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Abstract1

We extend the Annually Recalculated Virtual Annuity (ARVA) spending rule for re-2

tirement savings decumulation (Waring and Siegel, 2015) to include a cap and a floor on3

withdrawals. With a minimum withdrawal constraint, the ARVA strategy runs the risk4

of depleting the investment portfolio. We determine the dynamic asset allocation strategy5

which maximizes a weighted combination of expected total withdrawals (EW) and expected6

shortfall (ES), defined as the average of the worst five per cent of the outcomes of real7

terminal wealth. We compare the performance of our dynamic strategy to simpler alter-8

natives which maintain constant asset allocation weights over time accompanied by either9

our same modified ARVA spending rule or withdrawals that are constant over time in real10

terms. Tests are carried out using both a parametric model of historical asset returns as11

well as bootstrap resampling of historical data. Consistent with previous literature that12

has used different measures of reward and risk than EW and ES, we find that allowing13

some variability in withdrawals leads to large improvements in efficiency. However, unlike14

the prior literature, we also demonstrate that further significant enhancements are possible15

through incorporating a dynamic asset allocation strategy rather than simply keeping asset16

allocation weights constant throughout retirement.17
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1 Introduction27

Defined Benefit (DB) pension plans are disappearing, being replaced by Defined Contribution28

(DC) plans. According to a recent study by the Organization for Economic Co-operation and29

Development (OECD), less than 50% of pension assets in 2018 were held in DB plans in over 80%30

of reporting jurisdictions. Moreover, in more than 75% of reporting countries the proportion of31

pension assets in DB plans was lower in 2018 relative to its level a decade earlier (OECD, 2019).32

Note that the proportion of assets in DB plans is a lagging indicator of the shift to DC plans33

because employees who were historically covered by traditional DB plans have had more time to34

amass retirement savings. For example, in Israel the proportion of pension assets in DB plans35

dropped from 84% in 2008 to 56% in 2018. However, DB plans in that country were closed to36

new members in 1995 (OECD, 2019). Almost 25 years later, over half of pension assets in Israel37

are still in DB plans.38

The shift to DC plans is an inevitable consequence of corporations and governments being39

unwilling (or unable) to manage the risks associated with DB plans. In contrast, in DC plans the40

management of the financial assets is left up to individual investors. Given the long-term nature41

of retirement savings, this is a challenging task for most people. Assuming that investors do man-42

age to accumulate healthy balances in their DC accounts, the situation gets even more complex43

upon retirement. Individuals must continue to manage their financial assets, and also determine44

a decumulation strategy to withdraw assets and fund spending with uncertain longevity. While45

it is often suggested that retirees should purchase annuities, this rarely happens in practice. For46

example, Milevsky and Young (2007) report findings from a survey of U.S. retirees indicating47

that only 8% of respondents who were DC plan members and less than 2% of all respondents48

chose to annuitize. More recently, it has been reported that only around 4% of retirees with DC49

plans at a prominent Canadian insurer opted to annuitize (Carrick, 2020).50

The reluctance of retirees to annuitize is sometimes called a puzzle, since standard life cycle51

economic models based on utility maximization suggest that annuitization is optimal (Peijnen-52

burg et al., 2016). However, the overwhelming aversion to annuitization by retirees suggests that53

these economic models are missing something important. In practice, there are many reasons54

why retirees do not annuitize. MacDonald et al. (2013) list dozens of real-world factors including55

lack of true inflation protection, loss of control over capital, expensive pricing, the availability56

of other sources of guaranteed income such as government benefits, and paltry payments under57

some financial market conditions such as the current low interest rate environment.58

Assuming that purchasing an annuity is undesirable, retirees must devise suitable decumu-59

lation strategies. A major component of these plans is how much money to withdraw over time.60

Retirees who withdraw fairly large sums run the risk of outliving their resources, i.e. the risk of61

“ruin”. On the other hand those who take out relatively small amounts may have less enjoyable62

retirements and leave their heirs with (unintended) large bequests.63

Absent any annuitization, decumulation strategies can generally be classified as having fixed64

or variable withdrawals. Within these categories, several variations have been proposed. Mac-65

Donald et al. (2013) provide a nice summary of the various possibilities.1 In a fixed scheme, the66

1MacDonald et al. (2013) also discuss hybrid strategies, which combine some level of annuitization with a
(fixed or variable) decumulation scheme. We concentrate on strategies involving cash flows in the absence of any
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amounts taken out each year are constant, typically in real (i.e. inflation-adjusted) terms. This67

results in a smooth profile of spending over time, assuming that the retiree remains solvent. In68

other words, the risk is effectively due to longevity: the danger is that there will not be sufficient69

funds to sustain a very long retirement period with fixed annual withdrawals. With a variable70

scheme, the amounts taken out fluctuate in response to factors such as investment returns. An71

extreme example of this would be a fixed percentage withdrawal strategy: the investor takes out72

a constant percentage of the portfolio value each year. In principle, this puts all of the risk onto73

the spending stream. It is impossible to run out of funds since something is always left for the74

next year. The obvious problem is that the amount withdrawn may fall below a minimally viable75

threshold if the retiree lives long enough. There are many other possibilities for variable schemes76

which attempt to strike a balance between the two fundamental risks of spending fluctuations77

and longevity, typically through changes in spending in response to financial market returns.78

Perhaps the best known decumulation strategy is the 4% rule due to Bengen (1994). This79

fixed scheme states that retirees with an annually rebalanced portfolio split evenly between80

bonds and stocks can withdraw 4% of their initial wealth each year in real terms. Backtesting81

this rule on U.S. data showed that retirees would never have run out of funds, over any rolling82

historical 30-year period considered (Bengen, 1994).83

Backtesting using rolling historical periods is common in the practitioner literature. However,84

in general this approach seriously underestimates risk. Any two adjacent 30-year periods will85

have 29 years in common, any two 30-year periods beginning two years apart will have 28 years86

in common, etc. Consequently, the overall results will tend to be highly correlated, and this87

could be very misleading. The findings reported by Bengen (1994) address the question of88

what the historical experience would have been over a long period for someone who retired in89

a particular year and then followed the 4% rule. In other words, using rolling historical periods90

only considers what did happen, giving zero weight to any other plausible scenario that might91

have happened, and which could occur in the future. Two alternatives which can give a better92

sense of the risk involved are (i) to fit a parametric model to the historical data and then run93

a large number of Monte Carlo simulations, and (ii) to use block bootstrap resampling of the94

data (Politis and Romano, 1994), which involves randomly drawing (with replacement) shorter95

periods of data and chaining them together over the decumulation horizon. We use both of these96

approaches below and find that the risk of using the 4% rule is quite significant.297

As mentioned above, practitioners have proposed several variable schemes that allow spend-98

ing to fluctuate in response to portfolio returns. These strategies typically permit higher initial99

withdrawal rates compared to fixed schemes such as the 4% rule. These enhanced withdrawal100

actual level of annuitization, so we ignore hybrid strategies in this work.
2There are other reasons to think that Bengen (1994) understated the risk of the 4% rule. One is that data

past 1992 was extrapolated using historical averages for financial market returns each year. For example, the
30-year performance of the rule given a retirement date of 1976 was assessed using 16 years of actual market
data, followed by 14 years in which the returns for stocks and bonds and the inflation rate were constant each
year at their long-term average values. This clearly understates the strategy’s risk for cases with several years in
retirement after 1992. A more fundamental issue from today’s perspective is the reliability of the 4% rule during
a lengthy period of very low interest rates. Finke et al. (2013) considered bond market conditions early in 2013
and estimated that the failure rate for the 4% rule assuming 10 years of below average bond returns and a 50%
stock allocation was 32%, strongly suggesting that 4% is too high a withdrawal rate. Given that interest rates
have continued to trend downwards more recently, there are solid grounds for pessimism about the viability of
the 4% rule today.
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rates can be increased even further following portfolio gains, but need to be reduced (sometimes101

severely) after portfolio losses. Bengen (2001) considers fixed percentage withdrawals augmented102

with a floor and ceiling. The initial withdrawal rate can be increased in line with investment103

returns up to a maximum of 25% higher in real terms than the first withdrawal, or reduced104

no further than 10% below the real value of the initial withdrawal. Bengen (2001) concludes105

that this strategy permits a safe initial withdrawal rate of about 4.6%, notably higher than the106

fixed 4% rule. Guyton and Klinger (2006) explore the use of a complicated set of heuristic rules107

governing withdrawals, portfolio decisions, caps and freezes on inflation adjustments, etc. They108

conclude that an initial withdrawal rate of 5.2%-5.6% is sustainable given a portfolio equity109

allocation of 65%. As a third example, Waring and Siegel (2015) introduce the Annually Re-110

calculated Virtual Annuity (ARVA) rule, which is based on the idea that the amount taken out111

of the portfolio in any given year should be based on the annual cash flow from a virtual (i.e.112

imaginary) fixed term annuity that could be purchased using the current value of the portfolio.113

This strategy is similar to a fixed percentage withdrawal scheme in that the portfolio can never114

be fully depleted, but withdrawals can become unsustainable small if retirement is sufficiently115

long and/or portfolio returns are poor. Alternatively, the ARVA rule will lead to increased116

withdrawals following good investment returns.117

Pfau (2015) compares the performance of several spending strategies by Monte Carlo sim-118

ulation with parameters calibrated to long term (1890-2013) annual data for financial market119

returns and inflation. Pfau (2015) begins with a modification of the Bengen (1994) rule which120

uses constant inflation-adjusted withdrawals, but with a spending rate of 2.86% rather than 4%.121

This lower rate of 2.86% was estimated on the basis of there being at least a 90% chance of122

1.5% of the initial amount of real wealth remaining after 30 years of withdrawals, assuming a123

50/50 portfolio allocation between stocks and bonds. Using the same portfolio allocation and the124

same 90% criterion for other strategies permitted higher initial spending rates. For example, the125

initial spending rate for Bengen (2001)’s fixed percentage scheme with a floor of 85% of the real126

value of the first year’s withdrawal and a corresponding ceiling of 120% resulted in a sustainable127

initial spending rate of 3.31%. As additional examples, Pfau (2015)’s implementations of the128

ARVA approach (Waring and Siegel, 2015) and the Guyton and Klinger (2006) rules produced129

sustainable initial spending rates of 4.34% and 4.82% respectively.130

An important issue that has not been investigated much in the practitioner literature on131

decumulation is the effect of a more sophisticated approach to asset allocation, beyond simply132

rebalancing to a constant weighting of bonds and stocks. Tretiakova and Yamada (2017) ex-133

plore the performance of rebalancing to maintain a constant level of a (time-varying) equity134

market risk measure using several withdrawal rules and report that sustainable spending is sig-135

nificantly improved. However, this leaves open the question of the impact of using an asset136

allocation strategy that is optimized to achieve a well-defined financial objective. Implementing137

such an approach necessitates specifying a suitable objective function and solving the resulting138

optimization problem, which in turn requires more technically sophisticated methods.139

Along these lines, Dang et al. (2017) suggest using a multi-period mean variance objective140

function to examine the effect of different (fixed) withdrawal rates coupled with an adaptive141

portfolio allocation strategy. The objective function is posed in terms of the mean and variance142
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of the final wealth at time T . Dang et al. (2017) assume that most 65-year olds can expect to143

live for 20 years with high probability, and thus set a wealth target of one-half of the initial144

wealth at T = 20 years (after retirement). The idea is that retirees can decide how to hedge145

longevity risk at age 85, expecting to have spent one-half of their original wealth up to then.146

Irlam (2014) uses dynamic programming methods to determine asset allocation, given an147

objective of maximizing the number of years of solvency divided by the number of years lived.148

This is the only study we are aware of in the practitioner literature for which the asset allocation149

depends on a specified financial objective. Irlam (2014) concludes that asset allocation rules that150

depend only on time such as “age in bonds” or various target-date fund glide paths require a151

higher amount of investment in order to obtain the same withdrawal rates in retirement, as152

compared to his approach where the asset allocation is time and state-dependent. However,153

Irlam (2014) only considers a fixed annual withdrawal amount in retirement.154

In this work we further explore the effect of a variable spending rule in combination with an155

asset allocation strategy tailored to optimizing a financial objective. In particular, we use an156

ARVA spending rule augmented by constraints on minimum and maximum annual withdrawals.157

The minimum withdrawal constraint means that there is risk of depleting the portfolio entirely158

prior to the end of the investment horizon. We use the Expected Shortfall (ES) of the terminal159

portfolio value as a measure of risk. The ES at level x% is the mean of the worst x% of outcomes,160

and is thus a measure of tail risk. As a measure of reward, we use total Expected Withdrawals161

(EW). Based on a parametric model calibrated to historical market data, we determine the162

portfolio allocation strategy that optimizes the multi-objective Expected Withdrawals-Expected163

Shortfall (EW-ES) objective function.3164

A similar measure of risk and reward for DC plan decumulation is used in Forsyth (2020c).165

However, Forsyth (2020c) uses the withdrawal amount as a control, rather than an ARVA166

spending rule. In this case, Forsyth (2020c) shows that the withdrawal control is essentially167

a bang-bang type control, with minimum withdrawals during the earlier years of retirement.168

Use of the ARVA spending rule (with constraints) provides more control over the timing of169

withdrawals.170

We verify the robustness of this strategy through tests using bootstrap resampling of histori-171

cal return data. Our tests show that the ARVA spending rule coupled with an optimal allocation172

strategy is always more efficient than a constant withdrawal, constant weight strategy. In fact,173

our optimal dynamic ARVA strategy outperforms this alternative even when the minimum with-174

drawal under ARVA is equal to the constant withdrawal with constant weights. This verifies175

that allowing some variability in withdrawals sharply reduces the risk of depleted savings, con-176

sistent with Pfau (2015) and Tretiakova and Yamada (2017). In addition, we demonstrate that177

solving an optimal stochastic control problem to specify the asset allocation can provide further178

significant benefits beyond those obtained by permitting withdrawal variability alone.179

3Forsyth et al. (2020) use the same measure of reward, but minimize the downside variability of withdrawals
for an ARVA type spending rule, i.e. the risk measure is downward withdrawal variability. There are some other
noteworthy differences between this work and that of Forsyth et al. (2020). First, we impose upper and lower
bounds on annual withdrawals. Second, the assumed underlying financial model is more complex here, as it
incorporates stochastic bond market returns.
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2 ARVA Spending Rule180

Consider the following spending rule. Each year, a virtual (hypothetical) fixed term annuity181

is constructed, based on the current portfolio value, the number of remaining years of required182

cash flows, and a real (inflation adjusted) interest rate. The investor then withdraws an amount183

based on the hypothetical payment of this virtual annuity. Clearly, the annual payments will184

be variable, since the virtual annuity is recalculated each year, and is a function of the current185

portfolio value. The portfolio is liquidated at the end of the investment horizon. A surplus will186

be returned to the investor (or the investor’s estate). Any shortfall must be settled at this time187

as well.188

We are now faced with the choice of determining a timespan for the virtual fixed term annuity.189

Rather than specifying a maximum possible lifespan (which would be overly conservative), we190

assume that retirees are in the top 20% of the population in terms of conditional expected191

longevity (Westmacott, 2017). Consider a retiree who is x years old at t = 0. Assuming that192

the x+ t year old retiree is alive at time t, let T ∗x (t) be the time at which 80% of the cohort of193

x+ t year olds are expected to have passed away, conditional on all members of the cohort being194

alive at time t. At time t, the fixed term of the virtual annuity is then T ∗x (t)− t. This mortality195

assumption has the effect of providing increased spending during the early years of retirement.196

By varying the fraction of the cohort assumed to have passed away, we can increase/decrease197

spending in early retirement years at the cost of decreased/increased spending in later years.198

Note that our ARVA withdrawal amount is not generally the same as would be obtained from a199

currently purchased life annuity.200

Given the real interest rate r, the present value of an annuity which pays continuously at a201

rate of one unit per year for T ∗x (t)− t years is denoted by the annuity factor202

a(t) =
1− exp[−r(T ∗x (t)− t)]

r
. (2.1)203

It follows that W (t)/a(t) is the continuous real annuity payment for (T ∗x (t)− t) years, which can204

be purchased with wealth W (t) at time t. We make the assumption that withdrawals occur at205

discrete times in206

T ≡ {t0 = 0 < t1 < · · · < tM = T}, (2.2)207

where t0 denotes the time that the x year old retiree begins to withdraw money from the DC208

plan. We assume the times in T are equally spaced with ti − ti−1 = ∆t = T/M , i = 1, . . . ,M .209

We let ∆t = one year. We determine the cash withdrawal at time ti by converting the continuous210

payment above into a lump sum received in advance of the interval [ti, ti+1]. This lump sum211

withdrawal at ti is W (ti)A(ti), where212

A(ti) =

∫ ti+1

ti

e−r(t
′−ti)

a(t′)
dt′. (2.3)213

In this work, we will compute equation (2.3) based on the CPM 2014 mortality tables (male)214

from the Canadian Institute of Actuaries4 to compute T ∗x (t) with x = 65. Further discussion of215

4www.cia-ica.ca/docs/default-source/2014/214013e.pdf
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the ARVA spending rule can be found in Forsyth et al. (2020).216

3 Investment Market217

We assume that the investment portfolio consists of two index funds. These funds include a218

stock market index fund and a constant maturity bond index fund. Let the investment horizon219

be T , and St and Bt respectively denote the real (inflation adjusted) amounts invested in the220

stock index and the bond index. These amounts can change due to (i) changes in the real unit221

prices and (ii) the investor’s asset allocation strategy. In the absence of the application of an222

investor’s control, all changes in St and Bt result from changes in asset prices.223

We model the stock index (in the absence of an applied control) as following a jump diffusion224

process. Let St− = S(t−ε), ε→ 0+, i.e. t− is the instant of time before t, and let ξs be a random225

jump multiplier. When a jump occurs, St = ξsSt− . Use of jump processes allows for modelling226

of fat-tailed (non-normal) asset returns.5 We assume that log(ξs) follows a double exponential227

distribution (Kou and Wang, 2004). The probability of an upward jump is psu , with 1−psu being228

the probability of a downward jump. The density function for y = log(ξs) is229

fs(y) = psuη
s
1e
−ηs1y1y≥0 + (1− psu)ηs2e

ηs2y1y<0. (3.1)230

Define231

κsξ = E[ξs − 1] =
psuη

s
1

ηs1 − 1
+

(1− psu)η
s
2

ηs2 + 1
− 1. (3.2)232

Without an applied control,233

dSt
St−

=
(
µs − λsξκsξ

)
dt+ σs dZs + d

 πst∑
i=1

(ξsi − 1)

 , (3.3)234

where µs is the (uncompensated) drift rate, σs is the diffusive volatility, Zs is a Brownian motion,235

πst is a Poisson process with intensity parameter λsξ, and ξ
s
i are i.i.d. positive random variables236

having distribution (3.1). Moreover, ξsi , π
s
t , and Zs are assumed to all be mutually independent.237

As in MacMinn et al. (2014) and Lin et al. (2015), we use a common practitioner approach238

and model the returns of the constant maturity bond index (absent an applied control) as a239

stochastic process. This approach has the advantage that estimating model parameters from240

market data is quite straightforward, without the need to devise a parametric process for real241

interest rates. As in MacMinn et al. (2014), we assume that the constant maturity bond index242

follows a jump diffusion process. In particular, Bt− = B(t − ε), ε → 0+. In the absence of243

control, Bt evolves as244

dBt
Bt−

=
(
µb − λbξκbξ + µbc1{Bt−<0}

)
dt+ σb dZb + d

 πbt∑
i=1

(ξbi − 1)

 , (3.4)245

where the terms in equation (3.4) are defined analogously to equation (3.3). In particular, πbt is246

5Appendix A documents evidence of leptokurtic behavior for both of the indexes that we use in our tests.
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a Poisson process with positive intensity parameter λbξ, and ξ
b
i has distribution247

f b(y = log ξb) = pbuη
b
1e
−ηb1y1y≥0 + (1− pbu)ηb2e

ηb2y1y<0, (3.5)248

and κbξ = E[ξb − 1]. ξbi , π
b
t , and Zb are assumed to all be mutually independent. The term249

µbc1{Bt−<0} in equation (3.4) represents an additional cost of borrowing (Bt < 0), i.e. a spread250

between borrowing and lending rates. We assume that the diffusive components of St and Bt251

are correlated, i.e. dZs · dZb = ρsb dt. However, the jump process terms for these two indexes252

are assumed to be mutually independent.6253

It is possible to include more complex stock and bond processes, such as stochastic volatility254

for example. However, Ma and Forsyth (2016) have shown that including stochastic volatility255

effects does not have a significant effect on the results for long term investors. In order to verify256

the robustness of the strategies, we will determine the optimal controls using the parametric257

model based on equations (3.3) and (3.4). We then test these controls on bootstrapped resampled258

historical data. This is quite a strict test, since the bootstrapped resampling algorithm makes259

no assumptions about the underlying bond and stock stochastic processes.260

We define the investor’s total wealth at time t as Wt ≡ St +Bt. We impose the constraints261

that (assuming solvency) shorting stock and using leverage (i.e. borrowing) are not allowed.262

Insolvency can arise from withdrawals. If this happens, the portfolio is liquidated and debt263

accumulates at the borrowing rate. The borrowing rate is taken to be the return on the constant264

maturity bond index plus a spread µbc.265

4 Notational Conventions266

For ease of explanation, we will occasionally use the notation St ≡ S(t), Bt ≡ B(t) and Wt ≡267

W (t). Earlier in equation (2.2) we specified a set of times T for which withdrawals are permitted.268

We now expand the scope of T so that portfolio rebalances are also allowed at those times, i.e.269

T is the set of withdrawal/rebalancing times. More specifically, let the inception time of the270

investment be t0 = 0. At each withdrawal/rebalancing time ti, i = 0, 1, . . . ,M − 1, the investor271

(i) withdraws an amount of cash qi from the portfolio, and then (ii) rebalances the portfolio. At272

tM = T , the portfolio is liquidated and the final cash flow qM occurs.273

Given a time dependent function f(t), we use the shorthand notation f(t+i ) ≡ lim
ε→0+

f(ti + ε)274

and f(t−i ) ≡ lim
ε→0+

f(ti − ε). We assume that no taxes are triggered by rebalancing. This275

would normally be the case in a tax-advantaged DC savings account. Since we assume yearly276

application of the controls (rebalancing), we expect transaction costs to be small and hence they277

can be safely ignored.7 With no taxes or transaction costs, it follows that W (t+i ) = W (t−i )− qi.278

The multi-dimensional controlled underlying process is denoted by X(t) = (S (t) , B (t)),279

with t ∈ [0,T ]. The realized state of the system is x = (s,b). Let the rebalancing control pi(·)280

6See Forsyth (2020b) for a discussion of the evidence for stock and bond price jump independence.
7It is possible to include transaction costs, but this will increase computational cost (Van Staden et al., 2018).
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be the fraction invested in the stock index at rebalancing date ti, i.e.281

pi
(
X(t−i )

)
= p

(
X(t−i ),ti

)
=

S(t+i )

S(t+i ) +B(t+i )
. (4.1)282

The controls depend on the state of the investment portfolio before the rebalancing occurs, i.e.283

pi(·) = p
(
X(t−i ),ti

)
= p

(
X−i , ti

)
, ti ∈ T . We search for the optimal strategies amongst all284

controls with constant wealth after cash withdrawal,285

pi(·) = p(W (t+i ), ti)286

W (t+i ) = S(t−i ) +B(t−i )− qi287

S(t+i ) = S+
i = pi(W

+
i )W+

i288

B(t+i ) = B+
i = (1− pi(W+

i ))W+
i . (4.2)289

290

We assume that rebalancing occurs instantaneously, with the implication that the probability291

of a jump occurring in either index is zero during the rebalancing period (t−i , t
+
i ).292

Let Z represent the set of admissible values of the control pi(·). An admissible control P ∈ A,293

where A is the admissible control set, can be written as P = {pi(·) ∈ Z : i = 0, . . . ,M − 1}.294

We impose no-shorting and no-leverage constraints by specifying295

Z = [0,1]. (4.3)296

We also apply the constraint that if W (t+i ) < 0, the stock index holding is liquidated,297

p(W (t+i ), ti) = 0 if W (t+i ) < 0, (4.4)298

and no further stock purchases are permitted, with the result that debt accumulates at the bond299

return plus a spread. In addition, we define Pn ≡ Ptn ⊂ P as the tail of the set of controls in300

[tn, tn+1, . . . , tM−1], i.e. Pn = {pn(·), . . . , pM−1(·)}.301

5 Risk and Reward Measures302

Initially, we describe our measure of risk. Suppose g(WT ) is the probability density function of303

terminal wealth WT at t = T , and let304 ∫ W ∗α

−∞
g(WT ) dWT = α, (5.1)305

so that Prob[WT > W ∗α] = 1− α. We can interpret W ∗α as the Value at Risk (VAR) at level α.306

The Expected Shortfall (ES) at level α is then307

ESα =

∫W ∗α
−∞WT g(WT ) dWT

α
, (5.2)308

which is the mean of the worst α fraction of outcomes. Usually, α ∈ {.01, .05}. We emphasize309

that the definition of ES in equation (5.2) uses the probability density of the final wealth distri-310
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bution, not the density of loss. This has the implication that a larger value of ES is desirable311

(the worst case average portfolio value at T ).8312

Define X+
0 = X(t+0 ), X−0 = X(t−0 ). Given an expectation under control P, EP [·], Rockafellar313

and Uryasev (2000) show that ESα can be alternatively written as314

ESα(X−0 , t
−
0 ) = sup

W ∗
E
X+

0 ,t
+
0

P0

[
W ∗ +

1

α
min(WT −W ∗, 0)

]
. (5.3)315

The notation ESα(X−0 , t
−
0 ) indicates that ESα is as seen at (X−0 , t

−
0 ). This definition is then the316

pre-commitment ES. A strategy based on optimizing the pre-commitment ES at time zero is time317

inconsistent, since the investor may have an incentive to deviate from the strategy at t > 0. Thus,318

some authors have described pre-commitment strategies as being non-implementable. However,319

this is really a matter of interpretation: we consider the pre-commitment strategy as a useful320

technique to compute an appropriate value of W ∗ in equation (5.3). In fact, the strategy which321

fixes W ∗ ∀t > 0, is the induced time consistent strategy (Strub et al., 2019), and is consequently322

implementable. We delay further discussion of this point to Section 6.323

Our measure of reward is expected total withdrawals (EW), defined as324

EW(X−0 ,t
−
0 ) = E

X+
0 ,t

+
0

P0

[ i=M∑
i=0

qi

]
. (5.4)325

Note that we do not discount withdrawals, with either a market-based measure of the appropriate326

risk-adjusted discount rate or with a subjective discount rate. This reflects a desire to avoid327

basing our strategy on parameters that are difficult to estimate. Since the portfolio weights will328

depend on realized investment returns and withdrawals over time, it is problematic to estimate329

the appropriate risk-adjusted discount rate. Moreover, it is likely to be difficult to determine a330

subjective discount rate, which could easily vary across investors and/or over time. However,331

we observe that the economic effect of discounting the withdrawals would be to make earlier332

withdrawals more desirable. We have already incorporated a similar effect through the mortality333

boost to the spending rule discussed in Section 2 above.334

6 Objective Function335

Our overall approach involves a statistical tradeoff between reward and risk, similar to mean-336

variance portfolio analysis but with different measures of reward and risk. The main alternative337

would be a standard life cycle approach, where we would maximize a specified utility function.338

This would raise concerns related to estimating parameters such as risk aversion or elasticities339

of intertemporal substitution, similar to the subjective discount rate discussed in the preceding340

paragraph. However, this would pose more of a problem since the appropriate form of the341

utility function itself is open to question. The most popular specification in the literature is342

power utility, which implies constant relative risk aversion. However, a recent empirical study343

by Meeuwis (2020) of the portfolio holdings and income of millions of US retirement investors344

8The negative of ES is often called Conditional Value at Risk (CVAR), which has been used as a risk measure
in several prior asset allocation studies (e.g. Gao et al., 2016; Cui et al., 2019; Forsyth, 2020a).
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indicates that such a model is mis-specified: actual investors exhibit decreasing (not constant)345

relative risk aversion. More generally, the standard life cycle approach in principle requires346

knowledge of the investor’s total wealth including wealth due to human capital, illiquid assets347

such as a home, etc., not just a retirement savings portfolio. Although the standard life cycle348

approach offers some insightful theoretical implications, it is difficult to use in practice because349

the information required is often either not available or measured very imprecisely. We can also350

point out that the empirical validity of the standard life cycle approach has been questioned on351

behavioral grounds (Thaler, 1990). Accordingly, we avoid standard life cycle modelling based on352

utility functions. We also avoid extending the standard life cycle approach to more complicated353

preference specifications which may fit the data better (see, e.g. Meeuwis, 2020, and references354

therein). Instead, we take the relatively simpler approach of optimizing the reward-risk tradeoff.355

Expected withdrawals (EW) and expected shortfall (ES) are conflicting measures, so we use356

a scalarization technique to find the Pareto points for this multi-objective optimization problem.357

Informally, for a given scalarization parameter κ > 0, we seek the control P0 that maximizes358

EW(X−0 , t
−
0 ) + κESα(X−0 , t

−
0 ). (6.1)359

More precisely, we define the pre-commitment EW-ES problem in terms of the value function360

J
(
s,b,t−0

)
= sup
P0∈A

sup
W ∗

{
E
X+

0 ,t
+
0

P0

[
M∑
i=0

qi + κ

(
W ∗ +

min(WT −W ∗,0)

α

) ∣∣∣∣X(t−0 ) = (s,b)

]}
(6.2)361

and the constraints362

(St, Bt) follow processes (3.3) and (3.4); t /∈ T363

W+
` = S−` +B−` = q`; X+

` =
(
S+
` ,B

+
`

)
364

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`365

p`(·) ∈ Z = [0,1] if W+
` > 0; p`(·) = 0 if W+

` ≤ 0366

` = 0, . . . ,M − 1; t` ∈ T . (6.3)367
368

By reversing the order of the sup sup in equation (6.2), the value function can be written as369

J
(
s,b,t−0

)
= sup

W ∗
sup
P0∈A

{
E
X+

0 ,t
+
0

P0

[
i=M∑
i=0

qi+κ

(
W ∗ +

min(WT −W ∗, 0)

α

) ∣∣∣∣X(t−0 ) = (s,b)

]}
. (6.4)370

Denote the investor’s initial wealth at t0 by W−0 = S−0 +B−0 . Observe that the inner supremum371

in equation (6.4) is a continuous function of W ∗. Then, assuming that the domain of W ∗ is372

compact, we define373

374

W∗(0,W−0 ) = arg max
W ∗

{
sup
P0∈A

{
E
X+

0 ,t
+
0

P0

[
i=M∑
i=0

qi + κ

(
W ∗ +

min(WT −W ∗,0)

α

)
375

∣∣∣∣X(t−0 ) = (0,W−0 )

]}}
. (6.5)376

377
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Regarding W∗(0,W−0 ) as fixed ∀t > 0, the following proposition follows immediately:378

Proposition 6.1 (Pre-commitment strategy equivalence to a time consistent policy for an379

alternative objective function). The pre-commitment EW-ES strategy P∗ determined by solving380

J(0,W0,t
−
0 ) with W∗(0,W−0 ) from equation (6.5) is the time consistent strategy for an equivalent381

problem with fixed W∗(0,W−0 ) and value function J̃(s,b,t) defined by382

J̃(s,b,t−n ) = sup
Pn∈A

{
EX

+
n ,t

+
n

Pn

[
i=M∑
i=n

qi +
κmin(WT −W∗(0,W−0 ),0)

α

∣∣∣∣X(t−n ) = (s,b)

]}
. (6.6)383

Remark 6.1 (EW-ES induced time consistent strategy: an implementable control). In the384

following, we consider the actual strategy followed by the investor for any t > 0 as given by the385

induced time consistent strategy9 that solves problem (6.6) with the fixed value of W∗(0,W−0 )386

from equation (6.5). This strategy is identical to the EW-ES strategy at time zero. Hence, we387

refer to this strategy as the EW-ES strategy. It is understood that this refers to the strategy that388

solves the time consistent equivalent problem (6.6) for any t > 0. Consequently, this strategy is389

implementable (Forsyth, 2020a) (the investor has no incentive to deviate from this control for390

t > 0 ).391

7 Solution Method392

To solve the pre-commitment EW-ES problem (6.2), we start by interchanging the sup sup to393

arrive at equation (6.4). We expand the state space to X̂ = (s,b,W ∗), and define the auxiliary394

value function395

V (s,b,W ∗,t−n ) = sup
Pn∈A

{
EX̂

+
n ,t

+
n

Pn

[
M∑
i=n

qi + κ

(
W ∗ +

min(WT −W ∗,0)

α

) ∣∣∣∣X̂(t−n ) = (s,b,W ∗)

]}
(7.1)396

and slightly revised constraints397

(St, Bt) follow processes (3.3) and (3.4); t /∈ T398

W` = S−` +B−` = q`; X̂+
` =

(
S+
` ,B

+
` ,W

∗)
399

S+
` = p`(·)W+

` ; B+
` = (1− p`(·))W+

`400

p`(·) ∈ Z = [0,1] if W+
` > 0; p`(·) = 0 if W+

` ≤ 0401

` = 0, . . . ,M − 1; t` ∈ T . (7.2)402
403

We can solve auxiliary problem (7.1) using dynamic programming. The optimal control pn(w,W ∗)404

at time tn is determined from405

pn(w,W ∗) =


arg max
p′∈Z

V (wp′,w(1− p′),W ∗,t+n ) if w > 0

0 if w ≤ 0

. (7.3)406

9See Strub et al. (2019) for a discussion of induced time consistent strategies.
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Following the dynamic programming algorithm, we move the solution backwards across across407

time tn via408

V (s,b,W ∗,t−n ) = V (w+pn(w+,W ∗), w+
(
1− pn(w+,W ∗)

)
,W ∗, t+n ) + qn(w−,W ∗) , (7.4)409

where w− = s + b, and w+ = w− − qn. qn(w−,W ∗) is based on our ARVA spending rule (see410

Section 9 for a precise specification). Note that the spending rule will be a function of wealth411

before withdrawal. At t = T , we have412

V (s,b,W ∗,T+) = κ

(
W ∗ +

min(s+ b−W ∗,0)

α

)
. (7.5)413

For times t ∈ (tn−1,tn), there are no cash flows or controls applied. Recall that all quantities are414

real, and that there is no discounting. The iterated expectation property combined with Itô’s415

Lemma for jump processes in equations (3.3-3.4) then gives416

Vt +
(σs)2s2

2
Vss + (µs − λsξκsξ)sVs + λsξ

∫ +∞

−∞
V (eys,b,t)fs(y) dy417

+
(σb)2b2

2
Vbb + (µb − λbξκbξ)bVb + λbξ

∫ +∞

−∞
V (s,eyb,t)f b(y) dy418

− (λsξ + λbξ)V + ρsbσ
sσbsbVsb = 0 ; t ∈ (tn−1, tn) (7.6)419

420

Define421

J(s,b,t−0 ) = sup
W ′

V (s,b,W ′,t−0 ). (7.7)422

It is then straightforward to see that formulation (7.1-7.6) is equivalent to problem (6.2).10
423

We briefly describe our numerical solution approach. We refer the reader to Forsyth and424

Labahn (2019) and Forsyth (2020b) for further details. We start by solving the auxiliary problem425

(7.1-7.2) with fixed values ofW ∗, κ and α. Since shorting of the stock index is not allowed, S(t) ≥426

0. We localize the domain s > 0 on a finite localized domain s ∈ [ex̂min ,ex̂max ]. The computational427

domain for s is discretized using nx̂ equally spaced nodes in the x̂ = log s direction. Similarly,428

we define the localized domain for b > 0 to be b ∈ [bmin, bmax] = [eymin ,eymax ]. The computational429

domain for b > 0 is discretized using ny equally spaced nodes in the y = log b direction. Since430

the investor can become insolvent due to withdrawals, we also define a mirror image grid for431

b < 0 (Forsyth, 2020b).432

We use the Fourier methods described in Forsyth and Labahn (2019) to solve PIDE (7.6)433

between rebalancing times. Wrap-around errors are minimized using the domain extension434

technique in Forsyth and Labahn (2019). The localized domain [x̂min, x̂max] = [log(102) −435

8, log(102)+8], with [ymin, ymax] = [x̂min, x̂max] (units for ex̂ are thousands of dollars). Numerical436

tests showed that the errors involved in this domain localization were at most in the fifth digit.437

At rebalancing times, we discretize the equity fraction p ∈ [0,1] using ny equally spaced438

nodes and evaluate the right hand side of equation (7.3) using linear interpolation. We then439

solve the optimization problem (7.3) using exhaustive search over the discretized p values.440

10See Forsyth (2020a) for discussion of a similar problem.
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Given an approximate solution of the auxiliary problem (7.1-7.2) at t = 0, which we denote441

by V (s, b,W ∗, 0), we then compute the solution of problem (6.2) using equation (7.7). More442

specifically, we solve443

J(0,W0,0
−) = sup

W ′
V (0,W0,W

′, 0−) (7.8)444

given initial wealth W0. We solve this outer optimization problem using a one-dimensional445

optimization algorithm.11
446

If Wt � W ∗ and t → T , then Prob[WT < W ∗] ' 0. In addition, for large values of Wt the447

withdrawal is capped at qmax. As a result the objective function is almost independent of the448

control, and thus determination of the control becomes ill-posed. To avoid this, we change the449

objective function (6.2) by adding a stabilizing term εWT , giving450

451

J(s,b,t−0 ) = sup
P0∈A

sup
W ∗

{
E
X+

0 ,t
+
0

P0

[
i=M∑
i=0

qi + κ

(
W ∗ +

min(WT −W ∗,0)

α

)
+ εWT452

∣∣∣∣X(t−0 ) = (s,b)

]}
. (7.9)453

454

A negative value for ε forces the strategy to invest in the bond index when Wt is very large455

and t → T , where the original control problem is ill-posed. This choice is consistent with de-456

risking retirement assets as soon as possible (Merton, 2014). Setting ε = −10−4 gave the same457

results as setting ε = 0 to four digits for the summary statistics of the problem solution. This is458

due to the fact that outcomes with very large terminal wealth are highly unlikely.459

8 Data and Parameter Estimates460

As mentioned above, our model assumes that the retiree’s portfolio is allocated to either a461

stock index or a constant maturity bond index. In order to have a long history encompassing462

expansions, recessions, stock market booms and crashes, and different levels of interest rates,463

we use US financial market data. In particular, the stock index is taken to be the Center for464

Research in Security Prices (CRSP) Value-Weighted Index12, while the bond index is the CRSP465

30-Day Treasury bill (T-bill) Index. Both indexes are measured on a monthly basis from January466

1926 through December 2018, giving a total of 1,116 observations. To work in real terms, we467

deflate both indexes by the Consumer Price Index (CPI), which was also provided by CRSP.13
468

We use the threshold technique (Mancini, 2009; Cont and Mancini, 2011; Dang and Forsyth,469

2016) to estimate the parameters for the stochastic process models (3.3-3.4) (see Appendix A).470

All estimated parameters reflect real (inflation adjusted) returns. Table 8.1 shows the annualized471

parameter estimates. For reference, the table also gives the estimated parameters for the two time472

11 Since the problem is not guaranteed to be convex, we cannot be sure that we converge to the global maximum.
Additional testing based on a search over the finest grid suggests that we do indeed have the globally optimal
solution.

12This is a total return index of the broad US stock market, reflecting both distributions such as dividends and
capital gains/losses due to price changes.

13The CRSP data used in this study was obtained through Wharton Research Data Services (WRDS). This
service and the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or
its third party suppliers.
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Real CRSP Value-Weighted Stock Index

Method µs σs λs psup ηs1 ηs2 ρsb

Threshold (β = 3) .08607 .14600 .32258 .23333 4.3578 5.5089 .08311
GBM .08044 .18460 N/A N/A N/A N/A .05870

Real 30 Day T-bill Index

Method µb σb λb pbup ηb1 ηb2 ρsb

Threshold (β = 3) .00454 .01301 .51610 0.39580 65.875 57.737 .08311
GBM .00448 .01814 N/A N/A N/A N/A .05870

Table 8.1: Estimated annualized parameters for the double exponential jump diffusion model (3.3-
3.4). Sample period 1926:1 to 2018:12. GBM refers to a geometric Brownian motion model (i.e.
no jumps). The threshold method is described in Appendix A.

series assuming geometric Brownian motion (GBM).14 For the threshold case, after removing473

any returns which occur at times corresponding to jumps in either series, the correlation ρsb is474

then estimated using the remaining sample covariance.475

The annualized real value-weighted stock index parameters in Table 8.1 for the double ex-476

ponential jump diffusion model correspond to an (uncompensated) drift rate of 8.6% and a477

diffusive volatility of 14.6%. Jumps in the stock index are estimated to occur about once every478

three years. Conditional on a jump occurring, a downwards jump is about 3 times more likely479

than an upwards jump. The mean jump size is about 23% in the upward direction and 18%480

in the downward direction. Since the standard deviation is equal to the mean for an exponen-481

tially distributed random variable, the magnitudes of both upward and downward jumps can482

vary considerably. The corresponding GBM parameter estimates imply a drift of about 8% per483

annum, with a volatility of 18.5%. This volatility is higher than the diffusive volatility for the484

jump model since in the GBM case this term effectively combines the effects of volatility due to485

both diffusion and jumps.486

Turning to the T-bill index, the annualized jump model parameters correspond to a real487

(uncompensated) drift of approximately 0.45% and a diffusive volatility of about 1.3%. Jumps488

are estimated to occur about every 2 years, slightly more often than for the stock index. Down-489

ward jumps are again more likely than upward jumps, though somewhat less so compared to the490

stock index. The mean jump size is around 1.5% in the upward direction, and about 1.7% in the491

downward direction. The GBM parameter estimates indicate a drift that is also about 0.45%,492

and a volatility of approximately 1.8%. Finally, the correlation between the diffusive terms for493

the two indexes is quite low, around .083 for the jump model and .059 for the GBM case.494

9 Investment Scenario495

In order to focus exclusively on decumulation, we consider an investor just entering retirement496

at age 65 with savings of $1 million. Our investor is assumed to have the life expectancy497

characteristics of a Canadian male. According to the CPM 2014 mortality table, this investor498

14The GBM parameter estimates are calculated using maximum likelihood estimation.
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Investment horizon T (years) 30
Investor (t = 0) 65-year old Canadian male
Mortality table CPM 2014
Equity market index CRSP value-weighted index (real)
Bond index 30-day T-bill index (real)
Initial portfolio value W0 1,000
Cash withdrawal/portfolio rebalance times (years) t = 0,1, . . . , 30
qmax 80
qmin 30
Borrowing spread when Wt < 0 µbc = .02
Interest rate for ARVA computation (2.3) µb = 0.00454
Rebalancing interval (years) 1
Market parameters See Table 8.1

Table 9.1: Base case input data. Monetary units: thousands of dollars. The CPM 2014 mortality
table is from the Canadian Institute of Actuaries.

has a 13% probability of attaining the age of 95 and a 2% probability of reaching the century499

mark. We set the investment horizon T to be 30 years.500

We alter the standard ARVA spending rule so as to include an annual floor of qmin = $30,000501

and an annual cap of qmax = $80,000. Recall that all quantities are expressed in real (i.e.502

inflation-adjusted) terms. Our modified ARVA spending rule is then503

qi = max
[
qmin,min

(
A(ti)W

−
i , qmax

)]
(9.1)504

where A(ti) is given in equation (2.3). To provide more context, a Canadian male who has505

worked for 40 years in a high-earning occupation can expect to receive slightly over $20,000 per506

year in government benefits. Hence, we are assuming that the minimum total amount needed507

per year is about $30,000 + $20,000 = $50,000 per year. Of course, the investor would like to508

withdraw more than the minimum amount of $30,000. However, as noted we also place a cap509

of $80,000 per year on withdrawals. The cap prevents the retiree from reducing savings very510

quickly, establishing a buffer against potential poor investment returns. We are thus effectively511

assuming that our retiree has no need for income above $80,000+$20,000 = $100,000 per year.15
512

Our retired investor withdraws cash and rebalances his portfolio at the start of each year,513

beginning immediately. The interest rate used in the ARVA calculation (2.3) is set equal to the514

estimated value of µb, which is given in Table 8.1 as 0.454%. Table 9.1 summarizes the base515

case investment scenario. Note that monetary units here and in the following tables and plots516

are expressed in thousands of (real) dollars.517

Since the investor uses a risky portfolio to fund minimum cash flows annually, there is clearly518

no guarantee that he will not run out of savings if he has survived to age 95. As outlined above,519

we seek an investment strategy that minimizes risk as measured by expected shortfall (ES), as520

defined by equation (5.2). We use α = 5%, so we are trying to minimize the adverse consequences521

measured by the average outcome in the worst 5% of the distribution. As indicated in Table 9.1,522

15It is also worth noting that Canadian government benefits are reduced when total income exceeds about
$80,000 per year, providing further incentive to not withdraw more than the specified cap.
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whenWt < 0 we assume that debt accumulates at the rate given by the current return on 30-day523

T-bills plus a spread of µbc = 2%.524

We focus solely on measured outcomes for the investment account, but it is easy to imagine525

that our retiree also owns real estate such as a home. In this case, the ES risk could be526

hedged using a reverse mortgage with the home as collateral. However, we assume that the527

investor wants to avoid using a reverse mortgage if at all possible, so we seek an investment528

strategy that minimizes the magnitude of ES risk on its own. Our scenario shares some features529

with the behavioural life cycle approach originally described in Shefrin and Thaler (1988). In530

this framework, investors divide their wealth into separate “mental accounts” containing funds531

intended for different purposes such as current spending or future needs. The standard life cycle532

approach assumes that wealth is completely fungible across any such accounts, so that the same533

increase in wealth from any source (e.g. positive returns for a financial market portfolio, an534

increase in the value of one’s house, lottery winnings, etc.) has the same effect on consumption.535

In contrast, in the behavioral approach wealth is not completely fungible, so the effects of536

increased wealth depend on the source of the increase. In our case, even if the investor’s wealth537

rises because the value of his real estate has increased, there will be no impact on the amount538

withdrawn from the retirement portfolio. The real estate account will only be accessed as a last539

resort. It is assumed to be there in the background if needed, but it is ignored in our analysis.540

10 Numerical Results: Synthetic Market541

We evaluate the performance of three alternative strategies based on the scenario described by542

Table 9.1: (i) constant withdrawals and investment portfolio rebalanced to maintain constant543

asset allocation weights (in particular, we set qmin = qmax = 40 instead of the values given544

in Table 9.1 so that this strategy corresponds to the 4% rule of Bengen (1994)); (ii) ARVA545

withdrawals as indicated in Table 9.1 and investment portfolio rebalanced to maintain constant546

asset allocation weights; and (iii) ARVA withdrawals as indicated in Table 9.1 and investment547

portfolio rebalanced to optimal asset allocation weights, in accordance with solving the pre-548

commitment EW-ES problem (6.2) by the methods described in Section 7. In each case, the549

performance evaluation is based on Monte Carlo simulated paths of market returns based on550

the parametric model (3.3-3.4), with statistics of interest calculated across all paths. We refer551

to this as a synthetic market, since the data used is generated by simulation of the parametric552

model rather than taken directly from actual historical market returns.16
553

We begin with the first strategy described above: constant withdrawals based on the 4%554

rule (qmax = qmin = 40) and constant weights, i.e. p` = constant in equation (6.3). The results555

for the equity index weight p` = 0.0, 0.1, 0.2, . . . , 1.0 are shown in Table 10.1. This table also556

displays the results for p` = 0.15, since this is approximately the equity weight which results in557

the maximum ES. We conjecture that this low equity weight is due to our use of ES to measure558

risk, compared to the more typical standard deviation. As p` increases past 0.15, the magnitude559

of ES increases strongly. Taking on more equity market risk results obviously leads to higher560

ES. Of course reward also rises, as shown by the median value of terminal wealth WT .17
561

16We provide results based on historical market returns below in Section 11 and Appendix B.
17In general, our measure of reward is total expected withdrawals. However, in this case the withdrawals are
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Equity Weight p` ES (α = 5%) Median[WT ]

0.00 −344.95 −192.14
0.10 −284.46 −55.17
0.15 −284.28 22.29
0.20 −294.32 108.70
0.30 −332.05 310.12
0.40 −384.62 550.25
0.50 −447.55 828.81
0.60 −518.24 1143.18
0.70 −594.67 1490.44
0.80 −675.08 1862.64
0.90 −758.57 2249.94
1.00 −844.37 2637.77

Table 10.1: Synthetic market results for constant withdrawals with constant weights, i.e. assum-
ing the scenario from Table 9.1 except that qmax = qmin = 40 and p` = constant in equation (6.3).
Units: thousands of dollars. Statistics are based on 2.56× 106 Monte Carlo simulated paths.

To see the benefit of the ARVA withdrawal strategy, we repeat the Monte Carlo simulations562

from above, except that here the ARVA spending strategy (2.3) is used with the constraints563

qmin = 30 and qmax = 80. The results are shown in Table 10.2, which has an additional column564

compared to Table 10.1. This extra column shows the expected average withdrawals over the565

decumulation period, EW/(M + 1) =
∑

i qi/M .18 In Table 10.2 the largest ES is −38.43 for566

p` = 0.2. This equity weight gives an expected annual withdrawal of 42.07. Recall that the567

largest ES from Table 10.1 was −284, with constant annual withdrawals of 40. There is a568

dramatic improvement in ES, despite higher average withdrawals. As another observation, in569

Table 10.2 the strategy with p` = 0.7 has better ES than the best result in Table 10.1, while570

the average expected withdrawal is 59.13, again compared to the constant withdrawal of q = 40.571

Overall, our comparison between strategies with constant asset weights and constant vs. variable572

spending (the ARVA rule augmented with a floor and a cap) is consistent with the results in573

studies such as Pfau (2015), albeit with different measures of risk and reward: a variable spending574

rule allows for both higher average withdrawals and lower risk as measured by ES.575

We next consider our third strategy of ARVA withdrawals with optimal asset allocation. In576

particular, we consider the scenario described in Table 9.1 and solve for the optimal control577

p(W,t) for the pre-commitment EW-ES problem given by equation (6.2) using the methods578

discussed in Section 7. We store the optimal control and then carry out Monte Carlo simulations579

to calculate statistical properties as above but with applying p(W,t) along each path rather than580

rebalancing to constant weights. We reiterate that for all times t > 0, this corresponds to the581

induced time consistent strategy that solves equation (6.6).582

Before presenting the main results, we first verify the convergence of the algorithm given in583

Section 7 that is used to solve the optimal control problem given by equation (6.2). Table 10.3584

fixed, so wealth is drawn down slowly given a sufficiently high p` and decent equity market returns, resulting in
relatively high values for WT .

18This column was excluded from Table 10.1 because in that case the annual withdrawals were constant at 40.
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Equity Weight p` ES (α = 5%) EW/(M + 1) Median[WT ]

0.0 −78.89 34.80 −12.36
0.1 −39.60 37.85 31.48
0.2 −38.43 42.07 64.31
0.3 −54.01 46.95 90.01
0.4 −82.92 51.46 111.32
0.5 −124.19 54.95 138.11
0.6 −176.92 57.42 179.68
0.7 −239.69 59.13 275.02
0.8 −310.78 60.30 486.56
0.9 −387.96 61.07 739.74
1.0 −469.67 61.56 1013.85

Table 10.2: Synthetic market results for ARVA withdrawals with constant weights, i.e. assuming
the scenario from Table 9.1 except that p` = constant in equation (6.3). There are M = 30
rebalancing dates and M + 1 withdrawals. Units: thousands of dollars. Statistics are based on
2.56× 106 Monte Carlo simulated paths.

Algorithm in Section 7 Monte Carlo

Value
Grid ES (α = 5%) EW/(M + 1) Function ES (α = 5%) EW/(M + 1)

512× 512 −64.633 54.8128 1537.6144 −59.326 54.779
1024× 1024 −61.305 54.8377 1546.5833 −59.381 54.802
2048× 2048 −60.196 54.8230 1549.0359 −59.469 54.812

Table 10.3: Convergence test for the algorithm from Section 7 used to determine the optimal
asset allocation strategy to solve the pre-commitment EW-ES problem (6.2) with κ = 2.5 for the
scenario from Table 9.1. The Monte Carlo method used 2.56 × 106 simulated paths. The grid is
reported as nx×nb, where nx is the number of nodes in the log s direction and nb is the number of
nodes in the log b direction. There are M = 30 rebalancing dates and M + 1 withdrawals. Units:
thousands of dollars. The value of W ∗ in equation (6.2) is 4.13 on the finest grid.

shows a test with various levels of grid refinement for a fixed value of κ = 2.5 in equation (6.2). At585

each grid refinement, we compute and store the optimal controls which are then used in Monte586

Carlo simulations. The algorithm in Section 7 and the Monte Carlo simulations are in good587

agreement. As expected, the value function appears to be converging at almost a quadratic588

rate. The other quantities ES and expected average withdrawals which are derived from the589

algorithm in Section 7 converge a bit more erratically. Results reported below for all cases with590

optimal asset allocation are calculated using the finest grid from Table 10.3.591

Table 10.4 shows the results for the ARVA spending rule with optimal asset allocation from592

solving the pre-commitment EW-ES problem (6.2) for various values of κ. In addition to ES,593

expected average withdrawals EW/(M + 1), and median WT , Table 10.4 shows the average594

throughout the investment horizon of the median value of the fraction of the portfolio invested595

in equities in the furthest right column. This gives a rough indication of the equity market risk596

taken on over the period. As indicated by equation (6.1), increasing κ places more emphasis on597

risk relative to reward. As a result, the optimal equity allocation tends to decrease with κ. This598
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κ ES (α = 5%) EW/(M + 1) Median[WT ]
∑

iMedian(pi)/M

0.1 −459.93 63.01 266.43 .455
0.3 −308.26 61.67 258.64 .458
0.5 −209.63 60.15 250.59 .451
1.0 −119.10 57.91 237.06 .416

1.75 −77.02 56.04 208.67 .390
2.5 −59.47 54.81 180.36 .375
5.0 −37.91 52.35 129.97 .340

10.0 −25.90 49.59 93.19 .291
20.0 −19.78 46.82 66.53 .243
100.0 −15.98 42.35 44.77 .173

1000.0 −15.74 40.30 39.52 .139

Table 10.4: Synthetic market results for ARVA withdrawals with optimal asset allocation based
on the scenario from Table 9.1 for various values of κ. The optimal control that solves the pre-
commitment EW-ES problem (6.2) is computed using the algorithm given in Section 7, stored,
and then applied in the Monte Carlo simulations. There are M = 30 rebalancing dates and M + 1
withdrawals. Units: thousands of dollars. Statistics are based on 2.56×106 Monte Carlo simulated
paths. The stabilization parameter in equation (7.9) is ε = −10−4.

is also reflected in reduced median WT and expected average withdrawals. The benefit from599

higher κ is a lower magnitude of ES. Consider the case here with κ = 5 which results in ES of600

−37.91, expected average withdrawals of 52.35, and median WT of 129.97. This strategy has an601

average median equity allocation of 0.34. Contrast this with the result reported in Table 10.2602

for p` = 0.2, which had about the same ES (−38.43), but expected average withdrawals of603

just 42.07 and median terminal wealth of 64.31. In this case, using an optimal asset allocation604

strategy compared to a constant weight strategy results in about the same ES but significantly605

higher average withdrawals and about twice as much median WT . This attests to the benefits606

of optimizing the asset allocation strategy, in addition to allowing for variable withdrawals.607

To further investigate the benefits of using an optimal asset allocation strategy, we plot the608

efficient frontiers of expected average withdrawals EW/(M + 1) vs. ES in Figure 10.1(a). We609

show these frontiers for (i) the ARVA spending rule with optimal asset allocation as computed610

by solving the pre-commitment EW-ES problem (6.2), with results provided in Table 10.4; (ii)611

the ARVA spending rule with a constant weight asset allocation strategy, with results shown612

in Table 10.2; and (iii) a constant withdrawal of q = 40 with a constant weight strategy, with613

just the best result (i.e. highest ES) from Table 10.1.19 Note that we have removed all non-614

Pareto points from these frontiers for plotting purposes. Figure 10.1(a) shows that even with615

constant asset allocation weights the ARVA spending rule is much more efficient than a constant616

withdrawal strategy which also has constant asset allocation weights. In fact, ARVA alone617

provides about 50% higher expected average withdrawals for the same ES achieved by a constant618

withdrawal strategy by allowing for a higher stock allocation and limited income variability. The619

case with optimal asset allocation with the ARVA spending rule plots above the corresponding620

case with constant asset allocation, with a larger gap between them for higher values of ES.621

19This last case leads to just a single point in our plot since withdrawals are fixed at 40 regardless of the asset
allocation and all other constant equity weights lead to lower ES.
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Figure 10.1: Efficient frontiers in the synthetic market for the scenario from Table 9.1. All
non-Pareto points have been removed. Units: thousands of dollars.

To see the impact of the minimum required withdrawals, Figure 10.1(b) displays efficient622

frontiers for the ARVA spending rule with optimal asset allocation for various values of qmin,623

keeping qmax = 80. As a point of comparison, we also show the point corresponding to the624

constant weight strategy with p` = 0.15, which gives the highest ES for constant withdrawals of625

q = 40. As qmin rises the efficient frontiers move down and to the left, as expected. However, even626

for qmin = 40, the efficient frontier plots well above the best point for constant withdrawals of q =627

40 with constant asset weights. This indicates that much larger expected average withdrawals628

can be attained at no cost in terms of higher ES through the use of the ARVA spending rule629

and optimal asset allocation. Surprisingly, Figure 10.1(b) shows that the combination of ARVA630

and optimal control increases EW by 25%, even when income is constrained to be no less than631

for the constant withdrawal case.632

Additional insight into the properties of the ARVA spending rule in conjunction with an633

optimal asset allocation strategy can be gleaned from Figure 10.2 showing the 5th, 50th, and634

95th percentiles of the fraction of the retiree’s portfolio invested in the stock index, withdrawals,635

and wealth throughout the 30-year decumulation period. The optimal controls are computed636

by solving the pre-commitment EW-ES problem (6.2) with κ = 2.5 and then used in Monte637

Carlo simulations to generate these plots. The general trend is for the equity index weight to638

decline over time, but there are cases where it rises significantly instead. Median withdrawals639

increase for the first 25 years, before falling off a bit. The 5th percentile of withdrawals quickly640

drops to qmin = 30 and remains there. On the other hand, the 95th percentile of withdrawals641

rises sharply for about the first 5 years, and then stays at qmax = 80. Median wealth trends642

downward consistently over time, as does the 5th percentile of wealth. The 95th percentile of643

wealth rises over the first several years, before also falling off fairly sharply.644

Recall that Proposition 6.1 states that the solution of the pre-commitment EW-ES prob-645

lem (6.2) has the same controls at time zero as the induced time consistent problem (6.6).646
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Figure 10.2: Percentiles in the synthetic market of the fraction invested in the stock index,
withdrawals, and wealth for the scenario from Table 9.1 with ARVA withdrawals and optimal asset
allocation. Based on 2.56× 106 Monte Carlo simulated paths. Units: thousands of dollars.

Given any point in (Wtn , t) space (tn are the rebalancing times), maximizing647

J̃(s,b,t−n ) = sup
Pn∈A

{
EX

+
n ,t

+
n

Pn

[
i=M∑
i=1

qi +
κmin(WT −W∗,0)

α
+ εWT

∣∣∣∣X(t−n ) = (s,b)

]}
(10.1)648

leads to the optimal strategy depicted in the heat map contained in Figure 10.3. For this649

example, if we set κ = 2.5 in problem (6.2), then W ∗ = 4.13. Recall that W ∗ is set to be the650

value such that Prob[WT < W ∗] = α as determined at time zero.20
651

The structure of the heat map can be understood as follows. As t→ T , there are multiply-652

connected regions of all bond and all stock portfolios. For small values of wealth, the optimal653

strategy is to be fully invested in stocks, thus attempting to maximize ES. As wealth increases,654

Prob[WT < W ∗] is small, and the investor switches to a portfolio that is heavily weighted towards655

the bond index to protect against the ES risk. If wealth increases further, the investor moves to656

investing more in stocks, in order to maximize withdrawals. Finally, for large values of wealth,657

there is little chance that WT < W ∗. Since the withdrawals are capped at 80 per year, there658

is no incentive to take on any more risk. In this case, the stabilization term εWT in equation659

(10.1) comes into effect. Since ε = −10−4 < 0, this forces the strategy back into bonds.660

It is useful to examine Figure 10.3 with reference to the median wealth shown in Figure661

10.2(c). The initial wealth of 1000 is in the green region, with equity weight ' 0.50. As t→ T ,662

the optimal control attempts to guide real wealth into the sweet spot between the lower blue663

zone and the upper red zone. The lower blue zone then acts as a barrier to lower wealth (i.e.664

running out of cash), since the portfolio becomes very stable with a large fraction of bonds.665

Above the lower blue zone, the allocation can vary considerably in an effort to maximize the666

total withdrawals, especially with a short time remaining.667

Figure 10.3 also shows the effect of different starting values of wealthW0, keeping a minimum668

withdrawal of qmin = 30. For example, with W0 = 400 the investor has no choice but to start669

with an investment of 100% in stocks and hope for the best. This is essentially a “Hail Mary”670

strategy, with little chance of success. On the other hand, if W0 = 2000, the investor will start671

20In all of our examples, we maximize ES at the α = .05 level.
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Figure 10.3: Heat map of controls computed from solving the pre-commitment EW-ES prob-
lem (6.2) for κ = 2.5 with ARVA withdrawals based on the scenario from Table 9.1. The stabi-
lization parameter in equation (7.9) is ε = −10−4.

off being completely invested in bonds with very high probability of success.672

11 Numerical Results: Historical Market673

We continue to compute and store the optimal controls based on the parametric model (3.3-674

3.4) as in the synthetic market case. As a robustness test, we now calculate statistics using675

these stored controls, but with bootstrapped historical real return data rather than Monte Carlo676

simulations following the parametric model. We employ the stationary block bootstrap method677

(Politis and Romano, 1994; Politis and White, 2004) to generate many bootstrap simulated678

paths. A single path entails sampling randomly sized blocks from the historical data with679

replacement and pasting them together to cover the entire decumulation period of T = 30680

years.21 The blocksize is generated randomly according to a geometric distribution with expected681

blocksize b̂, which helps to mitigate the effects of a fixed block size.682

We implement an algorithm from Patton et al. (2009) to determine the optimal expected683

blocksize b̂ for the bond and stock indexes separately. This indicates that the optimal expected684

blocksizes are 0.25 and 4.2 years for the stock and bond indexes respectively. However, to allow685

for possible contemporaneous dependence between the two indexes we use paired sampling to686

simultaneously draw returns from both series. Given the large difference in optimal expected687

blocksize for the two indexes, it is not obvious what should be done for paired sampling. One688

possibility is to use an average of the two estimates, suggesting about 2 years. We do this, but689

we also give results for a range of expected blocksizes as a robustness check.22
690

In these bootstrap simulations, we continue to use the average historical real (uncompen-691

21Sampling in blocks helps to incorporate any serial correlation that is present in the data.
22Detailed pseudo-code for block bootstrap resampling can be found in Forsyth and Vetzal (2019).
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b̂ ES (α = 5%) EW/(M + 1) Median[WT ]
∑

iMedian(pi)/M

Synthetic Market (from Table 10.4)

N/A -59.47 54.81 180.36 .375

Historical Market

0.25 years -43.93 54.66 169.98 .398
0.5 years -53.47 54.88 174.49 .400

1 year -50.83 55.07 178.59 .407
2 years -40.80 55.15 180.32 .416
5 years -26.53 55.14 182.19 .420

Table 11.1: Historical market results for ARVA withdrawals with optimal asset allocation based
on the scenario from Table 9.1 for various expected blocksizes b̂. The optimal control that solves the
pre-commitment EW-ES problem (6.2) is computed using the algorithm given in Section 7, stored,
and then applied to bootstrap resamples of the monthly data from 1926:1 to 2018:12. Statistics
are based on 105 bootstrapped paths. There are M = 30 rebalancing dates and M + 1 withdrawals.
The scalarization parameter in equation (6.2) is κ = 2.5 and the stabilization parameter in equa-
tion (7.9) is ε = −10−4. Units: thousands of dollars.

sated) drift for the T-bill index µb as the interest rate in the ARVA computation (2.3). This692

avoids the problem of fluctuating withdrawal amounts which are driven just by the bootstrap693

resampling methods. It is also a conservative approach since µb ' 0.694

We first explore the effect of the expected blocksize b̂. Table 11.1 shows the results computed695

by solving the pre-commitment EW-EW problem (6.2) in the synthetic market with κ = 2.5 and696

then using this control with block bootstrap resampling having various expected blocksizes b̂. For697

ease of comparison, the table also provides the results for κ = 2.5 in the synthetic market that698

were previously shown in Table 10.4. The historical market results in Table 11.1 are generally699

similar to the corresponding synthetic market result, at least for values of b̂ between 0.5 and700

2 years. The reported ES values for the historical market are consistently a bit better than701

in the synthetic market, while expected average withdrawals and median terminal wealth are702

quite comparable. However, the average of the median value of the equity weight is a bit higher,703

clustering at or above 0.4 for the historical market compared to 0.375 for the synthetic market.704

Results reported below use b̂ = 2 years, as this is (approximately) the average of the optimal705

expected blocksizes for the two indexes.706

Figure 11.1 shows the percentiles of the optimal controls, withdrawals and wealth throughout707

the decumulation period in the historical market with b̂ = 2 years. Figure 11.1 is very similar708

to the corresponding Figure 10.2 for the synthetic market. The median fraction invested in the709

stock index increases a little more sharply in Figure 11.1, and the 5th percentile of this fraction710

reaches zero a little later, but these are almost the only discernible differences. Overall, the close711

correspondence between the various panels of these two figures suggests that the parametric712

model used when solving for the optimal control is fairly robust as the historical market makes713

no assumptions about the processes followed by the stock and bond indexes.23
714

We now compare in the historical market the same three strategies that were considered715

23However, this is not always true. In this case, ES (see Table 11.1 with b̂ = 2 years) is about −41. As we will
see below, if we try to increase ES to higher values than this, then the controls do not appear to be robust.
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Figure 11.1: Percentiles over time in the historical market of the fraction invested in the stock
index, withdrawals, and wealth for the scenario from Table 9.1 with ARVA withdrawals and optimal
asset allocation. The scalarization parameter in equation (6.2) is κ = 2.5 and the stabilization
parameter in equation (7.9) is ε = −10−4. Based on 105 bootstrap resamples of the monthly data
from 1926:1 to 2018:12. Units: thousands of dollars.

previously in the synthetic market of Section 10, i.e. constant withdrawals of q = 40 with716

constant asset allocation weights, ARVA withdrawals with constant asset allocation weights,717

and ARVA withdrawals with optimal asset allocation. Appendix B provides tables of results for718

these strategies in the historical market with b̂ = 2 years; here we present plots based on those719

results.720

The efficient frontiers of expected average withdrawals vs. ES in the historical market are721

plotted in Figure 11.2(a), which is analogous to Figure 10.1(a) for the synthetic market. As722

in Figure 10.1(a), Figure 11.2(a) shows that the ARVA withdrawal with constant weight asset723

allocation is a major improvement over the constant withdrawal with constant asset allocation724

weights. As expected, the optimal ARVA withdrawal strategy with optimal asset allocation725

continues to plot above the ARVA withdrawal strategy with constant weight asset allocation,726

indicating that optimal asset allocation can provide further significant enhancements. Although727

the general picture is the same here in the historical market as it was in the synthetic market,728

it is worth pointing out a couple of specific differences. First, consider the constant withdrawal729

strategy with constant asset allocation. In the synthetic market, the highest ES of about −284730

for an equity weight of 0.15 (see Table 10.1). This is the best available point, since withdrawals731

are constant. In the historical market, the corresponding ES is about −355 for an equity weight732

of 0.40 (see Table B.1). However, Figure 10.1(a) indicates that in the synthetic market an733

ES of −200 can be attained with expected average withdrawals of about 58 for the constant734

weight case and about 60 for the optimal asset allocation case. The corresponding values for735

the historical market in Figure 11.2(a) with an ES of −200 are a little higher, about 61 for the736

constant weight case and around 63 for optimal asset allocation. These values do not constitute737

the largest gap between these two frontiers, but they do indicate that ARVA withdrawals (with738

either constant weight or optimal asset allocation) perform a bit better in the historical market739

relative to the synthetic market, at least for this level of ES. On the other hand, the performance740

of the constant withdrawal strategy is notably worse in the historical market.741

A more direct comparison between the synthetic and historical markets is given in Fig-742

25



-500 -400 -300 -200 -100 0

Expected Shortfall

40

45

50

55

60

65
E

[a
v
e

ra
g

e
 w

it
h

d
ra

w
a

l] Optimal

Constant

Weight

Const q=40

Const p

(a) ARVA withdrawals with optimal and constant
weight asset allocation, and the single best point
for a constant withdrawal strategy with q = 40 and
constant weight asset allocation. For this point,
p` = 0.40.

-500 -400 -300 -200 -100 0

Expected Shortfall

40

45

50

55

60

65

E
[a

v
e

ra
g

e
 w

it
h

d
ra

w
a

l]

Synthetic Controls

Synthetic Market

Synthetic Controls

Historic Market

(b) ARVA withdrawals with optimal asset alloca-
tion, for both the historical and synthetic markets.

Figure 11.2: Efficient frontiers in the historical market for the scenario from Table 9.1. All
non-Pareto points have been removed. Units: thousands of dollars.

ure 11.2(b) which plots the efficient frontiers of expected average withdrawals vs. ES for ARVA743

withdrawals with optimal asset allocation in both markets, with the optimal controls having of744

course been determined in the synthetic market. The frontier for the historical market plots745

above the frontier for the synthetic market if ES < −40. However, the situation is reversed for746

ES > −40. This suggests that it is unreliable to try to achieve very low ES risk in the actual747

market. This is not unreasonable, since in order to obtain ES values close to zero the optimal748

strategy will depend greatly on the stochastic market structure. Consequently, it appears that749

the synthetic market controls are not robust to parameter uncertainty for ES > −40, although750

the controls do appear to be robust otherwise.751

12 Conclusions752

For both parametric model simulations and bootstrap resampling of the historical data, the753

ARVA withdrawal strategy with constant asset weights and minimum/maximum withdrawal754

constraints outperforms a constant withdrawal strategy with constant asset weights based on755

expected average withdrawals and expected shortfall criteria. This is consistent with results756

from the practitioner literature (e.g. Pfau, 2015) which show that withdrawal variability can757

significantly improve performance in cases with constant weight asset allocation. However,758

we also show that the ARVA withdrawal strategy can be further improved by dynamically759

choosing the equity weight. This strategy is determined by maximizing an expected total with-760

drawals/expected shortfall objective function using dynamic programming, assuming a para-761

metric model of historical asset returns. As long as the desired expected shortfall is not unre-762

alistically large, this strategy is robust to parameter misspecification, as verified by tests using763

bootstrapped resampled historical data.764

Remarkably, the optimal dynamic ARVA strategy continues to outperform the constant765

withdrawal/constant weight strategy, even if the minimum ARVA withdrawal is set equal to766
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Figure A.1: Actual and fitted log returns for the CRSP value-weighted equity index and 30-
day T-bill indexes. Monthly data from 1926:1-2018:12, scaled to zero mean and unit standard
deviation. A standard normal density and the fitted double exponential jump diffusion density
(threshold, β = 3) are also shown.

the constant withdrawal in the latter strategy. These results indicate that if an investor in the767

decumulation stage of a DC plan is prepared to allow some variability in withdrawals, significant768

improvements can be obtained in both expected total withdrawals and expected shortfall.769

Appendix770

A Calibration of Model Parameters771

This appendix discusses the estimation of the parameters of the jump diffusion processes for the772

stock and bond indexes given by equations (3.1), (3.3), (3.4), and (3.5). Recall that the equity773

index is the CRSP value-weighted stock index while the bond index is the CRSP 30-day T-bill774

index, and that both of these indexes are adjusted for inflation by using the CPI.775

Jumps in the data are identified using the thresholding technique described in Mancini (2009)776

and Cont and Mancini (2011). Let ∆X̂i be the detrended log return in period i, with period777

time interval ∆t. Suppose we have an estimate for the diffusive volatility component σ̂. Then778

we detect a jump in period i if
∣∣∣∆X̂i

∣∣∣ > β σ̂
√

∆t. We choose β = 3 in this paper (note that ∆t779

is fixed). For justification for this parameter selection, see (Shimizu, 2013; Dang and Forsyth,780

2016; Forsyth and Vetzal, 2017). For details describing the recursive algorithm used to determine781

σ̂, see Forsyth and Vetzal (2017).782

Figure A.1(a) shows a histogram of the monthly log returns from the value-weighted CRSP783

stock index, scaled to zero mean and unit standard deviation. We superimpose a standard784

normal density onto this histogram, as well as the fitted density for the double exponential jump785

diffusion model. Figure A.1(b) shows the equivalent plot for the 30-day T-bill index.786

During the sample period of 1926:1-2018:12 (monthly), the filtering algorithm identified 30787

stock index jumps and 48 T-bill index jumps. Of these cases, just 5 were identified as occurring788

in the same month for both stocks and bonds, all in the 1930s. This supports our modelling789

assumption of no dependence between the jump intensities or jump distributions of the two790

indexes, though we do allow for correlated Brownian motion terms in the parametric model.791
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B Historical Market: Detailed Results792

This appendix presents detailed results for the historical market bootstrap resampling tests793

with expected blocksize b̂ = 2 years. Table B.1 shows the results for a constant withdrawal794

(q = 40) strategy with constant equity weight asset allocation, analogous to Table 10.1 in the795

synthetic market. Table B.2 gives results for ARVA withdrawals with constant equity weight796

asset allocation, analogous to Table 10.2 in the synthetic market. Finally, Table B.3 presents797

results in the historical market for ARVA withdrawals and optimal asset allocation (the optimal798

control is computed by solving the pre-commitment EW-ES problem (6.2) in the synthetic799

market). This table is analogous to Table 10.4 for the synthetic market.800

Equity Weight p` ES (α = 5%) Median[WT ]

0.0 −550.33 −191.87
0.1 −461.16 −52.68
0.2 −394.73 113.56
0.3 −358.56 317.35
0.4 −354.67 562.04
0.5 −378.58 850.23
0.6 −425.71 1177.31
0.7 −490.42 1548.45
0.8 −568.29 1956.86
0.9 −655.39 2381.87
1.0 −750.09 2823.11

Table B.1: Historical market results for constant withdrawals with constant weights, i.e. as-
suming the scenario given in Table 9.1 except that qmax = qmin = 40, and p` = constant in
equation (6.3). Units: thousands of dollars. Statistics based on 105 bootstrap resamples of the
monthly data from 1926:1 to 2018:12 with expected blocksize b̂ = 2 years.

Equity Weight p` ES (α = 5%) EW/(M + 1) Median[WT ]

0.0 −227.41 35.79 −13.79
0.1 −151.74 38.53 31.44
0.2 −98.37 42.27 64.71
0.3 −69.44 46.79 90.45
0.4 −61.86 51.37 111.55
0.5 −72.20 55.20 137.97
0.6 −99.58 58.02 170.37
0.7 −143.23 59.93 269.27
0.8 −202.74 61.34 493.52
0.9 −277.09 62.23 766.16
1.0 −362.60 62.80 1069.33

Table B.2: Historical market results for ARVA withdrawals with constant weights, i.e. assuming
the scenario given in Table 9.1 except that p` = constant in equation (6.3). There are M = 30
rebalancing dates and M + 1 withdrawals. Units: thousands of dollars. Statistics based on 105

bootstrap resamples of the monthly data from 1926:1 to 2018:12 with expected blocksize b̂ = 2
years.
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κ ES (α = 5%) EW/(M + 1) Median[WT ]
∑

iMedian(pi)/M

0.1 −349.50 64.05 258.80 .466
0.25 −222.76 63.09 253.57 .473
0.4 −136.43 61.74 247.42 .482
0.7 −78.02 59.81 239.01 .464
1.0 −61.23 58.86 230.46 .452
1.75 −45.17 56.48 204.19 .432
2.5 −40.80 55.15 180.32 .416
5.0 −37.96 52.26 135.64 .382
10.0 −37.34 49.77 101.99 .335
100.0 −42.87 43.22 53.70 .214

Table B.3: Historical market results for ARVA withdrawals with optimal asset allocation based
on the scenario given in Table 9.1 for various values of κ. The optimal control that solves the
pre-commitment EW-ES problem (6.2) is computed in the synthetic market using the algorithm
given in Section 7, stored, and then applied to bootstrap resamples of the historical data. There are
M = 30 rebalancing dates and M+1 withdrawals. Units: thousands of dollars. Statistics based on
105 bootstrap resamples of the monthly data from 1926:1 to 2018:12 with expected blocksize b̂ = 2
years. The stabilization parameter in equation (7.9) is ε = −10−4.
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