs (A.8), (A.9) and (A.10) then results in the functions A,D and F1016

reported in (3.20) and (3.21), respectively.1017

A.3: Properties of gcd1018

The following lemma analyzes the properties of gcd in (3.19) .1019

Lemma A.1. (Properties of gcd) The function gcd (t; δ) = − 1
2D (t; δ) /A (t) in (3.19) has the following properties1020

for t ∈ [t0 = 0, T ] and δ > 0:1021

(i) For a fixed t ∈ [t0 = 0, T ], the function δ → gcd (t; δ) is strictly increasing on δ ∈ (0,∞).1022

(ii) For a fixed δ > 0, the function t→ gcd (t; δ) is strictly increasing on t ∈ [t0, T ].1023

(iii) By continuity,1024

gcd (T ; δ) = eδT . (A.11)1025

26



(iv) gcd (t; δ) admits the following bounds:1026

eδt < gcd (t; δ) < eδT , ∀t ∈ [t0, T ) . (A.12)1027

Proof. The definition (3.19) can be used to obtain the following alternative forms of gcd,1028

gcd (t; δ) = eδt ·
(
e(2r−η+δ)(T−t) − 1

(2r − η + δ) (T − t)

)
·
(

(2r − η) (T − t)
e(2r−η)(T−t) − 1

)
(A.13)1029

= eδ(T+t) ·

(∫ T
t
e(η−2r−δ)udu∫ T
t
e(η−2r)udu

)
. (A.14)1030

To prove property (i) of Lemma A.1, it is sufficient to note that since the following auxiliary function is non-1031

negative and strictly increasing,1032

φcd (y) :=
(ey − 1)

y
, ∀y ∈ R, (A.15)1033

we can use (A.13) to show that for a fixed t ∈ [t0, T ], the function δ → gcd (t; δ) is the product of two non-1034

negative, strictly increasing functions of δ ∈ (0,∞). Property (iii) follows from taking limits as t ↑ T in (A.13).1035

Next, we observe that since δ > 0 and e−δ(u−t) < 1 < eδ(T−u) for u ∈ (t, T ), the monotonicity of (Riemann)1036

integrals imply that1037

0 <

∫ T

t

e(η−2r)ue−δ(u−t)du <

∫ T

t

e(η−2r)udu <

∫ T

t

e(η−2r)ueδ(T−u)du, ∀t ∈ [t0, T ) . (A.16)1038

Re-arranging (A.16) and using the alternative form (A.14) of gcd, we obtain the bounds (A.12) reported in1039

property (iv). Finally, to prove property (ii), we start by observing that we can use (A.14) to obtain1040

d

dt
gcd (t; δ) = δ · gcd (t; δ)− (η − 2r)

e(η−2r)(T−t) − 1

[
eδT − gcd (t; δ)

]
. (A.17)1041

Taking limits in (A.17) as t→ T , we use (A.11) to obtain limt↑T
[
d
dtgcd (t; δ)

]
= 1

2δe
δT > 0, and therefore we only1042

need to show that d
dtgcd (t; δ) > 0 if t < T . In the case where η − 2r > δ (> 0), this follows in a straightforward1043

fashion from the expression (A.17), the bounds (A.12) and the properties of the function (A.15). To show that1044

we also have d
dtgcd (t; δ) > 0 for t < T in the case where η − 2r ≤ δ, we note that (A.14) can be used to show1045

that1046

d

dt
gcd (t; δ) > 0 ⇐⇒ δ (T − t) > (η − 2r − δ) (T − t)[

e(η−2r−δ)(T−t) − 1
] − (η − 2r) (T − t)[

e(η−2r)(T−t) − 1
] , ∀t < T, δ > 0. (A.18)1047

Since we are now only concerned with the case where η− 2r ≤ δ in (A.18), the inequality in (A.18) suggests we1048

consider the properties of the auxiliary function1049

ϕcd (x, y) = y − (x− y)[
e(x−y) − 1

] +
x

[ex − 1]
, ∀x ≤ y, and y > 0. (A.19)1050

Taking limits in (A.19), and noting that x > 0 in a sufficiently small neighborhood of y > 0, it follows that1051

limx↑y ϕcd (x, y) > 0. In the case of the strict inequality x < y, the properties of φcd in (A.15) can again be used1052

to show ϕcd (x, y) > 0. In summary, we therefore have ϕcd (x, y) > 0, ∀x ≤ y and y > 0, and thus by (A.18)1053

implying d
dtgcd (t; δ) > 0, ∀t < T and η − 2r ≤ δ, completing the proof of property (ii).1054

A.4: Properties of hcd1055

The following lemma analyzes the properties of hcd in (3.19) .1056

Lemma A.2. (Properties of hcd) The function hcd (t; δ, q) = − 1
2F (t; δ, q) /A (t) in (3.19) has the following1057

properties for t ∈ [t0 = 0, T ], δ > 0 and q ≥ 0:1058

(i) For fixed values of t ∈ [t0 = 0, T ] and q > 0, the function δ → hcd (t; δ, q) is strictly increasing on1059

δ ∈ (0,∞). If q = 0, hcd (t; δ, q) ≡ 0.1060
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(ii) For fixed values of t ∈ [t0 = 0, T ] and δ > 0, the function q → hcd (t; δ, q) is strictly increasing on1061

q ∈ [0,∞).1062

(iii) By continuity,1063

hcd (T ; δ, q) = 0. (A.20)1064

(iv) hcd (t; δ, q) admits the following bounds:1065

0 ≤ hcd (t; δ, q) ≤ hqd (t;β = δ, q) , ∀t ∈ [t0 = 0, T ] . (A.21)1066

Proof. Using the function A (t) in (3.20), it can be shown that hcd can be written in terms of the function gcd1067

in (3.19) as follows,1068

hcd (t; δ, q) = q ·
∫ T

t

[gcd (u; δ)− 1] ·
[
A (u) e(r−η)u

A (t) e(r−η)t

]
du. (A.22)1069

Property (i) of Lemma A.2 therefore immediately follows from the corresponding property (i) of gcd (t; δ) reported1070

in Lemma A.1. Next, we observe that A (t) ≥ 0 for all t ≥ T , while the bounds (A.12) imply that gcd (t; δ) > 11071

for all t ∈ [t0, T ] and all δ > 0. Therefore, since neither gcd (t; δ) nor A (t) depends on the rate of contribution1072

q ≥ 0, property (ii) also follows from (A.22). Property (iii) is obvious from taking the limit as t ↑ T in (A.22).1073

Considering property (iv), we start by observing that1074

A (u) e(r−η)u

A (t) e(r−η)t
=

[
A (u) e(2r−η)u

A (t) e(2r−η)t

]
· e−r(u−t) =

[
e(2r−η)T − e(2r−η)u

e(2r−η)T − e(2r−η)t

]
· e−r(u−t), ∀u ∈ [t, T ] . (A.23)1075

Combining the expression (A.23) with (A.12) and (A.11), we observe that regardless of the sign of (2r − η), we1076

have1077

0 ≤ A (u) e(2r−η)u

A (t) e(2r−η)t
≤ 1 ≤ eδT − 1

[gcd (u; δ)− 1]
, ∀u ∈ [t, T ] . (A.24)1078

Multiplying (A.24) by q·[gcd (u; δ)− 1]·e−r(u−t) ≥ 0, and subsequently integrating u ∈ [t, T ], the monotonicity of1079

integrals together with (3.14), (A.22) and (A.23) yields the desired bounds (A.21) reported in property (iv).1080

Note that Lemma A.2 does not report the behavior of the function t→ hcd (t; δ, q) for fixed values of q and1081

δ, since it can be shown (using results (A.22) and (A.8) ) that1082

d

dt
hcd (t; δ, q) =

(
r +

1

A (t)

)
· hcd (t; δ, q)− q · [gcd (t; δ)− 1] . (A.25)1083

The first term of (A.25) is typically non-negative (for example it is guaranteed if r > 0) by (A.21), while the1084

second term of (A.25) is non-positive by (A.12). Numerical experiments show that t→ hcd (t; δ, q) , t ∈ [t0 = 0, T ]1085

can therefore be increasing or decreasing on different sub-intervals of [t0, T ] depending on the exact combinations1086

of parameters. However, the properties of hcd (t; δ, q) reported in Lemma A.2 are sufficient to analyze the1087

implications of using the CD-optimal control.1088

Appendix B: Additional results - comparison of investment strategies1089

This appendix complements the discussion and results of Subsection 3.4 and Section 5.1090

B.1: Comparison of expectations and parameters1091

We show that under the assumptions of Section 3 (Assumption 3.1, Assumption 3.2 and wealth dynamics1092

(3.11)-(3.12)), the claims (3.30) and (3.31) hold.1093

Naturally, some information regarding the benchmark strategy as feedback control %̂
(
t, Ŵ (t)

)
=
(
%̂k

(
t, Ŵ (t)

)
: k = 1, ..., Nr

a

)
1094

is required, specifically that it has to be at least somewhat economically reasonable. To make this concrete, the1095
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following two propositions place a very weak requirement on the benchmark strategy, namely that %̂ satisfies1096

Et0,w0

%̂

[
Ŵ (t) · µ̃>%̂

(
t, Ŵ (t)

)]
=

Nra∑
i=1

(µi − r) · Et0,w0

%̂

[
Ŵ (t) · %̂i

(
t, Ŵ (t)

)]
≥ 0, ∀t ∈ [t0, T ] . (B.1)1097

Condition (B.1) can be interpreted as a “weighted no short-selling in expectation” restriction, since it is for1098

example satisfied if Et0,w0

%̂

[
Ŵ (t) · %̂i

(
t, Ŵ (t)

)]
≥ 0 for all i ∈ {1, ..., Nr

a}, i.e. if there is no risky asset1099

for which the benchmark’s expected investment is negative (this follows since (µi − r) > 0 by assumption).1100

Condition (B.1) is clearly reasonable for most benchmark strategies used in practice, where trading (let alone1101

short-selling) would typically be restricted when Ŵ (t) < 0. Furthermore, considering the application of (B.1)1102

in the proofs of Proposition B.1 and Proposition B.2, it is clear that (B.1) can be refined substantially when1103

more is known about the benchmark strategy, for example in the case where the benchmark is a deterministic1104

function of time (e.g. “glide path” strategies) or a constant proportion investment strategy (see Forsyth and1105

Vetzal (2019)). However, for our current purposes, (B.1) is convenient due to its relative generality.1106

We start by verifying the relationship (3.31) under the assumption of equal parameters, δ = β.1107

Proposition B.1. (Comparison of wealth expectations, CD (δ) and QD (β = δ)) Suppose that Assumption 3.1,1108

Assumption 3.2 and wealth dynamics (3.11)-(3.12) are applicable. In addition, assume that the given benchmark1109

strategy P̂ in (3.1) satisfies the condition (B.1).1110

Let Et0,w0

%∗
qd

[
W ∗qd (t;β = δ)

]
denote the expectation of the QD (β = δ)-optimal wealth under control (3.13)1111

with parameter value β = δ, where δ is the value used to obtain Et0,w0

%∗
cd

[W ∗cd (t; δ)] under control (3.18). Then1112

Et0,w0

%∗
cd

[W ∗cd (t; δ)] < Et0,w0

%∗
qd

[
W ∗qd (t;β = δ)

]
, ∀t ∈ (t0, T ] . (B.2)1113

Proof. For any benchmark strategy satisfying Assumption 3.2 and wealth dynamics (3.12), let K̂ (t) and χ̂ (t)1114

denote the functions1115

K̂ (t) = Et0,w0

%̂

[
Ŵ (t)

]
, χ̂ (t) = Et0,w0

%̂

[
Ŵ (t) · µ̃>%̂

(
t, Ŵ (t)

)]
, t ∈ [t0, T ] , (B.3)1116

where the wealth dynamics (3.12) imply that K̂ (t) can be written in terms of χ̂ (t) as1117

K̂ (t) = w0e
rt +

∫ t

0

[χ̂ (u) + q] er(t−u)du. (B.4)1118

For benchmark strategies also satisfying condition (B.1), which by (B.3) means that we are given χ̂ (t) ≥ 0,1119

then by (B.4) we also have K̂ (t) > 0. As a result, with η given by (3.9), we have1120

η · K̂ (t) + χ̂ (t) > 0, ∀t ∈ [t0, T ] . (B.5)1121

Now consider the investor strategies. Substituting the CD-optimal control (3.18) into the investor wealth1122

dynamics (3.11), we take expectations and use the definitions (B.3) to obtain1123

Et0,w0

%∗
cd

[W ∗cd (t; δ)] = w0e
(r−η)t + q

∫ t

0

e(r−η)(t−u)du+ η ·
∫ t

0

hcd (u; δ, q) · e(r−η)(t−u)du1124

+

∫ t

0

gcd (u; δ) ·
[
η · K̂ (u) + χ̂ (u)

]
e(r−η)(t−u)du, (B.6)1125

where hcd and gcd are given by (3.19). (B.6). Note that if more is known about the benchmark strategy,1126

closed-form expressions for K̂ (t) and χ̂ (t) might allow further simplification of (B.6).1127

Similarly, substituting the QD-optimal control (3.13) into the investor wealth dynamics (3.11) and taking1128

expectations yields1129

Et0,w0

%∗
qd

[
W ∗qd (t;β)

]
= w0e

(r−η)t + q

∫ t

0

e(r−η)(t−u)du+ η ·
∫ t

0

hqd (u;β, q) · e(r−η)(t−u)du1130

+

∫ t

0

eβT ·
[
η · K̂ (u) + χ̂ (u)

]
e(r−η)(t−u)du, (B.7)1131
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where hqd is given by (3.14). Setting β ≡ δ in (B.7), the difference in expectations (B.7) and (B.6) is given by1132

Et0,w0

%∗
qd

[
W ∗qd (t;β = δ)

]
− Et0,w0

%∗
cd

[W ∗cd (t; δ)]1133

= η ·
∫ t

0

[hqd (u;β = δ, q)− hcd (u; δ, q)] e(r−η)(t−u)du1134

+

∫ t

0

[
eδT − gcd (u; δ)

]
·
[
η · K̂ (u) + χ̂ (u)

]
e(r−η)(t−u)du. (B.8)1135

From Lemma A.1, we know that eδT > gcd (t; δ) ,∀t < T (see (A.12)), while Lemma A.2 shows that hqd (t;β = δ, q) ≥1136

hcd (t; δ, q), ∀t ≤ T (see (A.21)). Combining these results with (B.5), expression (B.8) implies that (B.2)1137

holds.1138

The following proposition verifies the claim that if we insist on achieving equal expectations of terminal1139

wealth (3.29), the parameters satisfy (3.30).1140

Proposition B.2. (Comparison of parameter values δE and βE , equal expectations E). Suppose that Assumption1141

3.1, Assumption 3.2 and wealth dynamics (3.11)-(3.12) are applicable. In addition, assume that the given1142

benchmark strategy P̂ in (3.1) satisfies the condition (B.1).1143

If the investor chooses parameter values δE , βE > 0 such that the resulting CD
(
δ = δE

)
-optimal and QD

(
β = βE

)
-1144

optimal controls both result in the same expected value of terminal wealth E,1145

Et0,w0

%∗
cd

[
W ∗cd

(
T ; δ = δE

)]
≡ Et0,w0

%∗
qd

[
W ∗qd

(
T ;β = βE

)]
≡ E , (B.9)1146

then1147

δE > βE . (B.10)1148

Proof. Since the benchmark strategy satisfies Assumption 3.2, wealth dynamics (3.12) and condition (B.1), we1149

know that (B.3), (B.4) and (B.5) hold. Considering the QD-optimal strategy, suppose that the investor chooses1150

the parameter value β = βE > 0 for the QD problem such that Et0,w0

%∗
qd

[
W ∗qd

(
T ;βE

)]
≡ E . By (B.2), we therefore1151

have1152

Et0,w0

%∗
cd

[
W ∗cd

(
T ; δ = βE

)]
< Et0,w0

%∗
qd

[
W ∗qd

(
T ;βE

)]
≡ E . (B.11)1153

Considering the CD-optimal strategy, the definition of the value of δE in (B.9) together with (B.11) therefore1154

implies that1155

Et0,w0

%∗
cd

[
W ∗cd

(
T ; δ = βE

)]
< Et0,w0

%∗
cd

[
W ∗cd

(
T ; δ = δE

)]
≡ E . (B.12)1156

By Lemma A.1, we know that for any t, the function δ → gcd (t; δ) is strictly increasing in δ ∈ (0,∞). Similarly,1157

by Lemma A.2 we know that if q > 0, the function δ → hcd (t; δ, q) is also strictly increasing in δ, otherwise it1158

is identically zero. Therefore, setting t = T in (B.6), we conclude that the function δ → Et0,w0

%∗
cd

[W ∗cd (T ; δ)] is1159

strictly increasing on δ ∈ (0,∞). This observation, together with (B.12), implies that we must have δE > βE ,1160

thereby proving (B.10).1161

B.2: Proof of Proposition 3.71162

For any t ∈ [t0 = 0, T ], recalling the definition of K̂ (t) in (B.3), define the functions1163

K∗qd (t;β) = Et0,w0

%∗
qd

[
W ∗qd (t;β)

]
, K∗cd (t; δ) = Et0,w0

%∗
cd

[W ∗cd (t; δ)] , (B.13)1164

as well as1165

F (t) = Et0,w0

%∗
qd

[
W ∗qd (t;β = δ) · R∗qd (t;β = δ)

]
− Et0,w0

%∗
cd

[W ∗cd (t; δ) · R∗cd (t; δ)] . (B.14)1166

Using the expressions for the optimal controls (3.13) and (3.18), and setting β = δ in the QD-optimal control1167
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(3.13), F (t) is given by1168

F (t) = [hqd (t; δ, q)− hcd (t; δ, q)] ·
Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

1169

+
[
K∗cd (t; δ)−K∗qd (t; δ)

]
·
Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

1170

+
[
eδT − gcd (t; δ)

]
·

Et0,w0

%̂

[
Ŵ (t) · R̂ (t)

]
+ K̂ (t) ·

Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

 . (B.15)1171

Setting t = t0, we have K∗qd (t0; δ) = K∗cd (t0; δ) = K̂ (t0) = w0, so (B.15) simplifies to1172

F (t0) = w0 ·
[
R∗qd (t0; δ)−R∗cd (t0; δ)

]
(by definition (B.14)) , (B.16)1173

= [hqd (t0; δ, q)− hcd (t0; δ, q)] ·
Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

1174

+
[
eδT − gcd (t0; δ)

]
· w0

R̂ (t0) +

Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

 . (B.17)1175

By Lemma A.2 (see (A.21)), we have [hqd (t0; δ, q)− hcd (t0; δ, q)] ≥ 0. Furthermore, by Lemma A.1 (see (A.12)),1176

we have the strict inequality
[
eδT − gcd (t0; δ)

]
> 0. Given the additional assumption of R̂ (t0) ≥ 0 in Proposition1177

3.7, and since
∑Nra
k=1

[
(Σ + Λ)

−1
µ̃
]
k
> 0 and w0 > 0, we therefore have the strict inequality F (t0) > 0. Using1178

(B.16), we have therefore confirmed that
[
R∗qd (t0; δ)−R∗cd (t0; δ)

]
> 0, which is the claim (3.32) of Proposition1179

3.7.1180

Setting t = T in (B.15), we have

F (T ) =Et0,w0

%∗
qd

[
W ∗qd (T ; δ) · R∗qd (T ; δ)

]
− Et0,w0

%∗
cd

[W ∗cd (T ; δ) · R∗cd (T ; δ)] (by definition (B.14)) , (B.18)

= [hqd (T ; δ, q)− hcd (T ; δ, q)] ·
Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

+
[
K∗cd (T ; δ)−K∗qd (T ; δ)

]
·
Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

+
[
eδT − gcd (T ; δ)

]
·

Et0,w0

%̂

[
Ŵ (T ) · R̂ (T )

]
+ K̂ (T ) ·

Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

 . (B.19)

By Lemma A.1,
[
eδT − gcd (T ; δ)

]
= 0, the final term of (B.19) vanishes, and thus no assumptions (other than1181

Assumption 3.2) regarding the benchmark strategy is required. In addition, the first term of (B.19) vanishes as1182

well, since hcd (T ; δ, q) = hqd (T ; δ, q) = 0 by Lemma A.2. By Proposition B.1 and definitions (B.13), we have1183

K∗cd (T ; δ) < K∗qd (T ;β = δ), and since
∑Nra
k=1

[
(Σ + Λ)

−1
µ̃
]
k
> 0, we therefore have F (T ) < 0. Rearranging1184

(B.18), we therefore obtain result (3.33) of Proposition 3.7.1185

B.3: Proof of Corollary 3.81186

Recalling the definitions in (3.26), as well as the definition of F (t) in (B.14), by linearity we have1187

F (t) =

Nra∑
i=1

Fi (t) , (B.20)1188
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where Fi (t) , i ∈ {1, ..., Nr
a} is defined as1189

Fi (t) = Et0,w0

%∗
qd

[
W ∗qd (t; δ) · %∗qd,i (t; δ)

]
− Et0,w0

%∗
cd

[
W ∗cd (t; δ) · %∗cd,i (t; δ)

]
1190

= [hqd (t; δ, q)− hcd (t; δ, q)] ·
[
(Σ + Λ)

−1
µ̃
]
i

1191

+
[
K∗cd (t; δ)−K∗qd (t; δ)

]
·
[
(Σ + Λ)

−1
µ̃
]
i

1192

+
[
eδT − gcd (t; δ)

]
·
(
Et0,w0

%̂

[
Ŵ (t) · %̂i (t,W (t))

]
+ K̂ (t) ·

[
(Σ + Λ)

−1
µ̃
]
i

)
. (B.21)1193

Comparing (B.21) with (B.15), it is therefore clear that the results reported in Corollary 3.8 follow from the1194

results of Proposition 3.7.1195

B.4: Proof of Proposition 3.91196

We prove Proposition 3.9 for them-compounded CD-optimal strategy (3.37), since the proof of them-compounded1197

QD-optimal strategy (3.36) proceeds along similar lines. In order to lighten notation in the subsequent1198

proof, we fix time t and parameter δ > 0, and drop the arguments to write %̂ := %̂
(
t, Ŵ (t−)

)
, W [m]∗

cd :=1199

W
[m]∗
cd (t−; δ), Ŵ := Ŵ (t−), hcd := hcd (t; δ, q) and gcd = gcd (t; δ). Similarly, the m-compounded CD-1200

optimal strategy as per Definition 3.1 at the given time t with parameter δ > 0 will simply be denoted by1201

%
[m]∗
cd := %

[m]∗
cd

(
t,X

[m]∗
cd (t−; δ) ; δ

)
in this proof.1202

Let m = 0. By Definition 3.1, %[m=0]∗
cd is simply the CD-optimal investment strategy (3.18). In particular,1203

given the benchmark strategy %̂, the assumptions of Proposition 3.9 imply that by Proposition 3.5, we simply1204

have1205

W
[0]∗
cd · %

[0]∗
cd =

[
hcd −

(
W

[0]∗
cd − gcdŴ

)]
· (Σ + Λ)

−1
µ̃+ gcdŴ · %̂. (B.22)1206

By Definition 3.1, %[m=1]∗
cd is the CD-optimal investment strategy that uses strategy %[m=0]∗

cd as its benchmark1207

strategy to be outperformed. Applying Proposition 3.5 again, we therefore have1208

W
[1]∗
cd · %

[1]∗
cd =

[
hcd −

(
W

[1]∗
cd − gcdW

[0]∗
cd

)]
· (Σ + Λ)

−1
µ̃+ gcdW

[0]∗
cd · %

[0]∗
cd . (B.23)1209

Substituting (B.22) into (B.23) and simplifying, we obtain1210

W
[1]∗
cd · %

[1]∗
cd =

[
hcd + gcdhcd −W [1]∗

cd + (gcd)
2
Ŵ
]
· (Σ + Λ)

−1
µ̃+ (gcd)

2
Ŵ · %̂1211

=

[(
(gcd)

2 − 1

gcd − 1

)
hcd −W [1]∗

cd + (gcd)
2
Ŵ

]
· (Σ + Λ)

−1
µ̃+ (gcd)

2
Ŵ · %̂, (B.24)1212

which confirms that (3.37) holds for m = 1. Now assume that (3.37) holds for the (m− 1)-compounded CD-1213

optimal strategy %[m−1]∗cd , which means that we assume1214

W
[m−1]∗
cd · %[m−1]∗cd =

[(
(gcd)

m − 1

gcd − 1

)
· hcd −W [m−1]∗

cd + (gcd)
m
Ŵ

]
· (Σ + Λ)

−1
µ̃+ (gcd)

m
Ŵ · %̂. (B.25)1215

By Definition 3.1, the m-compounded CD-optimal strategy %[m]∗
cd uses %[m−1]∗cd as its benchmark strategy to be1216

outperformed, and therefore applying Proposition 3.5 again we have1217

W
[m]∗
cd · %[m]∗

cd =
[
hcd −

(
W

[m]∗
cd − gcdW [m−1]∗

cd

)]
· (Σ + Λ)

−1
µ̃+ gcdW

[m−1]∗
cd · %[m−1]∗cd . (B.26)1218

Substituting (B.25) into (B.26), we therefore obtain1219

W
[m]∗
cd · %[m]∗

cd =

[{
1 + gcd

(
(gcd)

m − 1

gcd − 1

)}
· hcd −W [m]∗

cd + (gcd)
m+1

Ŵ

]
· (Σ + Λ)

−1
µ̃1220

+ (gcd)
m+1

Ŵ · %̂, (B.27)1221

which confirms (3.37). By induction, (B.27) therefore holds for an arbitrary m ∈ N. Since (3.36) can be1222
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established using similar arguments, this completes the proof of Proposition 3.9.1223

B.5: Proof of Proposition 3.101224

Substituting the m-compounded CD-optimal control (3.37) into the investor wealth dynamics (3.11), we take1225

expectations and use the definitions (B.3) to obtain1226

Et0,w0

%
[m]∗
cd

[
W

[m]∗
cd (t; δ)

]
= w0e

(r−η)t + q

∫ t

0

e(r−η)(t−u)du1227

+η ·
∫ t

0

(
(gcd (u; δ))

m+1 − 1

gcd (u; δ)− 1

)
· hcd (u; δ, q) · e(r−η)(t−u)du (B.28)1228

+

∫ t

0

(gcd (u; δ))
m+1 ·

[
η · K̂ (u) + χ̂ (u)

]
e(r−η)(t−u)du. (B.29)1229

As in the case of (B.6), we observe that if more is known about the benchmark strategy, closed-form expressions1230

for K̂ (t) and χ̂ (t) might allow further simplification of (B.29).1231

From Lemma A.1, we know that gcd (t; δ) > eδt > 1 for t ∈ (t0, T ] (see (A.12)), while Lemma A.2 shows that1232

hcd (t; δ, q) ≥ 0, ∀t ≤ T (see (A.21)). Combining (B.6) and (B.29) with (B.5) given condition (B.1), we obtain,1233

for any m ∈ N and t ∈ (t0, T ],1234

Et0,w0

%
[m]∗
cd

[
W

[m]∗
cd (t; δ)

]
− Et0,w0

%∗
cd

[W ∗cd (t; δ)]1235

= η ·
∫ t

0

(
(gcd (u; δ))

m+1 − 1

gcd (u; δ)− 1
− 1

)
· hcd (u; δ, q) · e(r−η)(t−u)du1236

+

∫ t

0

[
(gcd (u; δ))

m+1 − gcd (u; δ)
]
·
[
η · K̂ (u) + χ̂ (u)

]
e(r−η)(t−u)du1237

> 0. (B.30)1238

Using similar arguments, it follows that1239

Et0,w0

%
[m]∗
qd

[
W

[m]∗
qd (t;β)

]
− Et0,w0

%∗
qd

[
W ∗qd (t;β)

]
1240

= η ·
(
e(m+1)βT − 1

eβT − 1
− 1

)
·
∫ t

0

hqd (u;β, q) · e(r−η)(t−u)du1241

+
(
e(m+1)βT − eβT

)
·
∫ t

0

[
η · K̂ (u) + χ̂ (u)

]
e(r−η)(t−u)du1242

> 0. (B.31)1243

From (B.30) and (B.31), the result (3.39) has been established.1244

To show (3.40) for the m-compounded CD-optimal and CD-optimal strategies, we first recall the definitions1245

(B.3) and (B.13), and also define1246

K
[m]∗
cd (t; δ) = Et0,w0

%
[m]∗
cd

[
W

[m]∗
cd (t; δ)

]
. (B.32)1247

Using similar steps as in the proof of Proposition 3.7, it can be shown that1248

Et0,w0

%
[m]∗
cd

[
W

[m]∗
cd (t; δ) · R[m]∗

cd (t; δ)
]
− Et0,w0

%∗
cd

[W ∗cd (t; δ) · R∗cd (t; δ)]1249

=

(
(gcd (t; δ))

m+1 − 1

gcd (t; δ)− 1
− 1

)
· hcd (t; δ, q) ·

Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

1250

+
[
K∗cd (t; δ)−K [m]∗

cd (t; δ)
]
·
Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

1251

+
(

(gcd (t; δ))
m+1 − gcd (t; δ)

)
·

Et0,w0

%̂

[
Ŵ (t) · R̂ (t)

]
+ K̂ (t) ·

Nra∑
k=1

[
(Σ + Λ)

−1
µ̃
]
k

 . (B.33)1252
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At time t0 = 0, K∗cd (t0; δ) = K
[m]∗
cd (t0; δ) = w0, so the second term of (B.33) vanishes. Note that the1253

condition (B.1) ensures that K̂ (t0) > 0 (see (B.4) and the associated discussion), while the assumption R̂ (t0) ≥1254

0 implies that Et0,w0

%̂

[
Ŵ (t0) · R̂ (t0)

]
= w0 · R̂ (t0) ≥ 0. Considering in addition the properties of gcd and hcd1255

as per Lemmas A.1 and A.2, from (B.33) we therefore have that1256

Et0,w0

%
[m]∗
cd

[
W

[m]∗
cd (t; δ) · R[m]∗

cd (t; δ)
]
− Et0,w0

%∗
cd

[W ∗cd (t; δ) · R∗cd (t; δ)] > 0, (B.34)1257

so that (3.40) holds for the CD-optimal and m-compounded CD optimal strategies. The proof of (3.40) for the1258

QD-optimal and m-compounded QD optimal strategies uses similar arguments, and is therefore omitted.1259

B.6: Numerical results: CD
(
δE
)
, CD

(
δ = βE) and QD

(
βE)

1260

In Subsection 3.4, we noted that the closed-form comparison results were derived under the assumption of equal1261

parameters (i.e. CD (δ) is compared to QD (β = δ)), but that comparing results on the basis of equal expec-1262

tations E of terminal wealth (i.e. comparing CD
(
δE
)
with QD

(
βE
)
) can be more practical when comparing1263

investment outcomes. In addition, we claimed in Subsection 3.4 that the difference
(
δE − βE

)
> 0 is typically1264

sufficiently small in numerical experiments such that the results from assuming equal parameters (δ − β) ≡ 0 for1265

analytical purposes is sufficient to gain intuition into the relative behavior of the optimal strategies compared1266

on the basis of equal expectations. In this appendix, we verify this claim by comparing the results for problems1267

CD
(
δE
)
, CD

(
δ = βE

)
and QD

(
βE
)
.1268

In the case of closed-form solutions (no constraints), Figure B.1(a) can be compared with Figure 5.1(b), and1269

Figure B.1(b) can be compared with Figure 5.2(a). Note that the qualitative conclusions regarding Figures B.11270

and B.1 remain unchanged if we use CD
(
δ = βE

)
instead of CD

(
δE
)
in the comparison with QD

(
βE
)
.1271
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Figure B.1: Analytical solutions, no constraints, investor portfolio P0, benchmark BM0, data set DS0: Effect of value
of δ on problem CD(δ). CDFs of Ŵ (T ), W ∗cd

(
T ; δ = βE

)
, and W ∗cd

(
T ; δE

)
. In sub-figure (b), the CDF of W ∗qd

(
T ;βE

)
is

not shown, since it is effectively indistinguishable from the CDF of W ∗cd
(
T ; δE

)
; see Figure (5.2).

1272

In the case of numerical solutions with constraints, Figure B.2 can be compared with Figure 5.5, and1273

again qualitative conclusions are not affected, the CDF results of using CD
(
δ = βE

)
instead of CD

(
δE
)
remain1274

similar. Note that the CDFs of QD
(
βE
)
are not shown in Figure B.2 because they are basically indistinguishable1275

from the CDF results for CD
(
δE
)
.1276

1277

For numerical solutions with constraints, Figure B.3 shows how the investment strategy is affected by using1278

CD
(
δ = βE

)
instead of CD

(
δE
)
in a comparison analysis with QD

(
βE
)
. The qualitative conclusions regarding1279

Figure 5.4 remain unaffected.1280

1281

In the case of numerical solutions with constraints, Figure B.4 shows the same results as Figure 5.6, but1282

with the results for CD
(
δ = βE

)
added. Again, we observe that the qualitative conclusions regarding Figure1283

5.6 are not affected.1284

1285

34



0 100 200 300 400 500 600 700 800 900

Terminal wealth

0

0.2

0.4

0.6

0.8

1
C

D
F

Benchmark

CD

CD
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100 200 300 400 500 600 700 800 900

Terminal wealth

0

0.2

0.4

0.6

0.8

1

C
D

F

Benchmark

CD

CD

(b) CDFs of terminal wealth: Testing data (DS1)

Figure B.2: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS1: CDFs of
Ŵ (T ), W ∗cd

(
T ; δ = βE

)
, and W ∗cd

(
T ; δE

)
. The CDFs of W ∗qd

(
T ;βE

)
on the training and testing data are not shown,

since they are effectively indistinguishable from the corresponding CDFs of W ∗cd
(
T ; δE

)
; see Figure (5.5).
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Figure B.3: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS1: 95th percentile
of the proportion of wealth invested in each asset over time on the training data set (DS1). Zero investment in Size, thus
it is omitted. Note the same scale on the y-axis, and that the last rebalancing event is at t = T −∆t = 9 years.
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Figure B.4: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS1: Probability
of benchmark outperformance over time.

Appendix C: Source data1286

In this appendix, we provide details regarding the underlying data used to obtain the results presented in Section1287

5, as well as the supplementary results in Appendix B and Appendix D.1288

The historical returns data for the T-bills/bonds and the broad market index were obtained from the CRSP2.1289

Historical returns data for the equity factors Size and Value (see Fama and French (2015, 1992)) were obtained1290

from Kenneth French’s data library3 (KFDL). In more detail, the historical time series sourced for the underlying1291

assets, with naming conventions as in Table 5.2, are as follows:1292

(i) T30 (30-day Treasury bill): CRSP, monthly returns for 30-day Treasury bill.1293

(ii) B10 (10-year Treasury bond): CRSP, monthly returns for 10-year Treasury bond.1294

2Calculations were based on data from the Historical Indexes 2020©, Center for Research in Security Prices (CRSP), The
University of Chicago Booth School of Business. Wharton Research Data Services was used in preparing this article. This service
and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third party suppliers.

3See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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(iii) Market (broad equity market index): CRSP, monthly returns, including dividends and distributions, for a1295

capitalization-weighted index consisting of all domestic stocks trading on major US exchanges (the VWD1296

index).1297

(iv) Size (Portfolio of small stocks): KFDL, “Portfolios Formed on Size”, which consists of monthly returns1298

on a capitalization-weighted index consisting of the firms (listed on major US exchanges) with market1299

value of equity, or market capitalization, at or below the 30th percentile (i.e. smallest 30%) of market1300

capitalization values of NYSE-listed firms.1301

(v) Value (Portfolio of value stocks): KFDL, “Portfolios Formed on Book-to-Market”, which consists of1302

monthly returns on a capitalization-weighted index of the firms (listed on major US exchanges) con-1303

sisting of the firms (listed on major US exchanges) with book-to-market value of equity ratios at or above1304

the 70th percentile (i.e. highest 30%) of book-to-market ratios of NYSE-listed firms.1305

All historical time series were obtained for the period from 1963:07 to 2020:12, and inflation-adjusted using1306

inflation data from the US Bureau of Labor Statistics4.1307

For the purposes of illustrating the closed-form solutions of Section 3 in Subsection 5.2, the (single) risky1308

asset is assumed to correspond to the broad equity market index evolving according to the dynamics of the Kou1309

(2002) model. As a result, log ξ is assumed to follow an asymmetric double-exponential distribution, with the1310

PDF of ξ given by1311

fξ (ξ) = νζ1ξ
−ζ1−1I[ξ≥1] (ξ) + (1− ν) ζ2ξ

ζ2−1I[0≤ξ<1] (ξ) , υ ∈ [0, 1] and ζ1 > 1, ζ2 > 0, (C.1)1312

where ν denotes the probability of an upward jump given that a jump occurs. Using the filtering technique1313

for calibrating jump-diffusion processes (see Dang and Forsyth (2016); Forsyth and Vetzal (2017) for technical1314

details), the resulting calibrated parameters are presented in Table C.1.1315

Table C.1: Calibrated, inflation-adjusted parameters for asset dynamics (3.5) and (3.10), with fξ (ξ) given by (C.1).
The calibration methodology of Dang and Forsyth (2016); Forsyth and Vetzal (2017) is used with a jump threshold
parameter value of 3.

Parameter r µ σ λ υ ζ1 ζ2

Value 0.0074 0.0749 0.1392 0.2090 0.2500 7.7830 6.1074

1316

Appendix D: Additional numerical results1317

This appendix complements the numerical results of Section 5.1, which focused on the results associated with1318

data set DS1 in Table 5.3. In this appendix, we report the key out-of-sample (testing) results associated with1319

the other data sets in Table 5.3.1320

In summary, Figure D.1, Figure D.2 and Figure D.3 illustrate that the qualitative conclusions regarding the1321

out-of-sample performance of the CD-optimal strategy relative to the QD-optimal strategy remain robust to1322

rebalancing frequency assumptions and different data periods.1323

1324

1325

1326

Figure D.4 compares the terminal wealth distributions obtained for DS1 and DS1b (see Table 5.3), and1327

therefore shows effect on the terminal wealth of using a more aggressive benchmark outperformance target.1328

We observe that a more aggressive outperformance target (DS1b) increases both the upside and downside1329

wealth outcomes compared to a more modest outperformance target (DS1), since the resulting optimal wealth1330

allocations are less diversified in the case of DS1b (see Figure 5.7(a)).1331

1332

4The annual average CPI-U index, which is based on inflation data for urban consumers, were used - see http://www.bls.gov.cpi
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Figure D.1: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS2: Testing
(out-of-sample) results. The CDFs of terminal wealth for CD and QD are indistinguishable.
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(a) CDFs of terminal wealth: Testing data (DS2b)
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Figure D.2: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS2b: Testing
(out-of-sample) results.
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(a) CDFs of terminal wealth: Testing data (DS3)
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Figure D.3: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS3: Testing
(out-of-sample) results.

Appendix E: NN approach: hyperparameters and ground truth1333

In this appendix, we summarize relevant implementation details of the numerical algorithm described in Section1334

4, and verify the numerical solutions using a ground truth analysis. Note that additional details regarding the1335

algorithm can be found in Van Staden et al. (2023).1336

In the numerical results reported in Section 4, we implemented a fully-connected feedforward NN consisting1337

of two hidden layers, each with Na + 2 nodes. For training the NN for each problem, 64,000 stochastic gradient1338

descent (SGD) steps were used based on the Gadam algorithm (Granziol et al. (2020)), each implementing a1339

mini-batch size of 100 paths. For illustrative purposes, the minimal features were used (time, investor wealth,1340

benchmark wealth). The adequacy of this configuration was verified using ground truth results (see below), as1341

well as assessing the stability of results using repeated training on the same data set.1342

We now consider verifying the results of the implementation of the numerical algorithm using ground truth1343

results. As discussed in Section 4, the proposed NN methodology automatically incorporates the investment1344

constraints of no short-selling and no leverage. However, the closed-form solutions (Section 3) are based on1345
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Figure D.4: Numerical solutions, with constraints, investor portfolio P1, benchmark BM1, data set DS2: CDFs of
terminal wealth for CD and QD on the Testing (out-of-sample) results of DS1 and DS1b, illustrating the effect of a more
aggressive outperformance target.

Assumption 3.1, where no such constraints are applicable.1346

For the purposes of a ground truth analysis, the objective is to show the convergence of the numerical1347

solutions (under suitable conditions) to the available closed-form solutions. Therefore, instead of changing the1348

NN methodology to allow for trading in the event of bankruptcy (allowed under the stylized assumptions of1349

Assumption 3.1), we observe as in Van Staden et al. (2023) that a relatively short time horizon (T =1 year)1350

and modest outperformance target imply that the closed-form solutions typically do not require short-selling or1351

leverage. In this case, the numerical solutions (with constraints) can approximate the closed-form solutions (no1352

constraints) fairly accurately if the underlying data is identical. In terms of generating the underlying data, we1353

use the parametric framework of Section 3 with parameters as in Table C.1. Analytical investment strategies1354

are calculated based on these parameters, while the numerical approach uses 106 Monte Carlo simulations of1355

these dynamics as training data for the neural network (see Section 4).1356

Table E.1 presents the resulting ground truth comparison results for investor portfolio P0, benchmark BM01357

(Table 5.2), confirming that the numerical results do indeed correspond to the analytical results, as required.1358

Note that contributions are set to zero in order to avoid discrete approximation errors when comparing a1359

continuous contribution rate to discrete contribution amounts made at rebalancing times.1360

Table E.1: Ground truth comparison, investor portfolio P0, benchmark BM0: w0 = 100, q = q (tn) = 0, T = 1 year,
E = 105.25. Analytical solutions based on 360 rebalancing events approximating continuous rebalancing. Numerical
results are based on only 36 discrete rebalancing events to ensure that computation times remain reasonable. The
column “Ratio” gives W ∗j (T ) /Ŵ (T ) , j ∈ {qd, cd}.

Quantity Analytical solutions: P0 Numerical solutions (using NN): P0
BM0 QD(βE=0.054) CD(δE=0.072) BM0 QD(βE=0.054) CD(δE=0.072)
Ŵ (T ) W ∗qd (T ) Ratio W ∗cd (T ) Ratio Ŵ (T ) W ∗qd (T ) Ratio W ∗cd (T ) Ratio

Mean 104.2 105.3 1.01 105.3 1.01 104.2 105.2 1.01 105.3 1.01
CExp 5% 85.6 80.2 0.93 80.3 0.93 85.6 80.2 0.93 80.3 0.93
5th pctile 90.7 87.4 0.96 87.4 0.96 90.7 87.2 0.96 87.3 0.96
Median 104.1 105.5 1.01 105.5 1.01 104.1 105.5 1.01 105.5 1.01

95th pctile 117.9 122.1 1.04 122.3 1.04 117.9 122.0 1.03 122.2 1.04

38


	Introduction
	Formulation
	Directly targeting a favourable tracking difference

	Closed-form solutions
	Wealth dynamics for closed-form solutions
	Closed-form solution: QD() problem
	Closed-form solution: CD() problem
	Comparison of investment strategies
	The limits of benchmark outperformance

	Numerical solutions
	Discrete rebalancing with investment constraints
	Neural network solution approach

	Illustrative investment results
	Investment scenarios
	Illustration of closed-form solutions
	Illustration of numerical solutions

	Conclusion
	Acknowledgements
	Proofs of key results
	Proof of Theorem 3.4
	Proof of Proposition 3.5
	Properties of gcd
	Properties of hcd

	Additional results - comparison of investment strategies
	Comparison of expectations and parameters
	Proof of Proposition 3.7
	Proof of Corollary 3.8
	Proof of Proposition 3.9
	Proof of Proposition 3.10
	Numerical results: CD(E), CD(=E) and QD(E)

	Source data
	Additional numerical results
	NN approach: hyperparameters and ground truth

